

DATA SHEET

CURRENT SENSOR - LOW TCR

PR/PF-Power enhancement series (Pb Free) 5%, 1%

sizes 1206/2010/2512

Product specification – Oct 03, 2005 V.1

Phicomp

XXX XXXXX L

SCOPE

This specification describes PR/PF-Power enhancement series current sensor - low TCR with lead-free terminations.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

PHYCOMP ORDERING CODE

I2NC CODE

2350 / 2322

(1)

1206 PF1206

2010 PF2010

2512 PF2512

PF1206

PF2010

PF2512

SIZE TYPE	START TOL. R IN ⁽¹⁾ (%) R		RESISTANCE RANGE	EMBOSSED (2) PAPER (units) (2) TAPE ON REEL TAPE ON REEL	
			KANGE	4,000	4,000
			PR series		
2010 PR2010	2322	±5%	0.002 to 0.006 Ω	760 65xxx	-
PR2010	2322	±1%	0.002 to 0.006 Ω	761 13xxx	-
2512 MPRC221	2322	±5%	0.001 to 0.005 Ω	762 I0xxx	-
MPRC221	2322	±1%	0.001 to 0.005 Ω	763 I0xxx	-
PF series					

0.006 to 1 Ω

0.006 to 1 Ω

0.007 to I Ω

0.007 to 1 Ω

0.006 to 1 Ω

 \pm 1% 0.006 to 1 Ω

(1) The resistors have a 12-digit ordering code starting with 2350/2322.

2350

2350

2322

2322

2322

2322

±5%

±1%

±5%

±1%

±5%

- (2) The subsequent 5 digits indicate the resistor tolerance and packaging.
- (3) The remaining 3 digits represent the resistance value with the last digit indicating the multiplier as shown in the table of "Last digit of I2NC".
- (4) "L" means lead-free terminations (a).

Last digit of I2NC					
Resistance		Last digit			
0.001 to 0.0976 Ω				0	
0.1 to 0.976 Ω				7	
I to 9.76 Ω				8	
Example:	0.02 Ω	=	200		
	0.3 Ω	=	307		
	ΙΩ	=	108		

ORDERING EXAMPLE

760 66xxx

760 I4xxx

764 I0xxx

764 30xxx

The ordering code of a MPRC221 resistor with 2W power rating, value 0.005 Ω with ±5% tolerance, supplied in tape of 4,000 units per reel is: 232276210050L.

NOTE

510 27xxx

510 28xxx

- a. The "L" at the end of the code is only for ordering. On the reel label, the standard CTC will be mentioned an additional stamp "LFP"= lead free production.
- b. Products with lead in terminations fulfil the same requirements as mentioned in this datasheet.
- c. Products with lead in terminations will be phased out in the coming months (before July 1st, 2006).

CTC CODE

PR/PF XXXX X X X XX XXXX L

(2) (3) (4) (5)(6)

(I) SIZE

1206

2010

2512

(2) TOLERANCE

 $F = \pm 1\%$

 $J = \pm 5\%$

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

 $F = \pm 100 \text{ ppm/°C}$

 $G = \pm 200 \text{ ppm/}^{\circ}C$

(5) TAPING REEL

7 = 7 inch dia, Reel

(6) POWER RATING

 $W = 2 \times standard power$ (d)

(7) RESISTANCE VALUE

PR series: 0R001, 0R002, 0R003, 0R004, 0R005.

(0R0015 also available on request)

PF series: 0R006, 0R056, 0R56, 1R

(8) RESISTOR TERMINATIONS

L = Lead free terminations (matte tin) (a)

ORDERING EXAMPLE

The ordering code of a PR2512 chip resistor with 2W power rating, value 0.005 Ω with ±1% tolerance, supplied in 7-inch tape reel is: PR2512FKF7W0R005L.

NOTE

- a. The "L" at the end of the code is only for ordering. On the reel label, the standard CTC will be mentioned an additional stamp "LFP"= lead free production.
- b. Products with lead in terminations fulfil the same requirements as mentioned in this datasheet.
- c. Products with lead in terminations will be phased out in the coming months (before July 1st, 2006).
- d. Standard power for size 1206 is 1/4 Watt, size 2010 is 1/2 Watt, and size 2512 is I Watt.

