The TC1014/TC1015/TC1185 are high accuracy (typically ±0.5%) CMOS upgrades for older (bipolar) Low Dropout Regulators (LDOs) such as the LP2980. Designed specifically for battery-operated systems, the devices' CMOS construction eliminates wasted ground current, significantly extending battery life. Total supply current is typically 50 µA at full load (20 to 60 times lower than in bipolar regulators).

The devices' key features include ultra low-noise operation (plus optional Bypass input), fast response to step changes in load, and very low dropout voltage, typically 85 mV (TC1014), 180 mV (TC1015), and 270 mV (TC1185) at full-load. Supply current is reduced to 0.5 µA (max) and V_{OUT} falls to zero when the shutdown input is low. The devices incorporate both overtemperature and overcurrent protection.

The TC1014/TC1015/TC1185 are stable with an output capacitor of only 1 µF and have a maximum output current of 50 mA, 100 mA and 150 mA, respectively. For higher output current regulators, please see the TC1107 (DS21356), TC1108 (DS21357), TC1173 (DS21362) ($I_{OUT} = 300$ mA) data sheets.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Device</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>(V_{IN})</td>
<td>2.7</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>—</td>
<td>Note 1</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>(I_{OUT\text{MAX}})</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>mA</td>
<td>TC1014</td>
<td>TC1015; TC1185</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(V_{OUT})</td>
<td>(V_R - 2.5%)</td>
<td>(V_R + 0.5%)</td>
<td>(V_R + 2.5%)</td>
<td>V</td>
<td>—</td>
<td>Note 2</td>
</tr>
<tr>
<td>Output Voltage Temperature Coefficient</td>
<td>(TCV_{OUT})</td>
<td>20</td>
<td>40</td>
<td>—</td>
<td>ppm/°C</td>
<td>—</td>
<td>((V_R + 1) V) ≤ (V_{IN}) ≤ 6V</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>(\Delta V_{OUT}/\Delta V_{IN})</td>
<td>0.05</td>
<td>0.35</td>
<td>%</td>
<td>—</td>
<td>—</td>
<td>TC1014; TC1015; TC1185</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(\Delta V_{OUT}/V_{OUT})</td>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
<td>3%</td>
<td>TC1014; TC1015; TC1185</td>
<td></td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>(V_{IN'} - V_{OUT})</td>
<td>2</td>
<td>65</td>
<td>120</td>
<td>mV</td>
<td>—</td>
<td>(I_L = 0.1 \text{ mA to } I_{OUT\text{MAX}})</td>
</tr>
<tr>
<td>Thermal Regulation</td>
<td>(\Delta V_{OUT}/\Delta P_D)</td>
<td>300</td>
<td>450</td>
<td>mA</td>
<td>—</td>
<td>—</td>
<td>(I_L = 100 \mu A)</td>
</tr>
<tr>
<td>Thermal Shutoff Die Temperature</td>
<td>(T_{SD})</td>
<td>—</td>
<td>160</td>
<td>—</td>
<td>°C</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Thermal Shutdown Hysteresis</td>
<td>(\Delta T_{SD})</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>°C</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: The minimum \(V_{IN} \) has to meet two conditions: \(V_{IN} \geq 2.7\text{V} \) and \(V_{IN} \geq V_R + V_{DROPOUT} \).

Note 2: \(V_R \) is the regulator output voltage setting. For example: \(V_R = 1.8\text{V}, 2.5\text{V}, 2.6\text{V}, 2.7\text{V}, 2.8\text{V}, 2.85\text{V}, 3.0\text{V}, 3.3\text{V}, 3.6\text{V}, 4.0\text{V}, 5.0\text{V} \).

