

Coordinated

PolySwitch

Overcurrent Protection

ESD & SESD

ESD

Protection

PolyZen Protection Device for USB Applications

PolyZen

Overvoltage Protection

Tyco Electronics PolyZen devices are polymer-enhanced, precision Zener diode micro-assemblies. They offer resettable protection against multi-Watt fault events and spare the need for large heavy heat sinks.

A unique feature of the PolyZen micro-assembly is that the Zener diode is thermally coupled to a resistively non-linear, polymer PTC (Positive Temperature Coefficient) layer. This PTC layer is fully integrated into the device, and is electrically in series between V_{IN} and the diode clamped V_{OUT} .

This polymer PTC layer responds to either extended diode heating or overcurrent events by transitioning from a low to high resistance state, also known as "tripping". A tripped PTC will limit current and generate voltage drop. It helps to protect both the Zener diode and the follow-on electronics and effectively increases the diode's power handling capability.

The Zener diode used for voltage clamping in the PolyZen micro-assembly was selected due to its relatively flat voltage vs current response. This helps improve output voltage clamping, even when input voltage is high and diode current is large.

The polymer-enhanced Zener diode helps protect sensitive

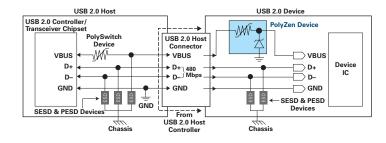
portable electronics from damage caused by inductive voltage spikes, voltage transients, improper power supplies, and reverse bias conditions. The PolyZen ZEN059V130A24LS device is particularly useful for USB 2.0/3.0 powered devices; typically, it draws only 500µA of operating current in USB suspend mode.

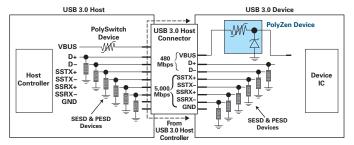
Benefits:

- Stable Zener diode helps shield downstream electronics from overvoltage and reverse bias
- PTC trip events help to protect the Zener diode and extend its power handling capability
- Analog nature of trip events minimizes upstream inductive spikes
- Minimal power dissipation requirements
- Single component placement

Features:

- Meets USB suspend mode current
- Stable V₇ vs fault current
- Time delayed, overvoltage trip
- Multi-Watt power handling capability
- Integrated device construction
- RoHS Compliant and Halogen Free

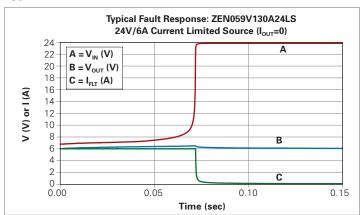

Applications:

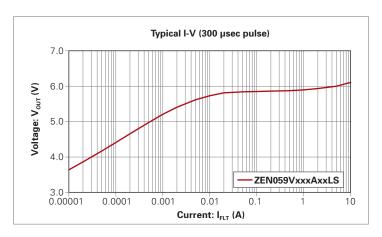

- USB 2.0/3.0 powered consumer electronics, external hard disk drives and solid state devices
- DC power port protection in systems using barrel jacks for power input
- DC power port protection in portable electronics and navigation devices
- DC output voltage regulation
- USB 3.0 hubs and adapter cards
- Laptops and desktop PCs

- requirement 500µA (typ) @ 5.0V
- Overvoltage transient suppression

- Time delayed, reverse bias trip

Typical USB 2.0/3.0 Application Block Diagram

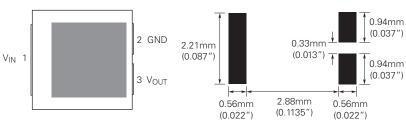



Electrical Characteristics for ZEN059V130A24LS

V _{z⁽¹⁾} (V)			I _{Zt} ⁽¹⁾	I _{HOLD}	Operating ⁽²⁾ Current		R _{Typ}	R _{1Max}	V _{INT MAX} (V)		I _{FLT MAX}		Tripped Power Dissipation Max	
Min.	Тур.	Max.	(A)	@ 20°C (A)	Test Voltage	Max Current (mA)	(Ω)	(Ω)	V _{INT MAX} (V)	Test Current (A)	I _{FLT MAX} (A)	Test Voltage (V)	Value (W)	Test Voltage (V)
5.8	5.9	6.0	0.1	1.3	5.0	0.65	0.12	0.15	24	3	+6 -40	+24 -16	1.0	24

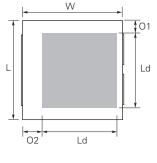
- (1) I_{7t} is the current at which V₇ is measured.
- (2) Typical operating current is $500\mu A$ @ 5.0V which meets USB suspend mode requirement.

Typical Characteristic


Recommended Pad Dimensions

Configuration Information

Pin Description


Pin Number	Pin Name	Pin Function			
1	V _{IN}	V _{IN} = Protected input to Zener diode			
2	GND	GND = Ground			
3	V _{OUT}	V _{OUT} = Zener regulated voltage output			

Pin Configuration (Top View)

Mechanical Dimensions

		Min	Typical	Max	
Length	L	3.85 mm (0.152")	4 mm (0.16")	4.15 mm (0.163")	
Width	w	3.85 mm (0.152")	4 mm (0.16")	4.15 mm (0.163")	
Height	Н	1.4mm (0.055")	1.7 mm (0.067")	2.0 mm (0.081")	
Length Diode	Ld	-	3.0 mm (0.118")	-	
Height Diode	Hd	-	1.0 mm (0.039")	-	
Offset	Offset O1		0.6 mm (0.024")	-	
Offset	02	-	0.7 mm (0.028")	-	

Raychem Circuit Protection Products

308 Constitution Drive, Building H

Tel: (800) 227-7040, (650) 361-6900

Menlo Park, CA USA 94025-1164

Fax: (650) 361-4600

PolySwitch, PolyZen, Raychem, TE (logo) and Tyco Electronics are trademarks of the Tyco Electronics group of companies and its licensors. All information, including illustrations, is believed to be reliable. Users, however, should independently evaluate the suitability of each product for their application. Tyco Electronics Corporation makes no warranties as to the accuracy or completeness of the information, and disclaims any liability regarding its use. Tyco Electronics' only obligations are those in the Tyco Electronics Standard Terms and Conditions of Sale for this product, and in no case will Tyco Electronics be liable for any incidental, indirect, or consequential damages arising from the sale, resale, use, or misuse of the product. Specifications are subject to change without notice. In addition, Tyco Electronics reserves the right to make changes without notification to Buyer—to materials or processing that do not affect compliance with any applicable specification.

www.circuitprotection.com www.circuitprotection.com.hk (Chinese) www.tycoelectronics.com/japan/raychem (Japanese)