1206/2010/2512 (Pb Free)

MARKING

I m $\Omega \leq R < 20 \text{ m}\Omega$

4 digits: 10 m Ω \leq R, E-24 series; and R = 1/2/3/4/5/6/7/8/9 m Ω

The "R" is used as a decimal point; the other 3 digits are significant.

$20 \text{ m}\Omega \leq R \leq 1,000 \text{ m}\Omega$

E-24 series: 4 digits

The "R" is used as a decimal point; the other 3 digits are significant.

For marking codes, please see EIA-marking code rules in data sheet "Chip resistors marking".

CONSTRUCTION

The resistors are constructed using outstanding TCR level material, which makes Yageo PR/PF resistors excellent for current sensing application in battery charger circuit & DC-DC converter.

The composition of the resistive material is adjusted to give the approximate required resistance and is covered with a protective coating, which printed with the resistance value.

Finally, the two external terminations (matte Tin) are added. See fig. 3.

OUTLINES

 0.60 ± 0.20

Chip Resistor Surface Mount PR/PF-Power enhancement SERIES 1206/2010/2512 (Pb Free)

 0.55 ± 0.15

 0.60 ± 0.20

DIMENSION

TYPE PERIOTALISE BALLOS			see fig. 3	
TYPE RESISTANCE RANGE L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
PR2010 0.001 to 0.006 Ω 5.10 ±0.25	2.54 ±0.25	0.60 ±0.25	0.50 ±0.25	0.50 ±0.25
PR2512 0.001 to 0.002 Ω 6.40 ±0.20	3.20 ±0.20	0.75 ±0.15	1.20 ±0.20	1.20 ±0.20

 3.20 ± 0.20

Table 2 Chip resistor type and relevant physical dimensions for "PF-Power enhancement series" see fig. 3

6.40 ±0.20

TYPE	RESISTANCE RANGE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
PF1206	0.006 to 0.014 Ω	3.20 ±0.25	1.60 ±0.25	0.60 ±0.25	0.55 ±0.25	0.35 ±0.25
111200	0.015 to 1 Ω	3.20 ±0.25	1.60 ±0.25	0.60 ± 0.25	0.55 ±0.25	0.75 ±0.25
PF2010	0.007 to 0.014 Ω	5.10 ±0.25	2.54 ±0.25	0.60 ±0.25	1.00 ±0.25	0.45 ±0.25
	0.015 to 1 Ω	5.10 ±0.25	2.54 ±0.25	0.60 ±0.25	1.00 ±0.25	1.55 ±0.25
PF2512	0.006 to 0.014 Ω	6.50 ±0.25	3.15 ±0.25	0.60 ±0.25	1.00 ±0.25	1.75 ±0.25
	0.015 to 1 Ω	6.50 ±0.25	3.15 ±0.25	0.60 ±0.25	1.00 ±0.25	0.60 ±0.25

ELECTRICAL CHARACTERISTICS

0.003 to 0.005 $\boldsymbol{\Omega}$

Table 3

TYPE / RESISTANCE RANGE		TEMPERATURE COEFFICIENT OF RESISTANCE		
PR2010 2 mΩ ≤ R < 7 mΩ		2 mΩ	2 mΩ < R < 7 mΩ	
PR series	1 1 1 2 1 0 2 m 2 2 N ~ / m 2 2	±200 ppm/°C	±100 ppm/°C	
i it series		$I \ m\Omega \le R \le 2 \ m\Omega$	$2 \text{ m}\Omega < R < 6 \text{ m}\Omega$	
PR2512	PR2512 $ m\Omega \le R < 6 m\Omega$	±200 ppm/°C	±100 ppm/°C	
	PFI206 6 m Ω \leq R \leq I,000 m Ω	±100 ppm/°C		
PF series	PF2010 $7 \text{ m}\Omega \le R \le 1,000 \text{ m}\Omega$	±100 ppm/°C		
	PF2512 6 m Ω \leq R \leq 1,000 m Ω	±100 p	opm/°C	

6 9

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please see the special data sheet "Chip resistors mounting".

ENVIRONMENTAL DATA

For material declaration information (IMDS-data) of the products, please see the separated info "Environmental data" conformed to EU RoHS.