Notice:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

TC1014/TC1015/TC1185 ELECTRICAL SPECIFICATIONS

Electrical Specifications:

\(V_{IN} = V_R + 1\text{V}, \; I_L = 100 \mu \text{A}, \; C_L = 1.0 \mu \text{F}, \; \text{SHDN} > V_{IH}, \; T_A = +25°C, \) unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Device</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Operating Voltage</td>
<td>(V_{IN})</td>
<td>2.7</td>
<td>—</td>
<td>6.0</td>
<td>V</td>
<td>—</td>
<td>Note 1</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>(I_{OUT\text{MAX}})</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>mA</td>
<td>TC1014</td>
<td>TC1015; TC1185</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>(V_{OUT})</td>
<td>(V_R - 2.5%)</td>
<td>(V_R + 0.5%)</td>
<td>(V_R + 2.5%)</td>
<td>V</td>
<td>—</td>
<td>Note 2</td>
</tr>
<tr>
<td>Output Voltage Temperature Coefficient</td>
<td>(TCV_{OUT})</td>
<td>20</td>
<td>40</td>
<td>—</td>
<td>ppm/°C</td>
<td>—</td>
<td>((V_R + 1) V) ≤ (V_{IN}) ≤ 6V</td>
</tr>
<tr>
<td>Line Regulation</td>
<td>(\Delta V_{OUT}/\Delta V_{IN})</td>
<td>0.05</td>
<td>0.35</td>
<td>%</td>
<td>—</td>
<td>—</td>
<td>TC1014; TC1015; TC1185</td>
</tr>
<tr>
<td>Load Regulation</td>
<td>(\Delta V_{OUT}/V_{OUT})</td>
<td>0.5</td>
<td>0.5</td>
<td>2</td>
<td>3%</td>
<td>TC1014; TC1015; TC1185</td>
<td></td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>(V_{IN'} - V_{OUT})</td>
<td>2</td>
<td>65</td>
<td>120</td>
<td>mV</td>
<td>—</td>
<td>(I_L = 0.1 \text{ mA to } I_{OUT\text{MAX}})</td>
</tr>
<tr>
<td>Supply Current</td>
<td>(I_{IN})</td>
<td>—</td>
<td>50</td>
<td>80</td>
<td>μA</td>
<td>—</td>
<td>SHDN = (V_{RH}, I_L = 0)</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>PSRR</td>
<td>—</td>
<td>64</td>
<td>—</td>
<td>dB</td>
<td>—</td>
<td>F_{RE} ≤ 1 kHz</td>
</tr>
<tr>
<td>Dropout Voltage</td>
<td>(V_{IN'} - V_{OUT})</td>
<td>2</td>
<td>65</td>
<td>120</td>
<td>mV</td>
<td>—</td>
<td>(I_L = 0.1 \text{ mA to } I_{OUT\text{MAX}})</td>
</tr>
<tr>
<td>Shutdown Supply Current</td>
<td>(I_{INSD})</td>
<td>—</td>
<td>0.05</td>
<td>0.5</td>
<td>μA</td>
<td>—</td>
<td>SHDN = 0V</td>
</tr>
<tr>
<td>Output Short Circuit Current</td>
<td>(I_{OUTSC})</td>
<td>—</td>
<td>300</td>
<td>450</td>
<td>mA</td>
<td>—</td>
<td>(V_{OUT} = 0V)</td>
</tr>
<tr>
<td>Thermal Regulation</td>
<td>(\Delta V_{OUT}/\Delta P_D)</td>
<td>0.04</td>
<td>—</td>
<td>V/W</td>
<td>—</td>
<td>Notes 6, 7</td>
<td></td>
</tr>
<tr>
<td>Thermal Shutoff Die Temperature</td>
<td>(T_{SD})</td>
<td>—</td>
<td>160</td>
<td>—</td>
<td>°C</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Thermal Shutoff Hysteresis</td>
<td>(\Delta T_{SD})</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>°C</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: The minimum \(V_{IN} \) has to meet two conditions: \(V_{IN} \geq 2.7\text{V} \) and \(V_{IN} \geq V_R + V_{DROPOUT} \).

Note 2: \(V_R \) is the regulator output voltage setting. For example: \(V_R = 1.8\text{V}, 2.5\text{V}, 2.6\text{V}, 2.7\text{V}, 2.8\text{V}, 2.85\text{V}, 3.0\text{V}, 3.3\text{V}, 3.6\text{V}, 4.0\text{V}, 5.0\text{V} \).

