

# LM3S2139 Microcontroller

DATA SHEET

Copyright © 2007 Luminary Micro, Inc.

DS-LM3S2139-03

# Legal Disclaimers and Trademark Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2007 Luminary Micro, Inc. All rights reserved. Stellaris is a registered trademark and Luminary Micro and the Luminary Micro logo are trademarks of Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com







LUMINARY MICRO<sup>™</sup>

# **Table of Contents**

|                 | This Document                               |    |  |
|-----------------|---------------------------------------------|----|--|
|                 | Audience<br>About This Manual               |    |  |
|                 | Related Documents                           |    |  |
|                 | Documentation Conventions                   |    |  |
| _               |                                             |    |  |
| <b>1</b><br>1.1 | Overview<br>Product Features                |    |  |
| 1.1             | Target Applications                         |    |  |
| 1.3             | High-Level Block Diagram                    |    |  |
| 1.4             | Functional Overview                         |    |  |
| 1.4.1           | ARM Cortex™-M3                              |    |  |
| 1.4.2           | Motor Control Peripherals                   |    |  |
| 1.4.3           | Serial Communications Peripherals           |    |  |
| 1.4.4           | System Peripherals                          |    |  |
| 1.4.5           | Memory Peripherals                          |    |  |
| 1.4.6           | Additional Features                         | 30 |  |
| 1.4.7           | Hardware Details                            | 31 |  |
| 2               | Cortex-M3 Core                              | 32 |  |
| 2.1             | Block Diagram                               |    |  |
| 2.2             | Functional Description                      |    |  |
| 2.2.1           | Serial Wire and JTAG Debug                  |    |  |
| 2.2.2           | Embedded Trace Macrocell (ETM)              | 34 |  |
| 2.2.3           | Trace Port Interface Unit (TPIU)            | 34 |  |
| 2.2.4           | ROM Table                                   | 34 |  |
| 2.2.5           | Memory Protection Unit (MPU)                | 34 |  |
| 2.2.6           | Nested Vectored Interrupt Controller (NVIC) | 34 |  |
| 3               | Метогу Мар                                  | 38 |  |
| 4               | Interrupts                                  | 40 |  |
| 5               | JTAG                                        | 42 |  |
| 5.1             | Block Diagram                               |    |  |
| 5.2             | Functional Description                      | 43 |  |
| 5.2.1           | JTAG Interface Pins                         | 44 |  |
| 5.2.2           | JTAG TAP Controller                         | 45 |  |
| 5.2.3           | Shift Registers                             | 46 |  |
| 5.2.4           | Operational Considerations                  | 46 |  |
| 5.3             | Initialization and Configuration            |    |  |
| 5.4             | Register Descriptions                       |    |  |
| 5.4.1           | Instruction Register (IR)                   |    |  |
| 5.4.2           | Data Registers                              | 51 |  |
| 6               | System Control                              | 53 |  |
| 6.1             | Functional Description                      | 53 |  |
| 6.1.1           | Device Identification                       |    |  |
| 6.1.2           | Reset Control                               |    |  |
| 6.1.3           | Power Control                               | 56 |  |

| 6.1.4                  | Clock Control                                         | 56  |
|------------------------|-------------------------------------------------------|-----|
| 6.1.5                  | System Control                                        | 58  |
| 6.2                    | Initialization and Configuration                      | 58  |
| 6.3                    | Register Map                                          |     |
| 6.4                    | Register Descriptions                                 | 60  |
| 7                      | Internal Memory                                       | 109 |
| 7.1                    | Block Diagram                                         |     |
| 7.2                    | Functional Description                                |     |
| 7.2.1                  | SRAM Memory                                           |     |
| 7.2.2                  | Flash Memory                                          |     |
| 7.3                    | Flash Memory Initialization and Configuration         |     |
| 7.3.1<br>7.3.2         | Flash Programming<br>Nonvolatile Register Programming |     |
| 7.3.2<br>7.4           | Register Map                                          |     |
| 7. <del>4</del><br>7.5 | Flash Control Offset                                  |     |
| 7.6                    | System Control Offset                                 |     |
| 8                      | GPIO                                                  |     |
| <b>0</b><br>8.1        | Function Description                                  |     |
| 8.1.1                  | Data Control                                          |     |
| 8.1.2                  | Interrupt Control                                     |     |
| 8.1.3                  | Mode Control                                          |     |
| 8.1.4                  | Commit Control                                        | 135 |
| 8.1.5                  | Pad Control                                           | 135 |
| 8.1.6                  | Identification                                        | 136 |
| 8.2                    | Initialization and Configuration                      |     |
| 8.3                    | Register Map                                          |     |
| 8.4                    | Register Descriptions                                 | 139 |
| 9                      | Timers                                                |     |
| 9.1                    | Block Diagram                                         |     |
| 9.2                    | Functional Description                                |     |
| 9.2.1                  | GPTM Reset Conditions                                 |     |
| 9.2.2                  | 32-Bit Timer Operating Modes                          |     |
| 9.2.3<br>9.3           | 16-Bit Timer Operating Modes                          |     |
| 9.3<br>9.3.1           | Initialization and Configuration                      |     |
| 9.3.1                  | 32-Bit Real-Time Clock (RTC) Mode                     |     |
| 9.3.3                  | 16-Bit One-Shot/Periodic Timer Mode                   |     |
| 9.3.4                  | 16-Bit Input Edge Count Mode                          |     |
| 9.3.5                  | 16-Bit Input Edge Timing Mode                         |     |
| 9.3.6                  | 16-Bit PWM Mode                                       |     |
| 9.4                    | Register Map                                          |     |
| 9.5                    | Register Descriptions                                 | 185 |
| 10                     | Watchdog Timer                                        | 207 |
| 10.1                   | Block Diagram                                         |     |
| 10.2                   | Functional Description                                |     |
| 10.3                   | Initialization and Configuration                      |     |
| 10.4                   | Register Map                                          | 208 |

| 10.5   | Register Descriptions                    | 209 |
|--------|------------------------------------------|-----|
| 11     | ADC                                      | 230 |
| 11.1   | Block Diagram                            | 231 |
| 11.2   | Functional Description                   | 231 |
| 11.2.1 | Sample Sequencers                        | 231 |
| 11.2.2 | Module Control                           | 232 |
| 11.2.3 | Hardware Sample Averaging Circuit        | 233 |
| 11.2.4 | Analog-to-Digital Converter              | 233 |
| 11.2.5 | Test Modes                               | 233 |
| 11.2.6 | Internal Temperature Sensor              | 233 |
| 11.3   | Initialization and Configuration         | 234 |
| 11.3.1 | Module Initialization                    | 234 |
| 11.3.2 | Sample Sequencer Configuration           | 234 |
| 11.4   | Register Map                             | 235 |
| 11.5   | Register Descriptions                    | 236 |
| 12     | UART                                     | 267 |
| 12.1   | Block Diagram                            |     |
| 12.2   | Functional Description                   |     |
| 12.2.1 | Transmit/Receive Logic                   |     |
| 12.2.2 | Baud-Rate Generation                     |     |
| 12.2.3 | Data Transmission                        | 270 |
| 12.2.4 | Serial IR (SIR)                          | 270 |
| 12.2.5 | FIFO Operation                           | 271 |
| 12.2.6 | Interrupts                               | 271 |
| 12.2.7 | Loopback Operation                       | 272 |
| 12.2.8 | IrDA SIR block                           | 272 |
| 12.3   | Initialization and Configuration         | 272 |
| 12.4   | Register Map                             | 273 |
| 12.5   | Register Descriptions                    | 274 |
| 13     | SSI                                      | 307 |
| 13.1   | Block Diagram                            |     |
| 13.2   | Functional Description                   |     |
| 13.2.1 | Bit Rate Generation                      |     |
| 13.2.2 | FIFO Operation                           |     |
|        | •                                        | 308 |
| 13.2.4 | Frame Formats                            |     |
| 13.3   | Initialization and Configuration         |     |
| 13.4   | Register Map                             |     |
| 13.5   | Register Descriptions                    |     |
| 14     | 2                                        | 341 |
| 14.1   | Block Diagram                            |     |
| 14.2   | Functional Description                   |     |
| 14.2.1 | I <sup>2</sup> C Bus Functional Overview |     |
| 14.2.1 | Available Speed Modes                    |     |
| 14.2.2 | Interrupts                               |     |
| 14.2.3 | Loopback Operation                       |     |
|        | Command Sequence Flow Charts             |     |
| 14.2.0 | Command Dequence Flow Charts             | 040 |

| 14.3           | Initialization and Configuration                       |     |
|----------------|--------------------------------------------------------|-----|
| 14.4           | I <sup>2</sup> C Register Map                          |     |
| 14.5           | I <sup>2</sup> C Master                                |     |
| 14.6           | I <sup>2</sup> C Slave                                 | 367 |
| 15             | CAN                                                    |     |
| 15.1           | Controller Area Network Overview                       |     |
| 15.2           | Controller Area Network Features                       |     |
| 15.3           | Controller Area Network Block Diagram                  |     |
| 15.4           | Controller Area Network Functional Description         |     |
| 15.4.1         | Initialization                                         |     |
| 15.4.2         | Operation                                              |     |
| 15.4.3         | Transmitting Message Objects                           |     |
| 15.4.4         | Configuring a Transmit Message Object                  |     |
| 15.4.5         | Updating a Transmit Message Object                     |     |
|                | Accepting Received Message Objects                     |     |
|                | Receiving a Data Frame                                 |     |
| 15.4.8         | 5                                                      |     |
|                | Receive/Transmit Priority                              |     |
|                | Configuring a Receive Message Object                   |     |
|                | Handling of Received Message Objects                   |     |
|                | Bit Timing Configuration Error Considerations          |     |
|                | Bit Time and Bit Rate                                  |     |
|                | Calculating the Bit Timing Parameters                  |     |
| 15.5           | Controller Area Network Register Map                   |     |
| 15.6           | Register Descriptions                                  |     |
| 16             | Analog Comparators                                     |     |
| 16.1           | Block Diagram                                          |     |
| 16.2           | Functional Description                                 |     |
| 16.2.1         | Internal Reference Programming                         |     |
| 16.3           | Initialization and Configuration                       |     |
| 16.4           | Register Map                                           |     |
| 16.5           | Register Descriptions                                  |     |
| 17             |                                                        | 433 |
| 18             | Signal Tables                                          |     |
| 19             | Operating Characteristics                              |     |
|                |                                                        |     |
| 20             | Electrical Characteristics                             |     |
| 20.1<br>20.1.1 | DC Characteristics                                     |     |
| 20.1.1         | Maximum Ratings<br>Recommended DC Operating Conditions |     |
| 20.1.2         | On-Chip Low Drop-Out (LDO) Regulator Characteristics   |     |
| 20.1.3         | Power Specifications                                   |     |
| 20.1.4         | Flash Memory Characteristics                           |     |
| 20.1.5         | AC Characteristics                                     |     |
| 20.2           | Load Conditions                                        |     |
|                | Clocks                                                 |     |
| 20.2.3         | Temperature Sensor                                     |     |
|                |                                                        |     |

| 20.2.4  | Analog-to-Digital Converter        | 452 |
|---------|------------------------------------|-----|
|         | Analog Comparator                  |     |
| 20.2.6  | I <sup>2</sup> C                   | 453 |
| 20.2.7  | Synchronous Serial Interface (SSI) | 453 |
| 20.2.8  | JTAG and Boundary Scan             | 455 |
| 20.2.9  | General-Purpose I/O                | 456 |
| 20.2.10 | Reset                              | 457 |
| 21      | Package Information                | 459 |
| Α       | Serial Flash Loader                | 461 |
| A.1     | Serial Flash Loader                | 461 |
| A.2     | Interfaces                         | 461 |
| A.2.1   | UART                               | 461 |
| A.2.2   | SSI                                | 461 |
| A.3     | Packet Handling                    | 462 |
| A.3.1   | Packet Format                      | 462 |
| A.3.2   | Sending Packets                    | 462 |
| A.3.3   | Receiving Packets                  |     |
| A.4     | Commands                           |     |
| A.4.1   | COMMAND_PING (0X20)                |     |
| A.4.2   | COMMAND_GET_STATUS (0x23)          |     |
| A.4.3   | COMMAND_DOWNLOAD (0x21)            |     |
| A.4.4   | COMMAND_SEND_DATA (0x24)           |     |
| A.4.5   | COMMAND_RUN (0x22)                 |     |
| A.4.6   | COMMAND_RESET (0x25)               | 464 |
| В       | Ordering Information               |     |
| B.1     | Ordering Information               |     |
| B.2     | Company Information                |     |
| B.3     | Support Information                | 466 |

# List of Figures

| Figure 1-1.   | Stellaris® Fury-class High-Level Block Diagram                        | 26  |
|---------------|-----------------------------------------------------------------------|-----|
| Figure 2-1.   | CPU Block Diagram                                                     | 33  |
| Figure 2-2.   | TPIU Block Diagram                                                    | 34  |
| Figure 5-1.   | JTAG Module Block Diagram                                             | 43  |
| Figure 5-2.   | Test Access Port State Machine                                        | 46  |
| Figure 5-3.   | IDCODE Register Format                                                | 51  |
| Figure 5-4.   | BYPASS Register Format                                                | 52  |
| Figure 5-5.   | Boundary Scan Register Format                                         | 52  |
| Figure 6-1.   | External Circuitry to Extend Reset                                    | 54  |
| Figure 7-1.   | Flash Block Diagram                                                   | 109 |
| Figure 8-1.   | GPIODATA Write Example                                                | 134 |
| Figure 8-2.   | GPIODATA Read Example                                                 | 134 |
| Figure 9-1.   | GPTM Module Block Diagram                                             | 175 |
| Figure 9-2.   | 16-Bit Input Edge Count Mode Example                                  | 179 |
| Figure 9-3.   | 16-Bit Input Edge Time Mode Example                                   | 180 |
| Figure 9-4.   | 16-Bit PWM Mode Example                                               | 181 |
| Figure 10-1.  | WDT Module Block Diagram                                              | 207 |
| Figure 11-1.  | ADC Module Block Diagram                                              | 231 |
| Figure 11-2.  | Internal Temperature Sensor Characteristic                            | 234 |
| Figure 12-1.  | UART Module Block Diagram                                             | 268 |
| Figure 12-2.  | UART Character Frame                                                  | 269 |
| Figure 12-3.  | IrDA Data Modulation                                                  |     |
| Figure 13-1.  | SSI Module Block Diagram                                              |     |
| Figure 13-2.  | TI Synchronous Serial Frame Format (Single Transfer)                  | 310 |
| Figure 13-3.  | TI Synchronous Serial Frame Format (Continuous Transfer)              |     |
| Figure 13-4.  | Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0           |     |
| Figure 13-5.  | Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0       |     |
| Figure 13-6.  | Freescale SPI Frame Format with SPO=0 and SPH=1                       |     |
| Figure 13-7.  | Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0     | 313 |
| Figure 13-8.  | Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0 |     |
| Figure 13-9.  | Freescale SPI Frame Format with SPO=1 and SPH=1                       | 314 |
| -             | MICROWIRE Frame Format (Single Frame)                                 |     |
| -             | MICROWIRE Frame Format (Continuous Transfer)                          |     |
|               | MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements      |     |
|               | I <sup>2</sup> C Block Diagram                                        |     |
| Figure 14-2.  | I <sup>2</sup> C Bus Configuration                                    |     |
| Figure 14-3.  | START and STOP Conditions                                             |     |
| Figure 14-4.  | Complete Data Transfer with a 7-Bit Address                           | 343 |
| Figure 14-5.  | R/S Bit in First Byte                                                 | 343 |
| Figure 14-6.  | Data Validity During Bit Transfer on the I <sup>2</sup> C Bus         | 343 |
| Figure 14-7.  | Master Single SEND                                                    | 346 |
| Figure 14-8.  | Master Single RECEIVE                                                 | 347 |
| Figure 14-9.  | Master Burst SEND                                                     |     |
|               | Master Burst RECEIVE                                                  |     |
| Figure 14-11. | Master Burst RECEIVE after Burst SEND                                 | 350 |
| Figure 14-12. | Master Burst SEND after Burst RECEIVE                                 | 351 |

| Figure 14-13. | Slave Command Sequence                                                      | 352 |
|---------------|-----------------------------------------------------------------------------|-----|
| Figure 15-1.  | CAN Module Block Diagram                                                    | 377 |
| Figure 15-2.  | CAN Bit Time                                                                | 384 |
| Figure 16-1.  | Analog Comparator Module Block Diagram                                      | 421 |
| Figure 16-2.  | Structure of Comparator Unit                                                | 422 |
| Figure 16-3.  | Comparator Internal Reference Structure                                     | 423 |
| Figure 17-1.  | Pin Connection Diagram                                                      | 433 |
| Figure 20-1.  | Load Conditions                                                             | 451 |
| Figure 20-2.  | I <sup>2</sup> C Timing                                                     | 453 |
| Figure 20-3.  | SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement | 454 |
| Figure 20-4.  | SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer             | 454 |
| Figure 20-5.  | SSI Timing for SPI Frame Format (FRF=00), with SPH=1                        | 455 |
| Figure 20-6.  | JTAG Test Clock Input Timing                                                | 456 |
| Figure 20-7.  | JTAG Test Access Port (TAP) Timing                                          | 456 |
| Figure 20-8.  | JTAG TRST Timing                                                            | 456 |
| Figure 20-9.  | External Reset Timing (RST)                                                 | 457 |
| Figure 20-10. | Power-On Reset Timing                                                       | 458 |
| Figure 20-11. | Brown-Out Reset Timing                                                      | 458 |
| Figure 20-12. | Software Reset Timing                                                       | 458 |
| Figure 20-13. | Watchdog Reset Timing                                                       | 458 |
| Figure 21-1.  | 100-Pin LQFP Package                                                        | 459 |

# **List of Tables**

| Table 1.    | Documentation Conventions                                          | . 18 |
|-------------|--------------------------------------------------------------------|------|
| Table 3-1.  | Memory Map                                                         | . 38 |
| Table 4-1.  | Exception Types                                                    | . 40 |
| Table 4-2.  | Interrupts                                                         | . 41 |
| Table 5-1.  | JTAG Port Pins Reset State                                         | . 44 |
| Table 5-2.  | JTAG Instruction Register Commands                                 | . 49 |
| Table 6-1.  | System Control Register Map                                        | . 59 |
| Table 6-2.  | VADJ to VOUT                                                       | . 64 |
| Table 6-3.  | Default Crystal Field Values and PLL Programming                   | . 71 |
| Table 7-1.  | Flash Protection Policy Combinations                               | 111  |
| Table 7-2.  | Flash Resident Registers                                           | 112  |
| Table 7-3.  | Internal Memory Register Map                                       | 112  |
| Table 8-1.  | GPIO Pad Configuration Examples                                    | 136  |
| Table 8-2.  | GPIO Interrupt Configuration Example                               | 136  |
| Table 8-3.  | GPIO Register Map                                                  | 138  |
| Table 9-1.  | 16-Bit Timer With Prescaler Configurations                         | 178  |
| Table 9-2.  | Timers Register Map                                                | 184  |
| Table 10-1. | Watchdog Timer Register Map                                        | 208  |
| Table 11-1. | Samples and FIFO Depth of Sequencers                               | 231  |
| Table 11-2. | ADC Register Map                                                   | 235  |
| Table 12-1. | UART Register Map                                                  | 273  |
| Table 13-1. | SSI Register Map                                                   | 317  |
| Table 14-1. | Examples of I <sup>2</sup> C Master Timer Period versus Speed Mode |      |
| Table 14-2. | Inter-Integrated Circuit (I <sup>2</sup> C) Interface Register Map | 353  |
| Table 14-3. | Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)          | 358  |
| Table 15-1. | Transmit Message Object Bit Settings                               | 380  |
| Table 15-2. | Receive Message Object Bit Settings                                | 382  |
| Table 15-3. | CAN Protocol Ranges                                                | 384  |
| Table 15-4. | CAN Register Map                                                   | 387  |
| Table 16-1. | Comparator 0 Operating Modes                                       | 422  |
| Table 16-2. | Comparator 1 Operating Modes                                       | 422  |
| Table 16-3. | Comparator 2 Operating Modes                                       | 423  |
| Table 16-4. | Internal Reference Voltage and ACREFCTL Field Values               | 423  |
| Table 16-5. | Analog Comparators Register Map                                    | 425  |
| Table 18-1. | Signals by Pin Number                                              | 434  |
| Table 18-2. | Signals by Signal Name                                             | 438  |
| Table 18-3. | Signals by Function, Except for GPIO                               | 442  |
| Table 18-4. | GPIO Pins and Alternate Functions                                  | 444  |
| Table 19-1. | Temperature Characteristics                                        | 447  |
| Table 19-2. | Thermal Characteristics                                            | 447  |
| Table 20-1. | Maximum Ratings                                                    | 448  |
| Table 20-2. | Recommended DC Operating Conditions                                |      |
| Table 20-3. | LDO Regulator Characteristics                                      |      |
| Table 20-4. | Detailed Power Specifications                                      | 450  |
| Table 20-5. | Flash Memory Characteristics                                       |      |
| Table 20-6. | Phase Locked Loop (PLL) Characteristics                            | 451  |

| Table 20-7.  | Clock Characteristics                               | 451 |
|--------------|-----------------------------------------------------|-----|
| Table 20-8.  | Crystal Characteristics                             | 451 |
| Table 20-9.  | Temperature Sensor Characteristics                  | 452 |
| Table 20-10. | ADC Characteristics                                 | 452 |
| Table 20-11. | Analog Comparator Characteristics                   | 452 |
|              | Analog Comparator Voltage Reference Characteristics |     |
| Table 20-13. | I <sup>2</sup> C Characteristics                    | 453 |
| Table 20-14. | SSI Characteristics                                 | 453 |
| Table 20-15. | JTAG Characteristics                                | 455 |
| Table 20-16. | GPIO Characteristics                                | 457 |
| Table 20-17. | Reset Characteristics                               | 457 |
| Table B-1.   | Part Ordering Information                           | 466 |