PACKING STYLE AND PACKAGING QUANTITY

Table 4 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	PF 1206	PR/PF 2010	PR/PF 2512
Paper taping reel (R)	7" (178 mm)	4,000		
Embossed taping reel (K)	7" (178 mm)		4,000	4,000

NOTE

1. For Paper/PE/Embossed tape and reel specification/dimensions, please see the special data sheet "Packing" document.

FUNCTIONAL DESCRIPTION

OPERATINGTEMPERATURE RANGE

Range: -55°C to +155°C

POWER RATING

Each type rated power at 70°C: PFI206=I/2 W; PR/PF20I0=I W; PR/PF2512=2 W.

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

TESTS AND REQUIREMENTS

Table 5 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Temperature	MIL-STD-202F-method 304;	At +25/–55 °C and +25/+125 °C	Refer to table 3
Coefficient of Resistance (T.C.R.)	JIS C 5202-4.8	Formula:	
(, =, ,		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$	
		Where	
		t ₁ =+25 °C or specified room temperature	
		t_2 =–55 °C or +125 °C test temperature	
		R ₁ =resistance at reference temperature in ohms	
		R ₂ =resistance at test temperature in ohms	
Thermal Shock	MIL-STD-202F-method 107G;	At -65 (+0/-10) °C for 2 minutes and at +125	±(0.5%+0.0005 Ω)
	IEC 60115-1 4.19	(+10/-0) °C for 2 minutes; 25 cycles	
Low	MIL-R-55342D-Para 4.7.4	At –65 (+0/–5) °C for I hour; RCWV applied	±(0.5%+0.0005 Ω)
Temperature		for 45 (+5/–0) minutes	No visible damage
Operation			
Short Time	MIL-R-55342D-Para 4.7.5;	2.5 × RCWV applied for 5 seconds at room	±(0.5%+0.0005 Ω)
Overload	IEC 60115-1 4.13	temperature	No visible damage
Resistance to	MIL-STD-202F-method 210C;	Unmounted chips; 260 ±5 °C for 10 ±1	±(0.5%+0.0005 Ω)
Soldering	IEC 60115-1 4.18	seconds	No visible damage
Heat			
Life	MIL-STD-202F-method 108A;	At 70±2 °C for 1,000 hours; RCWV applied for	±(1.0%+0.0005 Ω)
	IEC 60115-1 4.25.1	1.5 hours on and 0.5 hour off	,
Solderability	MIL-STD-202F-method 208A;	Solder bath at 245±3 °C	Well tinned (≥95% covered)
30ider ability	IEC 60115-1 4.17	Dipping time: 2±0.5 seconds	No visible damage
	120 00110-1 1.17	Dipping time. 2±0.0 seconds	INO VISIDIE UAITIAGE
Humidity	JIS C 5202 7.5;	1,000 hours; 40±2 °C; 93(+2/-3)% RH	±(0.5%+0.0005 Ω)
(steady state)	IEC 60115-8 4.24.8	RCWV applied for 1.5 hours on and 0.5 hour off	

Chip Resistor Surface Mount | PR/PF-Power enhancement | SERIES

1206/2010/2512 (Pb Free)

Table 5 Test condition, procedure and requirements (continued)

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Leaching	EIA/IS 4.13B;	Solder bath at 260±5 °C	No visible damage
	IEC 60115-8 4.18	Dipping time: 30±1 seconds	
Moisture	MIL-STD-202F-method 106F;	42 cycles; total 1,000 hours	±(0.5%+0.0005 Ω)
Resistance Heat	IEC 60115-1 4.24.2	Shown as fig. 5	No visible damage
High Temperature Exposure	MIL-STD-202 Method 108	Unpowered chips at =150 °C for 1,000 hours	±(1%+0.0005 Ω)

Product specification

Chip Resistor Surface Mount | PR/PF-Power enhancement | SERIES | 1206/2010/2512 (Pb Free)

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version I	Oct 03, 2005	-	- Ordering example revised
Version 0	Aug II, 2005	-	- New datasheet for current sensor - low TCR PR/PF-Power enhancement series, sizes of 1206/2010/2512, 1% and 5% with lead-free terminations