Note 3: TC \(V_{OUT} = (V_{OUT\text{MAX}} - V_{OUT\text{MIN}}) \times 10^6 \) \(V_{OUT} \times \Delta T \)

Note 4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 0.1 mA to the maximum specified output current. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value at a 1V differential.

Note 6: Thermal Regulation is defined as the change in output voltage at a time \(T \) after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a current pulse equal to \(I_{MAX} \) at \(V_{IN} = 6V \) for \(T = 10 \text{ms} \).

Note 7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction-to-air (i.e., \(T_A, T_J, \theta_{JA} \)). Exceeding the maximum allowable power dissipation causes the device to initiate thermal shutdown. Please see Section 5.0 “Thermal Considerations” for more details.

Note 8: Apply for Junction Temperatures of -40°C to +85°C.
TC1014/TC1015/TC1185 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Specifications: \(V_{IN} = V_{R} + 1 \text{V}, I_L = 100 \mu \text{A}, C_L = 1.0 \mu \text{F}, \text{SHDN} > V_{IH}, T_A = +25^\circ \text{C}, \) unless otherwise noted.

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Device</th>
<th>Test Conditions</th>
</tr>
</thead>
</table>
| Output Noise | \(eN \) | — | 600 | — | nV/\sqrt{Hz} | — | \(I_L = I_{OUT_{MAX}} \)
 \(F = 10 \text{ kHz} \)
 470 pF from Bypass to GND |
| SHDN Input High Threshold | \(V_{IH} \) | 45 | — | — | \%\(V_{IN} \) | — | \(V_{IN} = 2.5\text{V to 6.5V} \) |
| SHDN Input Low Threshold | \(V_{IL} \) | — | — | 15 | \%\(V_{IN} \) | — | \(V_{IN} = 2.5\text{V to 6.5V} \) |

TEMPERATURE CHARACTERISTICS

Electrical Specifications: \(V_{IN} = V_{R} + 1 \text{V}, I_L = 100 \mu \text{A}, C_L = 1.0 \mu \text{F}, \text{SHDN} > V_{IH}, T_A = +25^\circ \text{C}, \) unless otherwise noted.

Boldface type specifications apply for junction temperatures of -40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_A)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 5L-SOT-23</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>256</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.
TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-7: Ground Current vs. Input Voltage (V_IN).

FIGURE 2-8: Output Voltage (V_OUT) vs. Input Voltage (V_IN).

FIGURE 2-9: Output Voltage (V_OUT) vs. Temperature.

FIGURE 2-10: Output Voltage (V_OUT) vs. Input Voltage (V_IN).

FIGURE 2-11: Output Voltage (V_OUT) vs. Temperature.
TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-12: Output Voltage (V_{OUT}) vs. Temperature.

FIGURE 2-13: I_{GND} vs. Temperature.

FIGURE 2-14: Output Voltage (V_{OUT}) vs. Temperature.

FIGURE 2-15: I_{GND} vs. Temperature.

FIGURE 2-16: AC Characteristics.
TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

Measure Rise Time of 3.3V LDO With Bypass Capacitor
Conditions: \(C_{IN} = 1 \mu F, C_{OUT} = 1 \mu F, C_{BYP} = 470pF, I_{LOAD} = 100mA \)
\(V_{IN} = 4.3V, \) Temp = 25°C, Rise Time = 448μS

Measure Fall Time of 3.3V LDO With Bypass Capacitor
Conditions: \(C_{IN} = 1 \mu F, C_{OUT} = 1 \mu F, C_{BYP} = 470pF, I_{LOAD} = 50mA \)
\(V_{IN} = 4.3V, \) Temp = 25°C, Fall Time = 100μS

Measure Rise Time of 3.3V LDO Without Bypass Capacitor
Conditions: \(C_{IN} = 1 \mu F, C_{OUT} = 1 \mu F, C_{BYP} = 0pF, I_{LOAD} = 100mA \)
\(V_{IN} = 4.3V, \) Temp = 25°C, Rise Time = 184μS

Measure Fall Time of 3.3V LDO Without Bypass Capacitor
Conditions: \(C_{IN} = 1 \mu F, C_{OUT} = 1 \mu F, C_{BYP} = 0pF, I_{LOAD} = 100mA \)
\(V_{IN} = 4.3V, \) Temp = 25°C, Fall Time = 52μS

FIGURE 2-17: Measure Rise Time of 3.3V with Bypass Capacitor.

