OPTICALLY ISOLATED ERROR AMPLIFIER

DESCRIPTION

The FOD2712 Optically Isolated Amplifier consists of the popular RC431A precision programmable shunt reference and an optocoupler. The optocoupler is a gallium arsenide (GaAs) light emitting diode optically coupled to a silicon phototransistor. The reference voltage tolerance is 1%. The current transfer ratio (CTR) ranges from 100% to 200%.
 It is primarily intended for use as the error amplifier/reference voltage/optocoupler function in isolated ac to dc power supplies and dc/dc converters.
When using the FOD2712, power supply designers can reduce the component count and save space in tightly packaged designs. The tight tolerance reference eliminates the need for adjustments in many applications.
The device comes in a compact 8-pin small outline package.

FEATURES

- Optocoupler, precision reference and error amplifier in single package
- $1.240 \mathrm{~V} \pm 1 \%$ reference
- CTR 100% to 200%
- 2,500V RMS isolation
- VDE approval 136616
- BSI approval 8661 and 8662
- UL approval E90700
- CSA approval 1113643

APPLICATIONS

- Power system for workstations

PACKAGE DIMENSIONS

NOTE
All dimensions are in inches (millimeters)

- Telecom central office supply
- Telecom bricks

PIN DEFINITIONS

Pin Number	Pin Name	Pin function description
1	NC	Not connected
2	C	Phototransistor Collector
3	E	Phototransistor Emitter
4	NC	Not connected
5	GND	Ground
6	COMP	Error Amplifier Compensation. This pin is the output of the error amplifier. *
7	FB	Voltage Feedback. This pin is the inverting input to the error amplifier
8	LED	Anode LED. This pin is the input to the light emitting diode.

* The compensation network must be attached between pins 6 and 7.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise specified.)					
INPUT CHARACTERISTICS					
Parameter Test Conditions	Symbol	Min	Typ**	Max	Unit
LED forward voltage $\quad\left(\mathrm{l}_{\text {LED }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {COMP }}=\mathrm{V}_{\text {FB }}\right)$ (Fig.1)	V_{F}			1.5	V
Reference voltage $\left(-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ $\left(25^{\circ} \mathrm{C}\right)$$\quad\left(\mathrm{V}_{\mathrm{COMP}}=\mathrm{V}_{\mathrm{FB}}, \mathrm{I}_{\mathrm{LED}}=10 \mathrm{~mA}\right.$ (Fig.1)	$\mathrm{V}_{\text {REF }}$	1.221 1.228	1.240	1.259	V
Deviation of $\mathrm{V}_{\text {REF }}$ over temperature - See Note 1 $\quad\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {REF (}} \mathrm{DEV}$)		4	12	mV
(lled $=10 \mathrm{~mA}$,Ratio of Vref variation to the output of the error amplifier$\quad \mathrm{V}_{\text {COMP }}=\mathrm{V}_{\text {REF }}$ to 12 V (Fig.2)	$\Delta \mathrm{V}_{\text {REF }} /$ $\Delta \mathrm{V}_{\text {COMP }}$		-1.5	-2.7	mV / V
Feedback input current ($\left.\mathrm{L}_{\text {LED }}=10 \mathrm{~mA}, \mathrm{R} 1=10 \mathrm{k} \Omega\right)$ (Fig.3)	$\mathrm{I}_{\text {REF }}$		0.15	0.5	$\mu \mathrm{A}$
Deviation of $\mathrm{I}_{\text {REF }}$ over temperature - See Note 1 $\quad\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {REF (DEV) }}$		0.15	0.3	$\mu \mathrm{A}$
Minimum drive current $\quad\left(\mathrm{V}_{\mathrm{COMP}}=\mathrm{V}_{\mathrm{FB}}\right)$ (Fig.1)	ILED (MIN)		55	80	$\mu \mathrm{A}$
Off-state error amplifier current ($\left.\mathrm{V}_{\mathrm{LED}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0\right)$ (Fig.4)	${ }^{\text {(OFF) }}$		0.001	0.1	$\mu \mathrm{A}$
Error amplifier output impedance - See Note 2 $\left(\mathrm{V}_{\mathrm{COMP}}=\mathrm{V}_{\mathrm{FB}}, \mathrm{I}_{\mathrm{LED}}=0.1 \mathrm{~mA}\right.$ to 15 mA,$$ $\mathrm{f}<1 \mathrm{kHZ})$	IZ ${ }_{\text {OUT }} \mid$		0.25		Ohm

1. The deviation parameters $V_{R E F(D E V)}$ and $I_{R E F(D E V)}$ are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, $\Delta \mathrm{V}_{\text {REF }}$, is defined as:
$\left|\Delta \mathrm{V}_{\mathrm{REF}}\right|\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)=\frac{\left\{\mathrm{V}_{\mathrm{REF}(\mathrm{DEV})} / \mathrm{V}_{\mathrm{REF}}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\right\} \times 10^{6}}{\Delta \mathrm{~T}_{\mathrm{A}}}$
where ΔT_{A} is the rated operating free-air temperature range of the device.
2. The dynamic impedance is defined as $\left|Z_{\text {OUT }}\right|=\Delta V_{\text {COMP }} /\left.\Delta\right|_{\text {LED }}$. When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is given by:

$$
\left|\mathrm{Z}_{\mathrm{OUT}, \mathrm{TOT}}\right|=\frac{\Delta \mathrm{V}}{\Delta \mathrm{l}} \approx\left|\mathrm{Z}_{\mathrm{OUT}}\right| \times\left[1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right]
$$