# List of Registers

| System   | n Control                                                                    |     |
|----------|------------------------------------------------------------------------------|-----|
| Register | 1: Device Identification 0 (DID0), offset 0x000                              | 61  |
| Register | 2: Brown-Out Reset Control (PBORCTL), offset 0x030                           | 63  |
| Register | 3: LDO Power Control (LDOPCTL), offset 0x034                                 | 64  |
| Register | 4: Raw Interrupt Status (RIS), offset 0x050                                  | 65  |
| Register |                                                                              |     |
| Register | 6: Masked Interrupt Status and Clear (MISC), offset 0x058                    | 67  |
| Register | 7: Reset Cause (RESC), offset 0x05C                                          | 68  |
| Register | 8: Run-Mode Clock Configuration (RCC), offset 0x060                          | 69  |
| Register |                                                                              |     |
| Register | 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070                      | 74  |
| Register | 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144                | 76  |
| Register | 12: Device Identification 1 (DID1), offset 0x004                             | 77  |
| Register | 13: Device Capabilities 0 (DC0), offset 0x008                                | 79  |
| Register | 14: Device Capabilities 1 (DC1), offset 0x010                                | 80  |
| Register | 15: Device Capabilities 2 (DC2), offset 0x014                                | 82  |
| Register | 16: Device Capabilities 3 (DC3), offset 0x018                                | 84  |
| Register | 17: Device Capabilities 4 (DC4), offset 0x01C                                | 86  |
| Register | 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100           | 87  |
| Register | 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110         | 89  |
| Register | 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120    | 91  |
| Register | 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104           | 93  |
| Register | 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114         | 95  |
| Register | 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124    | 97  |
| Register | 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108           | 99  |
| Register | 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118         | 101 |
| Register | 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128    | 103 |
| Register | 27: Software Reset Control 0 (SRCR0), offset 0x040                           | 105 |
| Register | 28: Software Reset Control 1 (SRCR1), offset 0x044                           | 106 |
| Register | 29: Software Reset Control 2 (SRCR2), offset 0x048                           | 108 |
| Internal | I Memory                                                                     | 109 |
| Register | •                                                                            |     |
| Register | 2: Flash Memory Data (FMD), offset 0x004                                     | 115 |
| Register |                                                                              |     |
| Register | • · · · · ·                                                                  |     |
| Register |                                                                              |     |
| Register | 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 | 120 |
| Register |                                                                              |     |
| Register | 8: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200    | 122 |
| Register |                                                                              |     |
| Register | 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208             | 128 |

| Register 15:               | Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C                          | 120 |
|----------------------------|---------------------------------------------------------------------------------------|-----|
| Register 16:               | Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x200                       |     |
| Register 17:               | Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408                       |     |
| Register 18:               | Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C                       |     |
| -                          |                                                                                       |     |
| GPIO                       |                                                                                       |     |
| Register 1:                | GPIO Data (GPIODATA), offset 0x000                                                    |     |
| Register 2:                | GPIO Direction (GPIODIR), offset 0x400<br>GPIO Interrupt Sense (GPIOIS), offset 0x404 |     |
| Register 3:<br>Register 4: | GPIO Interrupt Both Edges (GPIOIBE), offset 0x404                                     |     |
| Register 5:                | GPIO Interrupt Event (GPIOIEC), offset 0x400                                          |     |
| Register 6:                | GPIO Interrupt Mask (GPIOIM), offset 0x410                                            |     |
| Register 7:                | GPIO Raw Interrupt Status (GPIORIS), offset 0x414                                     |     |
| Register 8:                | GPIO Masked Interrupt Status (GPIOMIS), offset 0x418                                  |     |
| Register 9:                | GPIO Interrupt Clear (GPIOICR), offset 0x41C                                          |     |
| Register 10:               | GPIO Alternate Function Select (GPIOAFSEL), offset 0x420                              |     |
| Register 11:               | GPIO 2-mA Drive Select (GPIODR2R), offset 0x500                                       |     |
| Register 12:               | GPIO 4-mA Drive Select (GPIODR4R), offset 0x504                                       |     |
| Register 13:               | GPIO 8-mA Drive Select (GPIODR8R), offset 0x508                                       |     |
| Register 14:               | GPIO Open Drain Select (GPIOODR), offset 0x50C                                        |     |
| Register 15:               | GPIO Pull-Up Select (GPIOPUR), offset 0x510                                           |     |
| Register 16:               | GPIO Pull-Down Select (GPIOPDR), offset 0x514                                         |     |
| Register 17:               | GPIO Slew Rate Control Select (GPIOSLR), offset 0x518                                 |     |
| Register 18:               | GPIO Digital Enable (GPIODEN), offset 0x51C                                           |     |
| Register 19:               | GPIO Lock (GPIOLOCK), offset 0x520                                                    |     |
| Register 20:               | GPIO Commit (GPIOCR), offset 0x524                                                    |     |
| Register 21:               | GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0                        |     |
| Register 22:               | GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4                        |     |
| Register 23:               | GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8                        | 164 |
| Register 24:               | GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC                        | 165 |
| Register 25:               | GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0                        | 166 |
| Register 26:               | GPIO Peripheral Identification 1(GPIOPeriphID1), offset 0xFE4                         | 167 |
| Register 27:               | GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8                        | 168 |
| Register 28:               | GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC                        | 169 |
| Register 29:               | GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0                          | 170 |
| Register 30:               | GPIO PrimeCell Identification 1 (GPIOPCelIID1), offset 0xFF4                          | 171 |
| Register 31:               | GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8                          | 172 |
| Register 32:               | GPIO PrimeCell Identification 3 (GPIOPCelIID3), offset 0xFFC                          | 173 |
| Timers                     |                                                                                       | 174 |
| Register 1:                | GPTM Configuration (GPTMCFG), offset 0x000                                            |     |
| Register 2:                | GPTM TimerA Mode (GPTMTAMR), offset 0x004                                             | 187 |
| Register 3:                | GPTM TimerB Mode (GPTMTBMR), offset 0x008                                             |     |
| Register 4:                | GPTM Control (GPTMCTL), offset 0x00C                                                  |     |
| Register 5:                | GPTM Interrupt Mask (GPTMIMR), offset 0x018                                           |     |
| Register 6:                | GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C                                     |     |
| Register 7:                | GPTM Masked Interrupt Status (GPTMMIS), offset 0x020                                  | 194 |
| Register 8:                | GPTM Interrupt Clear (GPTMICR), offset 0x024                                          |     |
| Register 9:                | GPTM TimerA Interval Load (GPTMTAILR), offset 0x028                                   | 197 |
| Register 10:               | GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C                                   | 198 |
|                            |                                                                                       |     |

| Register 11: | GPTM TimerA Match (GPTMTAMATCHR), offset 0x030                           | 199 |
|--------------|--------------------------------------------------------------------------|-----|
| Register 12: | GPTM TimerB Match (GPTMTBMATCHR), offset 0x034                           |     |
| Register 13: | GPTM TimerA Prescale (GPTMTAPR), offset 0x038                            | 201 |
| Register 14: | GPTM TimerB Prescale (GPTMTBPR), offset 0x03C                            | 202 |
| Register 15: | GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040                     | 203 |
| Register 16: | GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044                     | 204 |
| Register 17: | GPTM TimerA (GPTMTAR), offset 0x048                                      | 205 |
| Register 18: | GPTM TimerB (GPTMTBR), offset 0x04C                                      | 206 |
| Watchdog     | Timer                                                                    | 207 |
| Register 1:  | Watchdog Load (WDTLOAD), offset 0x000                                    |     |
| Register 2:  | Watchdog Value (WDTVALUE), offset 0x004                                  |     |
| Register 3:  | Watchdog Control (WDTCTL), offset 0x008                                  |     |
| Register 4:  | Watchdog Interrupt Clear (WDTICR), offset 0x00C                          |     |
| Register 5:  | Watchdog Raw Interrupt Status (WDTRIS), offset 0x010                     | 214 |
| Register 6:  | Watchdog Masked Interrupt Status (WDTMIS), offset 0x014                  |     |
| Register 7:  | Watchdog Test (WDTTEST), offset 0x418                                    | 216 |
| Register 8:  | Watchdog Lock (WDTLOCK), offset 0xC00                                    | 217 |
| Register 9:  | Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0        | 218 |
| Register 10: | Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4        | 219 |
| Register 11: | Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8        | 220 |
| Register 12: | Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC        | 221 |
| Register 13: | Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0        | 222 |
| Register 14: | Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4        | 223 |
| Register 15: | Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8        | 224 |
| Register 16: | Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC        | 225 |
| Register 17: | Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0          |     |
| Register 18: | Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4          | 227 |
| Register 19: | Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8          |     |
| Register 20: | Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC         | 229 |
| ADC          |                                                                          | 230 |
| Register 1:  | ADC Active Sample Sequencer (ADCACTSS), offset 0x000                     | 237 |
| Register 2:  | ADC Raw Interrupt Status (ADCRIS), offset 0x004                          |     |
| Register 3:  | ADC Interrupt Mask (ADCIM), offset 0x008                                 |     |
| Register 4:  | ADC Interrupt Status and Clear (ADCISC), offset 0x00C                    | 240 |
| Register 5:  | ADC Overflow Status (ADCOSTAT), offset 0x010                             |     |
| Register 6:  | ADC Event Multiplexer Select (ADCEMUX), offset 0x014                     | 242 |
| Register 7:  | ADC Underflow Status (ADCUSTAT), offset 0x018                            |     |
| Register 8:  | ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020                   | 245 |
| Register 9:  | ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028           | 246 |
| Register 10: | ADC Sample Averaging Control (ADCSAC), offset 0x030                      |     |
| Register 11: | ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040 | 248 |
| Register 12: | ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044                  | 250 |
| Register 13: | ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048             | 253 |
| Register 14: | ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068             |     |
| Register 15: | ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088             |     |
| Register 16: | ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C            |     |
| Register 17: | ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C            |     |
| Register 18: | ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C            | 254 |

| Register 19: | ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060 | 255 |
|--------------|--------------------------------------------------------------------------|-----|
| Register 20: | ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064                  | 256 |
| Register 21: | ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080 | 258 |
| Register 22: | ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084                  | 259 |
| Register 23: | ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0 | 261 |
| Register 24: | ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4                  | 262 |
| Register 25: | ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8             | 263 |
| Register 26: | ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC            | 264 |
| Register 27: | ADC Test Mode Loopback (ADCTMLB), offset 0x100                           | 265 |
| UART         |                                                                          | 267 |
| Register 1:  | UART Data (UARTDR), offset 0x000                                         |     |
| Register 2:  | UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004          | 277 |
| Register 3:  | UART Flag (UARTFR), offset 0x018                                         | 279 |
| Register 4:  | UART IrDA Low-Power Register (UARTILPR), offset 0x020                    | 281 |
| Register 5:  | UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024                  | 282 |
| Register 6:  | UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028               | 283 |
| Register 7:  | UART Line Control (UARTLCRH), offset 0x02C                               | 284 |
| Register 8:  | UART Control (UARTCTL), offset 0x030                                     | 286 |
| Register 9:  | UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034                | 288 |
| Register 10: | UART Interrupt Mask (UARTIM), offset 0x038                               |     |
| Register 11: | UART Raw Interrupt Status (UARTRIS), offset 0x03C                        | 291 |
| Register 12: | UART Masked Interrupt Status (UARTMIS), offset 0x040                     | 292 |
| Register 13: | UART Interrupt Clear (UARTICR), offset 0x044                             | 293 |
| Register 14: | UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0           | 295 |
| Register 15: | UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4           | 296 |
| Register 16: | UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8           | 297 |
| Register 17: | UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC           | 298 |
| Register 18: | UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0           | 299 |
| Register 19: | UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4           | 300 |
| Register 20: | UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8           | 301 |
| Register 21: | UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC           | 302 |
| Register 22: | UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0             |     |
| Register 23: | UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4             |     |
| Register 24: | UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8             |     |
| Register 25: | UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC             | 306 |
| SSI          |                                                                          | 307 |
| Register 1:  | SSI Control 0 (SSICR0), offset 0x000                                     |     |
| Register 2:  | SSI Control 1 (SSICR1), offset 0x004                                     | 321 |
| Register 3:  | SSI Data (SSIDR), offset 0x008                                           | 322 |
| Register 4:  | SSI Status (SSISR), offset 0x00C                                         | 323 |
| Register 5:  | SSI Clock Prescale (SSICPSR), offset 0x010                               | 324 |
| Register 6:  | SSI Interrupt Mask (SSIIM), offset 0x014                                 |     |
| Register 7:  | SSI Raw Interrupt Status (SSIRIS), offset 0x018                          |     |
| Register 8:  | SSI Masked Interrupt Status (SSIMIS), offset 0x01C                       |     |
| Register 9:  | SSI Interrupt Clear (SSIICR), offset 0x020                               |     |
| Register 10: | SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0             |     |
| Register 11: | SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4             | 330 |
| Register 12: | SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8             | 331 |
|              |                                                                          |     |

| Register 13:               | SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC                                 | 332 |
|----------------------------|----------------------------------------------------------------------------------------------|-----|
| Register 14:               | SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0                                 |     |
| Register 15:               | SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4                                 |     |
| Register 16:               | SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8                                 |     |
| Register 17:               | SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC                                 |     |
| Register 18:               | SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0                                   |     |
| Register 19:               | SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4                                   |     |
| Register 20:               | SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8                                   |     |
| Register 21:               | SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC                                   |     |
| Inter-Integra              | ated Circuit (I <sup>2</sup> C) Interface                                                    | 341 |
| Register 1:                | I <sup>2</sup> C Master Slave Address (I2CMSA), offset 0x000                                 |     |
| Register 2:                | I <sup>2</sup> C Master Control/Status (I2CMCS), offset 0x004                                |     |
| Register 3:                | I <sup>2</sup> C Master Data (I2CMDR), offset 0x008                                          |     |
| Register 4:                | I <sup>2</sup> C Master Timer Period (I2CMTPR), offset 0x00C                                 |     |
| Register 5:                | I <sup>2</sup> C Master Interrupt Mask (I2CMIMR), offset 0x010                               |     |
| Register 6:                | I <sup>2</sup> C Master Raw Interrupt Status (I2CMRIS), offset 0x014                         |     |
| Register 7:                | I <sup>2</sup> C Master Masked Interrupt Status (I2CMMIS), offset 0x018                      |     |
| Register 8:                | I <sup>2</sup> C Master Interrupt Clear (I2CMICR), offset 0x01C                              |     |
| Register 9:                | I <sup>2</sup> C Master Configuration (I2CMCR), offset 0x020                                 |     |
| Register 10:               | I <sup>2</sup> C Slave Own Address (I2CSOAR), offset 0x000                                   |     |
| Register 11:               | I <sup>2</sup> C Slave Control/Status (I2CSCSR), offset 0x004                                |     |
| Register 12:               | I <sup>2</sup> C Slave Data (I2CSDR), offset 0x008                                           |     |
| Register 13:               | I <sup>2</sup> C Slave Interrupt Mask (I2CSIMR), offset 0x00C                                |     |
| Register 14:               | I <sup>2</sup> C Slave Raw Interrupt Status (I2CSRIS), offset 0x010                          |     |
| Register 15:               | I <sup>2</sup> C Slave Masked Interrupt Status (I2CSMIS), offset 0x010                       |     |
| Register 16:               | I <sup>2</sup> C Slave Interrupt Clear (I2CSICR), offset 0x018                               |     |
| -                          |                                                                                              |     |
| CAN                        |                                                                                              |     |
| Register 1:                | CAN Control (CANCTL), offset 0x000                                                           |     |
| Register 2:                | CAN Status (CANSTS), offset 0x004                                                            |     |
| Register 3:                | CAN Error Counter (CANERR), offset 0x008                                                     |     |
| Register 4:                | CAN Bit Timing (CANBIT), offset 0x00C                                                        |     |
| Register 5:                | CAN Interrupt (CANINT), offset 0x010<br>CAN Test (CANTST), offset 0x014                      |     |
| Register 6:<br>Register 7: | CAN fest (CANTST), offset 0x014<br>CAN Baud Rate Prescalar Extension (CANBRPE), offset 0x018 |     |
| Register 8:                | CAN IF1 Command Request (CANIF1CRQ), offset 0x020                                            |     |
| Register 9:                | CAN IF2 Command Request (CANIF TCRQ), offset 0x020                                           |     |
| Register 10:               | CAN IF1 Command Mask (CANIF1CMSK), offset 0x000                                              |     |
| Register 11:               | CAN IF2 Command Mask (CANIF2CMSK), offset 0x084                                              |     |
| Register 12:               | CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028                                                    |     |
| Register 13:               | CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088                                                    |     |
| Register 14:               | CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C                                                    |     |
| Register 15:               | CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C                                                    |     |
| Register 16:               | CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030                                             |     |
| Register 17:               | CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090                                             |     |
| Register 18:               | CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034                                             |     |
| Register 19:               | CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094                                             |     |
| Register 20:               | CAN IF1 Message Control (CANIF1MCTL), offset 0x038                                           | 410 |

| Register 21: | CAN IF2 Message Control (CANIF2MCTL), offset 0x098                  | 410 |
|--------------|---------------------------------------------------------------------|-----|
| Register 22: | CAN IF1 Data A1 (CANIF1DA1), offset 0x03C                           | 412 |
| Register 23: | CAN IF2 Data A1 (CANIF2DA1), offset 0x09C                           | 412 |
| Register 24: | CAN IF1 Data A2 (CANIF1DA2), offset 0x040                           | 413 |
| Register 25: | CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0                           | 413 |
| Register 26: | CAN IF1 Data B1 (CANIF1DB1), offset 0x044                           |     |
| Register 27: | CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4                           | 414 |
| Register 28: | CAN IF1 Data B2 (CANIF1DB2), offset 0x048                           | 415 |
| Register 29: | CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8                           | 415 |
| Register 30: | CAN Transmission Request 1 (CANTXRQ1), offset 0x100                 | 416 |
| Register 31: | CAN Transmission Request 2 (CANTXRQ2), offset 0x104                 | 416 |
| Register 32: | CAN New Data 1 (CANNWDA1), offset 0x120                             | 417 |
| Register 33: | CAN New Data 2 (CANNWDA2), offset 0x124                             | 417 |
| Register 34: | CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140          | 418 |
| Register 35: | CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144          | 418 |
| Register 36: | CAN Message 1 Valid (CANMSG1VAL), offset 0x160                      | 419 |
| Register 37: | CAN Message 2 Valid (CANMSG2VAL), offset 0x164                      | 419 |
| Analog Con   | nparators                                                           | 420 |
| Register 1:  | Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00      | 426 |
| Register 2:  | Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04         | 427 |
| Register 3:  | Analog Comparator Interrupt Enable (ACINTEN), offset 0x08           | 428 |
| Register 4:  | Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10 | 429 |
| Register 5:  | Analog Comparator Status 0 (ACSTAT0), offset 0x20                   | 430 |
| Register 6:  | Analog Comparator Status 1 (ACSTAT1), offset 0x40                   | 430 |
| Register 7:  | Analog Comparator Status 2 (ACSTAT2), offset 0x60                   | 430 |
| Register 8:  | Analog Comparator Control 0 (ACCTL0), offset 0x24                   | 431 |
| Register 9:  | Analog Comparator Control 1 (ACCTL1), offset 0x44                   | 431 |
| Register 10: | Analog Comparator Control 2 (ACCTL2), offset 0x64                   | 431 |
|              |                                                                     |     |

## **About This Document**

This data sheet provides reference information for the LM3S2139 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex<sup>™</sup>-M3 core.

#### Audience

This manual is intended for system software developers, hardware designers, and application developers.

### **About This Manual**

This document is organized into sections that correspond to each major feature.

#### **Related Documents**

The following documents are referenced by the data sheet, and available on the documentation CD or from the Luminary Micro web site at www.luminarymicro.com:

- ARM® Cortex™-M3 Technical Reference Manual
- ARM® CoreSight Technical Reference Manual
- ARM® v7-M Architecture Application Level Reference Manual

The following related documents are also referenced:

IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web site for additional documentation, including application notes and white papers.

#### **Documentation Conventions**

This document uses the conventions shown in Table 1 on page 18.

#### **Table 1. Documentation Conventions**

| Notation                  | Meaning                                                                                                                                                                                                                                                                                                                                                     |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| General Register Notation |                                                                                                                                                                                                                                                                                                                                                             |  |  |
| REGISTER                  | APB registers are indicated in uppercase bold. For example, <b>PBORCTL</b> is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, <b>SRCRn</b> represents any (or all) of the three Software Reset Control registers: <b>SRCR0, SRCR1</b> , and <b>SRCR2</b> . |  |  |
| bit                       | A single bit in a register.                                                                                                                                                                                                                                                                                                                                 |  |  |
| bit field                 | Two or more consecutive and related bits.                                                                                                                                                                                                                                                                                                                   |  |  |
| offset 0xnnn              | A hexadecimal increment to a register's address, relative to that module's base address as specified in "Memory Map" on page 38.                                                                                                                                                                                                                            |  |  |
| Register N                | Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.                                                                                                                                                                                                                    |  |  |

| Notation                                                                                                                                             | Meaning                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| reserved                                                                                                                                             | Register bits marked <i>reserved</i> are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |  |  |  |  |
| уу:хх                                                                                                                                                | The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through in that register.                                                                                                                                                                                                                    |  |  |  |  |
| Register Bit/Field<br>TypesThis value in the register bit diagram indicates whether software running on the co<br>change the value of the bit field. |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| RC                                                                                                                                                   | Software can read this field. The bit or field is cleared by hardware after reading the bit/field.                                                                                                                                                                                                                                |  |  |  |  |
| RO                                                                                                                                                   | Software can read this field. Always write the chip reset value.                                                                                                                                                                                                                                                                  |  |  |  |  |
| R/W                                                                                                                                                  | Software can read or write this field.                                                                                                                                                                                                                                                                                            |  |  |  |  |
| R/W1C                                                                                                                                                | Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.                                                                                                                |  |  |  |  |
|                                                                                                                                                      | This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.                                                                                       |  |  |  |  |
| W1C                                                                                                                                                  | Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data.                                                                     |  |  |  |  |
|                                                                                                                                                      | This register is typically used to clear the corresponding bit in an interrupt register.                                                                                                                                                                                                                                          |  |  |  |  |
| WO                                                                                                                                                   | Only a write by software is valid; a read of the register returns no meaningful data.                                                                                                                                                                                                                                             |  |  |  |  |
| Register Bit/Field<br>Reset Value                                                                                                                    | This value in the register bit diagram shows the bit/field value after any reset, unless noted.                                                                                                                                                                                                                                   |  |  |  |  |
| 0                                                                                                                                                    | Bit cleared to 0 on chip reset.                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 1                                                                                                                                                    | Bit set to 1 on chip reset.                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| -                                                                                                                                                    | Nondeterministic.                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Pin/Signal Notation                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| []                                                                                                                                                   | Pin alternate function; a pin defaults to the signal without the brackets.                                                                                                                                                                                                                                                        |  |  |  |  |
| pin                                                                                                                                                  | Refers to the physical connection on the package.                                                                                                                                                                                                                                                                                 |  |  |  |  |
| signal                                                                                                                                               | Refers to the electrical signal encoding of a pin.                                                                                                                                                                                                                                                                                |  |  |  |  |
| assert a signal                                                                                                                                      | Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).           |  |  |  |  |
| deassert a signal                                                                                                                                    | Change the value of the signal from the logically True state to the logically False state.                                                                                                                                                                                                                                        |  |  |  |  |
| SIGNAL                                                                                                                                               | Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.                                                                                                                                  |  |  |  |  |
| SIGNAL                                                                                                                                               | Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.                                                                                                                                                         |  |  |  |  |
| Numbers                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Х                                                                                                                                                    | An uppercase X indicates any of several values is allowed, where X can be any legal pattern. F example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.                                                                                                                           |  |  |  |  |
| 0x                                                                                                                                                   | Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number<br>Binary numbers are indicated with a b suffix, for example, 1011b. Decimal numbers are writt<br>without a prefix or suffix.                                                                                                              |  |  |  |  |

## **1** Architectural Overview

The Luminary Micro Stellaris<sup>®</sup> family of microcontrollers—the first ARM® Cortex<sup>™</sup>-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The Stellaris<sup>®</sup> family offers efficient performance and extensive integration, favorably positioning the device into cost-conscious applications requiring significant control-processing and connectivity capabilities. The Stellaris<sup>®</sup> LM3S2000 series, designed for Controller Area Network (CAN) applications, extends the Stellaris family with Bosch CAN networking technology, the golden standard in short-haul industrial networks. The Stellaris<sup>®</sup> LM3S2000 series also marks the first integration of CAN capabilities with the revolutionary Cortex-M3 core. The Stellaris<sup>®</sup> LM3S6000 series combines both a 10/100 Ethernet Media Access Control (MAC) and Physical (PHY) layer, marking the first time that integrated connectivity is available with an ARM Cortex-M3 MCU and the only integrated 10/100 Ethernet MAC and PHY available in an ARM architecture MCU.

The LM3S2139 microcontroller is targeted for industrial applications, including remote monitoring, electronic point-of-sale machines, test and measurement equipment, network appliances and switches, factory automation, HVAC and building control, gaming equipment, motion control, medical instrumentation, and fire and security.

In addition, the LM3S2139 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S2139 microcontroller is code-compatible to all members of the extensive Stellaris<sup>®</sup> family; providing flexibility to fit our customers' precise needs.

Luminary Micro offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network.

