CoolMOS ${ }^{\text {TM }}$ Power Transistor

Features

- Lowest figure-of-merit $\mathrm{R}_{\mathrm{ON}} \times \mathrm{Q}_{\mathrm{g}}$
- Ultra low gate charge
- Extreme dv/dt rated
- High peak current capability
- Pb-free lead plating; RoHS compliant
- Quailfied according to JEDEC ${ }^{1)}$ for target applications

CoolMOS CP is designed for:

Product Summary

$V_{\mathrm{DS}} @ \mathrm{~T}_{\text {jmax }}$	550	V
$R_{\mathrm{DS} \text { (on), max }}$	0.250	Ω
$Q_{\text {g.typ }}$	27	nC

- Hard \& soft switching SMPS topologies
- CCM PFC for ATX, Notebook adapter, PDP and LCD TV
- PWM Stages for ATX, Notebook adapter, PDP and LCD TV

Type	Package	Marking
IPW50R250CP	PG-TO247	5R250P

Maximum ratings, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous drain current	$I_{\text {D }}$	$T_{C}=25^{\circ} \mathrm{C}$	13	A
		$T_{C}=100{ }^{\circ} \mathrm{C}$	9	
Pulsed drain current ${ }^{2}$	$I_{\text {D,pulse }}$	$T_{C}=25^{\circ} \mathrm{C}$	31	
Avalanche energy, single pulse	$E_{\text {AS }}$	$I_{\mathrm{D}}=5.2 \mathrm{~A}, V_{\mathrm{DD}}=50 \mathrm{~V}$	345	mJ
Avalanche energy, repetitive $t_{\mathrm{AR}}{ }^{2,3)}$	$E_{\text {AR }}$	$I_{\mathrm{D}}=5.2 \mathrm{~A}, V_{\text {DD }}=50 \mathrm{~V}$	0.52	
Avalanche current, repetitive $t_{\mathrm{AR}}{ }^{2), 3)}$	$I_{\text {AR }}$		5.2	A
MOSFET $\mathrm{d} v / \mathrm{d} t$ ruggedness	$\mathrm{d} v / \mathrm{d} t$	$V_{\text {DS }}=0 . . .400 \mathrm{~V}$	50	V / ns
Gate source voltage	$V_{\text {GS }}$	static	± 20	V
		AC ($\mathrm{f}>1 \mathrm{~Hz}$)	± 30	
Power dissipation	$P_{\text {tot }}$	$T_{\mathrm{C}}=25^{\circ} \mathrm{C}$	114	W
Operating and storage temperature	$T_{\mathrm{j}}, T_{\text {stg }}$		-55 ... 150	${ }^{\circ} \mathrm{C}$
Mounting torque		M3 and M3.5 screws	60	Ncm

Maximum ratings, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit
Continuous diode forward current	I_{S}	${ }_{\mathrm{C}}=25^{\circ} \mathrm{C}$	7.8	A
Diode pulse current ${ }^{2)}$	$I_{\mathrm{S}, \text { pulse }}$		31	
Reverse diode $\mathrm{d} v / \mathrm{d} t^{4)}$	$\mathrm{d} v / \mathrm{d} t$		15	V/ns

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	

Thermal characteristics

Thermal resistance, junction - case	$R_{\text {thJc }}$		-	-	1.1	$\mathrm{~K} / \mathrm{W}$
Thermal resistance, junction - ambient	$R_{\text {thJA }}$	leaded	-	-	62	
Soldering temperature, wavesoldering only allowed at leads	$T_{\text {sold }}$	$1.6 \mathrm{~mm}(0.063 \mathrm{in})$. from case for 10 s	-	-	260	${ }^{\circ} \mathrm{C}$