OUTPUT CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless otherwise specified.)						
Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Collector dark current	($\mathrm{V}_{\text {CE }}=10 \mathrm{~V}$) (Fig. 5)	$\mathrm{I}_{\text {ceo }}$			50	nA
Collector-emitter voltage breakdown	$\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}\right)$	$\mathrm{BV}_{\text {CEo }}$	70			V
Emitter-collector voltage breakdown	$\left(I_{E}=100 \mu \mathrm{~A}\right)$	$\mathrm{BV}_{\mathrm{ECO}}$	7			V

TRANSFER CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless otherwise specified.)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Current transfer ratio	$\left(\mathrm{I}_{\text {LED }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COMP}}=\mathrm{V}_{\mathrm{FB}}\right.$, $\left.\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}\right)($ Fig. 6)	CTR	100		200	$\%$
Collector-emitter saturation voltage	$\left(\mathrm{I}_{\text {LED }}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{COMP}}=\mathrm{V}_{\mathrm{FB}}\right.$, $\left.\mathrm{I}_{\mathrm{C}}=2.5 \mathrm{~mA}\right)($ Fig. 6)	$\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT})$			0.4	V

ISOLATION CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless otherwise specified.)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Input-output insulation leakage current	$\begin{array}{r} \left(\mathrm{RH}=45 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=5 \mathrm{~s},\right. \\ \left.\mathrm{V}_{\mathrm{I}-\mathrm{O}}=3000 \mathrm{VDC}\right)(\text { note. } 1) \end{array}$	$\mathrm{I}_{\text {-O }}$			1.0	$\mu \mathrm{A}$
Withstand insulation voltage	$\begin{array}{r} \left(\mathrm{RH}<=50 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{~min}\right. \text {) } \\ \text { (notes. } 1 \text {) } \end{array}$	$\mathrm{V}_{\text {ISO }}$	2500			Vrms
Resistance (input to output)	$\mathrm{V}_{\text {I-O }}=500 \mathrm{VDC}$ (note. 1)	$\mathrm{R}_{\mathrm{t}-\mathrm{O}}$		10^{12}		Ohm

SWITCHING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ Unless otherwise specified.)

Parameter	Test Conditions	Symbol	Min	Typ	Max	Unit
Bandwidth	(Fig. 7)	B_{W}		10		kHZ
Common mode transient immunity at output high	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{LED}}=0 \mathrm{~mA},\left\|\mathrm{~V}_{\mathrm{cm}}\right\|=10 \mathrm{~V}_{\mathrm{PP}}\right. \\ & \mathrm{RL}=2.2 \mathrm{k} \Omega \text { (Fig. 8) (note. 2) } \end{aligned}$	CMH		1.0		$\mathrm{kV} / \mu \mathrm{s}$
Common mode transient immunity at output low	$\begin{gathered} \left(\mathrm{I}_{\mathrm{LED}}=10 \mathrm{~mA},\left\|\mathrm{~V}_{\mathrm{cm}}\right\|=10 \mathrm{~V}_{\mathrm{PP}}\right. \\ \mathrm{RL}=2.2 \mathrm{k} \Omega \text { (Fig. 8) (note. 2) } \end{gathered}$	CML		1.0		$\mathrm{kV} / \mathrm{\mu s}$

Notes

1. Device is considered as a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
2. Common mode transient immunity at output high is the maximum tolerable (positive) $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common mode impulse signal, Vcm , to assure that the output will remain high. Common mode transient immunity at output low is the maximum tolerable (negative) $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common pulse signal, Vcm , to assure that the output will remain low.

FIG. 1. $\mathrm{V}_{\text {REF }}, \mathrm{V}_{\mathrm{F}}$ I LED (min) TEST CIRCUIT

FIG. 3. I IREF TEST CIRCUIT

FIG. 5. ICEO TEST CIRCUIT

FIG. 2. $\Delta \mathrm{V}_{\text {REF/ }} / \mathrm{V}_{\text {COMP }}$ TEST CIRCUIT

FIG. 4. $I_{(\text {OFF })}$ TEST CIRCUIT

FIG. 6. CTR, $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ TEST CIRCUIT

Fig. 7 Frequency Response Test Circuit

Fig. 8 CMH and CML Test Circuit

EMIC NロபCT R

EMI D T
ORDERING INFORMATION
Example：FOD2712

\mathbf{X}	\mathbf{Y}
Packaging Option R1：Tape and Reel（500 per reel） R2：Tape and Reel（2，500 per reel）	V：VDE tested

MARKING INFORMATION
\square

Carrier Tape Specifications

Reflow Profile

- Peak reflow temperature: $245^{\circ} \mathrm{C}$ (package surface temperature)
- Time of temperature higher than $183^{\circ} \mathrm{C}$ for $120-180$ seconds
- One time soldering reflow is recommended

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
