# HSMW-B191/C191, HSMW-B197/C197, HSMW-B120/C120, HSMW-C130 and HSMW-B265/C265



Surface Mount LED Indicator

## **Reliability Data Sheet**

#### **Description**

The following cumulative test results have been obtained from testing performed at Agilent Technologies in accordance with the latest revision of MIL-STD-883. Agilent tests parts at the absolute maximum rated conditions recommended for the device. The actual performance you obtain from Agilent parts depends on the electrical and environmental characteristic of your application but will probably be better than the performance outlined in Table 1.

#### **Failure Rate Prediction**

The failure rate of semiconductor devices is determined by the junction temperature of the device. The relationship between ambient temperature and actual junction temperature is given by the following:

$$T_J(^{\circ}C) = T_A(^{\circ}C) + \theta_{JA} P_{AVG}$$

Where

 $T_{A} =$  ambient temperature in (°C)

 $\theta_{JA}$  = thermal resistance of junction-to ambient in

°C/watt

P<sub>AVG</sub> = average power dissipated in watts

The estimated MTBF and failure rate at temperatures lower than the actual stress temperature can be determined by using an e Arrhenius model for temperature acceleration. Results of such calculations are shown on the following page using an activation energy of 0.43eV (reference MIL-HDBK-217)

Table 1. Life Tests

**Demonstrated Performance** 

| Colors                 | Stress Test<br>Conditions              | Total Device<br>Hrs. | Units<br>Tested | Units<br>Failed | Point Typical Performance |                              |
|------------------------|----------------------------------------|----------------------|-----------------|-----------------|---------------------------|------------------------------|
|                        |                                        |                      |                 |                 | MTBF                      | Failure Rate<br>(%/1K Hours) |
| White and Bluish white | $T_A = 25$ °C<br>$I_F = 20 \text{ mA}$ | 196,000              | 392             | 0               | 196,000                   | ≤0.51%                       |
| White and Bluish white | $T_A = 55$ °C<br>$I_F = 20 \text{ mA}$ | 182,000              | 364             | 0               | 182,000                   | ≤0.55%                       |
| White and Bluish white | $T_A = 40$ °C<br>$I_F = 20 \text{ mA}$ | 168,000              | 336             | 0               | 168,000                   | ≤0.60%                       |

#### Table 2. Failure Rate Prediction ( $I_F = 20 \text{mA}$ )

#### **Demonstrated Performance**

| Ambient<br>Temperature (°C) | Junction<br>Temperature (°C) |          | cal Performance in<br>0% Confidence) | Performance in Time <sup>[2]</sup> (90% Confidence) |                              |
|-----------------------------|------------------------------|----------|--------------------------------------|-----------------------------------------------------|------------------------------|
|                             |                              | MTBF [1] | Failure Rate<br>(%/1K Hours)         | MTBF [2]                                            | Failure Rate<br>(%/1K Hours) |
| 85                          | 96                           | 216.700  | 0.46                                 | 86,300                                              | 1.16                         |
| 75                          | 97                           | 210,500  | 0.48                                 | 83,800                                              | 1.19                         |
| 65                          | 97                           | 204,400  | 0.49                                 | 81,400                                              | 1.23                         |
| 55                          | 98                           | 198,600  | 0.50                                 | 79,000                                              | 1.27                         |
| 45                          | 88                           | 288,100  | 0.35                                 | 114,700                                             | 0.87                         |
| 35                          | 78                           | 427,000  | 0.23                                 | 170,000                                             | 0.59                         |
| 25                          | 68                           | 647,500  | 0.15                                 | 257,800                                             | 0.39                         |

#### Notes:

- 1. The point typical MTBF (which represents 60% confidence level) is the total device hours divided by the number of failures. In the case of zero failures, one failure is assumed for this calculation.
- 2. The 90% Confidence MTBF represents the minimum level of reliability performance which is expected from 90% of all samples. This confidence interval is based on the statistics of the distribution of failures. The assumed distribution of failures is exponential. This particular distribution is commonly used in describing useful life failures. Refer to MIL-STD-690B for details on this methodology.
- 3. A failure is any LED which does not emit light .

### **Example of Failure Rate Calculation**

Assume a device operating 8 hours/day, 5 days/week. The utilization factor, given 168 hours/week is: (8 hours/day) x (5 days/week) / (168 hours/week) = 0.25

The point failure rate per year (8760 hours) at 25° C ambient temperature is:  $(0.15 \% / 1 \text{K hours}) \times 0.25 \times (8760 \text{ hours/year}) = 0.33 \% \text{ per year}$ 

Similarly, 90% confidence level failure rate per year at 25° C: (0.39 % / 1K hours) X 0.25 X (8760 hours/year) = 0.85 % per year

**Table 3. Environmental Tests** 

| Test Name               | Reference   | Test Conditions                                                                     | Units<br>Tested | Units<br>Failed |
|-------------------------|-------------|-------------------------------------------------------------------------------------|-----------------|-----------------|
| Temperature Cycle       | JESD22-A104 | -40°C to 85°C, 15 min.<br>dwell 5 min. transfer<br>air to air storage<br>100 cycles | 11,192          | 0               |
| Solderability           | JESD22-B102 | 8 hours aging and solder dip at 245°C for 5 seconds                                 | 10              | 0               |
| Low Temperature Storage | JESD22-A103 | -40°C<br>1000hrs                                                                    | 364             | 0               |
| Humidity Storage        | JESD22-A101 | 60°C/90% RH, 1000hrs                                                                | 840             | 0               |
| Humidity forward bias   | JESD22-A101 | 60°C/90% RH, 10 mA 500hrs                                                           | 56              | 0               |