Electrical characteristics, at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{(B R) \mathrm{DSS}}$	$V_{G S}=0 \mathrm{~V}, I_{\mathrm{D}}=250 \mu \mathrm{~A}$	500	-	-	V
Gate threshold voltage	$V_{\text {GS(th) }}$	$V_{\text {DS }}=V_{G S}, I_{\text {D }}=0.52 \mathrm{~mA}$	2.5	3	3.5	
Zero gate voltage drain current	I DSs	$\begin{aligned} & V_{\mathrm{DS}}=500 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
		$\begin{aligned} & V_{\mathrm{DS}}=500 \mathrm{~V}, V_{\mathrm{GS}}=0 \mathrm{~V}, \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	10	-	
Gate-source leakage current	$I_{\text {GSS }}$	$V_{\text {GS }}=20 \mathrm{~V}, V_{\text {DS }}=0 \mathrm{~V}$	-	-	100	nA
Drain-source on-state resistance	$R_{\text {DS(on) }}$	$\begin{aligned} & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=7.8 \mathrm{~A}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	0.22	0.25	Ω
		$\begin{aligned} & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=7.8 \mathrm{~A}, \\ & T_{\mathrm{j}}=150^{\circ} \mathrm{C} \end{aligned}$	-	0.54	-	
Gate resistance	R_{G}	$f=1 \mathrm{MHz}$, open drain	-	2.2	-	Ω

IPW50R250CP

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	

Dynamic characteristics

Input capacitance	$C_{\text {iss }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=100 \mathrm{~V}, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	1420	-	pF
Output capacitance	$C_{\text {oss }}$		-	63	-	
Effective output capacitance, energy related ${ }^{5)}$	$C_{\text {o(er) }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, V_{\mathrm{DS}}=0 \mathrm{~V} \\ & \text { to } 400 \mathrm{~V} \end{aligned}$	-	60	-	
Effective output capacitance, time related ${ }^{6)}$	$C_{\text {o(tr) }}$		-	130	-	
Turn-on delay time	$t_{\text {d(on) }}$	$\begin{aligned} & V_{\mathrm{DD}}=400 \mathrm{~V}, \\ & V_{\mathrm{GS}}=10 \mathrm{~V}, I_{\mathrm{D}}=7.8 \mathrm{~A}, \\ & R_{\mathrm{G}}=23.1 \Omega \end{aligned}$	-	35	-	ns
Rise time	t_{r}		-	14	-	
Turn-off delay time	$t_{\text {d(off) }}$		-	80	-	
Fall time	$t_{\text {f }}$		-	11	-	

Gate Charge Characteristics

Gate to source charge	$Q_{\text {gs }}$	$\begin{aligned} & V_{\mathrm{DD}}=400 \mathrm{~V}, I_{\mathrm{D}}=7.8 \mathrm{~A}, \\ & V_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V} \end{aligned}$	-	6	-	nC
Gate to drain charge	$Q_{\text {gd }}$		-	9	-	
Gate charge total	Q_{g}		-	27	36	
Gate plateau voltage	$V_{\text {plateau }}$		-	5.2	-	V

Reverse Diode

Diode forward voltage	$V_{\text {SD }}$	$\begin{aligned} & V_{\mathrm{GS}}=0 \mathrm{~V}, I_{\mathrm{F}}=7.8 \mathrm{~A}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$	-	0.9	1.2	V
Reverse recovery time	$t_{\text {rr }}$	$\begin{aligned} & V_{\mathrm{R}}=400 \mathrm{~V}, I_{\mathrm{F}}=I_{\mathrm{S}} \\ & \mathrm{~d} i_{\mathrm{F}} / \mathrm{d} t=100 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	300	-	ns
Reverse recovery charge	$Q_{\text {rr }}$		-	3.1	-	$\mu \mathrm{C}$
Peak reverse recovery current	$I_{\text {rrm }}$		-	23	-	A

1) J-STD20 and JESD22
${ }^{2)}$ Pulse width t_{p} limited by $T_{\mathrm{j}, \text { max }}$
${ }^{3)}$ Repetitive avalanche causes additional power losses that can be calculated as $P_{\mathrm{AV}}=E_{\mathrm{AR}}{ }^{*} f$.
${ }^{4)} I_{\mathrm{SD}} \leq I_{\mathrm{D}}, \mathrm{di} / \mathrm{d} t \leq 200 \mathrm{~A} / \mu \mathrm{s}, V_{\text {DClink }}=400 \mathrm{~V}, V_{\text {peak }}<V_{(\mathrm{BR}) \mathrm{DSs}}, T_{\mathrm{j}} \leq T_{\text {jmax }}$, identical low and high side switch
${ }^{5)} C_{\text {o(er) }}$ is a fixed capacitance that gives the same stored energy as $C_{\text {oss }}$ while $V_{\text {DS }}$ is rising from 0 to $80 \% V_{\text {DSs. }}$
${ }^{6)} C_{\text {o(tr) }}$ is a fixed capacitance that gives the same charging time as $C_{\text {oss }}$ while $V_{D S}$ is rising from 0 to $80 \% V_{\text {DSs }}$.