### 1.1 **Product Features**

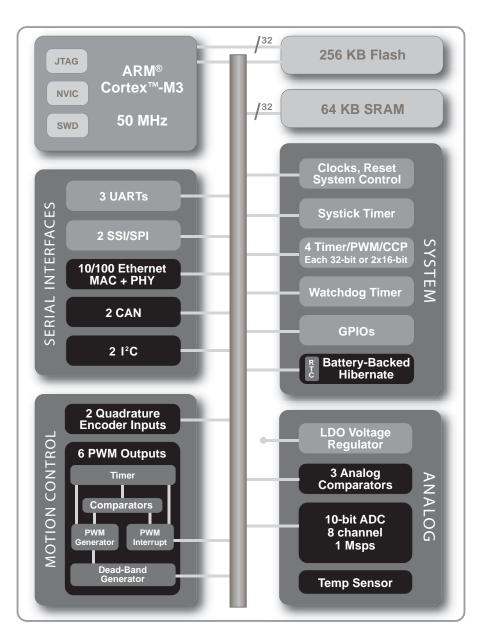
The LM3S2139 microcontroller includes the following product features:

- 32-Bit RISC Performance
  - 32-bit ARM® Cortex<sup>™</sup>-M3 v7M architecture optimized for small-footprint embedded applications
  - System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
  - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
  - 25-MHz operation
  - Hardware-division and single-cycle-multiplication
  - Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
  - 29 interrupts with eight priority levels

- Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
- Unaligned data access, enabling data to be efficiently packed into memory
- Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- Internal Memory
  - 64 KB single-cycle flash
    - User-managed flash block protection on a 2-KB block basis
    - User-managed flash data programming
    - User-defined and managed flash-protection block
  - 16 KB single-cycle SRAM
- General-Purpose Timers
  - Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timer/counters. Each GPTM can be configured to operate independently as timers or event counters (eight total): as a single 32-bit timer (four total), as one 32-bit Real-Time Clock (RTC) to event capture, for Pulse Width Modulation (PWM), or to trigger analog-to-digital conversions
  - 32-bit Timer modes
    - Programmable one-shot timer
    - Programmable periodic timer
    - Real-Time Clock when using an external 32.768-KHz clock as the input
    - User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU Halt flag during debug
    - ADC event trigger
  - 16-bit Timer modes
    - General-purpose timer function with an 8-bit prescaler
    - Programmable one-shot timer
    - Programmable periodic timer
    - User-enabled stalling when the controller asserts CPU Halt flag during debug
    - ADC event trigger
  - 16-bit Input Capture modes
    - Input edge count capture

- Input edge time capture
- 16-bit PWM mode
  - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
  - 32-bit down counter with a programmable load register
  - Separate watchdog clock with an enable
  - Programmable interrupt generation logic with interrupt masking
  - Lock register protection from runaway software
  - Reset generation logic with an enable/disable
  - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- Controller Area Network (CAN)
  - Supports CAN protocol version 2.0 part A/B
  - Bit rates up to 1Mb/s
  - 32 message objects, each with its own identifier mask
  - Maskable interrupt
  - Disable automatic retransmission mode for TTCAN
  - Programmable loop-back mode for self-test operation
- Synchronous Serial Interface (SSI)
  - Master or slave operation
  - Programmable clock bit rate and prescale
  - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
  - Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
  - Programmable data frame size from 4 to 16 bits
  - Internal loopback test mode for diagnostic/debug testing
- UART
  - Two fully programmable 16C550-type UARTs with IrDA support
  - Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service loading
  - Programmable baud-rate generator with fractional divider

- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Standard asynchronous communication bits for start, stop, and parity
- False-start-bit detection
- Line-break generation and detection
- ADC
  - Single- and differential-input configurations
  - Four 10-bit channels (inputs) when used as single-ended inputs
  - Sample rate of 250 thousand samples/second
  - Flexible, configurable analog-to-digital conversion
  - Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
  - Each sequence triggered by software or internal event (timers, analog comparators, or GPIO)
  - On-chip temperature sensor
- Analog Comparators
  - Three independent integrated analog comparators
  - Configurable for output to: drive an output pin, generate an interrupt, or initiate an ADC sample sequence
  - Compare external pin input to external pin input or to internal programmable voltage reference
- I<sup>2</sup>C
  - Master and slave receive and transmit operation with transmission speed up to 100 Kbps in Standard mode and 400 Kbps in Fast mode
  - Interrupt generation
  - Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode
- GPIOs
  - 24-56 GPIOs, depending on configuration
  - 5-V-tolerant input/outputs
  - Programmable interrupt generation as either edge-triggered or level-sensitive
  - Bit masking in both read and write operations through address lines


- Can initiate an ADC sample sequence
- Programmable control for GPIO pad configuration:
  - Weak pull-up or pull-down resistors
  - 2-mA, 4-mA, and 8-mA pad drive
  - Slew rate control for the 8-mA drive
  - Open drain enables
  - Digital input enables
- Power
  - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V
  - Low-power options on controller: Sleep and Deep-sleep modes
  - Low-power options for peripherals: software controls shutdown of individual peripherals
  - User-enabled LDO unregulated voltage detection and automatic reset
  - 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources
  - Power-on reset (POR)
  - Reset pin assertion
  - Brown-out (BOR) detector alerts to system power drops
  - Software reset
  - Watchdog timer reset
  - Internal low drop-out (LDO) regulator output goes unregulated
- Additional Features
  - Six reset sources
  - Programmable clock source control
  - Clock gating to individual peripherals for power savings
  - IEEE 1149.1-1990 compliant Test Access Port (TAP) controller
  - Debug access via JTAG and Serial Wire interfaces
  - Full JTAG boundary scan
- Industrial-range 100-pin RoHS-compliant LQFP package

## **1.2 Target Applications**

- Remote monitoring
- Electronic point-of-sale (POS) machines
- Test and measurement equipment
- Network appliances and switches
- Factory automation
- HVAC and building control
- Gaming equipment
- Motion control
- Medical instrumentation
- Fire and security
- Power and energy
- Transportation

## 1.3 High-Level Block Diagram

Figure 1-1 on page 26 shows the features on the Stellaris® Fury-class family of devices.





## 1.4 Functional Overview

The following sections provide an overview of the features of the LM3S2139 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in Appendix B, Ordering and Contact Information on page 466.

#### 1.4.1 ARM Cortex<sup>™</sup>-M3

#### 1.4.1.1 **Processor Core (see page 32)**

All members of the Stellaris<sup>®</sup> product family, including the LM3S2139 microcontroller, are designed around an ARM Cortex<sup>™</sup>-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

"ARM Cortex-M3 Processor Core" on page 32 provides an overview of the ARM core; the core is detailed in the *ARM*® *Cortex*<sup>™</sup>-*M3 Technical Reference Manual*.

#### 1.4.1.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

#### 1.4.1.3 Nested Vectored Interrupt Controller (NVIC)

The LM3S2139 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM Cortex-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 29 interrupts.

"Interrupts" on page 40 provides an overview of the NVIC controller and the interrupt map. Exceptions and interrupts are detailed in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual*.

#### 1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S2139 controller features Pulse Width Modulation (PWM) outputs.

#### 1.4.2.1 **PWM** (see page 180)

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control. On the LM3S2139, PWM motion control functionality can be achieved through the motion control features of the general-purpose timers (using the CCP pins).

#### CCP Pins (see page 180)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

#### 1.4.3 Serial Communications Peripherals

The LM3S2139 controller supports both asynchronous and synchronous serial communications with:

- Two fully programmable 16C550-type UARTs
- One SSI module
- One I<sup>2</sup>C module
- One CAN unit

#### 1.4.3.1 UART (see page 267)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S2139 controller includes two fully programmable 16C550-type UARTs that support data transfer speeds up to 460.8 Kbps. In addition, each UART is capable of supporting IrDA. (Although similar in functionality to a 16C550 UART, it is not register-compatible.)

Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

#### 1.4.3.2 SSI (see page 307)

Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.

The LM3S2139 controller includes one SSI module that provides the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

### 1.4.3.3 I<sup>2</sup>C(see page 341)

The Inter-Integrated Circuit (I<sup>2</sup>C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL).

The  $I^2C$  bus interfaces to external  $I^2C$  devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The  $I^2C$  bus may also be used for system testing and diagnostic purposes in product development and manufacture.

The LM3S2139 controller includes one  $I^2C$  module that provides the ability to communicate to other IC devices over an  $I^2C$  bus. The  $I^2C$  bus supports devices that can both transmit and receive (write and read) data.

Devices on the  $I^2C$  bus can be designated as either a master or a slave. The  $I^2C$  module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four  $I^2C$  modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

A Stellaris<sup>®</sup> I<sup>2</sup>C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the  $I^2C$  master and slave can generate interrupts. The  $I^2C$  master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The  $I^2C$  slave generates interrupts when data has been sent or requested by a master.

#### 1.4.3.4 Controller Area Network (see page 376)

Controller Area Network (CAN) is a multicast shared serial-bus standard for connecting electronic control units (ECUs). CAN was specifically designed to be robust in electromagnetically noisy environments and can utilize a differential balanced line like RS-485 or a more robust twisted-pair wire. Originally created for automotive purposes, now it is used in many embedded control applications (for example, industrial or medical). Bit rates up to 1Mb/s are possible at network lengths below 40 meters. Decreased bit rates allow longer network distances (for example, 125 Kb/s at 500m).

A transmitter sends a message to all CAN nodes (broadcasting). Each node decides on the basis of the identifier received whether it should process the message. The identifier also determines the priority that the message enjoys in competition for bus access. Each CAN message can transmit from 0 to 8 bytes of user information. The LM3S2139 includes one CAN units.

#### 1.4.4 System Peripherals

#### 1.4.4.1 **Programmable GPIOs (see page 133)**

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris<sup>®</sup> GPIO module is composed of eight physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 24-56 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 434 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in both read and write operations through address lines.

#### 1.4.4.2 Three Programmable Timers (see page 174)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris<sup>®</sup> General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM block provides two 16-bit timer/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions.

When configured in 32-bit mode, a timer can run as a one-shot timer, periodic timer, or Real-Time Clock (RTC). When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

#### 1.4.4.3 Watchdog Timer (see page 207)

A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris<sup>®</sup> Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

#### 1.4.5 Memory Peripherals

The LM3S2139 controller offers both SRAM and Flash memory.

#### 1.4.5.1 SRAM (see page 109)

The LM3S2139 static random access memory (SRAM) controller supports 16 KB SRAM. The internal SRAM of the Stellaris<sup>®</sup> devices is located at offset 0x0000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

#### 1.4.5.2 Flash (see page 110)

The LM3S2139 Flash controller supports 64 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

#### 1.4.6 Additional Features

#### 1.4.6.1 Memory Map (see page 38)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S2139 controller can be found in "Memory Map" on page 38. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The *ARM*® *Cortex*™-*M*3 *Technical Reference Manual* provides further information on the memory map.

#### 1.4.6.2 JTAG TAP Controller (see page 42)

The Joint Test Action Group (JTAG) port provides a standardized serial interface for controlling the Test Access Port (TAP) and associated test logic. The TAP, JTAG instruction register, and JTAG data registers can be used to test the interconnects of assembled printed circuit boards, obtain manufacturing information on the components, and observe and/or control the inputs and outputs of the controller during normal operation. The JTAG port provides a high degree of testability and chip-level access at a low cost.

The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

#### 1.4.6.3 System Control and Clocks (see page 53)

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

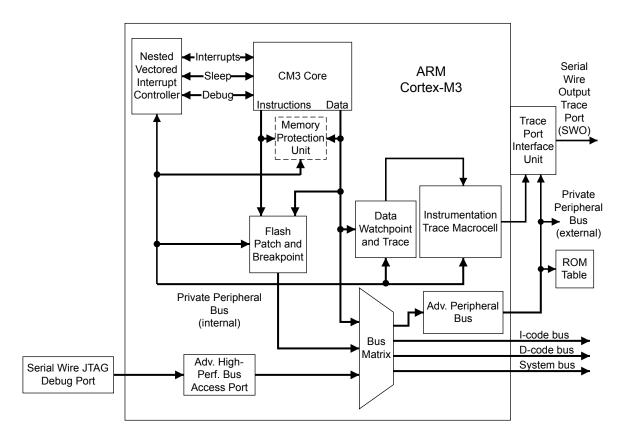
#### 1.4.7 Hardware Details

Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 433
- "Signal Tables" on page 434
- "Operating Characteristics" on page 447
- "Electrical Characteristics" on page 448
- "Package Information" on page 459

## 2 ARM Cortex-M3 Processor Core

The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:


- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Speedy application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7<sup>™</sup> processor family for better performance and power efficiency.
- Full-featured debug solution with a:
  - Serial Wire JTAG Debug Port (SWJ-DP)
  - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
  - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
  - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
  - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer

The Stellaris<sup>®</sup> family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motors.

For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex<sup>™</sup>-M3 Technical Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference Manual.

## 2.1 Block Diagram





## 2.2 Functional Description

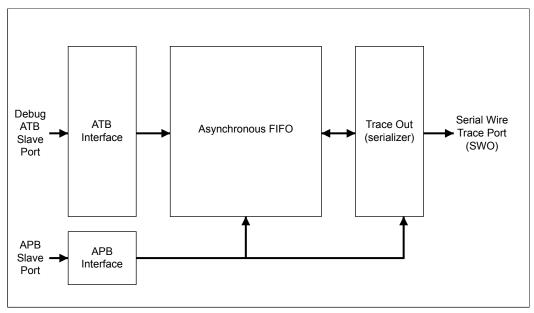
Important: The ARM® Cortex<sup>™</sup>-M3 Technical Reference Manual describes all the features of an ARM Cortex-M3 in detail. However, these features differ based on the implementation. This section describes the Stellaris<sup>®</sup> implementation.

Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 33. As noted in the *ARM*® *Cortex*<sup>™</sup>-*M3 Technical Reference Manual*, several Cortex-M3 components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

#### 2.2.1 Serial Wire and JTAG Debug

Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight<sup>™</sup>-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, "Debug Port," of the *ARM*® *Cortex<sup>™</sup>-M3 Technical Reference Manual* does not apply to Stellaris<sup>®</sup> devices.

The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *CoreSight™ Design Kit Technical Reference Manual* for details on SWJ-DP.


#### 2.2.2 Embedded Trace Macrocell (ETM)

ETM was not implemented in the Stellaris<sup>®</sup> devices. This means Chapters 15 and 16 of the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual* can be ignored.

#### 2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer. The Stellaris<sup>®</sup> devices have implemented TPIU as shown in Figure 2-2 on page 34. This is similar to the non-ETM version described in the *ARM*® *Cortex*<sup>™</sup>-*M3 Technical Reference Manual*, however, SWJ-DP only provides SWV output for the TPIU.





#### 2.2.4 ROM Table

The default ROM table was implemented as described in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

#### 2.2.5 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is included on the LM3S2139 controller and supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

#### 2.2.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC):

Facilitates low-latency exception and interrupt handling

- Controls power management
- Implements system control registers

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of priority. The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked (nested) interrupts to enable tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode if you enable the Configuration Control Register (see the ARM® Cortex<sup>™</sup>-M3 Technical Reference Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

All NVIC registers and system debug registers are little endian regardless of the endianness state of the processor.

#### 2.2.6.1 Interrupts

The *ARM*® *Cortex*<sup>™</sup>-*M3 Technical Reference Manual* describes the maximum number of interrupts and interrupt priorities. The LM3S2139 microcontroller supports 29 interrupts with eight priority levels.

#### 2.2.6.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

#### Functional Description

The timer consists of three registers:

- A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- The reload value for the counter, used to provide the counter's wrap value.
- The current value of the counter.

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris<sup>®</sup> devices.

When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks. Writing a value of zero to the Reload Value register disables the counter on the next wrap. When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect to a reference clock. The reference clock can be the core clock or an external clock source.

#### SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features. The reset is 0x0000.0000.

| <b>Bit/Field</b> | Name      | Туре | Reset | Description                                                                                                                                                                                                                                                                                               |
|------------------|-----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:17            | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                             |
| 16               | COUNTFLAG | R/W  | 0     | Returns 1 if timer counted to 0 since last time this was read. Clears on read by application. If read by the debugger using the DAP, this bit is cleared on read-only if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the COUNTFLAG bit is not changed by the debugger read. |
| 15:3             | reserved  | R/W  | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                             |
| 2                | CLKSOURCE | R/W  | 0     | <ul><li>0 = external reference clock. (Not implemented for Stellaris microcontrollers.)</li><li>1 = core clock.</li></ul>                                                                                                                                                                                 |
|                  |           |      |       | If no reference clock is provided, it is held at 1 and so gives the same time as the core clock. The core clock must be at least 2.5 times faster than the reference clock. If it is not, the count values are unpredictable.                                                                             |
| 1                | TICKINT   | R/W  | 0     | 1 = counting down to 0 pends the SysTick handler.                                                                                                                                                                                                                                                         |
|                  |           |      |       | 0 = counting down to 0 does not pend the SysTick handler. Software can use the COUNTFLAG to determine if ever counted to 0.                                                                                                                                                                               |
| 0                | ENABLE    | R/W  | 0     | 1 = counter operates in a multi-shot way. That is, counter loads with the Reload value and then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally pends the SysTick handler, based on TICKINT. It then loads the Reload value again, and begins counting.                    |
|                  |           |      |       | 0 = counter disabled.                                                                                                                                                                                                                                                                                     |

#### SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the counter reaches 0. It can be any value between 1 and 0x00FFFFFF. A start value of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is any value from 1 to 0x00FFFFFF. So, if the tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single shot, then the actual count down must be written. For example, if a tick is next required after 400 clock pulses, 400 must be written into the RELOAD.

| <b>Bit/Field</b> | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|------------------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24            | reserved | RO   |       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 23:0             | RELOAD   | W1C  | -     | Value to load into the SysTick Current Value Register when the counter reaches 0.                                                                                                             |

#### SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

| <b>Bit/Field</b> | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|------------------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:24            | reserved | RO   |       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 23:0             | CURRENT  | W1C  |       | Current value at the time the register is accessed. No read-modify-write protection is provided, so change with care.                                                                         |
|                  |          |      |       | This register is write-clear. Writing to it with any value clears the register to 0. Clearing this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.         |

#### SysTick Calibration Value Register

The SysTick Calibration Value register is not implemented.

# 3 Memory Map

The memory map for the LM3S2139 controller is provided in Table 3-1 on page 38.

In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. See also Chapter 4, "Memory Map" in the *ARM*® *Cortex*™*-M3 Technical Reference Manual*.

Note: In Table 3-1 on page 38 addresses not listed are reserved.

#### Table 3-1. Memory Map<sup>a</sup>

| Start            | End         | Description                                       | For details<br>on<br>registers,<br>see page |
|------------------|-------------|---------------------------------------------------|---------------------------------------------|
| Memory           | I           |                                                   |                                             |
| 0x0000.0000      | 0x1FFF.FFFF | On-chip flash <sup>b</sup>                        | 113                                         |
| 0x2000.0000      | 0x200F.FFFF | Bit-banded on-chip SRAM <sup>c</sup>              | 113                                         |
| 0x2010.0000      | 0x21FF.FFFF | Reserved non-bit-banded SRAM space                | -                                           |
| 0x2200.0000      | 0x23FF.FFFF | Bit-band alias of 0x2000.0000 through 0x200F.FFFF | 109                                         |
| 0x2400.0000      | 0x3FFF.FFFF | Reserved non-bit-banded SRAM space                | -                                           |
| FiRM Peripherals |             |                                                   | 1                                           |
| 0x4000.0000      | 0x4000.0FFF | Watchdog timer                                    | 209                                         |
| 0x4000.1000      | 0x4000.3FFF | Reserved                                          | -                                           |
| 0x4000.4000      | 0x4000.4FFF | GPIO Port A                                       | 139                                         |
| 0x4000.5000      | 0x4000.5FFF | GPIO Port B                                       | 139                                         |
| 0x4000.6000      | 0x4000.6FFF | GPIO Port C                                       | 139                                         |
| 0x4000.7000      | 0x4000.7FFF | GPIO Port D                                       | 139                                         |
| 0x4000.8000      | 0x4000.8FFF | SSIO                                              | 318                                         |
| 0x4000.A000      | 0x4000.BFFF | Reserved                                          | -                                           |
| 0x4000.C000      | 0x4000.CFFF | UART0                                             | 274                                         |
| 0x4000.D000      | 0x4000.DFFF | UART1                                             | 274                                         |
| 0x4000.F000      | 0x4000.FFFF | Reserved                                          | -                                           |
| 0x4001.0000      | 0x4001.FFFF | Reserved for future FiRM peripherals              | -                                           |
| Peripherals      | 1           |                                                   |                                             |
| 0x4002.0000      | 0x4002.07FF | I2C Master 0                                      | 354                                         |
| 0x4002.0800      | 0x4002.0FFF | I2C Slave 0                                       | 367                                         |
| 0x4002.2000      | 0x4002.3FFF | Reserved                                          | -                                           |
| 0x4002.4000      | 0x4002.4FFF | GPIO Port E                                       | 139                                         |
| 0x4002.5000      | 0x4002.5FFF | GPIO Port F                                       | 139                                         |
| 0x4002.6000      | 0x4002.6FFF | GPIO Port G                                       | 139                                         |
| 0x4002.7000      | 0x4002.7FFF | GPIO Port H                                       | 139                                         |
| 0x4002.9000      | 0x4002.BFFF | Reserved                                          | -                                           |
| 0x4002.E000      | 0x4002.FFFF | Reserved                                          | -                                           |
| 0x4003.0000      | 0x4003.0FFF | Timer0                                            | 185                                         |
| 0x4003.1000      | 0x4003.1FFF | Timer1                                            | 185                                         |

| Start                | End         | Description                                         | For details<br>on<br>registers,<br>see page |
|----------------------|-------------|-----------------------------------------------------|---------------------------------------------|
| 0x4003.2000          | 0x4003.2FFF | Timer2                                              | 185                                         |
| 0x4003.4000          | 0x4003.7FFF | Reserved                                            | -                                           |
| 0x4003.8000          | 0x4003.8FFF | ADC                                                 | 236                                         |
| 0x4003.9000          | 0x4003.BFFF | Reserved                                            | -                                           |
| 0x4003.C000          | 0x4003.CFFF | Analog Comparators                                  | 420                                         |
| 0x4003.D000          | 0x4003.FFFF | Reserved                                            | -                                           |
| 0x4004.0000          | 0x4004.0FFF | CAN0 Controller                                     | 389                                         |
| 0x4004.3000          | 0x4004.7FFF | Reserved                                            | -                                           |
| 0x4004.9000          | 0x4004.BFFF | Reserved                                            | -                                           |
| 0x4004.C000          | 0x400F.BFFF | Reserved                                            | -                                           |
| 0x400F.D000          | 0x400F.DFFF | Flash control                                       | 113                                         |
| 0x400F.E000          | 0x400F.EFFF | System control                                      | 60                                          |
| 0x400F.F000          | 0x400F.FFFF | Reserved                                            | -                                           |
| 0x4011.1000          | 0x4011.1FFF | Reserved                                            | -                                           |
| 0x4012.0000          | 0x41FF.FFFF | Reserved for non bit-banded peripheral space        | -                                           |
| 0x4200.0000          | 0x43FF.FFFF | Bit-banded alias of 0x4000.0000 through 0x400F.FFFF | -                                           |
| 0x4400.0000          | 0x5E32.FFFF | Reserved for non bit-banded peripheral space        | -                                           |
| 0x5E34.0000          | 0x5FFF.FFFF | Reserved                                            | -                                           |
| 0x6000.0000          | 0xDFFF.FFFF | Reserved for external devices                       | -                                           |
| Private Peripheral I | Bus         | L                                                   |                                             |
| 0xE000.0000          | 0xE000.0FFF | Instrumentation Trace Macrocell (ITM)               | ARM®                                        |
| 0xE000.1000          | 0xE000.1FFF | Data Watchpoint and Trace (DWT)                     | Cortex™-M3<br>Technical                     |
| 0xE000.2000          | 0xE000.2FFF | Flash Patch and Breakpoint (FPB)                    | Reference                                   |
| 0xE000.3000          | 0xE000.DFFF | Reserved                                            | Manual                                      |
| 0xE000.E000          | 0xE000.EFFF | Nested Vectored Interrupt Controller (NVIC)         | 1                                           |
| 0xE000.F000          | 0xE003.FFFF | Reserved                                            | 1                                           |
| 0xE004.0000          | 0xE004.0FFF | Trace Port Interface Unit (TPIU)                    | 1                                           |
| 0xE004.1000          | 0xE004.1FFF | Reserved                                            | -                                           |
| 0xE004.2000          | 0xE00F.FFFF | Reserved                                            | -                                           |
| 0xE010.0000          | 0xFFFF.FFFF | Reserved for vendor peripherals                     | -                                           |

a. All reserved space returns a bus fault when read or written.

b. The unavailable flash will bus fault throughout this range.

c. The unavailable SRAM will bus fault throughout this range.