FIGURE 2-18: Measure Fall Time of 3.3V with Bypass Capacitor.

FIGURE 2-19: Measure Rise Time of 3.3V without Bypass Capacitor.

FIGURE 2-20: Measure Fall Time of 3.3V without Bypass Capacitor.
TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

Measure Rise Time of 5.0V LDO With Bypass Capacitor
Conditions: CIN = 1μF, COUT = 1μF, CBYP = 470pF, ILOAD = 100mA
VIN = 6V, Temp = 25°C, Rise Time = 390μS

Measure Fall Time of 5.0V LDO With Bypass Capacitor
Conditions: CIN = 1μF, COUT = 1μF, CBYP = 470pF, ILOAD = 50mA
VIN = 6V, Temp = 25°C, Fall Time = 167μS

Measure Rise Time of 5.0V LDO Without Bypass Capacitor
Conditions: CIN = 1μF, COUT = 1μF, CBYP = 0pF, ILOAD = 100mA
VIN = 6V, Temp = 25°C, Rise Time = 192μS

Measure Fall Time of 5.0V LDO Without Bypass Capacitor
Conditions: CIN = 1μF, COUT = 1μF, CBYP = 0pF, ILOAD = 100mA
VIN = 6V, Temp = 25°C, Fall Time = 88μS
TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-25: Load Regulation of 3.3V LDO.

![Load Regulation of 3.3V LDO](image)

FIGURE 2-26: Load Regulation of 3.3V LDO.

![Load Regulation of 3.3V LDO](image)

FIGURE 2-27: Load Regulation of 3.3V LDO.

![Load Regulation of 3.3V LDO](image)

FIGURE 2-28: Load Regulation of 3.3V LDO.

![Load Regulation of 3.3V LDO](image)
TYPICAL PERFORMANCE CURVES (CONTINUED)

Note: Unless otherwise specified, all parts are measured at temperature = +25°C.

FIGURE 2-29: Line Regulation of 5.0V LDO.
Conditions: \(V_{IN} = 6V, +1V \) Squarewave @2.5kHz

FIGURE 2-30: Thermal Shutdown Response of 5.0V LDO.
Conditions: \(V_{IN} = 6V, C_{IN} = 0\mu F, C_{OUT} = 1\mu F \)

- \(I_{LOAD} \) was increased until temperature of die reached about 160°C, at which time integrated thermal protection circuitry shuts the regulator off when die temperature exceeds approximately 160°C. The regulator remains off until die temperature drops to approximately 150°C.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No. (5-Pin SOT-23)</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V IN</td>
<td>Unregulated supply input.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground terminal.</td>
</tr>
<tr>
<td>3</td>
<td>SHDN</td>
<td>Shutdown control input. The regulator is fully enabled when a logic high is applied to this input. The regulator enters shutdown when a logic low is applied to this input. During shutdown, output voltage falls to zero and supply current is reduced to 0.5 µA (maximum).</td>
</tr>
<tr>
<td>4</td>
<td>Bypass</td>
<td>Reference bypass input. Connecting a 470 pF to this input further reduces output noise.</td>
</tr>
<tr>
<td>5</td>
<td>V OUT</td>
<td>Regulated voltage output.</td>
</tr>
</tbody>
</table>

3.1 Input Voltage (V IN)

Connect the V IN pin to the unregulated source voltage. Like all low dropout linear regulators, low source impedance is necessary for the stable operation of the LDO. The amount of capacitance required to ensure low source impedance will depend on the proximity of the input source capacitors or battery type. For most applications, 1.0 µF of capacitance will ensure stable operation of the LDO circuit. The type of capacitor used can be ceramic, tantalum or aluminum electrolytic. The low Effective Series Resistance (ESR) characteristics of the ceramic will yield better noise and Power Supply Ripple Rejection (PSRR) performance at high frequency.