1 Power dissipation
$P_{\text {tot }}=\mathrm{f}\left(T_{\mathrm{C}}\right)$

3 Max. transient thermal impedance
$Z_{\text {(} \mathrm{thJC})}=f\left(\mathrm{t}_{\mathrm{p}}\right)$;
parameter: $D=t_{\mathrm{p}} / T$

2 Safe operating area

$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{C}}=25^{\circ} \mathrm{C} ; D=0$
parameter: t_{p}

4 Typ. output characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{j}}=25^{\circ} \mathrm{C}$
parameter: $V_{\text {GS }}$

IPW50R250CP

5 Typ. output characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{DS}}\right) ; T_{\mathrm{j}}=150^{\circ} \mathrm{C}$
parameter: $V_{G S}$

7 Drain-source on-state resistance

$R_{\mathrm{DS}(\text { on })}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=7.8 \mathrm{~A} ; V_{\mathrm{GS}}=10 \mathrm{~V}$

6 Typ. drain-source on-state resistance
$R_{\mathrm{DS}(\text { on })}=\mathrm{f}\left(I_{\mathrm{D}}\right) ; T_{\mathrm{j}}=150^{\circ} \mathrm{C}$
parameter: $V_{G S}$

8 Typ. transfer characteristics
$I_{\mathrm{D}}=\mathrm{f}\left(V_{\mathrm{GS}}\right) ;\left|V_{\mathrm{DS}}\right|>2\left|I_{\mathrm{D}}\right| R_{\mathrm{DS}(\text { on })} \max$
parameter: T_{j}

9 Typ. gate charge
$V_{\mathrm{GS}}=\mathrm{f}\left(Q_{\text {gate }}\right) ; I_{\mathrm{D}}=7.8 \mathrm{~A}$ pulsed
parameter: $V_{D D}$

11 Avalanche energy

$E_{A S}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=5.2 \mathrm{~A} ; V_{\mathrm{DD}}=50 \mathrm{~V}$

10 Forward characteristics of reverse diode
$I_{\mathrm{F}}=\mathrm{f}\left(V_{\mathrm{SD}}\right)$
parameter: T_{j}

$V_{\text {BR(DSS })}=\mathrm{f}\left(T_{\mathrm{j}}\right) ; I_{\mathrm{D}}=0.25 \mathrm{~mA}$

13 Typ. capacitances

$C=f\left(V_{\mathrm{DS}}\right) ; V_{\mathrm{Gs}}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

14 Typ. Coss stored energy
$E_{\text {oss }}=\mathrm{f}\left(V_{\mathrm{DS}}\right)$

Definition of diode switching characteristics

PG-TO247 Outlines

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.16	0.193	0.203
A1	2.27	2.53	0.089	0.099
A2	1.85	2.11	0.073	0.083
b	1.07	1.33	0.042	0.052
b2	1.90	2.39	0.075	0.094
b4	2.87	3.45	0.113	0.136
c	0.55	0.75	0.022	0.030
D	20.82	21.10	0.820	0.831
D1	16.25	17.83	0.640	0.702
D2	1.05	1.35	0.041	0.053
E	15.70	16.03	0.618	0.631
E1	13.10	14.15	0.516	0.557
E2	3.68	5.10	0.145	0.201
E3	1.68	2.60	0.066	0.102
e	5.44		0.214	
e1	10.90		0.429	
N	3		3	
L	19.80	20.31	0.780	0.799
L1	4.17	4.47	0.164	0.176
$\emptyset \mathrm{P}$	3.50	3.70	0.138	0.146
Q	5.49	6.00	0.216	0.236
S	6.04	6.30	0.238	0.248

| DOCUMENT NO |
| :---: | :---: |
| Z8B00003327 |

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2007 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office
(www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