# 4 Interrupts

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 on page 40 lists all the exceptions. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 29 interrupts (listed in Table 4-2 on page 41).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority registers. You can also group priorities by splitting priority levels into pre-emption priorities and subpriorities. All the interrupt registers are described in Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*<sup>M</sup>-*M3 Technical Reference Manual*.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower the position number) determines the order in which the processor activates them. For example, if both GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

See Chapter 5, "Exceptions" and Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual* for more information on exceptions and interrupts.

**Note:** In Table 4-2 on page 41 interrupts not listed are reserved.

| Exception Type                  | Position                                                                         | <b>Priority</b> <sup>a</sup> | Description                                                                                                                                                 |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| -                               | 0                                                                                | -                            | Stack top is loaded from first entry of vector table on reset.                                                                                              |  |  |  |
| Reset                           | 1                                                                                | -3 (highest)                 | Invoked on power up and warm reset. On first instruction, drops to lowest priority (and then is called the base level of activation). This is asynchronous. |  |  |  |
| Non-Maskable<br>Interrupt (NMI) | Cannot be stopped or preempted by any exception but reset. This is asynchronous. |                              |                                                                                                                                                             |  |  |  |
|                                 |                                                                                  |                              | An NMI is only producible by software, using the NVIC Interrupt Control State register.                                                                     |  |  |  |
| Hard Fault                      | 3                                                                                | -1                           | All classes of Fault, when the fault cannot activate due to priority or the configurable fault handler has been disabled. This is synchronous.              |  |  |  |
| Memory Management               | 4                                                                                | settable                     | MPU mismatch, including access violation and no match. This is synchronous.                                                                                 |  |  |  |
|                                 |                                                                                  |                              | The priority of this exception can be changed.                                                                                                              |  |  |  |
| Bus Fault                       | 5                                                                                | settable                     | Pre-fetch fault, memory access fault, and other address/memory related faults. This is synchronous when precise and asynchronous when imprecise.            |  |  |  |
|                                 |                                                                                  |                              | You can enable or disable this fault.                                                                                                                       |  |  |  |
| Usage Fault                     | 6                                                                                | settable                     | Usage fault, such as undefined instruction executed or illegal state transition attempt. This is synchronous.                                               |  |  |  |
| -                               | 7-10                                                                             | -                            | Reserved.                                                                                                                                                   |  |  |  |
| SVCall                          | 11                                                                               | settable                     | System service call with SVC instruction. This is synchronous.                                                                                              |  |  |  |

#### Table 4-1. Exception Types

| Exception Type | Position        | Priority <sup>a</sup> | Description                                                                                                                                                                            |
|----------------|-----------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Debug Monitor  | 12              | settable              | Debug monitor (when not halting). This is synchronous, but only active when enabled. It does not activate if lower priority than the current activation.                               |
| -              | 13              | -                     | Reserved.                                                                                                                                                                              |
| PendSV         | 14              | settable              | Pendable request for system service. This is asynchronous and only pended by software.                                                                                                 |
| SysTick        | 15              | settable              | System tick timer has fired. This is asynchronous.                                                                                                                                     |
| Interrupts     | 16 and<br>above | settable              | Asserted from outside the ARM Cortex-M3 core and fed through the NVIC (prioritized). These are all asynchronous. Table 4-2 on page 41 lists the interrupts on the LM3S2139 controller. |

a. 0 is the default priority for all the settable priorities.

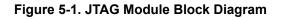
#### Table 4-2. Interrupts

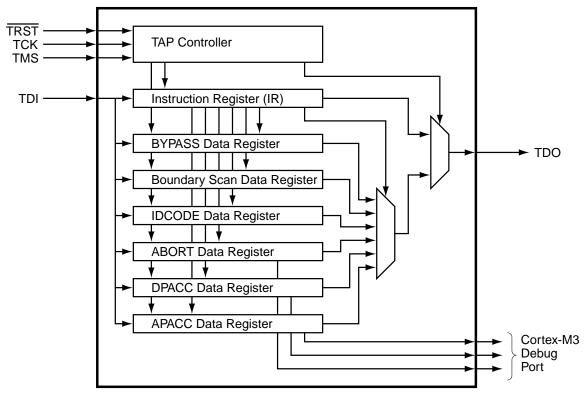
| Interrupt (Bit in Interrupt Registers) | Description         |
|----------------------------------------|---------------------|
| 0                                      | GPIO Port A         |
| 1                                      | GPIO Port B         |
| 2                                      | GPIO Port C         |
| 3                                      | GPIO Port D         |
| 4                                      | GPIO Port E         |
| 5                                      | UART0               |
| 6                                      | UART1               |
| 7                                      | SSI0                |
| 8                                      | 12C0                |
| 14                                     | ADC Sequence 0      |
| 15                                     | ADC Sequence 1      |
| 16                                     | ADC Sequence 2      |
| 17                                     | ADC Sequence 3      |
| 18                                     | Watchdog timer      |
| 19                                     | Timer0 A            |
| 20                                     | Timer0 B            |
| 21                                     | Timer1 A            |
| 22                                     | Timer1 B            |
| 23                                     | Timer2 A            |
| 24                                     | Timer2 B            |
| 25                                     | Analog Comparator 0 |
| 26                                     | Analog Comparator 1 |
| 27                                     | Analog Comparator 2 |
| 28                                     | System Control      |
| 29                                     | Flash Control       |
| 30                                     | GPIO Port F         |
| 31                                     | GPIO Port G         |
| 32                                     | GPIO Port H         |
| 39                                     | CANO                |
| 44-47                                  | Reserved            |

# 5 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.


The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, LMI, and unimplemented JTAG instructions.


The JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions:
  - BYPASS instruction
  - IDCODE instruction
  - SAMPLE/PRELOAD instruction
  - EXTEST instruction
  - INTEST instruction
- ARM additional instructions:
  - APACC instruction
  - DPACC instruction
  - ABORT instruction
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Cortex*™-*M3 Technical Reference Manual* for more information on the ARM JTAG controller.

# 5.1 Block Diagram





# 5.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 43. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 5-2 on page 49 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 455 for JTAG timing diagrams.

## 5.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 5-1 on page 44. Detailed information on each pin follows.

| Pin Name | Data Direction | Internal Pull-Up | Internal Pull-Down | Drive Strength | Drive Value |  |
|----------|----------------|------------------|--------------------|----------------|-------------|--|
| TRST     | Input          | Enabled          | Disabled           | N/A            | N/A         |  |
| TCK      | Input          | Enabled          | Disabled           | N/A            | N/A         |  |
| TMS      | Input          | Enabled          | Disabled           | N/A            | N/A         |  |
| TDI      | Input          | Enabled          | Disabled           | N/A            | N/A         |  |
| TDO      | Output         | Enabled          | Disabled           | 2-mA driver    | High-Z      |  |

#### Table 5-1. JTAG Port Pins Reset State

# 5.2.1.1 Test Reset Input (TRST)

The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the  $\overline{\text{TRST}}$  pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

#### 5.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

### 5.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 5-2 on page 46.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

### 5.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.

## 5.2.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

### 5.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 5-2 on page 46. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

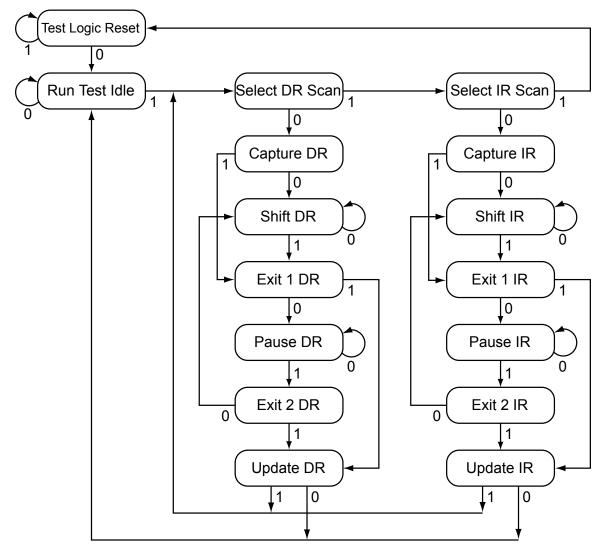



Figure 5-2. Test Access Port State Machine

### 5.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 49.

## 5.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

## 5.2.4.1 GPIO Functionality

When the controller is reset with either a POR or  $\overline{RST}$ , the JTAG/SWD port pins default to their JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting **GPIODEN** to 1), enabling the pull-up resistors (setting **GPIOPUR** to 1), and enabling the alternate hardware function (setting **GPIOAFSEL** to 1) for the PB7 and PC[3:0] JTAG/SWD pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG/SWD port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply  $\overline{\text{RST}}$  or power-cycle the part.

In addition, it is possible to create a software sequence that prevents the debugger from connecting to the Stellaris<sup>®</sup> microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 149) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 159) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 160) have been set to 1.

#### Recovering a "Locked" Device

If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate with the debugger, there is a debug sequence that can be used to recover the device. Performing a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset mass erases the flash memory. The sequence to recover the device is:

- **1.** Assert and hold the  $\overline{RST}$  signal.
- 2. Perform the JTAG-to-SWD switch sequence.
- 3. Perform the SWD-to-JTAG switch sequence.
- 4. Perform the JTAG-to-SWD switch sequence.
- 5. Perform the SWD-to-JTAG switch sequence.
- 6. Perform the JTAG-to-SWD switch sequence.
- 7. Perform the SWD-to-JTAG switch sequence.
- 8. Perform the JTAG-to-SWD switch sequence.
- 9. Perform the SWD-to-JTAG switch sequence.
- 10. Perform the JTAG-to-SWD switch sequence.
- **11.** Perform the SWD-to-JTAG switch sequence.

**12.** Release the  $\overline{RST}$  signal.

The JTAG-to-SWD and SWD-to-JTAG switch sequences are described in "ARM Serial Wire Debug (SWD)" on page 48. When performing switch sequences for the purpose of recovering the debug capabilities of the device, only steps 1 and 2 of the switch sequence need to be performed.

#### 5.2.4.2 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Run Test Idle, Run Test Idle, Select IR, and Test Logic Reset states.

Stepping through this sequences of the TAP state machine enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the ARM® *Cortex*<sup>TM</sup>-*M3 Technical Reference Manual* and the ARM® *CoreSight Technical Reference Manual*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

#### JTAG-to-SWD Switching

To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to SWD mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE79E when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

- 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.
- 2. Send the 16-bit JTAG-to-SWD switch sequence, 16'hE79E.
- Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in SWD mode, before sending the switch sequence, the SWD goes into the line reset state.

#### SWD-to-JTAG Switching

To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to JTAG mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE73C when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.

- 2. Send the 16-bit SWD-to-JTAG switch sequence, 16'hE73C.
- Send at least 5 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in JTAG mode, before sending the switch sequence, the JTAG goes into the Test Logic Reset state.

# 5.3 Initialization and Configuration

After a Power-On-Reset or an external reset ( $\mathbb{RST}$ ), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins ( $\mathbb{PB7}$  and  $\mathbb{PC}[3:0]$ ) for their alternate function using the **GPIOAFSEL** register.

# 5.4 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

### 5.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 5-2 on page 49. A detailed explanation of each instruction, along with its associated Data Register, follows.

| IR[3:0]    | Instruction      | Description                                                                                                                        |
|------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 0000       | EXTEST           | Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.                          |
| 0001       | INTEST           | Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.                    |
| 0010       | SAMPLE / PRELOAD | Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in. |
| 1000       | ABORT            | Shifts data into the ARM Debug Port Abort Register.                                                                                |
| 1010       | DPACC            | Shifts data into and out of the ARM DP Access Register.                                                                            |
| 1011       | APACC            | Shifts data into and out of the ARM AC Access Register.                                                                            |
| 1110       | IDCODE           | Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.                |
| 1111       | BYPASS           | Connects TDI to TDO through a single Shift Register chain.                                                                         |
| All Others | Reserved         | Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.                                                  |

#### Table 5-2. JTAG Instruction Register Commands

### 5.4.1.1 EXTEST Instruction

The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows

tests to be developed that drive known values out of the controller, which can be used to verify connectivity.

## 5.4.1.2 INTEST Instruction

The INTEST instruction does not have an associated Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable.

## 5.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 52 for more information.

### 5.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 52 for more information.

### 5.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 52 for more information.

### 5.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 52 for more information.

## 5.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 51 for more information.

### 5.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 51 for more information.

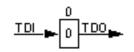
#### 5.4.2 Data Registers

The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

### 5.4.2.1 IDCODE Data Register

The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-3 on page 51. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x3BA00477. This value indicates an ARM Cortex-M3, Version 1 processor. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.

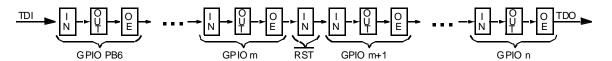

#### Figure 5-3. IDCODE Register Format



## 5.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-4 on page 52. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.

Figure 5-4. BYPASS Register Format




### 5.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 52. Each GPIO pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure. In addition to the GPIO pins, the controller reset pin,  $\overline{RST}$ , is included in the chain. Because the reset pin is always an input, only the input signal is included in the Data Register chain.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

#### Figure 5-5. Boundary Scan Register Format



For detailed information on the order of the input, output, and output enable bits for each of the GPIO ports, please refer to the Stellaris<sup>®</sup> Family Boundary Scan Description Language (BSDL) files, downloadable from www.luminarymicro.com.

### 5.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual*.

### 5.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual*.

### 5.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Cortex*<sup>™</sup>-*M*3 *Technical Reference Manual*.

# 6 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

# 6.1 Functional Description

The System Control module provides the following capabilities:

- Device identification, see "Device Identification" on page 53
- Local control, such as reset (see "Reset Control" on page 53), power (see "Power Control" on page 56) and clock control (see "Clock Control" on page 56)
- System control (Run, Sleep, and Deep-Sleep modes), see "System Control" on page 58

#### 6.1.1 Device Identification

Seven read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

#### 6.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

### 6.1.2.1 CMOD0 and CMOD1 Test-Mode Control Pins

Two pins, CMOD0 and CMOD1, are defined for use by Luminary Micro for testing the devices during manufacture. They have no end-user function and should not be used. The CMOD pins should be connected to ground.

#### 6.1.2.2 Reset Sources

The controller has five sources of reset:

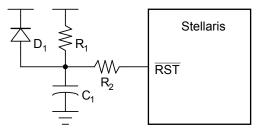
- **1.** External reset input pin  $(\overline{RST})$  assertion, see "RST Pin Assertion" on page 53.
- 2. Power-on reset (POR), see "Power-On Reset (POR)" on page 54.
- 3. Internal brown-out (BOR) detector, see "Brown-Out Reset (BOR)" on page 54.
- 4. Software-initiated reset (with the software reset registers), see "Software Reset" on page 55.
- 5. A watchdog timer reset condition violation, see "Watchdog Timer Reset" on page 55.

After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an internal POR is the cause, and then all the other bits in the **RESC** register are cleared except for the POR indicator.

#### 6.1.2.3 **RST** Pin Assertion

The external reset pin ( $\mathbb{RST}$ ) resets the controller. This resets the core and all the peripherals except the JTAG TAP controller (see "JTAG Interface" on page 42). The external reset sequence is as follows:

- **1.** The external reset pin  $(\overline{RST})$  is asserted and then de-asserted.
- The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution. A few clocks cycles from RST de-assertion to the start of the reset sequence is necessary for synchronization.


The external reset timing is shown in Figure 20-9 on page 457.

### 6.1.2.4 Power-On Reset (POR)

The Power-On Reset (POR) circuit monitors the power supply voltage ( $V_{DD}$ ). The POR circuit generates a reset signal to the internal logic when the power supply ramp reaches a threshold value ( $V_{TH}$ ). If the application only uses the POR circuit, the  $\overline{\text{RST}}$  input needs to be connected to the power supply ( $V_{DD}$ ) through a pull-up resistor (1K to 10K  $\Omega$ ).

The device must be operating within the specified operating parameters at the point when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the device must reach 3.0 V within 10 msec of it crossing 2.0 V to guarantee proper operation. For applications that require the use of an external reset to hold the device in reset longer than the internal POR, the  $\overline{\text{RST}}$  input may be used with the circuit as shown in Figure 6-1 on page 54.

#### Figure 6-1. External Circuitry to Extend Reset



The  $R_1$  and  $C_1$  components define the power-on delay. The  $R_2$  resistor mitigates any leakage from the  $\overline{RST}$  input. The diode (D<sub>1</sub>) discharges C<sub>1</sub> rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

- **1.** The controller waits for the later of external reset ( $\overline{RST}$ ) or internal POR to go inactive.
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing is shown in Figure 20-10 on page 458.

**Note:** The power-on reset also resets the JTAG controller. An external reset does not.

#### 6.1.2.5 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply  $(V_{DD})$  drops below a brown-out threshold voltage  $(V_{BTH})$ . If a brown-out condition is detected, the system may generate a controller interrupt or a system reset.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset is equivelent to an assertion of the external  $\overline{RST}$  input and the reset is held active until the proper V<sub>DD</sub> level is restored. The **RESC** register can be examined in the reset interrupt handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to determine what actions are required to recover.

The internal Brown-Out Reset timing is shown in Figure 20-11 on page 458.

#### 6.1.2.6 Software Reset

Software can generate a reset to the entire system or may reset a specific peripheral.

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 58). Writing a bit lane with a value of 1 initiates a reset of the corresponding unit. Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- **3.** The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 20-12 on page 458.

#### 6.1.2.7 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- 3. The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 20-13 on page 458.

#### 6.1.3 Power Control

The Stellaris<sup>®</sup> microcontroller provides an integrated LDO regulator that may be used to provide power to the majority of the controller's internal logic. The LDO regulator provides software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V  $\pm$  10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register.

**Note:** The use of the LDO is optional. The internal logic may be supplied by the on-chip LDO or by an external regulator. If the LDO is used, the LDO output pin is connected to the VDD25 pins on the printed circuit board. The LDO requires decoupling capacitors on the printed circuit board. If an external regulator is used, it is strongly recommended that the external regulator supply the controller only and not be shared with other devices on the printed circuit board.

### 6.1.4 Clock Control

System control determines the control of clocks in this part.

#### 6.1.4.1 Fundamental Clock Sources

There are four clock sources for use in the device:

- Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%. Applications that do not depend on accurate clock sources may use this clock source to reduce system cost. The internal oscillator is the clock source the device uses during and following POR. If the main oscillator is required, software must enable the main oscillator following reset and allow the main oscillator to stabilize before changing the clock reference.
- Main Oscillator: The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. The crystal value allowed depends on whether the main oscillator is used as the clock reference source to the PLL. If so, the crystal must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in Table 6-3 on page 71.
- Internal 30-kHz Oscillator: The internal 30-kHz oscillator is similar to the internal oscillator, except that it provides an operational frequency of 30 kHz ± 30%. It is intended for use during Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal switching and also allows the main oscillator to be powered down.

The internal system clock (sysclk), is derived from any of the four sources plus two others: the output of the internal PLL, and the internal oscillator divided by four ( $3 \text{ MHz} \pm 30\%$ ). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).

The **Run-Mode Clock Configuration (RCC)** and **Run-Mode Clock Configuration 2 (RCC2)** registers provide control for the system clock. The **RCC2** register is provided to extend fields that offer additional encodings over the **RCC** register. When used, the **RCC2** register field values are used by the logic over the corresponding field in the **RCC** register. In particular, **RCC2** provides for a larger assortment of clock configuration options.

## 6.1.4.2 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals in the range of 1 MHz through 8.192 MHz. This method allows Luminary Micro to provide the best possible PLL settings.

Table 6-3 on page 71 describes the available crystal choices and default programming values.

Software configures the **RCC** register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

#### 6.1.4.3 PLL Frequency Configuration

The PLL is disabled by default during power-on reset and is enabled later by software if required. Software configures the PLL input reference clock source, specifies the output divisor to set the system clock frequency, and enables the PLL to drive the output.

If the main oscillator provides the clock reference to the PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation (PLLCFG)** register (see page 73). The internal translation provides a translation within ± 1% of the targeted PLL VCO frequency.

Table 6-3 on page 71 describes the available crystal choices and default programming of the **PLLCFG** register. The crystal number is written into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

### 6.1.4.4 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC/RCC2 register fields (see page 69 and page 74).

#### 6.1.4.5 PLL Operation

If the PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is  $T_{READY}$  (see Table 20-6 on page 451). During this time, the PLL is not usable as a clock reference.

The PLL is changed by one of the following:

- Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the  $T_{READY}$  requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at an 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the  $T_{READY}$  condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC/RCC2** register is switched to use the PLL.

## 6.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively.

In Run mode, the processor executes code. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor is not clocked and therefore no longer executes code. In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns the device to Run mode from one of the sleep modes; the sleep modes are entered on request from the code. Each mode is described in more detail below.

There are four levels of operation for the device defined as:

- Run Mode. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® Cortex<sup>TM</sup>-M3 Technical Reference Manual for more details.

In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

■ **Deep-Sleep Mode.** Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® Cortex<sup>TM</sup>-M3 Technical Reference Manual for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active **RCC/RCC2** register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

# 6.2 Initialization and Configuration

The PLL is configured using direct register writes to the **RCC/RCC2** register. If the **RCC2** register is being used, the USERCC2 bit must be set and the appropriate **RCC2** bit/field is used. The steps required to successfully change the PLL-based system clock are:

1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the **RCC** register. This configures the system to run off a "raw" clock source (using the

main oscillator or internal oscillator) and allows for the new PLL configuration to be validated before switching the system clock to the PLL.

- Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the **Raw Interrupt Status (RIS**) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

## 6.3 Register Map

Table 6-1 on page 59 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

**Note:** Spaces in the System Control register space that are not used are reserved for future or internal use by Luminary Micro, Inc. Software should not modify any reserved memory address.

| Offset | Name    | Туре  | Reset       | Description                       | See<br>page |
|--------|---------|-------|-------------|-----------------------------------|-------------|
| 0x000  | DID0    | RO    | -           | Device Identification 0           | 61          |
| 0x004  | DID1    | RO    | -           | Device Identification 1           | 77          |
| 0x008  | DC0     | RO    | 0x003F.001F | Device Capabilities 0             | 79          |
| 0x010  | DC1     | RO    | 0x0101.71BF | Device Capabilities 1             | 80          |
| 0x014  | DC2     | RO    | 0x0707.1013 | Device Capabilities 2             | 82          |
| 0x018  | DC3     | RO    | 0x3F0F.37C0 | Device Capabilities 3             | 84          |
| 0x01C  | DC4     | RO    | 0x0000.00FF | Device Capabilities 4             | 86          |
| 0x030  | PBORCTL | R/W   | 0x0000.7FFD | Brown-Out Reset Control           | 63          |
| 0x034  | LDOPCTL | R/W   | 0x0000.0000 | LDO Power Control                 | 64          |
| 0x040  | SRCR0   | R/W   | 0x0000000   | Software Reset Control 0          | 105         |
| 0x044  | SRCR1   | R/W   | 0x0000000   | Software Reset Control 1          | 106         |
| 0x048  | SRCR2   | R/W   | 0x0000000   | Software Reset Control 2          | 108         |
| 0x050  | RIS     | RO    | 0x0000.0000 | Raw Interrupt Status              | 65          |
| 0x054  | IMC     | R/W   | 0x0000.0000 | Interrupt Mask Control            | 66          |
| 0x058  | MISC    | R/W1C | 0x0000.0000 | Masked Interrupt Status and Clear | 67          |
| 0x05C  | RESC    | R/W   | -           | Reset Cause                       | 68          |
| 0x060  | RCC     | R/W   | 0x07A0.3AD1 | Run-Mode Clock Configuration      | 69          |

#### Table 6-1. System Control Register Map

| Offset | Name       | Туре | Reset       | Description                                     | See<br>page |
|--------|------------|------|-------------|-------------------------------------------------|-------------|
| 0x064  | PLLCFG     | RO   | -           | XTAL to PLL Translation                         | 73          |
| 0x070  | RCC2       | R/W  | 0x0780.2800 | Run-Mode Clock Configuration 2                  | 74          |
| 0x100  | RCGC0      | R/W  | 0x00000040  | Run Mode Clock Gating Control Register 0        | 87          |
| 0x104  | RCGC1      | R/W  | 0x0000000   | Run Mode Clock Gating Control Register 1        | 93          |
| 0x108  | RCGC2      | R/W  | 0x0000000   | Run Mode Clock Gating Control Register 2        | 99          |
| 0x110  | SCGC0      | R/W  | 0x00000040  | Sleep Mode Clock Gating Control Register 0      | 89          |
| 0x114  | SCGC1      | R/W  | 0x0000000   | Sleep Mode Clock Gating Control Register 1      | 95          |
| 0x118  | SCGC2      | R/W  | 0x0000000   | Sleep Mode Clock Gating Control Register 2      | 101         |
| 0x120  | DCGC0      | R/W  | 0x00000040  | Deep Sleep Mode Clock Gating Control Register 0 | 91          |
| 0x124  | DCGC1      | R/W  | 0x0000000   | Deep Sleep Mode Clock Gating Control Register 1 | 97          |
| 0x128  | DCGC2      | R/W  | 0x0000000   | Deep Sleep Mode Clock Gating Control Register 2 | 103         |
| 0x144  | DSLPCLKCFG | R/W  | 0x0780.0000 | Deep Sleep Clock Configuration                  | 76          |

# 6.4 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

# Register 1: Device Identification 0 (DID0), offset 0x000

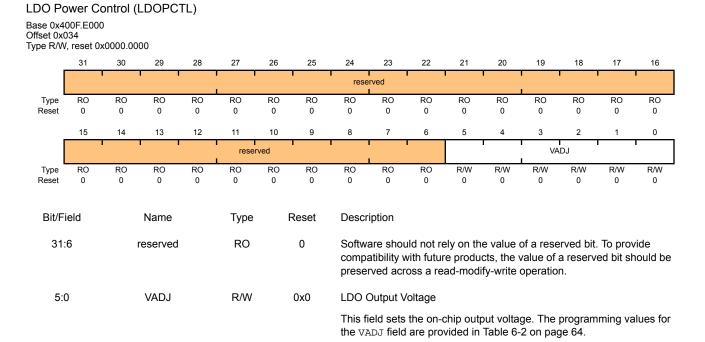
This register identifies the version of the device.

|                                  |          |          | 0 (DID0       | )       |         |         |                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          |          |          |            |          |         |
|----------------------------------|----------|----------|---------------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----------|----------|------------|----------|---------|
| Base 0x4<br>Offset 0x<br>Type RO |          | )        |               |         |         |         |                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          |          |          |            |          |         |
|                                  | 31       | 30       | 29            | 28      | 27      | 26      | 25                                                                                                                                                                                            | 24                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                    | 21       | 20       | 19       | 18         | 17       | 16      |
|                                  | reserved |          | VER           |         |         | re      | served                                                                                                                                                                                        | î                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | I        | CL       | I<br>ASS | Î          | I        |         |
| Туре                             | RO       | RO       | RO            | RO      | RO      | RO      | RO                                                                                                                                                                                            | RO                                                                                                                                           | RO                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RO                    | RO       | RO       | RO       | RO         | RO       | RO      |
| Reset                            | 0        | 0        | 0             | 1       | 0       | 0       | 0                                                                                                                                                                                             | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                     | 0        | 0        | 0        | 0          | 0        | 1       |
|                                  | 15       | 14       | 13            | 12      | 11      | 10      | 9                                                                                                                                                                                             | 8                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                     | 5        | 4        | 3        | 2          | 1        | 0       |
|                                  |          |          | •             | MA      | JOR     |         | •                                                                                                                                                                                             | •                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 8        | MI       | NOR      |            |          | '       |
| Type<br>Reset                    | RO<br>-  | RO<br>-  | RO<br>-       | RO<br>- | RO<br>- | RO<br>- | RO<br>-                                                                                                                                                                                       | RO<br>-                                                                                                                                      | RO<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RO<br>-               | RO<br>-  | RO<br>-  | RO<br>-  | RO<br>-    | RO<br>-  | RO<br>- |
| Bit/F                            | ield     |          | Name          |         | Туре    |         | Reset                                                                                                                                                                                         | Descr                                                                                                                                        | iption                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |          |          |            |          |         |
| 3                                | 1        | reserved |               |         | RO      |         | 0                                                                                                                                                                                             | comp                                                                                                                                         | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation.                                                                                                                                                                                                                                                                    |                       |          |          |          |            |          |         |
| 30:                              | 30:28    |          | VER           |         | RO      |         | 1                                                                                                                                                                                             | DID0                                                                                                                                         | Version                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |          |          |          |            |          |         |
|                                  |          |          |               |         |         |         |                                                                                                                                                                                               | This field defines the <b>DID0</b> register format version. The version number is numeric. The value of the VER field is encoded as follows: |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          |          |          |            |          | number  |
|                                  |          |          |               |         |         |         |                                                                                                                                                                                               | Value                                                                                                                                        | e Descri                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ption                 |          |          |          |            |          |         |
|                                  |          |          |               |         |         |         |                                                                                                                                                                                               | 1                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | evision o<br>lass dev |          | D0 regis | ter form | at, for St | ellaris® |         |
| 27:                              | 27:24    |          | reserved RO 0 |         |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          |          |          |            |          |         |
| 23:                              | :16      |          | CLASS         |         |         |         | 1                                                                                                                                                                                             | Device Class                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          |          |          |            |          |         |
|                                  | 23.10    |          |               |         |         |         |                                                                                                                                                                                               |                                                                                                                                              | The CLASS field value identifies the internal design from which all mask<br>sets are generated for all devices in a particular product line. The CLASS<br>field value is changed for new product lines, for changes in fab process<br>(for example, a remap or shrink), or any case where the MAJOR or MINOR<br>fields require differentiation from prior devices. The value of the CLASS<br>field is encoded as follows (all other encodings are reserved): |                       |          |          |          |            |          |         |
|                                  |          |          |               |         |         |         |                                                                                                                                                                                               | Value                                                                                                                                        | e Descri                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ption                 |          |          |          |            |          |         |
|                                  |          |          |               |         |         |         |                                                                                                                                                                                               | 0                                                                                                                                            | Stellar                                                                                                                                                                                                                                                                                                                                                                                                                                                      | is® San               | dstorm-o | class de | vices.   |            |          |         |
|                                  |          |          |               |         |         |         |                                                                                                                                                                                               | 1                                                                                                                                            | Stellar                                                                                                                                                                                                                                                                                                                                                                                                                                                      | is® Fury              | -class d | evices.  |          |            |          |         |
|                                  |          |          |               |         |         |         |                                                                                                                                                                                               |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                     |          |          |          |            |          |         |

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                                                                              |
|-----------|-------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:8      | MAJOR | RO   | -     | Major Revision                                                                                                                                                                                                                                                                           |
|           |       |      |       | This field specifies the major revision number of the device. The major revision reflects changes to base layers of the design. The major revision number is indicated in the part number as a letter (A for first revision, B for second, and so on). This field is encoded as follows: |
|           |       |      |       | Value Description                                                                                                                                                                                                                                                                        |
|           |       |      |       | 0 Revision A (initial device)                                                                                                                                                                                                                                                            |
|           |       |      |       | 1 Revision B (first base layer revision)                                                                                                                                                                                                                                                 |
|           |       |      |       | 2 Revision C (second base layer revision)                                                                                                                                                                                                                                                |
|           |       |      |       | and so on.                                                                                                                                                                                                                                                                               |
| 7:0       | MINOR | RO   | -     | Minor Revision                                                                                                                                                                                                                                                                           |
|           |       |      |       | This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows:                                    |
|           |       |      |       | Value Description                                                                                                                                                                                                                                                                        |
|           |       |      |       | 0 Initial device, or a major revision update.                                                                                                                                                                                                                                            |
|           |       |      |       | 1 First metal layer change.                                                                                                                                                                                                                                                              |
|           |       |      |       | 2 Second metal layer change.                                                                                                                                                                                                                                                             |
|           |       |      |       | and so on                                                                                                                                                                                                                                                                                |

and so on.

## Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030


This register is responsible for controlling reset conditions after initial power-on reset.

| Base 0x4<br>Offset 0x | 00F.E00     | 00              |          |         | L)                                            |         |         |            |                         |            |            |            |         |          |                          |           |
|-----------------------|-------------|-----------------|----------|---------|-----------------------------------------------|---------|---------|------------|-------------------------|------------|------------|------------|---------|----------|--------------------------|-----------|
| туре к/м              | 31 v, reset | 0x0000.7F<br>30 | 29       | 28      | 27                                            | 26      | 25      | 24         | 23                      | 22         | 21         | 20         | 19      | 18       | 17                       | 16        |
|                       |             | 1               | 1 1      | 1       | 1 1                                           |         | 1       | rese       | rved                    |            | , ,        |            |         |          | 1                        |           |
| Type<br>Reset         | RO<br>0     | RO<br>0         | RO<br>0  | RO<br>0 | RO<br>0                                       | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                 | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0                  | RO<br>0   |
| Reset                 | 15          | 14              | 13       | 12      | 11                                            | 10      | 9       | 8          | 7                       | 6          | 5          | 4          | 3       | 2        | 1                        | 0         |
|                       |             | 1               | 1        | 12      | , <u>, , , , , , , , , , , , , , , , , , </u> | 10      | 1       | I<br>erved |                         |            | , <u> </u> | -          | Ű       |          | BORIOR                   | reserved  |
| Type<br>Reset         | RO<br>0     | RO<br>0         | RO<br>0  | RO<br>0 | RO<br>0                                       | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                 | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0 | RO<br>0  | R/W<br>0                 | RO<br>0   |
| Bit/F                 | ield        |                 | Name     |         | Туре                                          |         | Reset   | Descr      | iption                  |            |            |            |         |          |                          |           |
| 31                    | :2          |                 | reserved |         | RO                                            |         | 0       | comp       |                         | ith futur/ | e produc   | cts, the v | alue of | a reserv | t. To prov<br>ved bit sh |           |
| 1                     |             |                 | BORIOR   |         | R/W                                           |         | 0       | BOR        | Interrupt               | or Rese    | et         |            |         |          |                          |           |
|                       |             |                 |          |         |                                               |         |         |            | oit contro<br>is signal |            |            |            | 0       |          | ontroller.               | lf set, a |
| 0                     | )           |                 | reserved |         | RO                                            |         | 0       | comp       |                         | ith futur/ | e produc   | cts, the v | alue of | a reserv | t. To prov<br>ved bit sh |           |

Brown-Out Reset Control (PBORCTL)

# Register 3: LDO Power Control (LDOPCTL), offset 0x034

The VADJ field in this register adjusts the on-chip output voltage (V<sub>OUT</sub>).



#### Table 6-2. VADJ to VOUT

| VADJ Value | V <sub>OUT</sub> (V) | VADJ Value | V <sub>OUT</sub> (V) | VADJ Value | V <sub>OUT</sub> (V) |
|------------|----------------------|------------|----------------------|------------|----------------------|
| 0x1B       | 2.75                 | 0x1F       | 2.55                 | 0x03       | 2.35                 |
| 0x1C       | 2.70                 | 0x00       | 2.50                 | 0x04       | 2.30                 |
| 0x1D       | 2.65                 | 0x01       | 2.45                 | 0x05       | 2.25                 |
| 0x1E       | 2.60                 | 0x02       | 2.40                 | 0x06-0x3F  | Reserved             |

# Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

| Base 0x4<br>Offset 0x0<br>Type RO,      | 050     |         | 0        |         |          |         |         |                  |                                         |                                                      |          |                         |                        |                      |                          |                   |
|-----------------------------------------|---------|---------|----------|---------|----------|---------|---------|------------------|-----------------------------------------|------------------------------------------------------|----------|-------------------------|------------------------|----------------------|--------------------------|-------------------|
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24               | 23                                      | 22                                                   | 21       | 20                      | 19                     | 18                   | 17                       | 16                |
|                                         |         | 1       | 1        |         | 1 1      |         | 1       | rese             | rved                                    |                                                      |          |                         | 1                      | ı                    | 1                        |                   |
| Type<br>Reset                           | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>0                                 | RO<br>0                                              | RO<br>0  | RO<br>0                 | RO<br>0                | RO<br>0              | RO<br>0                  | RO<br>0           |
|                                         | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8                | 7                                       | 6                                                    | 5        | 4                       | 3                      | 2                    | 1                        | 0                 |
|                                         |         | •       |          |         | reserved |         | 1       | •                |                                         | PLLLRIS                                              |          | rese                    | erved                  | 1                    | BORRIS                   | reserved          |
| Type<br>Reset                           | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>0                                 | RO<br>0                                              | RO<br>0  | RO<br>0                 | RO<br>0                | RO<br>0              | RO<br>0                  | RO<br>0           |
| Bit/F                                   | ield    |         | Name     |         | Туре     |         | Reset   | Descr            | iption                                  |                                                      |          |                         |                        |                      |                          |                   |
| 31:                                     | :7      | I       | reserved |         | RO       |         | 0       | compa            | atibility v                             | uld not re<br>vith future<br>oss a rea               | e produ  | cts, the v              | value of               | a reserv             |                          |                   |
| 6                                       |         | F       | PLLLRIS  | i       | RO       |         | 0       |                  |                                         | v Interrup<br>when the                               |          |                         | mer asse               | erts.                |                          |                   |
| 5:2                                     | 2       | I       | reserved |         | RO       |         | 0       | compa            | atibility v                             | uld not re<br>vith futur<br>oss a rea                | e produ  | cts, the v              | value of               | a reserv             | •                        |                   |
| 1                                       |         | I       | BORRIS   |         | RO       |         | 0       | Browr            | n-Out Re                                | eset Raw                                             | Interru  | ot Status               | 6                      |                      |                          |                   |
|                                         |         |         |          |         |          |         |         | a brov<br>from t | vn-out c<br>he browr<br>he <b>IMC</b> r | raw inter<br>ondition i<br>n-out dete<br>register is | s currei | ntly activ<br>rcuit. An | ve. This i<br>interrup | s an un<br>t is repo | registere<br>rted if the | d signal<br>BORIM |
| 0                                       |         | ı       | reserved |         | RO       |         | 0       | compa            | atibility v                             | uld not re<br>vith future<br>oss a rea               | e produ  | cts, the v              | value of               | a reserv             | •                        |                   |

Raw Interrupt Status (RIS)

# Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

#### Interrupt Mask Control (IMC) Base 0x400E E000

Base 0x400F.E000 Offset 0x054 Type R/W, reset 0x0000.0000

| 1,9001011 | , 10001 0 |    |          |    |          |    |       |        |           |                                          |           |            |          |           |       |          |
|-----------|-----------|----|----------|----|----------|----|-------|--------|-----------|------------------------------------------|-----------|------------|----------|-----------|-------|----------|
| _         | 31        | 30 | 29       | 28 | 27       | 26 | 25    | 24     | 23        | 22                                       | 21        | 20         | 19       | 18        | 17    | 16       |
|           |           | 1  |          |    | · ·      |    |       | rese   | rved      | г т                                      |           |            |          |           | 1     |          |
| Туре      | RO        | RO | RO       | RO | RO       | RO | RO    | RO     | RO        | RO                                       | RO        | RO         | RO       | RO        | RO    | RO       |
| Reset     | 0         | 0  | 0        | 0  | 0        | 0  | 0     | 0      | 0         | 0                                        | 0         | 0          | 0        | 0         | 0     | 0        |
| 110001    | 0         | Ū  | Ū        | Ū  | Ū        | 0  | Ū     | 0      | Ū         | Ū                                        | Ū         | 0          | Ū        | Ū         | Ū     | 0        |
|           | 15        | 14 | 13       | 12 | 11       | 10 | 9     | 8      | 7         | 6                                        | 5         | 4          | 3        | 2         | 1     | 0        |
|           |           | 1  |          |    | reserved |    |       | •      |           | PLLLIM                                   |           | rese       | rved     |           | BORIM | reserved |
| Туре      | RO        | RO | RO       | RO | RO       | RO | RO    | RO     | RO        | R/W                                      | RO        | RO         | RO       | RO        | R/W   | RO       |
| Reset     | 0         | 0  | 0        | 0  | 0        | 0  | 0     | 0      | 0         | 0                                        | 0         | 0          | 0        | 0         | 0     | 0        |
| Bit/F     |           |    | Name     |    | Туре     |    | Reset | Descr  | •         |                                          |           |            |          |           |       |          |
| 31:       | 7         |    | reserved |    | RO       |    | 0     | compa  | atibility | uld not re<br>with future<br>ross a rea  | e produ   | cts, the v | alue of  | a reserv  |       |          |
| 6         |           |    | PLLLIM   |    | R/W      |    | 0     | PLL L  | ock Inte  | errupt Ma                                | sk        |            |          |           |       |          |
|           |           |    |          |    |          |    |       | contro | ller inte | fies wheth<br>rrupt. If s<br>ise, an int | et, an ir | nterrupt i | s genera | ated if ₽ |       |          |
| 5:2       | 2         |    | reserved |    | RO       |    | 0     | compa  | atibility | uld not re<br>with future<br>ross a rea  | e produ   | cts, the v | alue of  | a reserv  | •     |          |
| 1         |           |    | BORIM    |    | R/W      |    | 0     | Browr  | -Out R    | eset Inter                               | rupt Ma   | sk         |          |           |       |          |
|           |           |    |          |    |          |    |       | contro | Iler inte | fies wheth<br>rrupt. If s<br>interrupt   | et, an ir | nterrupt i | s genera | •         |       |          |
| 0         |           |    | reserved |    | RO       |    | 0     | compa  | atibility | uld not re<br>with future<br>ross a rea  | e produ   | cts, the v | alue of  | a reserv  |       |          |

## Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

Central location for system control result of RIS AND IMC to generate an interrupt to the controller. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS register (see page 65).

#### Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000 Offset 0x058 Type R/W1C, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24      | 23          | 22                         | 21       | 20         | 19         | 18        | 17         | 16       |
|---------------|---------|---------|----------|---------|----------|---------|---------|---------|-------------|----------------------------|----------|------------|------------|-----------|------------|----------|
|               |         | 1       |          |         |          |         |         | rese    | rved        |                            |          |            |            | 1         |            |          |
| Туре          | RO      | RO      | RO       | RO      | RO       | RO      | RO      | RO      | RO          | RO                         | RO       | RO         | RO         | RO        | RO         | RO       |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0       | 0       | 0       | 0           | 0                          | 0        | 0          | 0          | 0         | 0          | 0        |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8       | 7           | 6                          | 5        | 4          | 3          | 2         | 1          | 0        |
|               |         |         |          |         | reserved |         |         |         | 1           | PLLLMIS                    |          | rese       | rved       |           | BORMIS     | reserved |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | R/W1C<br>0                 | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0   | R/W1C<br>0 | RO<br>0  |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0       | Ū       | 0       | 0           | 0                          | 0        | 0          | 0          | 0         | Ū          | 0        |
| Bit/F         | ield    |         | Name     |         | Туре     |         | Reset   | Descr   | intion      |                            |          |            |            |           |            |          |
| DIVI          | iciu    |         | Name     |         | Type     | 1       | 110301  | Desci   | puon        |                            |          |            |            |           |            |          |
| 31:           | 7       | r       | reserved |         | RO       |         | 0       |         |             | uld not rel<br>with future |          |            |            |           | •          |          |
|               |         |         |          |         |          |         |         | prese   | ved ac      | ross a rea                 | id-modi  | fy-write   | operatio   | n.        |            |          |
| 6             |         | F       | PLLLMIS  |         | R/W1C    |         | 0       | PLL L   | ock Ma      | sked Inter                 | rupt Sta | atus       |            |           |            |          |
|               |         |         |          |         |          |         |         | This b  | it is set v | when the F                 |          | time       | er asserts | s. The in | terrupt is | cleared  |
|               |         |         |          |         |          |         |         |         |             | to this bit                |          |            |            |           | •          |          |
| 5:2           | 2       | r       | eserved  |         | RO       |         | 0       | Softwa  | are sho     | uld not rel                | ly on th | e value d  | of a rese  | erved bit | To prov    | ide      |
| 0             | _       |         | 0001100  |         |          |         | Ū       | compa   | atibility   | with future                | produ    | cts, the v | alue of    | a reserv  |            |          |
|               |         |         |          |         |          |         |         | prese   | ved ac      | ross a rea                 | id-modi  | ty-write   | operatio   | n.        |            |          |
| 1             |         | E       | BORMIS   |         | R/W1C    |         | 0       | BOR I   | Masked      | Interrupt                  | Status   |            |            |           |            |          |
|               |         |         |          |         |          |         |         | The B   | ORMISİ      | s simply t                 | he BORI  | RIS AND    | Ded with   | the mas   | sk value,  | BORIM.   |
| 0             |         | r       | eserved  |         | RO       |         | 0       | Softwa  | are sho     | uld not rel                | lv on th | e value o  | of a rese  | erved bit | To prov    | ide      |
| 0             |         | I       | 0001700  |         | 110      |         | Ū       | compa   | atibility   | with future<br>ross a rea  | produ    | cts, the v | alue of    | a reserv  | •          |          |