3.2 Ground Terminal (GND)

Connect the ground pin to the input voltage return. For the optimal noise and PSRR performance, the GND pin of the LDO should be tied to a quiet circuit ground. For applications have switching or noisy inputs tie the GND pin to the return of the output capacitor. Ground planes help lower inductance and voltage spikes caused by fast transient load currents and are recommended for applications that are subjected to fast load transients.

3.3 Shutdown (SHDN)

The Shutdown input is used to turn the LDO on and off. When the SHDN pin is at a logic high level, the LDO output is enabled. When the SHDN pin is pulled to a logic low, the LDO output is disabled. When disabled, the quiescent current used by the LDO is less than 0.5 µA max.

3.4 Bypass

Connecting a low-value ceramic capacitor to the Bypass pin will further reduce output voltage noise and improve the PSRR performance of the LDO. While smaller and larger values can be used, these affect the speed at which the LDO output voltage rises when the input power is applied. The larger the bypass capacitor, the slower the output voltage will rise.

3.5 Output Voltage (V OUT)

Connect the output load to V OUT of the LDO. Also connect one side of the LDO output capacitor as close as possible to the V OUT pin.
4.0 DETAILED DESCRIPTION

The TC1014, TC1015 and TC1185 are precision fixed output voltage regulators (if an adjustable version is needed, see the TC1070, TC1071 and TC1187 data sheet (DS21353). Unlike bipolar regulators, the TC1014, TC1015 and TC1185 supply current does not increase with load current. In addition, the LDOs' output voltage is stable using 1 µF of capacitance over the entire specified input voltage range and output current range.

Figure 4-1 shows a typical application circuit. The regulator is enabled anytime the shutdown input (SHDN) is at or above VIH, and disabled when SHDN is at or below VIH. SHDN may be controlled by a CMOS logic gate or I/O port of a microcontroller. If the SHDN input is not required, it should be connected directly to the input supply. While in shutdown, the supply current decreases to 0.05 µA (typical) and VOUT falls to zero volts.

4.1 Bypass Input

A 470 pF capacitor connected from the Bypass input to ground reduces noise present on the internal reference, which in turn, significantly reduces output noise. If output noise is not a concern, this input may be left unconnected. Larger capacitor values may be used, but results in a longer time period to rated output voltage when power is initially applied.

4.2 Output Capacitor

A 1 µF (min) capacitor from VOUT to ground is required. The output capacitor should have an effective series resistance greater than 0.1Ω and less than 5Ω. A 1 µF capacitor should be connected from VIN to GND if there is more than 10 inches of wire between the regulator and the AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitor types can be used. (Since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalums are recommended for applications operating below -25°C.) When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.

4.3 Input Capacitor

A 1 µF capacitor should be connected from VIN to GND if there is more than 10 inches of wire between the regulator and this AC filter capacitor, or if a battery is used as the power source. Aluminum electrolytic or tantalum capacitors can be used (since many aluminum electrolytic capacitors freeze at approximately -30°C, solid tantalum is recommended for applications operating below -25°C). When operating from sources other than batteries, supply-noise rejection and transient response can be improved by increasing the value of the input and output capacitors and employing passive filtering techniques.
5.0 THERMAL CONSIDERATIONS

5.1 Thermal Shutdown
Integrated thermal protection circuitry shuts the regulator off when the die temperature exceeds 160°C. The regulator remains off until the die temperature drops to approximately 150°C.

