February 1984 Revised March 2001 MM74HC4316 Quad Analog Switch with Level Translator

MM74HC4316 Quad Analog Switch with Level Translator

General Description

FAIRCHILD

SEMICONDUCTOR

The MM74HC4316 devices are digitally controlled analog switches implemented in advanced silicon-gate CMOS technology. These switches have low "ON" resistance and low "OFF" leakages. They are bidirectional switches, thus any analog input may be used as an output and vice-versa. Three supply pins are provided on the MM74HC4316 to implement a level translator which enables this circuit to operate with 0–6V logic levels and up to \pm 6V analog switch levels. The MM74HC4316 also has a common enable input in addition to each switch's control which when HIGH will disable all switches to their OFF state. All analog inputs and outputs and digital inputs are protected from electrostatic damage by diodes to V_{CC} and ground.

Features

- Typical switch enable time: 20 ns
- Wide analog input voltage range: ±6V
- Low "ON" resistance:
- 50 typ. (V_{CC}-V_{EE} = 4.5V) 30 typ. (V_{CC}-V_{EE} = 9V)
- Low quiescent current: 80 μA maximum (74HC)
- Matched switch characteristics
- Individual switch controls plus a common enable

Ordering Code:

Order Number	Package Number	Package Description
MM74HC4316M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
MM74HC4316SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC4316MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC4316N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Diagram

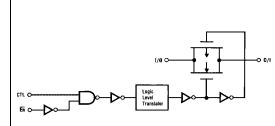
2

3 4 5 6 7

Top View

11/0 10/1 20/1 21/0 2CTL

1


16 15 14 13 12

VCC 1CTL 4CTL 41/0 40/1 30/1 31/0 VEE

10

8

3CTL En GND

Truth Table

Inp	Switch		
En	CTL	I/O–O/I	
Н	Х	"OFF"	
L	L	"OFF"	
L	н	"ON"	

© 2001 Fairchild Semiconductor Corporation DS005369

(Note 2)

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.5V
Supply Voltage (V _{EE})	+0.5 to -7.5V
DC Control Input Voltage (VIN)	-1.5 to V _{CC} $+1.5$ V
DC Switch I/O Voltage (VIO)	$V_{\text{EE}} 0.5$ to $V_{CC} \mbox{+-} 0.5 \mbox{V}$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
Supply Voltage (V _{EE})	0	-6	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns
$V_{CC} = 12.0V$		250	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

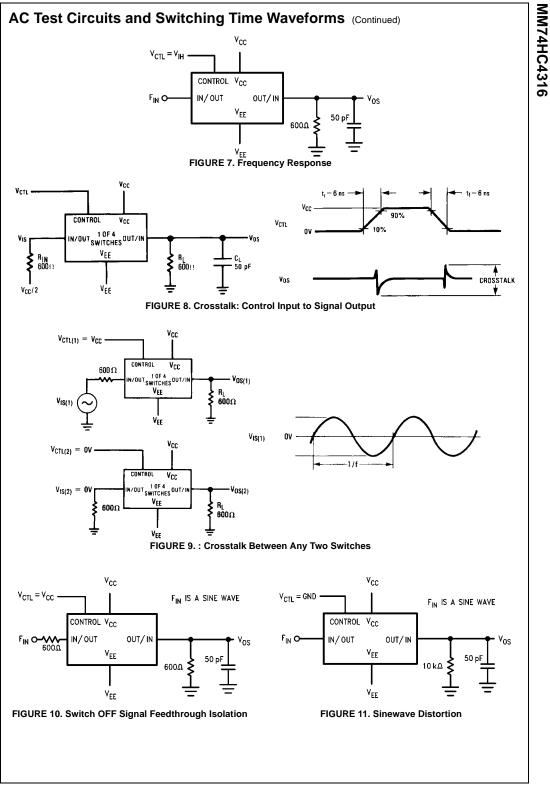
DC Electrical Characteristics (Note 4)

