
42 15th Edition

Wound Beads

Six and eleven hole beads, in two NiZn materials, are available both as beads (product class 26) and wound with tinned copper wire in several winding configurations (product class 29).

- Parts with a "1" as the last digit of the part number are supplied bulk packed. Wound beads with part numbers 29--666631 and 29--666651 can be supplied radially taped and reeled per IEC 60286-1 and EIA 468-B standards. For these taped and reeled wound beads the last digit of the part number is a "4". Taped and reeled wound beads are supplied 500 pieces on a 13" reel.
- Wire used for winding is oxygen free high conductivity copper with a lead-free tin plating. If required the wound beads can be supplied with a tin/lead coating.
- Beads are controlled for impedance limits only. The impedances listed are typical values. Minimum impedance values are specified for the + marked frequencies.
- The minimum guaranteed impedance is the listed impedance less 20%. The 44 material beads and wound beads are tested on the 4193A Vector Impedance Meter. The 61 material parts on the 4191A RF Impedance Analyzer.
- Recommended storage temperature and operating temperature is -55°C to 125°C
- Performance curves for all wound beads can be found on the Fair-Rite Products CD-ROM.
- For any wound bead requirement not listed in here, please contact our customer service group for availability and pricing.
- Explanation of Part Numbers: Digits 1&2 = product class, 3&4 = material grade and last digit 1 = bulk packed, 4 = taped and reeled.

roducts

17.0 Max.

.669 Max. Figure 2-2 14.0 Max.

.551 Max.

Figure 1-5

Phone:

43 15th Edition

Wound Beads

Dimensions (Bold numbers are in millimeters, light numbers are nominal in inches.)

Part Number	Fig.	A	В	С	D _{Ref}	Wt (g)	Typical Impedance (Ω)				
							10 MHz ⁺	50 MHz ⁺	100 MHz ⁺	200 MHz ⁺	
2644666611 ^①	1	6.0±0.25 .236	0.75+0.15 .032	10.0±0.25 .394	3.5 .138	1.2	213	400	470	380	
2661666611 ^①	1	6.0±0.25 .236	0.75+0.15 .032	10.0±0.25 .394	3.5 .138	1.2	-	280	380	510	
2644777711 ^②	2	10.0±0.25 .394	0.9+0.15 .038	10.0±0.25 .394	7.5 .295	3.3	375	905	500	400	

① Tested with 1½ turns. ② Tested with 2½ turns. (A ½ turn is defined as a single pass through a hole.)

Broadband Frequencies 1-200 MHz (44 material)

Part Number	Fig.	Turns	Wire Size	Wire Length	Wt (g)	Typical Impedance (Ω)					
			Wife Size			1 MHz	10 MHz ⁺	50 MHz ⁺	100 MHz+	200 MHz	
2944666661	1-1	1½	0.53 24 AWG	38.0±3.0 1.500	1.3	45	213	400	470	380	
2944666651	1-2	2	0.53 24 AWG	38.0±3.0 1.500	1.3	58	300	650	600	415	
2944666671	1-3	2½	0.53 24 AWG	38.0±3.0 1.500	1.4	87	400	850	725	410	
2944666681	1-4	2 x 1½	0.53 24 AWG	3	1.4	45	213	400	470	380	
2944666631	1-5	3	0.53 24 AWG	38.0±3.0 1.500	1.4	115	500	1000	690	400	
2944777741	2-1	4½	0.65 22 AWG	38.0±3.0 1.500	3.8	150	815	1250	500	375	
2944777721	2-2	2 x 2½	0.65 22 AWG	3	3.9	45	375	905	500	400	

Higher Frequencies 50-500 MHz (61 material)

Part Number	Fig.	Turns	Wine Cine	Wine Lemma	M/4 ()	Typical Impedance (Ω)					
			Wire Size	Wire Length	wt (g)	10 MHz	400 MHz				
2961666661	1-1	1½	0.53 24 AWG	38.0±3.0 1.500	1.3	75	280	380	510	600	
2961666651	1-2	2	0.53 24 AWG	38.0±3.0 1.500	1.3	100	400	560	760	700	
2961666671	1-3	2½	0.53 24 AWG	38.0±3.0 1.500	1.4	150	560	780	960	600	
2961666681	1-4	2 x 1½	0.53 24 AWG	3	1.4	75	280	380	510	600	
2961666631	1-5	3	0.53 24 AWG	38.0±3.0 1.500	1.4	175	700	1000	1100	625	

③ Wire length of one winding is 38.0 ± 3.0 (1.500). Wire length of second winding is 28.0 ± 3.0 (1.125)

Fair-Rite Products Corp

⁺ Test frequency