

STRUCTURE

Silicon Monolithic Integrated Circuit

TYPE

BD7851FP

FUNCTION

16bit Serial IN / Parallel Out Driver

FEATURES

1) capable of driving a maximum of 50mA with only one external resistance.

2) Output is ON/OFF constant current source controllable.

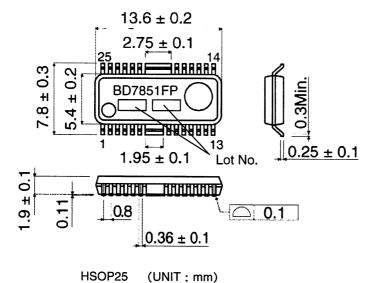
3) 10 V high voltage output can be used.

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

Parameter	Symbol	Limit	Unit
Power Supply Voltage	V _{cc}	7.0*	٧
Power Dissipation	Pd	1450*	mW
Operating Temperature Range	Topr	-30~+85	င
Storage Temperature Range	T _{stg}	-55~+150	င
Input Voltage	V _{IN}	-0.3~Vcc+0.3	V

^{*}Output (Q1~Q16) are 10V (Max.)

^{*70}mm×70mm×1.6mm glass epoxy

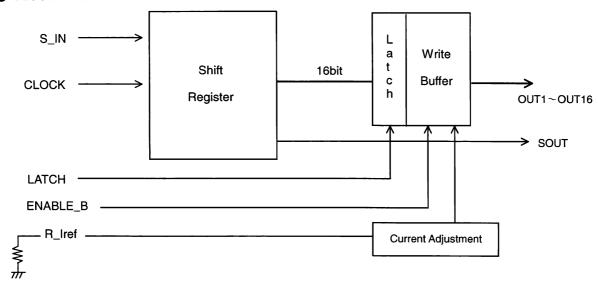


● ELECTRICAL CHARACTERISTICS (unless otherwise noted, Ta=25°C,Vcc=5.0V)

Parameter	Symbol	Standard Value		Unit	Condition	
Farameter		MIN	TYP	MAX	Offic	Condition
Power Supply Voltage range	V _{cc}	4.5	5.0	5.5	٧	V _{CC} pin
Supply current 1	I _{cc1}	-	0.7	1.0	mA	External resistance 13kΩ, Output on
Supply current 2	I _{cc2}	-	1.8	3.0	mA	External resistance 1.3 kΩ, Output off
Supply current 3	l _{cc3}	-	4.0	6.5	mA	External resistance 13 kΩ, Output on
Supply current 4	I _{cc4}	-	30	40	mA	External resistance 1.3 kΩ, Output off
Constant current output current1	lolc1	48	55	62	mA	External resistance 1.3k Ω, Output voltage 2V
Constant current output current2	lolc2	5.0	5.9	6.8	mA	External resistance 13kΩ, Output voltage 2V
Constant current output current3	⊿lolc	-	±1	±6	%	Difference between bits
Constant current output current4	I⊿Vcc	-	±1	±6	%	External resistance 1.3kΩ, Output voltage 2~3V
Input "L" voltage	V _{IL}	-	-	0.2	V/V	Ratio against VCC
Input "H" voltage	V _{iH}	0.8	-	-	V/V	Ratio against VCC
Output Leakage current		-	0.01	0.8	μΑ	Vout=10V
Output "H" voltage	V _{OH}	-0.5	-	-	V	Value from VCC, loh=1mA
Output "L" voltage	V _{OL}	-	-	0.5	٧	Iol=-1mA
Data Minimum set up time	t ₁	30	50	-	n S	V _{IH} =0.8Vcc,V _{IL} =0.2Vcc
Data hold time	t ₂	30	50	-	nS	V _{IH} =0.8Vcc,V _{IL} =0.2Vcc
Minimum shift pulse width	t ₃	20	50	-	nS	V _{IH} =0.8Vcc,V _{IL} =0.2Vcc
Data output time	t ₄	-	-	650	n S	V_{IH} =0.8Vcc, V_{IL} =0.2Vcc, External resistance 1.3k Ω

This product is not assessed whether to be strategic materials in foreign exchange and trade law or not, so please confirm at trading. This product is not deigned against radioactive ray.