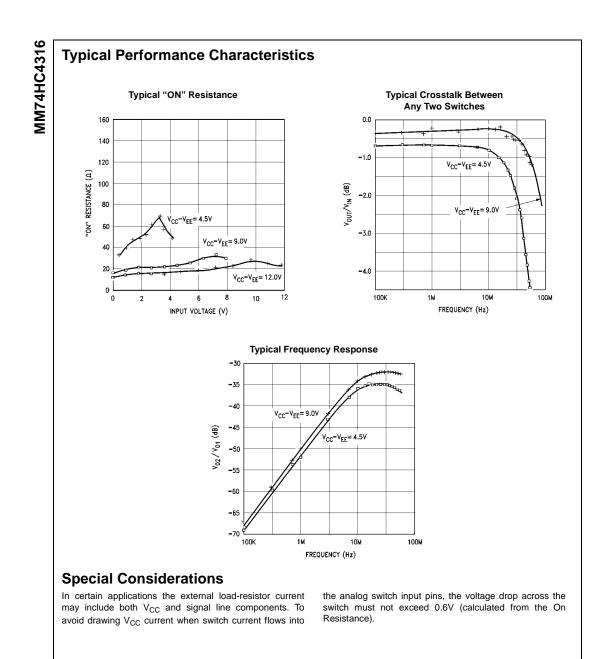
Symbol	Parameter	Conditions	V_{EE}	V _{cc}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Falameter				Тур		Guaranteed I	imits	Units
	Minimum HIGH Level			2.0V		1.5	1.5	1.5	V
	Input Voltage			4.5V		3.15	3.15	3.15	V
				6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level			2.0V		0.5	0.5	0.5	V
	Input Voltage			4.5V		1.35	1.35	1.35	V
				6.0V		1.8	1.8	1.8	V
R _{ON}	Minimum "ON" Resistance	$V_{CTL} = V_{IH}, I_{S} = 2.0 \text{ mA}$	GND	4.5V	100	170	200	220	Ω
	(Note 5)	$V_{IS} = V_{CC}$ to V_{EE}	-4.5V	4.5V	40	85	105	110	Ω
		(Figure 1)	-6.0V	6.0V	30	70	85	90	Ω
			GND	2.0V	100	180	215	240	Ω
		$V_{CTL} = V_{IH}, I_S = 2.0 \text{ mA}$	GND	4.5V	40	80	100	120	Ω
		$V_{IS} = V_{CC} \text{ or } V_{EE}$	-4.5V	4.5V	50	60	75	80	Ω
		(Figure 1)	-6.0V	6.0V	20	40	60	70	Ω
R _{ON}	Maximum "ON" Resistance	$V_{CTL} = V_{IH}$	GND	4.5V	10	15	20	20	Ω
	Matching	$V_{IS} = V_{CC}$ to V_{EE}	-4.5V	4.5V	5	10	15	15	Ω
			-6.0V	6.0V	5	10	15	15	Ω
I _{IN}	Maximum Control Input Current	$V_{IN} = V_{CC}$ or GND	GND	6.0V		±0.1	±1.0	±1.0	μA
I _{IZ}	Maximum Switch "OFF"	$V_{OS} = V_{CC}$ or V_{EE}	GND	6.0V		±60	±600	±600	nA
	Leakage Current	$V_{IS} = V_{EE}$ or V_{CC}	-6.0V	6.0V		±100	±1000	±1000	nA
		V _{CTL} = V _{IL} (Figure 2)							
I _{IZ}	Maximum Switch "ON"	$V_{IS} = V_{CC}$ to V_{EE}	GND	6.0V		±40	±150	±150	nA
	Leakage Current	V _{CTL} = V _{IH} , V _{OS} = OPEN (Figure 3)	-6.0V	6.0V		±60	±300	±300	nA
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	GND	6.0V		2.0	20	40	μA
	Supply Current	I _{OUT} = 0 μA	-6.0V	6.0V		8.0	80	160	μA

Note 4: For a power supply of 5V \pm 10% the worst case on resistances (R_{ON}) occurs for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current occurs for CMOS at the higher voltage and so the 5.5V values should be used.

Note 5: At supply voltages (V_{CC}-V_{EE}) approaching 2V the analog switch on resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital only when using these supply voltages.

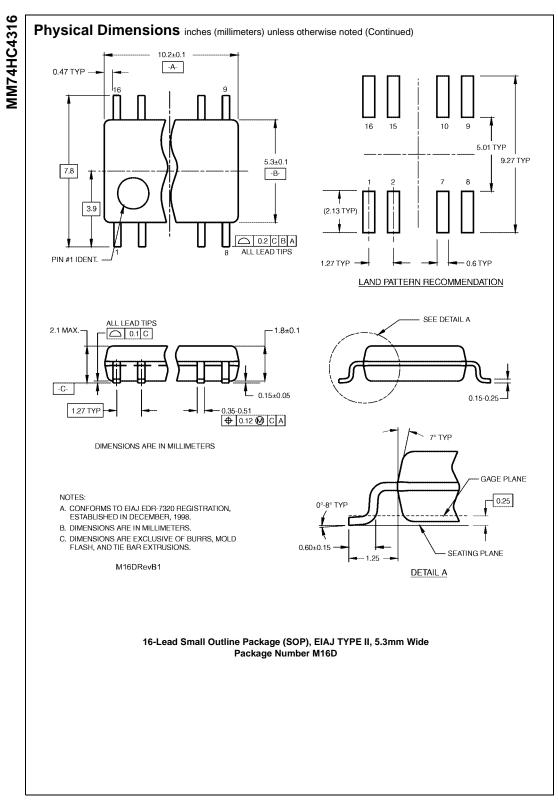
AC Electrical Characteristics

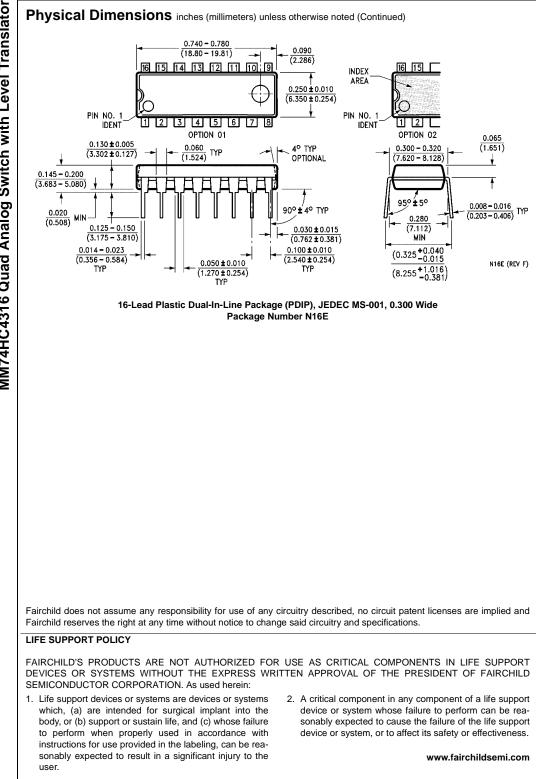

 V_{CC} = 2.0V–6.0V, V_{EE} = 0V–6V, C_L = 50 pF (unless otherwise specified)


Note 6: Adjust 0 dBm for F = 1 KHz (Null R_L/Ron Attenuation).

www.fairchildsemi.com

MM74HC4316


MM74HC4316



Physical Dimensions inches (millimeters) unless otherwise noted

MM74HC4316

MM74HC4316 Quad Analog Switch with Level Translator