# Register 7: Reset Cause (RESC), offset 0x05C

This register is set with the reset cause after reset. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

| Base 0x4<br>Offset 0x0<br>Type R/W      | 05C     | )       |          |         |         |         |         |         |                                      |           |           |            |            |            |           |          |
|-----------------------------------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|-----------|-----------|------------|------------|------------|-----------|----------|
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22        | 21        | 20         | 19         | 18         | 17        | 16       |
|                                         |         |         |          |         |         |         | 1       | rese    | erved                                |           |           |            |            |            |           |          |
| Туре                                    | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO                                   | RO        | RO        | RO         | RO         | RO         | RO        | RO       |
| Reset                                   | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                    | 0         | 0         | 0          | 0          | 0          | 0         | 0        |
|                                         | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6         | 5         | 4          | 3          | 2          | 1         | 0        |
|                                         |         |         |          |         | reser   | ved     |         |         |                                      |           | LDO       | SW         | WDT        | BOR        | POR       | EXT      |
| Type<br>Reset                           | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0   | R/W<br>-  | R/W<br>-   | R/W<br>-   | R/W<br>-   | R/W<br>-  | R/W<br>- |
| Bit/Fi                                  | ield    |         | Name     |         | Туре    |         | Reset   | Descr   | iption                               |           |           |            |            |            |           |          |
| 31:                                     | :6      |         | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | ith futur | e produo  | cts, the v | alue of    | a reserv   |           |          |
| 5                                       |         |         | LDO      |         | R/W     |         | -       | LDO F   | Reset                                |           |           |            |            |            |           |          |
|                                         |         |         |          |         |         |         |         |         | set, indi<br>ated a re               |           |           | ircuit ha  | is lost re | gulation   | and has   | ;        |
| 4                                       |         |         | SW       |         | R/W     |         | -       | Softw   | are Rese                             | et        |           |            |            |            |           |          |
|                                         |         |         |          |         |         |         |         | When    | set, indi                            | cates a   | software  | e reset is | s the cau  | ise of th  | e reset e | event.   |
| 3                                       |         |         | WDT      |         | R/W     |         | -       | Watch   | ndog Tim                             | er Rese   | t         |            |            |            |           |          |
|                                         |         |         |          |         |         |         |         | When    | set, indi                            | cates a   | watchdo   | og reset   | is the ca  | use of t   | ne reset  | event.   |
| 2                                       |         |         | BOR      |         | R/W     |         | -       | Browr   | n-Out Re                             | set       |           |            |            |            |           |          |
|                                         |         |         |          |         |         |         |         | When    | set, indi                            | cates a   | brown-o   | ut reset   | is the ca  | ause of t  | he reset  | event.   |
| 1                                       |         |         | POR      |         | R/W     |         | -       | Powe    | r-On Res                             | set       |           |            |            |            |           |          |
|                                         |         |         |          |         |         |         |         | When    | set, indi                            | cates a   | power-o   | n reset i  | is the ca  | use of th  | ne reset  | event.   |
| 0                                       |         |         | EXT      |         | R/W     |         | -       | Exterr  | nal Rese                             | t         |           |            |            |            |           |          |
|                                         |         |         |          |         |         |         |         |         | set, indi<br>set even                |           | n externa | al reset ( | (RST ass   | sertion) i | s the ca  | use of   |

Reset Cause (RESC) Base 0x400F.E000

## **Register 8: Run-Mode Clock Configuration (RCC), offset 0x060**

This register is defined to provide source control and frequency speed.

| Run-Mode Clock Configuration (RCC) |
|------------------------------------|
| Base 0x400F.E000<br>Offset 0x060   |
| Type R/W, reset 0x07A0.3AD1        |

|       | 31   | 30   | 29       | 28       | 27     | 26       | 25    | 24        | 23          | 22                                    | 21      | 20         | 19      | 18       | 17      | 16      |
|-------|------|------|----------|----------|--------|----------|-------|-----------|-------------|---------------------------------------|---------|------------|---------|----------|---------|---------|
|       |      | rese | erved    | ſ        | ACG    |          | SYS   | I<br>SDIV | 1           | USESYSDIV                             |         |            | rese    | rved     | 1       |         |
| Туре  | RO   | RO   | RO       | RO       | R/W    | R/W      | R/W   | R/W       | R/W         | R/W                                   | RO      | RO         | RO      | RO       | RO      | RO      |
| Reset | 0    | 0    | 0        | 0        | 0      | 1        | 1     | 1         | 1           | 0                                     | 0       | 0          | 0       | 0        | 0       | 0       |
| -     | 15   | 14   | 13       | 12       | 11     | 10       | 9     | 8         | 7           | 6                                     | 5       | 4          | 3       | 2        | 1       | 0       |
|       | rese | rved | PWRDN    | reserved | BYPASS | reserved |       | Т         | TAL         | 1                                     | osc     | SRC        | rese    | rved     | IOSCDIS | MOSCDIS |
| Туре  | RO   | RO   | R/W      | RO       | R/W    | RO       | R/W   | R/W       | R/W         | R/W                                   | R/W     | R/W        | RO      | RO       | R/W     | R/W     |
| Reset | 0    | 1    | 1        | 1        | 1      | 0        | 1     | 0         | 1           | 1                                     | 0       | 1          | 0       | 0        | 0       | 1       |
| Bit/F | ield |      | Name     |          | Туре   | F        | Reset | Descr     | iption      |                                       |         |            |         |          |         |         |
| 31:   | 28   |      | reserved | l        | RO     |          | 0x0   | compa     | atibility v | uld not re<br>vith futur<br>oss a rea | e produ | cts, the v | alue of | a reserv | •       |         |
| 27    | 7    |      | ACG      |          | R/W    |          | 0     | Auto (    | Clock Ga    | ating                                 |         |            |         |          |         |         |
|       |      |      |          |          |        |          |       |           | •           | ies whet<br>ol (SCG                   |         |            |         | •        |         |         |

Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock Gating Control (DCGCn) registers if the controller enters a Sleep or Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating Control (RCGCn) registers are used when the controller enters a sleep mode.

The  $\ensuremath{\textbf{RCGCn}}$  registers are always used to control the clocks in Run mode.

This allows peripherals to consume less power when the controller is in a sleep mode and the peripheral is unused.

| Bit/Field | Name      | Туре | Reset | Description                    |                                         |                                                                                                                                                                |
|-----------|-----------|------|-------|--------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26:23     | SYSDIV    | R/W  | 0xF   | System Cloc                    | k Divisor                               |                                                                                                                                                                |
|           |           |      |       | Specifies whi<br>PLL output.   | ich divisor is usec                     | to generate the system clock from the                                                                                                                          |
|           |           |      |       | The PLL VC                     | O frequency is 40                       | 0 MHz.                                                                                                                                                         |
|           |           |      |       | Binary Value                   | e Divisor (BYPAS                        | S=1) Frequency (BYPASS=0)                                                                                                                                      |
|           |           |      |       | 0000-0110                      | reserved                                | reserved                                                                                                                                                       |
|           |           |      |       | 0011                           | /8                                      | 50 MHz                                                                                                                                                         |
|           |           |      |       | 0111                           | /16                                     | 25 MHz                                                                                                                                                         |
|           |           |      |       | 1000                           | /18                                     | 22.22 MHz                                                                                                                                                      |
|           |           |      |       | 1001                           | /20                                     | 20 MHz                                                                                                                                                         |
|           |           |      |       | 1010                           | /22                                     | 18.18 MHz                                                                                                                                                      |
|           |           |      |       | 1011                           | /24                                     | 16.67 MHz                                                                                                                                                      |
|           |           |      |       | 1100                           | /26                                     | 15.38 MHz                                                                                                                                                      |
|           |           |      |       | 1101                           | /28                                     | 14.29 MHz                                                                                                                                                      |
|           |           |      |       | 1110                           | /30                                     | 13.33 MHz                                                                                                                                                      |
|           |           |      |       | 1111                           | /32                                     | 12.5 MHz (default)                                                                                                                                             |
|           |           |      |       | page 69), the                  | e SYSDIV value is<br>nd the PLL is bein | Clock Configuration (RCC) register (see<br>MINSYSDIV if a lower divider was<br>g used. This lower value is allowed to                                          |
| 22        | USESYSDIV | R/W  | 0     | Enable Syste                   | em Clock Divider                        |                                                                                                                                                                |
|           |           |      |       | •                              |                                         | as the source for the system clock. The to be used when the PLL is selected as                                                                                 |
| 21:14     | reserved  | RO   | 1     | compatibility                  | with future produc                      | e value of a reserved bit. To provide<br>cts, the value of a reserved bit should be<br>fy-write operation.                                                     |
| 13        | PWRDN     | R/W  | 1     | PLL Power D                    | Down                                    |                                                                                                                                                                |
|           |           |      |       | This bit conne<br>down the PLI |                                         | VRDN input. The reset value of 1 powers                                                                                                                        |
| 12        | reserved  | RO   | 1     | compatibility                  | with future produce                     | e value of a reserved bit. To provide<br>cts, the value of a reserved bit should be<br>fy-write operation.                                                     |
| 11        | BYPASS    | R/W  | 1     | PLL Bypass                     |                                         |                                                                                                                                                                |
|           |           |      |       | the OSC sou source. Othe       | rce. If set, the clo                    | clock is derived from the PLL output or<br>ck that drives the system is the OSC<br>nat drives the system is the PLL output<br>vider.                           |
|           |           |      |       | 14<br>the<br>sai               | -MHz to 18-MHz o<br>ADC works in a      | locked from the PLL or directly from a<br>clock source to operate properly. While<br>14-18 MHz range, to maintain a 1 M<br>, the ADC must be provided a 16-MHz |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 9:6       | XTAL     | R/W  | 0xB   | Crystal Value                                                                                                                                                                                 |
|           |          |      |       | This field specifies the crystal value attached to the main oscillator. The encoding for this field is provided in Table 6-3 on page 71.                                                      |
| 5:4       | OSCSRC   | R/W  | 0x1   | Oscillator Source                                                                                                                                                                             |
|           |          |      |       | Picks among the four input sources for the OSC. The values are:                                                                                                                               |
|           |          |      |       | Value Input Source                                                                                                                                                                            |
|           |          |      |       | 00 Main oscillator (default)                                                                                                                                                                  |
|           |          |      |       | 01 Internal oscillator (default)                                                                                                                                                              |
|           |          |      |       | 10 Internal oscillator / 4 (this is necessary if used as input to PLL)                                                                                                                        |
|           |          |      |       | 11 reserved                                                                                                                                                                                   |
| 3:2       | reserved | RO   | 0x0   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 1         | IOSCDIS  | R/W  | 0     | Internal Oscillator Disable                                                                                                                                                                   |
|           |          |      |       | 0: Internal oscillator (IOSC) is enabled.                                                                                                                                                     |
|           |          |      |       | 1: Internal oscillator is disabled.                                                                                                                                                           |
| 0         | MOSCDIS  | R/W  | 1     | Main Oscillator Disable                                                                                                                                                                       |
|           |          |      |       | 0: Main oscillator is enabled.                                                                                                                                                                |
|           |          |      |       | 1: Main oscillator is disabled (default).                                                                                                                                                     |

#### Table 6-3. Default Crystal Field Values and PLL Programming

| Crystal Number (XTAL Binary Value) | Crystal Frequency (MHz) Not Using the PLL | Crystal Frequency (MHz) Using the PLL |  |  |  |  |
|------------------------------------|-------------------------------------------|---------------------------------------|--|--|--|--|
| 0000                               | 1.000                                     | reserved                              |  |  |  |  |
| 0001                               | 1.8432                                    | reserved                              |  |  |  |  |
| 0010                               | 2.000                                     | reserved                              |  |  |  |  |
| 0011                               | 2.4576                                    | reserved                              |  |  |  |  |
| 0100                               | 3.5795                                    | 45 MHz                                |  |  |  |  |
| 0101                               | 3.686                                     | 4 MHz                                 |  |  |  |  |
| 0110                               | 4 1                                       | ИНz                                   |  |  |  |  |
| 0111                               | 4.09                                      | 6 MHz                                 |  |  |  |  |
| 1000                               | 4.915                                     | 2 MHz                                 |  |  |  |  |
| 1001                               | 51                                        | ИНz                                   |  |  |  |  |
| 1010                               | 5.12                                      | 2 MHz                                 |  |  |  |  |
| 1011                               | 6 MHz (re                                 | eset value)                           |  |  |  |  |
| 1100                               | 6.144 MHz                                 |                                       |  |  |  |  |
| 1101                               | 7.3728 MHz                                |                                       |  |  |  |  |

|      | Crystal Frequency (MHz) Not Using the PLL | Crystal Frequency (MHz) Using the PLL |
|------|-------------------------------------------|---------------------------------------|
| 1110 | 8 MHz                                     |                                       |
| 1111 | 8.192 MHz                                 |                                       |

#### Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 69).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq \* F / (R + 1)

XTAL to PLL Translation (PLLCFG)

Base 0x400F.E000

Offset 0x064 Type RO, reset -

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23       | 22         | 21      | 20         | 19        | 18       | 17        | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|----------|------------|---------|------------|-----------|----------|-----------|----------|
|               |         | 1       | 1        |         | ſ       |         |         | rese    | rved     | 1          | 1       | 1          | 1         | 1        | 1         |          |
| Ture          |         |         |          |         |         |         |         |         | <u> </u> |            |         |            | L         |          |           |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0   | RO<br>0  |
|               |         |         |          |         |         |         |         |         |          |            |         |            |           |          |           |          |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7        | 6          | 5       | 4          | 3         | 2        | 1         | 0        |
|               |         | DC      |          |         |         |         | F       | •       |          | •          | •       |            |           | R        | •         |          |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO       | RO         | RO      | RO         | RO        | RO       | RO        | RO       |
| Reset         | -       | -       | -        | -       | -       | -       | -       | -       | -        | -          | -       | -          | -         | -        | -         | -        |
|               |         |         |          |         |         |         |         |         |          |            |         |            |           |          |           |          |
| Bit/F         | ield    |         | Name     |         | Туре    |         | Reset   | Descr   | iption   |            |         |            |           |          |           |          |
|               |         |         |          |         |         |         |         |         |          |            |         |            |           |          |           |          |
| 31:           | :16     |         | reserved | 1       | RO      |         | 0       |         |          |            |         | ne value   |           |          | •         |          |
|               |         |         |          |         |         |         |         | •       |          |            | •       | ucts, the  |           |          | ed bit sl | nould be |
|               |         |         |          |         |         |         |         | prese   | rveu aci | oss a re   | au-mou  | lify-write | operatio  | n.       |           |          |
| 15:           | 14      |         | OD       |         | RO      |         | -       | PLLC    | D Value  | ė          |         |            |           |          |           |          |
|               |         |         | 02       |         |         |         |         |         |          |            |         |            |           |          |           |          |
|               |         |         |          |         |         |         |         | This fi | eld spe  | cifies the | value s | supplied   | to the Pl | L's OD   | input.    |          |
| 13            |         |         | F        |         | RO      |         |         |         | Value    |            |         |            |           |          |           |          |
| 13            | .5      |         | Г        |         | RU      |         | -       | FLL F   | value    |            |         |            |           |          |           |          |
|               |         |         |          |         |         |         |         | This fi | eld spe  | cifies the | value s | supplied   | to the Pl | L's F in | put.      |          |
|               | •       |         | -        |         | 56      |         |         |         |          |            |         |            |           |          |           |          |
| 4:            | 0       |         | R        |         | RO      |         | -       | PLL R   | R Value  |            |         |            |           |          |           |          |
|               |         |         |          |         |         |         |         | This fi | eld spe  | cifies the | value   | supplied   | to the Pl | L's R ir | nput.     |          |
|               |         |         |          |         |         |         |         |         |          |            |         |            |           |          |           |          |

Run-Mode Clock Configuration 2 (RCC2)

### Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070

This register overrides the **RCC** equivalent register fields when the USERCC2 bit is set. This allows RCC2 to be used to extend the capabilities, while also providing a means to be backward-compatible to previous parts. The fields within the **RCC2** register occupy the same bit positions as they do within the **RCC** register as LSB-justified.

The SYSDIV2 field is wider so that additional larger divisors are possible. This allows a lower system clock frequency for improved Deep Sleep power consumption.

| Offset 0x                  | 00F.E000<br>070<br>/, reset 0x(                                                                                                                                                                                                     | 1780 28 | 00       |         |            |         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |                                     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|-----------------------|-------------------------------|-----------------------------------------------------------|-----------------------------------|---------------------|---------|--|--|
| 1990101                    | 31                                                                                                                                                                                                                                  | 30      | 29       | 28      | 27         | 26      | 25                                                                                                                                                                                                                                                              | 24                                                                                                                                                                                            | 23                                  | 22                                | 21                    | 20                            | 19                                                        | 18                                | 17                  | 16      |  |  |
|                            | USERCC2                                                                                                                                                                                                                             | rese    | erved    |         | <u>г г</u> | SYS     | SDIV2                                                                                                                                                                                                                                                           | 1 1                                                                                                                                                                                           |                                     |                                   | ,                     |                               | reserved                                                  | ï                                 |                     |         |  |  |
| Туре                       | R/W                                                                                                                                                                                                                                 | RO      | RO       | R/W     | R/W        | R/W     | R/W                                                                                                                                                                                                                                                             | R/W                                                                                                                                                                                           | R/W                                 | RO                                | RO                    | RO                            | RO                                                        | RO                                | RO                  | RO      |  |  |
| Reset                      | 0                                                                                                                                                                                                                                   | 0       | 0        | 0       | 0          | 1       | 1                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                             | 1                                   | 0                                 | 0                     | 0                             | 0                                                         | 0                                 | 0                   | 0       |  |  |
| 1                          | 15                                                                                                                                                                                                                                  | 14      | 13       | 12      | 11         | 10      | 9                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                             | 7                                   | 6                                 | 5                     | 4                             | 3                                                         | 2                                 | 1                   | 0       |  |  |
| -                          | reserv                                                                                                                                                                                                                              |         | PWRDN2   |         | BYPASS2    |         |                                                                                                                                                                                                                                                                 | erved                                                                                                                                                                                         |                                     |                                   | OSCSRC2               |                               |                                                           | rese                              |                     |         |  |  |
| Type<br>Reset              | RO<br>0                                                                                                                                                                                                                             | RO<br>0 | R/W<br>1 | RO<br>0 | R/W<br>1   | RO<br>0 | RO<br>0                                                                                                                                                                                                                                                         | RO<br>0                                                                                                                                                                                       | RO<br>0                             | R/W<br>0                          | R/W<br>0              | R/W<br>0                      | RO<br>0                                                   | RO<br>0                           | RO<br>0             | RO<br>0 |  |  |
|                            |                                                                                                                                                                                                                                     |         |          |         |            |         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |                                     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
| Bit/F                      | ield                                                                                                                                                                                                                                |         | Name     |         | Туре       |         | Reset                                                                                                                                                                                                                                                           | Descr                                                                                                                                                                                         | iption                              |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
| 3                          | 1                                                                                                                                                                                                                                   | L       | JSERCC   | 2       | R/W        |         | 0                                                                                                                                                                                                                                                               | Use R                                                                                                                                                                                         | CC2                                 |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
|                            |                                                                                                                                                                                                                                     |         |          |         |            |         |                                                                                                                                                                                                                                                                 | When                                                                                                                                                                                          | set. ove                            | errides th                        | ne RCC I              | reaister                      | fields.                                                   |                                   |                     |         |  |  |
|                            |                                                                                                                                                                                                                                     |         |          |         |            |         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |                                     |                                   |                       | U                             |                                                           |                                   | _                   |         |  |  |
| 30::                       | 29       reserved       RO       0       Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |         |          |         |            |         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |                                     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
|                            | 28:23 SYSDIV2 R/W 0x0F System Clock Divisor                                                                                                                                                                                         |         |          |         |            |         |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |                                     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
| 28:                        | 23                                                                                                                                                                                                                                  |         | 5150172  |         | R/W        |         | UXUF                                                                                                                                                                                                                                                            |                                                                                                                                                                                               |                                     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
|                            |                                                                                                                                                                                                                                     |         |          |         |            |         |                                                                                                                                                                                                                                                                 | Specif<br>PLL of                                                                                                                                                                              |                                     | h diviso                          | r is used             | to gene                       | erate the                                                 | system                            | Clock fro           | om the  |  |  |
|                            |                                                                                                                                                                                                                                     |         |          |         |            |         |                                                                                                                                                                                                                                                                 | The P                                                                                                                                                                                         | e PLL VCO frequency is 400 MHz.     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
|                            |                                                                                                                                                                                                                                     |         |          |         |            |         |                                                                                                                                                                                                                                                                 | additio<br>much<br>the <b>RC</b>                                                                                                                                                              | onal divis<br>lower fre<br>CC regis | sor value<br>equencie<br>ter sysi | es. This<br>es during | permits<br>Deep S<br>oding of | r SYSDIN<br>the syste<br>Gleep mo<br>111 prov<br>provides | em clock<br>de. For e<br>ides /16 | to be ru<br>example | , where |  |  |
| 22:                        | 14                                                                                                                                                                                                                                  |         | reserved |         | RO         |         | <ul> <li>register SYSDIV2 encoding of 111111 provides /64.</li> <li>Software should not rely on the value of a reserved bit. To procompatibility with future products, the value of a reserved bit s preserved across a read-modify-write operation.</li> </ul> |                                                                                                                                                                                               |                                     |                                   |                       | •                             |                                                           |                                   |                     |         |  |  |
| 13                         | 3                                                                                                                                                                                                                                   | F       | PWRDN2   | 2       | R/W        |         | 1 Power-Down PLL                                                                                                                                                                                                                                                |                                                                                                                                                                                               |                                     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
|                            |                                                                                                                                                                                                                                     |         |          |         |            |         |                                                                                                                                                                                                                                                                 | When set, powers down the PLL.                                                                                                                                                                |                                     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
| 12                         | 2                                                                                                                                                                                                                                   |         | reserved |         | RO         |         | 0                                                                                                                                                                                                                                                               | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                     |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
| 11                         | 1                                                                                                                                                                                                                                   | E       | BYPASS2  | 2       | R/W        |         | 1                                                                                                                                                                                                                                                               | Bypas                                                                                                                                                                                         | s PLL                               |                                   |                       |                               |                                                           |                                   |                     |         |  |  |
| When set, bypasses the PLL |                                                                                                                                                                                                                                     |         |          |         |            |         | ne PLL f                                                                                                                                                                                                                                                        | or the cl                                                                                                                                                                                     | ock sour                            | ce.                               |                       |                               |                                                           |                                   |                     |         |  |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10:7      | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 6:4       | OSCSRC2  | R/W  | 0     | System Clock Source                                                                                                                                                                           |
|           |          |      |       | Name Value Description                                                                                                                                                                        |
|           |          |      |       | MOSC 0 Main oscillator                                                                                                                                                                        |
|           |          |      |       | IOSC 1 Internal oscillator                                                                                                                                                                    |
|           |          |      |       | IOSC/4 2 Internal oscillator / 4                                                                                                                                                              |
|           |          |      |       | 30kHz 3 30 kHz internal oscillator                                                                                                                                                            |
|           |          |      |       | 32kHz 7 32 kHz external oscillator                                                                                                                                                            |
| 3:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

### Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register provides configuration information for the hardware control of Deep Sleep Mode.