5.2 Power Dissipation
The amount of power the regulator dissipates is primarily a function of input and output voltage, and output current. The following equation is used to calculate worst-case actual power dissipation:

EQUATION 5-1:

\[P_D \approx (V_{IN\text{MAX}} - V_{OUT\text{MIN}})I_{LOAD\text{MAX}} \]

Where:
- \(P_D \) = Worst-case actual power dissipation
- \(V_{IN\text{MAX}} \) = Maximum voltage on \(V_{IN} \)
- \(V_{OUT\text{MIN}} \) = Minimum regulator output voltage
- \(I_{LOAD\text{MAX}} \) = Maximum output (load) current

The maximum allowable power dissipation (Equation 5-2) is a function of the maximum ambient temperature \(T_{AMAX} \), the maximum allowable die temperature \(T_{JMAX} \) and the thermal resistance from junction-to-air \(\theta_{JA} \). The 5-pin SOT-23 package has a \(\theta_{JA} \) of approximately 220°C/Watt.

EQUATION 5-2:

\[
P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}
\]

Where all terms are previously defined.

Equation 5-1 can be used in conjunction with Equation 5-2 to ensure regulator thermal operation is within limits. For example:

Given:
- \(V_{IN\text{MAX}} = 3.0\, \text{V} + 10\% \)
- \(V_{OUT\text{MIN}} = 2.7\, \text{V} - 2.5\% \)
- \(I_{LOAD\text{MAX}} = 40\, \text{mA} \)
- \(T_{JMAX} = 125°C \)
- \(T_{AMAX} = 55°C \)

Find:
1. Actual power dissipation
2. Maximum allowable dissipation

Actual power dissipation:

\[
P_D \approx (V_{IN\text{MAX}} - V_{OUT\text{MIN}})I_{LOAD\text{MAX}}
\]

\[
\approx [(3.0 \times 1.1) - (2.7 \times .975)]40 \times 10^{-3}
\]

\[
= 26.7\, \text{mW}
\]

Maximum allowable power dissipation:

\[
P_{DMAX} = \frac{(T_{JMAX} - T_{AMAX})}{\theta_{JA}}
\]

\[
= \frac{(125 - 55)}{220}
\]

\[
= \frac{70}{220}
\]

\[
= 318\, \text{mW}
\]

In this example, the TC1014 dissipates a maximum of 26.7 mW below the allowable limit of 318 mW. In a similar manner, Equation 5-1 and Equation 5-2 can be used to calculate maximum current and/or input voltage limits.

5.3 Layout Considerations
The primary path of heat conduction out of the package is via the package leads. Therefore, layouts having a ground plane, wide traces at the pads, and wide power supply bus lines combine to lower \(\theta_{JA} \) and therefore increase the maximum allowable power dissipation limit.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

TABLE 6-1: PART NUMBER CODE AND TEMPERATURE RANGE

<table>
<thead>
<tr>
<th>(V)</th>
<th>TC1014 Code</th>
<th>TC1015 Code</th>
<th>TC1185 Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>AY</td>
<td>BY</td>
<td>NY</td>
</tr>
<tr>
<td>2.5</td>
<td>A1</td>
<td>B1</td>
<td>N1</td>
</tr>
<tr>
<td>2.6</td>
<td>NB</td>
<td>BT</td>
<td>NT</td>
</tr>
<tr>
<td>2.7</td>
<td>A2</td>
<td>B2</td>
<td>N2</td>
</tr>
<tr>
<td>2.8</td>
<td>AZ</td>
<td>BZ</td>
<td>NZ</td>
</tr>
<tr>
<td>2.85</td>
<td>A8</td>
<td>B8</td>
<td>N8</td>
</tr>
<tr>
<td>3.0</td>
<td>A3</td>
<td>B3</td>
<td>N3</td>
</tr>
<tr>
<td>3.3</td>
<td>A5</td>
<td>B5</td>
<td>N5</td>
</tr>
<tr>
<td>3.6</td>
<td>A9</td>
<td>B9</td>
<td>N9</td>
</tr>
<tr>
<td>4.0</td>
<td>A0</td>
<td>B0</td>
<td>N0</td>
</tr>
<tr>
<td>5.0</td>
<td>A7</td>
<td>B7</td>
<td>N7</td>
</tr>
</tbody>
</table>

① & ② represents part number code + temperature range and voltage
③ represents year and 2-month period code
④ represents lot ID number