PHYSICAL DIMENSIONS



Pin Description

Fin Desc						
Pin. No	Terminal	Symbol	Function			
23	CLOCK	С	Shift pulse for shift register			
4	S_IN	Sı	Data input for shift register, data is set at rising edge of shift pulse			
3	LATCH	L	Latch signal input, output is renewable out "1" and reserved at "0".			
22	SOUT	So	Data output for shift register, which is output led at the rising edge of shift pulse.			
2	R_Iref	R_{i}	Terminal that can control output constant current.			
24	ENABLE_B	S	Data in shift register can be output led at "0".			
21	OUT1	$ar{O}_{0}$	1st bit output, output constant current becomes active when data in register is "1".			
20	OUT2	Ō ₁	2nd bit output, output constant current becomes active when data in register is "1".			
19	OUT3	Ō2	3rd bit output, output constant current becomes active when data in register is "1".			
18	OUT4	Ō₃	4th bit output, output constant current becomes active when data in register is "1".			
17	OUT5	Ō₄	5th bit output, output constant current becomes active when data in register is "1".			
15	OUT6	Ō₅	6th bit output, output constant current becomes active when data in register is "1".			
14	OUT7	Ō ₆	7th bit output, output constant current becomes active when data in register is "1".			
13	OUT8	Ō7	8th bit output, output constant current becomes active when data in register is "1".			
12	OUT9	Ō ₈	9th bit output, output constant current becomes active when data in register is "1".			
11	OUT10	Ō9	10th bit output, output constant current becomes active when data in register is "1".			
10	OUT11	Ō 10	11th bit output, output constant current becomes active when data in register is "1".			
9	OUT12	Ō ₁₁	12th bit output, output constant current becomes active when data in register is "1".			
8	OUT13	Ō 12	13th bit output, output constant current becomes active when data in register is "1".			
7	OUT14	Ō 13	14th bit output, output constant current becomes active when data in register is "1".			
6	OUT15	Ō 14	15th bit output, output constant current becomes active when data in register is "1".			
5	OUT16	Õ 15	16th bit output, output constant current becomes active when data in register is "1".			
16	P_GND	PGND	GND for driver			
1	GND	GND	GND			
25	vcc	VCC	vcc			

BLOCK DIAGRAM

NOTES FOR USE

(1) Absolute maximum ratings

Exceeding the absolute maximum ratings, including applied voltage and operating temperature range, may damage or destroy the IC. Since the cause of the damage cannot be conclusively identified (as, for example, a short or open mode), be sure to take appropriate physical safety measures, such as incorporating fuses, whenever a special mode anticipated to exceed absolute maximum ratings is employed.

- (2) Ground Potential
 - Make sure the potential for the GND pin is always kept lower than the potentials of all other pins, regardless of the operating mode.
- (3) Thermal design
 - Provide sufficient margin in the thermal design to account for the allowable power dissipation (Pd) expected in actual use.
- (4) Electromagnetic fields
 - Use in strong electromagnetic fields may cause malfunctions. Be careful operating in electromagnetic fields.
- (5) Ground wiring pattern
 - When both a small-signal GND and high current GND are present, single-point grounding (at the set standard point) is recommended, in order to separate the small-signal and high current patterns, and to be sure the voltage change stemming from the wiring resistance and high current does not cause any voltage change in the small-signal GND. In the same way, care must be taken to avoid wiring pattern fluctuations in any connected external component GND.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available,
please contact your nearest sales office.

Please contact our sales offices for details;

```
U.S.A / San Diego
                        TEL: +1(858)625-3630
                                                 FAX: +1(858)625-3670
       Atlanta
                        TEL: +1(770)754-5972
                                                 FAX: +1(770)754-0691
       Dallas
                        TEL: +1(972)312-8818
                                                 FAX: +1(972)312-0330
Germany / Dusseldorf
                        TEL: +49(2154)9210
                                                 FAX: +49(2154)921400
United Kingdom / London TEL: +44(1)908-282-666
                                                 FAX: +44(1)908-282-528
France / Paris
                        TEL: +33(0)1 56 97 30 60 FAX: +33(0) 1 56 97 30 80
China / Hong Kong
                        TEL: +852(2)740-6262
                                                 FAX: +852(2)375-8971
       Shanghai
                        TEL: +86(21)6279-2727
                                                 FAX: +86(21)6247-2066
       Dilian
                        TEL: +86(411)8230-8549
                                                 FAX: +86(411)8230-8537
       Beijing
                        TEL: +86(10)8525-2483
                                                 FAX: +86(10)8525-2489
Taiwan / Taipei
                        TEL: +866(2)2500-6956
                                                 FAX: +866(2)2503-2869
Korea / Seoul
                        TEL: +82(2)8182-700
                                                 FAX: +82(2)8182-715
Singapore
                        TEL: +65-6332-2322
                                                 FAX: +65-6332-5662
Malaysia / Kuala Lumpur
                        TEL: +60(3)7958-8355
                                                 FAX: +60(3)7958-8377
Philippines / Manila
                        TEL: +63(2)807-6872
                                                 FAX: +63(2)809-1422
Thailand / Bangkok
                        TEL: +66(2)254-4890
                                                 FAX: +66(2)256-6334
```

Japan / (Internal Sales)

Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082

TEL: +81(3)5203-0321 FAX: +81(3)5203-0300

Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575

TEL: +81(45)476-2131 FAX: +81(45)476-2128

Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya, Aichi 450-0002

TEL: +81(52)581-8521 FAX: +81(52)561-2173

Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku,

Kyoto 600-8216

TEL: +81(75)311-2121 FAX: +81(75)314-6559

(Contact address for overseas customers in Japan)

Yokohama TEL: +81(45)476-9270 FAX: +81(045)476-9271