Deep Sleep Clock Configuration (DSLPCLKCFG) Base 0x400F.E000 Offset 0x144 Type R/W, reset 0x0780.0000

|               | 31      | 30                     | 29       | 28       | 27       | 26        | 25          | 24        | 23          | 22        | 21         | 20        | 19                                   | 18       | 17         | 16      |
|---------------|---------|------------------------|----------|----------|----------|-----------|-------------|-----------|-------------|-----------|------------|-----------|--------------------------------------|----------|------------|---------|
|               |         | reserved               | ı        |          | 1 1      | DSDI      | I<br>VORIDE | 1         |             |           | 1          | ı         | reserved                             |          | ĩ          | 1       |
| Type<br>Reset | RO<br>0 | RO<br>0                | RO<br>0  | R/W<br>0 | R/W<br>0 | R/W<br>1  | R/W<br>1    | R/W<br>1  | R/W<br>1    | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0                              | RO<br>0  | RO<br>0    | RO<br>0 |
|               | 15      | 14                     | 13       | 12       | 11       | 10        | 9           | 8         | 7           | 6         | 5          | 4         | 3                                    | 2        | 1          | 0       |
|               |         | 1                      | ı –      | ſ        | reserved |           | 1           | 1         |             |           | DSOSCSR    | l<br>C    |                                      | rese     | 1<br>erved | 1       |
| Type<br>Reset | RO<br>0 | RO<br>0                | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0   | RO<br>0     | RO<br>0   | RO<br>0     | R/W<br>0  | R/W<br>0   | R/W<br>0  | RO<br>0                              | RO<br>0  | RO<br>0    | RO<br>0 |
| Bit/F         | ield    |                        | Name     |          | Туре     |           | Reset       | Descr     | iption      |           |            |           |                                      |          |            |         |
| 31::          | 29      | I                      | reserved |          | RO       |           | 0           | compa     | atibility v | vith futu | ire produ  | cts, the  | of a rese<br>value of a<br>operation | a reserv |            |         |
| 28:           | 23      | DS                     | DIVORI   | DE       | R/W      |           | 0x0F        | Divide    | r Field (   | Overrid   | е          |           |                                      |          |            |         |
|               |         | 6-bit syst<br>running. |          |          |          | ivider fi | eld to ov   | erride wl | hen Deep    | o-Sleep   | occurs v   | vith PLL  |                                      |          |            |         |
| 22            | :7      | ļ                      | reserved |          | RO       |           | 0           | compa     | atibility v | vith futu | ire produ  | cts, the  | of a rese<br>value of a<br>operation | a reserv | •          |         |
| 6:            | 4       | DS                     | SOSCSF   | RC       | R/W      |           | 0           | Clock     | Source      |           |            |           |                                      |          |            |         |
|               |         |                        |          |          |          |           |             | When      | set, for    | ces IOS   | SC to be   | clock so  | urce duri                            | ng Deep  | o Sleep    | mode.   |
|               |         |                        |          |          |          |           |             | Name      | e V         | alue D    | escription | ı         |                                      |          |            |         |
|               |         |                        |          |          |          |           |             | NOO       | RIDE 0      | Ν         | o overrid  | e to the  | oscillator                           | clock s  | ource is   | done    |
|               |         |                        |          |          |          |           |             | IOSC      | 1           | U         | se intern  | al 12 MF  | Hz oscilla                           | tor as s | ource      |         |
|               |         |                        |          |          |          |           |             | 30kH      | z 3         | U         | se 30 kH   | z interna | al oscillat                          | or       |            |         |
|               |         |                        |          |          |          |           |             | 32kH      | z 7         | U         | se 32 kH   | z extern  | al oscilla                           | tor      |            |         |
| 3:            | 0       | l                      | reserved |          | RO       |           | 0           | compa     | atibility v | vith futu | ire produ  | cts, the  | of a rese<br>value of a<br>operation | a reserv |            |         |

#### Register 12: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, pin count, and package type.

| fset 0x0      | 00F.E00   |          | I (DID1 | )                                                                                                                                                                       |         |          |         |                       |           |                        |          |          |          |                          |          |          |
|---------------|-----------|----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|-----------------------|-----------|------------------------|----------|----------|----------|--------------------------|----------|----------|
| I             | 31        | 30       | 29      | 28                                                                                                                                                                      | 27      | 26       | 25      | 24                    | 23        | 22                     | 21       | 20       | 19<br>I  | 18                       | 17       | 16<br>I  |
|               |           | VE       |         |                                                                                                                                                                         |         |          | AM      |                       |           |                        |          |          | TNO<br>I |                          |          |          |
| Type<br>Reset | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>1                                                                                                                                                                 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0               | RO<br>1   | RO<br>0                | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>1                  | RO<br>0  | RO<br>0  |
| i             | 15        | 14       | 13      | 12                                                                                                                                                                      | 11      | 10       | 9       | 8                     | 7         | 6                      | 5        | 4        | 3        | 2                        | 1        | 0        |
|               |           | PINCOUNT | -       |                                                                                                                                                                         |         | reserved |         |                       |           | TEMP                   | -        | PI       | kg<br>I  | ROHS                     | QL       | JAL      |
| Type<br>Reset | RO<br>0   | RO<br>1  | RO<br>0 | RO<br>0                                                                                                                                                                 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0               | RO<br>0   | RO<br>0                | RO<br>1  | RO<br>0  | RO<br>1  | RO<br>1                  | RO<br>-  | RO<br>-  |
| Bit/F         | ield      |          | Name    |                                                                                                                                                                         | Туре    |          | Reset   | Descr                 | iption    |                        |          |          |          |                          |          |          |
| 31:           | 28        |          | VER     |                                                                                                                                                                         | RO      |          | 0x1     | DID1                  | Version   |                        |          |          |          |                          |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         | is nun                | neric. Th |                        | of the v |          |          | sion. The<br>ded as fol  |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         | Value                 | e Descr   | iption                 |          |          |          |                          |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         | 0x1                   |           | evision o<br>class dev |          | D1 regis | ter form | at, indica               | ting a S | tellaris |
| 27:           | 27:24 FAM |          |         |                                                                                                                                                                         | RO      |          | 0x0     | Famil                 | у         |                        |          |          |          |                          |          |          |
|               |           |          |         | This field provides the family identification of the device within<br>Luminary Micro product portfolio. The value is encoded as follo<br>other encodings are reserved): |         |          |         |                       |           |                        |          |          |          |                          |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         | Value                 | Descr     | iption                 |          |          |          |                          |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         | 0x0                   | Stella    |                        |          |          |          | is, all dev<br>I3S.      | vices wi | th       |
| 23:           | 16        | F        | PARTNO  | 1                                                                                                                                                                       | RO      |          | 0x84    | Part N                | lumber    |                        |          |          |          |                          |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         |                       |           |                        |          |          |          | ice within<br>gs are re: |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         | Value                 | e Descr   | iption                 |          |          |          |                          |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         | 0x84                  | LM3S      | 2139                   |          |          |          |                          |          |          |
| 15:           | 13        | PINCOUNT |         |                                                                                                                                                                         | RO      |          | 0x2     | 0x2 Package Pin Count |           |                        |          |          |          |                          |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         |                       |           |                        |          |          |          | evice pacl<br>reserved   |          | ne valu  |
|               |           |          |         |                                                                                                                                                                         |         |          |         | Value                 | e Descr   | iption                 |          |          |          |                          |          |          |
|               |           |          |         |                                                                                                                                                                         |         |          |         | 0x2                   | 100-p     | in packa               | ae       |          |          |                          |          |          |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12:8      | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 7:5       | TEMP     | RO   | 0x1   | Temperature Range                                                                                                                                                                             |
|           |          |      |       | This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved):                                                                |
|           |          |      |       | Value Description                                                                                                                                                                             |
|           |          |      |       | 0x1 Industrial temperature range (-40°C to 85°C)                                                                                                                                              |
| 4:3       | PKG      | RO   | 0x1   | Package Type                                                                                                                                                                                  |
|           |          |      |       | This field specifies the package type. The value is encoded as follows (all other encodings are reserved):                                                                                    |
|           |          |      |       | Value Description                                                                                                                                                                             |
|           |          |      |       | 0x1 LQFP package                                                                                                                                                                              |
| 2         | ROHS     | RO   | 1     | RoHS-Compliance                                                                                                                                                                               |
|           |          |      |       | This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.                                                                                            |
| 1:0       | QUAL     | RO   | -     | Qualification Status                                                                                                                                                                          |
|           |          |      |       | This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):                                                              |
|           |          |      |       | Value Description                                                                                                                                                                             |
|           |          |      |       | 0x0 Engineering Sample (unqualified)                                                                                                                                                          |
|           |          |      |       | 0x1 Pilot Production (unqualified)                                                                                                                                                            |
|           |          |      |       | 0x2 Fully Qualified                                                                                                                                                                           |

# Register 13: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

| set 0x0 |     | )<br>003F.001 | F      |    |                |                                                 |       |          |           |            |          |         |         |     |    |    |
|---------|-----|---------------|--------|----|----------------|-------------------------------------------------|-------|----------|-----------|------------|----------|---------|---------|-----|----|----|
| _       | 31  | 30            | 29     | 28 | 27             | 26                                              | 25    | 24       | 23        | 22         | 21       | 20      | 19      | 18  | 17 | 16 |
|         |     |               | r r    |    | г <u>г</u>     |                                                 | 1     | I<br>SRA | I<br>MSZ  | 1          |          | 1       | 1       | 1   | 1  | I  |
| Туре L  | RO  | RO            | RO     | RO | RO             | RO                                              | RO    | RO       | RO        | RO         | RO       | RO      | RO      | RO  | RO | RC |
| Reset   | 0   | 0             | 0      | 0  | 0              | 0                                               | 0     | 0        | 0         | 0          | 1        | 1       | 1       | 1   | 1  | 1  |
|         | 15  | 14            | 13     | 12 | 11             | 10                                              | 9     | 8        | 7         | 6          | 5        | 4       | 3       | 2   | 1  | 0  |
| Γ       | Ì   |               |        |    | <del>г г</del> |                                                 | 1     | FLAS     | I<br>SHSZ | 1          | I        | 1       | 1       | 1   | I  | I  |
| Туре    | RO  | RO            | RO     | RO | RO             | RO                                              | RO    | RO       | RO        | RO         | RO       | RO      | RO      | RO  | RO | RC |
| Reset   | 0   | 0             | 0      | 0  | 0              | 0                                               | 0     | 0        | 0         | 0          | 0        | 1       | 1       | 1   | 1  | 1  |
| Bit/Fie | eld |               | Name   |    | Туре           | F                                               | Reset | Descr    | iption    |            |          |         |         |     |    |    |
| 31:1    | 6   | S             | RAMSZ  |    | RO             | 0                                               | x003F | SRAM     | 1 Size    |            |          |         |         |     |    |    |
|         |     |               |        |    |                |                                                 |       | Indica   | tes the   | size of th | ne on-ch | ip SRAN | /I memo | ry. |    |    |
|         |     |               |        |    |                |                                                 |       | Value    | e Deso    | cription   |          |         |         |     |    |    |
|         |     |               |        |    |                |                                                 |       | 0x003    |           | B of SR    | AM       |         |         |     |    |    |
| 15:0    | 0   | F             | LASHSZ |    | RO             | 0                                               | x001F | Flash    | Size      |            |          |         |         |     |    |    |
|         |     |               |        |    |                | Indicates the size of the on-chip flash memory. |       |          |           |            |          |         |         |     |    |    |
|         |     |               |        |    |                |                                                 |       | Value    | e Deso    | cription   |          |         |         |     |    |    |
|         |     |               |        |    |                |                                                 |       |          | 1F 64 K   |            |          |         |         |     |    |    |

Device Capabilities 0 (DC0)

### Register 14: Device Capabilities 1 (DC1), offset 0x010

This register is predefined by the part and can be used to verify features. The PWM, SARADCO, MAXADCSPD, WDT, SWO, SWD, and JTAG bits mask the **RCGCO**, **SCGCO**, and **DCGCO** registers. Other bits are passed as 0. MAXADCSPD is clipped to the maximum value specified in **DC1**.

#### Device Capabilities 1 (DC1)

Base 0x400F.E000 Offset 0x010 Type RO, reset 0x0101.71BF

|               | 31         | 30                  | 29      | 28       | 27       | 26      | 25                                                                                                                                                                                 | 24                | 23                                                                             | 22         | 21                                 | 20         | 19        | 18       | 17       | 16               |  |
|---------------|------------|---------------------|---------|----------|----------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------|------------|------------------------------------|------------|-----------|----------|----------|------------------|--|
|               | 1          |                     |         | reserved | <b> </b> |         | '                                                                                                                                                                                  | CAN0              |                                                                                |            |                                    | reserved   |           |          |          | SARADC0          |  |
| Type<br>Reset | RO<br>0    | RO<br>0             | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0                                                                                                                                                                            | RO<br>1           | RO<br>0                                                                        | RO<br>0    | RO<br>0                            | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>1          |  |
|               | 15         | 14                  | 13      | 12       | 11       | 10      | 9                                                                                                                                                                                  | 8                 | 7                                                                              | 6          | 5                                  | 4          | 3         | 2        | 1        | 0                |  |
|               | 1          | SYS                 | DIV     | I        | ľ        | MAXA    | DCSPD                                                                                                                                                                              | 1                 | MPU                                                                            | reserved   | TEMPSNS                            | PLL        | WDT       | SWO      | SWD      | JTAG             |  |
| Type<br>Reset | RO<br>0    | RO<br>1             | RO<br>1 | RO<br>1  | RO<br>0  | RO<br>0 | RO<br>0                                                                                                                                                                            | RO<br>1           | RO<br>1                                                                        | RO<br>0    | RO<br>1                            | RO<br>1    | RO<br>1   | RO<br>1  | RO<br>1  | RO<br>1          |  |
| Bit/F         | ield       |                     | Name    |          | Туре     | I       | Reset                                                                                                                                                                              | Descr             | iption                                                                         |            |                                    |            |           |          |          |                  |  |
| 31:           | 25         | r                   | eserved |          | RO       |         | 0                                                                                                                                                                                  | compa             | atibility v                                                                    | vith futur | ely on the<br>e produc<br>ad-modif | ts, the v  | alue of   | a reserv |          |                  |  |
| 24            | Ļ          |                     | CAN0    |          | RO       |         | 1                                                                                                                                                                                  | CAN I             | Module (                                                                       | ) Presen   | t                                  |            |           |          |          |                  |  |
|               |            |                     |         |          |          |         |                                                                                                                                                                                    | When              | set, ind                                                                       | icates th  | at CAN ι                           | unit 0 is  | present   |          |          |                  |  |
| 23:           | 17         | reserved<br>SARADC0 |         |          | RO       |         | 0                                                                                                                                                                                  | compa             | atibility v                                                                    | vith futur | ely on the<br>e produc<br>ad-modif | ts, the v  | alue of   | a reserv | •        |                  |  |
| 16            | 3          |                     |         | 0        | RO       |         | 1                                                                                                                                                                                  | ADC I<br>prese    |                                                                                | Present.   | When se                            | et, indica | ates that | the AD   | C modu   | le is            |  |
| 15:           | 12         | SARADC0             |         |          | RO       |         | 0x7                                                                                                                                                                                | The re            | System Clock Divider. M<br>The reset value is hardv<br>to change the system cl |            |                                    | ependen    | t. See tl | ne RCC   | register |                  |  |
|               |            |                     |         |          |          |         |                                                                                                                                                                                    | Value             | Descri                                                                         | ption      |                                    |            |           |          |          |                  |  |
|               |            |                     |         |          |          |         |                                                                                                                                                                                    | 0x7               | Specif                                                                         | ies a 25-  | MHz clo                            | ck with a  | a PLL di  | vider of | 8.       |                  |  |
| 11:           | 8          | MA                  | XADCS   | PD       | RO       |         | 0x1                                                                                                                                                                                |                   | DC Spe<br>samples                                                              |            | field ind                          | licates th | ne maxir  | num rat  | e at whi | ch the           |  |
|               |            |                     |         |          |          |         |                                                                                                                                                                                    | Value Description |                                                                                |            |                                    |            |           |          |          |                  |  |
|               |            |                     |         |          |          |         |                                                                                                                                                                                    | 0x1               | 250K s                                                                         | samples/   | second                             |            |           |          |          |                  |  |
| 7             |            | MPU RO 1            |         |          |          | 1       | MPU Present. When set, indicates that the Cortex-M3 Memory Protection<br>Unit (MPU) module is present. See the ARM Cortex-M3 Technical<br>Reference Manual for details on the MPU. |                   |                                                                                |            |                                    |            |           |          |          |                  |  |
| 6             | 6 reserved |                     |         |          | RO       |         | 0                                                                                                                                                                                  | compa             | atibility v                                                                    | vith futur | ely on the<br>e produc<br>ad-modif | ts, the v  | alue of   | a reserv | •        | vide<br>nould be |  |

| Bit/Field | Name    | Туре | Reset | Description                                                                                          |
|-----------|---------|------|-------|------------------------------------------------------------------------------------------------------|
| 5         | TEMPSNS | RO   | 1     | Temp Sensor Present. When set, indicates that the on-chip temperature sensor is present.             |
| 4         | PLL     | RO   | 1     | PLL Present. When set, indicates that the on-chip Phase Locked Loop (PLL) is present.                |
| 3         | WDT     | RO   | 1     | Watchdog Timer Present. When set, indicates that a watchdog timer is present.                        |
| 2         | SWO     | RO   | 1     | SWO Trace Port Present. When set, indicates that the Serial Wire Output (SWO) trace port is present. |
| 1         | SWD     | RO   | 1     | SWD Present. When set, indicates that the Serial Wire Debugger (SWD) is present.                     |
| 0         | JTAG    | RO   | 1     | JTAG Present. When set, indicates that the JTAG debugger interface is present.                       |

# Register 15: Device Capabilities 2 (DC2), offset 0x014

This register is predefined by the part and can be used to verify features.

| Device Capabilities 2 (DC2)                                    |
|----------------------------------------------------------------|
| Base 0x400F.E000<br>Offset 0x014<br>Type RO, reset 0x0707.1013 |

| туре ко, |      | 20 |                | 20         | 27   | 26          | 25          | 24                                                                                                                                                                                                  | 22                    | 22                   | 21                                  | 20         | 10                                                                               | 10           | 17           | 16           |  |
|----------|------|----|----------------|------------|------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------------------------|------------|----------------------------------------------------------------------------------|--------------|--------------|--------------|--|
| [        | 31   | 30 | 29<br>reserved | 28         | 27   | 26<br>COMP2 | 25<br>COMP1 | 24<br>COMP0                                                                                                                                                                                         | 23                    | 22                   | 21<br>reserved                      | 20         | 19                                                                               | 18<br>TIMER2 | 17<br>TIMER1 | 16<br>TIMER0 |  |
| Туре     | RO   | RO | RO             | RO         | RO   | RO          | RO          | RO                                                                                                                                                                                                  | RO                    | RO                   | RO                                  | RO         | RO                                                                               | RO           | RO           | RO           |  |
| Reset    | 0    | 0  | 0              | 0          | 0    | 1           | 1           | 1                                                                                                                                                                                                   | 0                     | 0                    | 0                                   | 0          | 0                                                                                | 1            | 1            | 1            |  |
| ſ        | 15   | 14 | 13             | 12         | 11   | 10          | 9           | 8                                                                                                                                                                                                   | 7                     | 6                    | 5                                   | 4          | 3                                                                                | 2            | 1            | 0            |  |
| Туре     | RO   | RO | RO             | I2C0<br>RO | RO   | RO          | RO          | RO                                                                                                                                                                                                  | RO                    | RO                   | RO                                  | SSI0<br>RO | RO                                                                               | RO           | UART1<br>RO  | UART0<br>RO  |  |
| Reset    | 0    | 0  | 0              | 1          | 0    | 0           | 0           | 0                                                                                                                                                                                                   | 0                     | 0                    | 0                                   | 1          | 0                                                                                | 0            | 1            | 1            |  |
| Bit/Fi   | ield |    | Name           |            | Туре | F           | Reset       | Descr                                                                                                                                                                                               | iption                |                      |                                     |            |                                                                                  |              |              |              |  |
| 31:2     | 27   | re | eserved        |            | RO   |             | 0           | compa                                                                                                                                                                                               | atibility v           | vith futur           | ely on the<br>re produc<br>ad-modif | cts, the v | alue of                                                                          | a reserv     |              |              |  |
| 26       | 6    | C  | COMP2          |            | RO   |             | 1           |                                                                                                                                                                                                     |                       | arator 2<br>is prese |                                     | When s     | et, indi                                                                         | cates tha    | at analog    |              |  |
| 25       | 5    | (  | COMP1          |            | RO   |             | 1           |                                                                                                                                                                                                     | • •                   | arator 1<br>is prese | Present.<br>nt.                     | When s     | et, indi                                                                         | cates tha    | it analog    | I            |  |
| 24       | 1    | C  | COMP0          |            | RO   |             | 1           |                                                                                                                                                                                                     |                       | arator 0<br>is prese | Present.<br>nt.                     | When s     | et, indi                                                                         | cates tha    | it analog    | I            |  |
| 23:′     | 19   | re | eserved        |            | RO   |             | 0           | compa                                                                                                                                                                                               | atibility v           | vith futur           | ely on the<br>e produc<br>ad-modif  | cts, the v | alue of                                                                          | a reserv     |              |              |  |
| 18       | 3    | Т  | IMER2          |            | RO   |             | 1           | Timer 2 Present. When set, indicates that General-Purpose Timer module 2 is present.                                                                                                                |                       |                      |                                     |            |                                                                                  |              |              |              |  |
| 17       | 7    | Т  | IMER1          |            | RO   |             | 1           |                                                                                                                                                                                                     | 1 Prese<br>le 1 is pr |                      | n set, ind                          | dicates tl | nat Ger                                                                          | eral-Pur     | pose Tir     | ner          |  |
| 16       | 6    | Т  | IMER0          |            | RO   |             | 1           |                                                                                                                                                                                                     | 0 Prese<br>le 0 is pr |                      | n set, ind                          | dicates tl | hat Ger                                                                          | eral-Pur     | pose Tir     | ner          |  |
| 15:′     | 13   | re | eserved        |            | RO   |             | 0           | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation. |                       |                      |                                     |            |                                                                                  |              |              |              |  |
| 12       | 2    |    | I2C0           |            | RO   |             | 1           | I2C Module 0 Present. When set, indicates that I2C module 0 is present.                                                                                                                             |                       |                      |                                     |            |                                                                                  |              |              |              |  |
| 11:      | 5    | re | eserved        |            | RO   |             | 0           | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.       |                       |                      |                                     |            |                                                                                  |              |              |              |  |
| 4        |      |    | SSI0           |            | RO   |             | 1           | SSI0 I                                                                                                                                                                                              | Present.              | When s               | et, indica                          | ates that  | SSI m                                                                            | odule 0 is   | s preser     | it.          |  |
| 3:2      | 2    | re | eserved        |            | RO   |             | 0           | compa                                                                                                                                                                                               | atibility v           | vith futur           | e produc                            | cts, the v | of a reserved bit. To provide<br>value of a reserved bit should be<br>operation. |              |              |              |  |

| Bit/Field | Name  | Туре | Reset | Description                                                       |
|-----------|-------|------|-------|-------------------------------------------------------------------|
| 1         | UART1 | RO   | 1     | UART1 Present. When set, indicates that UART module 1 is present. |
| 0         | UART0 | RO   | 1     | UART0 Present. When set, indicates that UART module 0 is present. |

## Register 16: Device Capabilities 3 (DC3), offset 0x018

This register is predefined by the part and can be used to verify features.

