- Surface mount design, tape and reel packaging facilitate automated PCB.
- Compact size makes these sensors ideal for use in applications with restricted space.
- High-resolution sensing with phototransistor output.
- Dual channel model that is ideal for encoder applications (EE-SX1131).

Ordering Information -

Appearance	Sensing Method	Slot Width	Slot Depth	Sensing Object	Weight	Part No.
	Transmissive	1 mm	2 mm	Opaque 0.15 x 0.6 mm.	0.05 g	EE-SX1107
P		2 mm	2.8 mm	Opaque 0.3 x 1.0 mm.	0.1 g	EE-SX1108
P		3 mm	3.5 mm	Opaque 0.5 x 1.0 mm.	0.1 g	EE-SX1109
	Dual channel transmissive	2 mm	2.8 mm	Opaque 0.3 x 1.0 mm.	0.1 g	EE-SX1131

Specifications —

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rated value
Emitter	nitter Forward current		25 mA (see note 1)
	Pulse foward current	I _{FP}	100 mA (see note 2)
	Reverse Voltage	V _R	5 V
Detector	Collector-Emitter voltage	V _{CEO}	20 V
	Emitter-Collector voltage	V _{ECO}	5 V
	Collector current	Ic	20 mA
	Collector dissipation	Pc	75 mW (see note 1)
Ambient temperature	Operating	Topr	-30°C to 85°C
	Storage	Tstg	-40°C to 90°C
	Reflow soldering	Tsol	240°C (see note 3)
	Manual soldering	Tsol	300°C (see note 3)

Note: 1. Refer to the temperature rating chart if the ambient temperature exceeds 25°C.

- 2. Duty: 1/100; Pulse width: 0.1 ms.
- 3. Complete soldering within 10 seconds for reflow soldering and within 3 seconds for manual soldering.

■ Electrical and Optical Characteristics (Ta = 25°C)

Item		Symbol	Value	Condition
Emitter Forward voltage		V _F	1.1 V typ., 1.3 V max.	I _F = 5 mA
	Reverse current	I _R	10 μA max.	V _R = 5 V
	Peak emission wavelength	λ _P	940 nm typ.	I _F = 20 mA
Detector Light current		I _L	50 μA min., 150 μA typ., 500 μA max.	$I_F = 5$ mA, $V_{CE} = 5$ V
	Dark current	ID	100 nA max.	V _{CE} = 10 V, 0 ℓx
	Leakage current	I _{LEAK}	_	-
	Collector-Emitter saturated voltage	V _{CE} (sat)	0.1 V typ., 0.4 V max.	$I_F=20$ mA, $I_L=50$ μ A
	Peak spectral sensitivity wavelength	λ _P	900 nm typ.	-
Rising time		tr	10 μs typ.	V_{CC} = 5 V, R_L = 1 k Ω , I_L = 100 μA
Falling time		tf	10 μs typ.	V_{CC} = 5 V, R_L = 1 $k\Omega,~I_L$ = 100 μA

Note: The following figures show the rising time (tr) and falling time (tf).1

■ Response Time Measurement Circuit

■ Dimensions

Note: All units are in millimetres unless stated.

EE-SX1107

Cross section AA

Internal Circuit

Recommended Soldering Pattern

EE-SX1108

Recommended Soldering Pattern

Unless otherwise stated the tolerances are ±0.15mm.

■ Dimensions

Note: All units are in millimetres unless stated.

EE-SX1109

Internal Circuit

Recommended Soldering Pattern

EE-SX1131

Terminal No.	Name
A	Anode
К	Cathode
С	Collector
E1	Emitter 1
E2	Emitter 2

Unless otherwise stated the tolerances are ±0.15mm.

Fransmssive Photomicrosensors

■ Engineering Data

EE-SX1107/1108/1109/1131 Forward Current vs. Collector Dissipation Temperature Rating

EE-SX1107/1108/1109/1131 Forward Current vs. Forward Voltage Characteristics (Typical)

EE-SX1107 Light Current vs. Forward Current Characteristics (Typical)

EE-SX1108/1131 Light Current vs. Forward Current Characteristics (Typical)

EE-SX1109 Light Current vs. Forward Current Characteristics (Typical)

EE-SX1107 Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

EE-SX1108/1131 Light Current vs. Collector–Emitter Voltage Characteristics (Typical)

EE-SX1109 Light Current vs. Collector-Emitter Voltage Characteristics (Typical)

EE-SX1107/1108/1109/1131 Relative Light Current vs. Ambient Temperature Characteristics (Typical)

■ Engineering Data

EE-SX1107/1108/1109/1131

Dark Current vs. Ambient Temperature Characteristics (Typical)

EE-SX1107/1108/1109/1131 Response Time vs. Load Resistance Characteristics (Typical)

EE-SX1107 Sensing Position Characteristics (Typical)

EE-SX1108 Sensing Position Characteristics (Typical)

EE-SX1109 Sensing Position Characteristics (Typical)

EE-SX1131 Sensing Position Characteristics (Typical)

EE-SX1107/1108/1109/1131 Sensing Position Characteristics (Typical)

Distance d (mm)

Transmssive Photomicrosensors

■ Tape and Reel - EE-SX1107, EE-SX1108, EE-SX1109 & EE-SX1131

Unit: mm (inch).

Part No.	h	i	m	n
EE-SX1107	3.2 (013)	3.6 (014)	0.9 (0.04)	3.2 (013)
EE-SX1108	4.2 (0.17)	5.2 (0.20)	0.25 (0.01)	4.2 (0.17)
EE-SX1131	4.2 (0.17)	5.2 (0.20)	0.25 (0.01)	4.2 (0.17)

Part No.	h	i	m	n
EE-SX1109	5.2 (0.20)	6.2 (0.24)	0.25 (0.01)	4.2 (0.17)

Tape configuration

Part No.	Pieces per reel
EE-SX1107	2500
EE-SX1108/1131	2000
EE-SX1109	1000

Precautions

■ Soldering Information

Reflow soldering

• The following soldering paste is recommended:

Melting temperature: 216 to 220°C Composition: Sn 3.5 Ag, 0.75 Cu

- The recommended thickness of the metal mask for screen printing is between 0.2 and 0.25 mm.
- Set the reflow oven so that the temperature profile shown in the following chart is obtained for the upper surface of the product being soldered.

Manual soldering

- Use "Sn 60" (60% tin and 40% lead) or solder with silver content.
- Use a soldering iron of less than 25W, and keep the temperature of the iron tip at 350°C or below.
- Solder each point for a maximum of three seconds.
- After soldering, allow the product to return to room temperature before handling it.

Storage

To protect the product from the effects of humidity until the package is opened, dry-box storage is recommended. If this is not possible, store the product under the following conditions:

Temperature: 10 to 30°C Humidity: 60% max.

The product is packed in a humidity-proof envelope. Reflow soldering must be done within 48 hours after opening the envelope, during which time the product must be stored under 30°C at 80% maximum humidity.

If it is necessary to store the product after opening the envelope, use dry-box storage or reseal the envelope.

Baking

If a product has remained packed in a humidity-proof envelope for six months or more, or if more than 48 hours have lapsed since the envelope was opened, bake the product under the following conditions before use:

Reel: 60°C for 24 hours or more Bulk: 80°C for 4 hours or more

ALL DIMENSIONS SHOWN ARE IN MILLIMETRES.

To convert millimetres into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.