6.2 Taping Form

Carrier Tape, Number of Components per Reel and Reel Size

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Pin SOT-23</td>
<td>8 mm</td>
<td>4 mm</td>
<td>3000</td>
<td>7 in</td>
</tr>
</tbody>
</table>
TC1014/TC1015/TC1185

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lead Pitch</td>
<td>e</td>
<td>0.95 BSC</td>
<td></td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
<td>1.90 BSC</td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.90 – 1.45</td>
<td></td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>0.89 – 1.30</td>
<td></td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00 – 0.15</td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>2.20 – 3.20</td>
<td></td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>1.30 – 1.80</td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>2.70 – 3.10</td>
<td></td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.10 – 0.60</td>
<td></td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
<td>0.35 – 0.80</td>
<td></td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>0° – 30°</td>
<td></td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.08 – 0.26</td>
<td></td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>0.20 – 0.51</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
APPENDIX A: REVISION HISTORY

Revision E (February 2007)

• Section 1.0 “Electrical characteristics”:
 Changed Dropout Voltage from mA to µA.
• Updated “Product Identification System”, page 19.
• Updated Section 6.0 “Packaging Information”.

Revision D (April 2006)

• Removed “ERROR is open circuited” from SHDN pin description in Pin Function Table.
• Added verbiage for pinout descriptions in Pin Function Table.
• Replaced verbiage in first paragraph of Section 4.0 Detailed Description.
• Added Section 4.3 Input Capacitor

Revision C (January 2006)

• Changed TR suffix to 713 suffix in Taping Form in Package Marking Section

Revision B (May 2002)

• Converted Telcom data sheet to Microchip standard for Analog Handbook

Revision A (February 2001)

• Original Release of this Document under Telcom.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Output Voltage</th>
<th>Temperature Range</th>
<th>Package</th>
</tr>
</thead>
</table>
| TC1014 | 50 mA LDO with Shutdown and V_{REF} Bypass | 1.8 = 1.8V
2.5 = 2.5V
2.6 = 2.6V
2.7 = 2.7V
2.8 = 2.8V
2.85 = 2.85V
3.0 = 3.0V
3.3 = 3.3V
3.6 = 3.6V
4.0 = 4.0V
5.0 = 5.0V | V = -40° C to +125° C | CT713 = Plastic Small Outline Transistor (SOT-23), 5-lead, Tape and Reel |
| TC1015 | 100 mA LDO with Shutdown and V_{REF} Bypass | 2.5 = 2.5V
2.6 = 2.6V
2.7 = 2.7V
2.8 = 2.8V
2.85 = 2.85V
3.0 = 3.0V
3.3 = 3.3V
3.6 = 3.6V
4.0 = 4.0V
5.0 = 5.0V | V = -40° C to +125° C | CT713 = Plastic Small Outline Transistor (SOT-23), 5-lead, Tape and Reel |
| TC1185 | 150 mA LDO with Shutdown and V_{REF} Bypass | 2.5 = 2.5V
2.6 = 2.6V
2.7 = 2.7V
2.8 = 2.8V
2.85 = 2.85V
3.0 = 3.0V
3.3 = 3.3V
3.6 = 3.6V
4.0 = 4.0V
5.0 = 5.0V | V = -40° C to +125° C | CT713 = Plastic Small Outline Transistor (SOT-23), 5-lead, Tape and Reel |

Examples:

a) TC1014-1.8VCT713: 1.8V, 5LD SOT-23, Tape and Reel.
b) TC1014-2.85VCT713: 2.85V, 5LD SOT-23, Tape and Reel.
c) TC1014-3.3VCT713: 3.3V, 5LD SOT-23, Tape and Reel.
a) TC1015-1.8VCT713: 1.8V, 5LD SOT-23, Tape and Reel.
b) TC1015-2.85VCT713: 2.85V, 5LD SOT-23, Tape and Reel.
c) TC1015-3.0VCT713: 3.0V, 5LD SOT-23, Tape and Reel.
a) TC1185-1.8VCT713: 1.8V, 5LD SOT-23, Tape and Reel.
b) TC1185-2.8VCT713: 2.8V, 5LD SOT-23, Tape and Reel.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.