Device Capabilities 3 (DC3) Base 0x400F.E000 Offset 0x018 Type RO, reset 0x3F0F.37C0

| Type NO,      |         | 000     |            | 00         | 07         | 00         | 05         | <b>.</b>                                                                                                                                                                                | 66                      | 00                                    | 0.1       | 60         | 40         | 40         | 4-         | 40         |  |
|---------------|---------|---------|------------|------------|------------|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|-----------|------------|------------|------------|------------|------------|--|
|               | 31      | 30      | 29<br>CCP5 | 28<br>CCP4 | 27<br>CCP3 | 26<br>CCP2 | 25<br>CCP1 | 24<br>CCP0                                                                                                                                                                              | 23                      | 22                                    | 21<br>21  | 20         | 19<br>ADC3 | 18<br>ADC2 | 17<br>ADC1 | 16<br>ADC0 |  |
| Туре          | RO      | RO      | RO         | RO         | RO         | RO         | RO         | RO                                                                                                                                                                                      | RO                      | RO                                    | RO        | RO         | RO         | RO         | RO         | RO         |  |
| Reset         | 0       | 0       | 1          | 1          | 1          | 1          | 1          | 1                                                                                                                                                                                       | 0                       | 0                                     | 0         | 0          | 1          | 1          | 1          | 1          |  |
|               | 15      | 14      | 13         | 12         | 11         | 10         | 9          | 8                                                                                                                                                                                       | 7                       | 6                                     | 5         | 4          | 3          | 2          | 1          | 0          |  |
|               |         | served  |            | C2MINUS    | reserved   |            | C1MINUS    | C00                                                                                                                                                                                     |                         | C0MINUS                               |           |            |            | rved       |            |            |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>1    | RO<br>1    | RO<br>0    | RO<br>1    | RO<br>1    | RO<br>1                                                                                                                                                                                 | RO<br>1                 | RO<br>1                               | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0    |  |
| Bit/F         | ield    |         | Name       |            | Туре       | F          | Reset      | Descr                                                                                                                                                                                   | ription                 |                                       |           |            |            |            |            |            |  |
| 31:           | 30      |         | reserved   |            | RO         |            | 0          | comp                                                                                                                                                                                    | atibility v             | uld not re<br>vith futur<br>oss a rea | e produ   | cts, the v | alue of    | a reserv   |            |            |  |
| 29            | 9       |         | CCP5       |            | RO         |            | 1          |                                                                                                                                                                                         | 5 Pin Pre<br>is prese   | esent. Wh<br>nt.                      | nen set,  | indicate   | s that C   | apture/C   | compare    | /PWM       |  |
| 28            | 3       |         | CCP4       |            | RO         |            | 1          |                                                                                                                                                                                         | Pin Pre                 | esent. Wh<br>nt.                      | nen set,  | indicate   | s that C   | apture/C   | compare    | /PWM       |  |
| 27            | 7       |         | CCP3       |            | RO         |            | 1          | CCP3 Pin Present. When set, indicates that Capture/Compa<br>pin 3 is present.                                                                                                           |                         |                                       |           |            |            | compare    | mpare/PWM  |            |  |
| 20            | 6       |         | CCP2       |            | RO         |            | 1          |                                                                                                                                                                                         | 2 Pin Pre<br>is presei  | esent. Wr<br>nt.                      | nen set,  | indicate   | s that C   | apture/C   | compare    | /PWM       |  |
| 25            | 5       |         | CCP1       |            | RO         |            | 1          |                                                                                                                                                                                         | Pin Pre<br>is prese     | esent. Wr<br>nt.                      | nen set,  | indicate   | s that C   | apture/C   | compare    | /PWM       |  |
| 24            | 4       |         | CCP0       |            | RO         |            | 1          |                                                                                                                                                                                         | ) Pin Pre<br>is presei  | esent. Wh<br>nt.                      | nen set,  | indicate   | s that C   | apture/C   | compare    | /PWM       |  |
| 23:           | 20      |         | reserved   |            | RO         |            | 0          | comp                                                                                                                                                                                    | atibility v             | uld not re<br>vith futur<br>oss a rea | e produ   | cts, the v | alue of    | a reserv   |            |            |  |
| 19            | 9       |         | ADC3       |            | RO         |            | 1          | ADC3                                                                                                                                                                                    | 8 Pin Pre               | sent. Wł                              | nen set,  | indicate   | s that Al  | DC pin 3   | is prese   | ent.       |  |
| 18            | 3       |         | ADC2       |            | RO         |            | 1          | ADC2                                                                                                                                                                                    | 2 Pin Pre               | esent. Wh                             | nen set,  | indicate   | s that Al  | DC pin 2   | is prese   | ent.       |  |
| 17            | 7       |         | ADC1       |            | RO         |            | 1          | ADC1                                                                                                                                                                                    | Pin Pre                 | esent. Wł                             | nen set,  | indicate   | s that Al  | DC pin 1   | is prese   | ent.       |  |
| 16            | 6       |         | ADC0       |            | RO         |            | 1          | ADCO                                                                                                                                                                                    | ) Pin Pre               | esent. Wł                             | nen set,  | indicate   | s that Al  | DC pin C   | ) is prese | ent.       |  |
| 15:           | 14      |         | reserved   |            | RO         |            | 0          | Software should not rely on the value of a reserved bit. To pro<br>compatibility with future products, the value of a reserved bit s<br>preserved across a read-modify-write operation. |                         |                                       |           |            |            |            |            |            |  |
| 1:            | 3       |         | C2PLUS     |            | RO         |            | 1          |                                                                                                                                                                                         | Pin Prese<br>pin is pre | ent. Whe<br>esent.                    | n set, in | dicates    | that the   | analog c   | compara    | tor 2 (+)  |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12        | C2MINUS  | RO   | 1     | C2- Pin Present. When set, indicates that the analog comparator 2 (-) input pin is present.                                                                                                   |
| 11        | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 10        | C1PLUS   | RO   | 1     | C1+ Pin Present. When set, indicates that the analog comparator 1 (+) input pin is present.                                                                                                   |
| 9         | C1MINUS  | RO   | 1     | C1- Pin Present. When set, indicates that the analog comparator 1 (-) input pin is present.                                                                                                   |
| 8         | C0O      | RO   | 1     | C0o Pin Present. When set, indicates that the analog comparator 0 output pin is present.                                                                                                      |
| 7         | COPLUS   | RO   | 1     | C0+ Pin Present. When set, indicates that the analog comparator 0 (+) input pin is present.                                                                                                   |
| 6         | COMINUS  | RO   | 1     | C0- Pin Present. When set, indicates that the analog comparator 0 (-) input pin is present.                                                                                                   |
| 5:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

# Register 17: Device Capabilities 4 (DC4), offset 0x01C

This register is predefined by the part and can be used to verify features.

| Device Capabilities 4 (DC4)                                    |
|----------------------------------------------------------------|
| Base 0x400F.E000<br>Offset 0x01C<br>Type RO, reset 0x0000.00FF |

|       | 31   | 30 | 29         | 28   | 27   | 26 | 25    | 24    | 23       | 22         | 21        | 20           | 19        | 18     | 17         | 16       |
|-------|------|----|------------|------|------|----|-------|-------|----------|------------|-----------|--------------|-----------|--------|------------|----------|
|       |      | 1  | <u>т т</u> |      | r r  |    | 1     | rese  | rved     | 1          |           |              |           |        |            |          |
| Туре  | RO   | RO | RO         | RO   | RO   | RO | RO    | RO    | I<br>RO  | RO         | RO        | RO           | RO        | RO     | RO         | RO       |
| Reset | 0    | 0  | 0          | 0    | 0    | 0  | 0     | 0     | 0        | 0          | 0         | 0            | 0         | 0      | 0          | 0        |
|       | 45   |    | 40         | 40   | 44   | 10 | 0     | 0     | -        | 0          | -         |              | 2         | 0      | 4          | 0        |
| I     | 15   | 14 | 13         | 12   | 11   | 10 | 9     | 8     | 7        | 6          | 5         | 4            | 3         | 2      | 1          | 0        |
|       |      |    |            | rese | rved |    |       |       | GPIOH    | GPIOG      | GPIOF     | GPIOE        | GPIOD     | GPIOC  | GPIOB      | GPIOA    |
| Туре  | RO   | RO | RO         | RO   | RO   | RO | RO    | RO    | RO       | RO         | RO        | RO           | RO        | RO     | RO         | RO       |
| Reset | 0    | 0  | 0          | 0    | 0    | 0  | 0     | 0     | 1        | 1          | 1         | 1            | 1         | 1      | 1          | 1        |
|       |      |    |            |      |      |    |       |       |          |            |           |              |           |        |            |          |
| Bit/F | ield |    | Name       |      | Туре |    | Reset | Descr | iption   |            |           |              |           |        |            |          |
|       |      |    |            |      |      |    |       |       |          |            |           |              |           |        |            |          |
| 31:   | :8   |    | reserved   |      | RO   |    | 0     |       |          | Id not re  | ,         |              |           |        |            |          |
|       |      |    |            |      |      |    |       |       | ,        | vith futur | •         | ,            |           |        | ed bit sh  | iould be |
|       |      |    |            |      |      |    |       | prese | rved acr | oss a rea  | aa-moai   | ry-write o   | operation | n.     |            |          |
| 7     |      |    | GPIOH      |      | RO   |    | 1     | GPIO  | Port H F | Present.   | When se   | et, indica   | tes that  | GPIO P | ort H is i | oresent. |
|       |      |    |            |      |      |    |       |       |          |            |           |              |           |        |            |          |
| 6     |      |    | GPIOG      |      | RO   |    | 1     | GPIO  | Port G F | Present.   | When se   | et, indica   | tes that  | GPIO P | ort G is I | present. |
| -     |      |    |            |      |      |    | 4     |       |          | )          | A/h a a . | .t. in dia a |           |        |            |          |
| 5     |      |    | GPIOF      |      | RO   |    | 1     | GPIO  | PORFF    | Present.   | when se   | et, indice   | ites that | GPIO P | ort F is j | present. |
| 4     |      |    | GPIOE      |      | RO   |    | 1     | GPIO  | Port E F | Present.   | When se   | et, indica   | tes that  | GPIO P | ort E is i | oresent. |
|       |      |    |            |      |      |    |       |       |          |            |           |              |           |        |            |          |
| 3     |      |    | GPIOD      |      | RO   |    | 1     | GPIO  | Port D F | Present.   | When se   | et, indica   | tes that  | GPIO P | ort D is j | present. |
| 0     |      |    |            |      | DO   |    |       |       |          |            | A //      | 4            |           |        |            |          |
| 2     |      |    | GPIOC      |      | RO   |    | 1     | GPIO  | Port C F | Present.   | when se   | et, indica   | ites that | GPIO P | onCis      | present. |
| 1     |      |    | GPIOB      |      | RO   |    | 1     | GPIO  | Port B F | Present.   | When se   | et. indica   | tes that  | GPIO P | ort B is i | present. |
| •     |      |    |            |      |      |    | -     |       |          |            |           | .,           |           |        | = . •      |          |
| 0     |      |    | GPIOA      |      | RO   |    | 1     | GPIO  | Port A F | Present.   | When se   | et, indica   | tes that  | GPIO P | ort A is j | oresent. |
|       |      |    |            |      |      |    |       |       |          |            |           |              |           |        |            |          |

#### Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Offset 0x<br>Type R/W |         | x0000004  | ŀO               |          |          |          |          |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |            |                                          |                                    |          |         |           |          |  |  |
|-----------------------|---------|-----------|------------------|----------|----------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------|------------------------------------|----------|---------|-----------|----------|--|--|
| i                     | 31      | 30        | 29               | 28       | 27       | 26       | 25       | 24                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                              | 22         | 21                                       | 20                                 | 19       | 18      | 17        | 16       |  |  |
|                       |         |           |                  | reserved |          |          |          | CAN0                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |            |                                          | reserved                           |          |         |           | SARADC0  |  |  |
| Type<br>Reset         | RO<br>0 | RO<br>0   | RO<br>0          | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | R/W<br>0                                                                                                                                                                                      | RO<br>0                                                                                                                                                                                                                                                         | RO<br>0    | RO<br>0                                  | RO<br>0                            | RO<br>0  | RO<br>0 | RO<br>0   | R/W<br>0 |  |  |
|                       | 15      | 14        | 13               | 12       | 11       | 10       | 9        | 8                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                               | 6          | 5                                        | 4                                  | 3        | 2       | 1         | 0        |  |  |
|                       |         | rese      | rved             |          |          | MAXA     | DCSPD    | •                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 | rese       | rved                                     | •                                  | WDT      |         | reserved  |          |  |  |
| Type<br>Reset         | RO<br>0 | RO<br>0   | RO<br>0          | RO<br>0  | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                      | RO<br>0                                                                                                                                                                                                                                                         | RO<br>0    | RO<br>0                                  | RO<br>0                            | R/W<br>0 | RO<br>0 | RO<br>0   | RO<br>0  |  |  |
| Bit/F                 | ield    |           | Name             |          | Туре     | I        | Reset    | Descr                                                                                                                                                                                         | iption                                                                                                                                                                                                                                                          |            |                                          |                                    |          |         |           |          |  |  |
| 31:                   | 25      | r         | reserved<br>CAN0 |          | RO       | RO 0     |          |                                                                                                                                                                                               | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                   |            |                                          |                                    |          |         |           |          |  |  |
| 24                    | 4       |           |                  | R/W      |          | 0        | unit 0.  | lf set, th                                                                                                                                                                                    | •                                                                                                                                                                                                                                                               | ceives     | This bit co<br>a clock a                 |                                    |          | 0 0     |           |          |  |  |
| 23:                   | 17      | reserved  |                  | RO 0     |          |          | compa    | atibility v                                                                                                                                                                                   | vith futur                                                                                                                                                                                                                                                      | e produ    | ne value o<br>icts, the v<br>ify-write o | alue of                            | a reserv |         |           |          |  |  |
| 16                    | 6       | S         | ARADC            | )        | R/W      | R/W 0    |          |                                                                                                                                                                                               | ADC0 Clock Gating Control. This bit controls the clock gating for SAF ADC module 0. If set, the unit receives a clock and functions. Otherwise the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault. |            |                                          |                                    |          |         |           |          |  |  |
| 15:                   | 12      | r         | reserved         |          | RO       |          | 0        | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                                                                                                                                                                                                                                                 |            |                                          |                                    |          |         |           |          |  |  |
| 11                    | :8      | MAXADCSPD |                  |          | R/W      |          | 0        | data.                                                                                                                                                                                         | You can                                                                                                                                                                                                                                                         | not set tl | ne rate                                  | d sets the<br>higher th<br>the MAX | an the n | naximur | n rate. Y |          |  |  |
|                       |         |           |                  |          |          |          |          | Value                                                                                                                                                                                         | Descri                                                                                                                                                                                                                                                          | ption      |                                          |                                    |          |         |           |          |  |  |
|                       |         |           |                  |          |          |          |          | 0x1                                                                                                                                                                                           | 250K s                                                                                                                                                                                                                                                          | samples/   | second                                   |                                    |          |         |           |          |  |  |
|                       |         |           |                  |          |          |          |          | 0x0                                                                                                                                                                                           | 125K s                                                                                                                                                                                                                                                          | samples/   | second                                   |                                    |          |         |           |          |  |  |
|                       |         |           |                  |          |          |          |          |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |            |                                          |                                    |          |         |           |          |  |  |

Run Mode Clock Gating Control Register 0 (RCGC0)

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                   |
|-----------|----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                 |
| 3         | WDT      | R/W  | 0     | WDT Clock Gating Control. This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault. |
| 2:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation.                                                           |

# Register 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Type R/W      | /, reset 0   | x0000004 | 0        |          |          |          |                                                                                                                                                                                                                                                                                |            |             |            |         |          |                          |          |                          |          |
|---------------|--------------|----------|----------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|------------|---------|----------|--------------------------|----------|--------------------------|----------|
|               | 31           | 30       | 29       | 28       | 27       | 26       | 25                                                                                                                                                                                                                                                                             | 24         | 23          | 22         | 21      | 20       | 19                       | 18       | 17                       | 16       |
|               |              | 1        | I        | reserved |          |          | 1                                                                                                                                                                                                                                                                              | CAN0       |             | 1          |         | reserved |                          |          | ı                        | SARADC0  |
| Type<br>Reset | RO<br>0      | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                                                                                                                                                                                                                                                                        | R/W<br>0   | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0                  | RO<br>0  | RO<br>0                  | R/W<br>0 |
|               | 15           | 14       | 13       | 12       | 11       | 10       | 9                                                                                                                                                                                                                                                                              | 8          | 7           | 6          | 5       | 4        | 3                        | 2        | 1                        | 0        |
|               |              | rese     | rved     | •        | I        | MAXA     | DCSPD                                                                                                                                                                                                                                                                          | 1          |             | rese       | rved    | •        | WDT                      |          | reserved                 |          |
| Type<br>Reset | RO<br>0      | RO<br>0  | RO<br>0  | RO<br>0  | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                                                                                                       | R/W<br>0   | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0  | R/W<br>0                 | RO<br>0  | RO<br>0                  | RO<br>0  |
| Bit/F         | ield         |          | Name     |          | Туре     | I        | Reset                                                                                                                                                                                                                                                                          | Descr      | iption      |            |         |          |                          |          |                          |          |
| 31:           | :25 reserved |          | RO       |          | 0        | compa    | atibility v                                                                                                                                                                                                                                                                    | vith futur | e produ     |            | alue of | a reserv | t. To prov<br>ved bit sh |          |                          |          |
| 24            | 4            |          | CAN0     |          | R/W      |          | 0 CAN0 Clock Gating Control. This bit controls the clou<br>unit 0. If set, the unit receives a clock and functions. O<br>is unclocked and disabled.                                                                                                                            |            |             |            |         | 0 0      |                          |          |                          |          |
| 23:           | 17           | r        | reserved | I        | RO       |          | 0                                                                                                                                                                                                                                                                              | compa      | atibility v | vith futur | e produ |          | alue of                  | a reserv | t. To prov<br>ved bit sh |          |
| 16            | 6            | S        | ARADC    | CO R/W 0 |          | 0        | ADC0 Clock Gating Control. This bit controls the clock gating for gener<br>SAR ADC module 0. If set, the unit receives a clock and functions.<br>Otherwise, the unit is unclocked and disabled. If the unit is unclocked<br>a read or write to the unit generates a bus fault. |            |             |            |         |          |                          | ons.     |                          |          |
| 15:           | 12           | r        | eserved  | I        | RO       |          | 0                                                                                                                                                                                                                                                                              | compa      | atibility v | vith futur | e produ |          | alue of                  | a reser\ | t. To prov<br>ved bit sh |          |

Sleep Mode Clock Gating Control Register 0 (SCGC0)

Base 0x400F.E000 Offset 0x110

+ 0.00000040

| Bit/Field | Name      | Туре | Reset | Description                                                                                                                                                                                                                                                   |
|-----------|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:8      | MAXADCSPD | R/W  | 0     | ADC Sample Speed. This field sets the rate at which the ADC samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADCSPD bit as follows:                                                          |
|           |           |      |       | Value Description                                                                                                                                                                                                                                             |
|           |           |      |       | 0x1 250K samples/second                                                                                                                                                                                                                                       |
|           |           |      |       | 0x0 125K samples/second                                                                                                                                                                                                                                       |
| 7:4       | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                 |
| 3         | WDT       | R/W  | 0     | WDT Clock Gating Control. This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault. |
| 2:0       | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit should be<br>preserved across a read-modify-write operation.                                                           |

# Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Type R/M |                     | x0000004 | 0             |             |            |           |                                          |                                                                                                                                                                           |                     |                                          |                      |                                                   |                     |          |           |         |
|----------|---------------------|----------|---------------|-------------|------------|-----------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------|----------------------|---------------------------------------------------|---------------------|----------|-----------|---------|
|          | 31                  | 30       | 29            | 28          | 27         | 26        | 25                                       | 24                                                                                                                                                                        | 23                  | 22                                       | 21                   | 20                                                | 19                  | 18       | 17        | 16      |
|          |                     | 1        |               | reserved    |            |           | •                                        | CAN0                                                                                                                                                                      |                     |                                          |                      | reserved                                          |                     |          | '         | SARADC0 |
| Туре     | RO                  | RO       | RO            | RO          | RO         | RO        | RO                                       | R/W                                                                                                                                                                       | RO                  | RO                                       | RO                   | RO                                                | RO                  | RO       | RO        | R/W     |
| Reset    | 0                   | 0        | 0             | 0           | 0          | 0         | 0                                        | 0                                                                                                                                                                         | 0                   | 0                                        | 0                    | 0                                                 | 0                   | 0        | 0         | 0       |
|          | 15                  | 14       | 13            | 12          | 11         | 10        | 9                                        | 8                                                                                                                                                                         | 7                   | 6                                        | 5                    | 4                                                 | 3                   | 2        | 1         | 0       |
|          |                     | rese     | rved          |             | 1          | MAXADCSPD |                                          |                                                                                                                                                                           |                     | rese                                     | rved                 | -                                                 | WDT                 |          | reserved  |         |
| Туре     | RO                  | RO       | RO            | RO          | R/W        | R/W       | R/W                                      | R/W                                                                                                                                                                       | RO                  | RO                                       | RO                   | RO                                                | R/W                 | RO       | RO        | RO      |
| Reset    | 0                   | 0        | 0             | 0           | 0          | 0         | 0                                        | 0                                                                                                                                                                         | 0                   | 0                                        | 0                    | 0                                                 | 0                   | 0        | 0         | 0       |
| Bit/F    | ield                |          | Name          |             | Туре       |           | Reset                                    | Descr                                                                                                                                                                     | intion              |                                          |                      |                                                   |                     |          |           |         |
| DIVI     | ieiu                |          | Name          |             | Type       |           | 116361                                   | Desci                                                                                                                                                                     | iption              |                                          |                      |                                                   |                     |          |           |         |
| 31:      | 25                  | r        | reserved RO 0 |             | 0          | compa     | atibility v                              | vith futur                                                                                                                                                                | e produ             | ne value o<br>icts, the v<br>ify-write o | alue of              | a reserv                                          | •                   |          |           |         |
| 24       | 4                   |          | CAN0          |             | R/W        |           | 0                                        | unit 0.                                                                                                                                                                   | lf set, th          | •                                        | eceives              | This bit co<br>a clock a                          |                     |          |           |         |
| 23:      | 17                  | r        | reserved      |             | RO         |           | 0                                        | Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved b preserved across a read-modify-write operation. |                     |                                          |                      |                                                   |                     | •        |           |         |
| 16       | 6                   | S        | ARADC         | D           | R/W        |           | 0                                        | SAR A<br>Other                                                                                                                                                            | ADC mo<br>wise, the | dule 0. l'<br>e unit is i                | f set, th<br>unclock | his bit cor<br>e unit rec<br>ed and d<br>erates a | eives a<br>isabled. | clock ai | nd functi | ons.    |
| 15:      | 15:12 reserved RO 0 |          | compa         | atibility v | vith futur | e produ   | ne value o<br>icts, the v<br>ify-write o | alue of                                                                                                                                                                   | a reserv            | •                                        |                      |                                                   |                     |          |           |         |

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

Base 0x400F.E000 Offset 0x120

| Bit/Field | Name      | Туре | Reset | Description                                                                                                                                                                                                                                                   |
|-----------|-----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11:8      | MAXADCSPD | R/W  | 0     | ADC Sample Speed. This field sets the rate at which the ADC samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADCSPD bit as follows:                                                          |
|           |           |      |       | Value Description                                                                                                                                                                                                                                             |
|           |           |      |       | 0x1 250K samples/second                                                                                                                                                                                                                                       |
|           |           |      |       | 0x0 125K samples/second                                                                                                                                                                                                                                       |
| 7:4       | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                 |
| 3         | WDT       | R/W  | 0     | WDT Clock Gating Control. This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault. |
| 2:0       | reserved  | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                 |

#### Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Type R/M      | l, reset ( | )x0000000 | C        |          |         |          |          |                   |                       |                      |                                                      |                        |                       |                         |                        |          |
|---------------|------------|-----------|----------|----------|---------|----------|----------|-------------------|-----------------------|----------------------|------------------------------------------------------|------------------------|-----------------------|-------------------------|------------------------|----------|
|               | 31         | 30        | 29       | 28       | 27      | 26       | 25       | 24                | 23                    | 22                   | 21                                                   | 20                     | 19                    | 18                      | 17                     | 16       |
|               |            | т т       | reserved |          |         | COMP2    | COMP1    | COMP0             |                       | 1                    | reserved                                             | 1                      |                       | TIMER2                  | TIMER1                 | TIMER0   |
| Type<br>Reset | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0          | RO<br>0               | RO<br>0              | RO<br>0                                              | RO<br>0                | RO<br>0               | R/W<br>0                | R/W<br>0               | R/W<br>0 |
|               | 15         | 14        | 13       | 12       | 11      | 10       | 9        | 8                 | 7                     | 6                    | 5                                                    | 4                      | 3                     | 2                       | 1                      | 0        |
|               |            | reserved  |          | I2C0     |         |          |          | reserved          |                       | •                    |                                                      | SSI0                   | rese                  | rved                    | UART1                  | UART0    |
| Type<br>Reset | RO<br>0    | RO<br>0   | RO<br>0  | R/W<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0           | RO<br>0               | RO<br>0              | RO<br>0                                              | R/W<br>0               | RO<br>0               | RO<br>0                 | R/W<br>0               | R/W<br>0 |
| Bit/F         | ield       |           | Name     |          | Туре    | F        | Reset    | Descri            | ption                 |                      |                                                      |                        |                       |                         |                        |          |
| 31:           | 27         | re        | eserved  |          | RO      |          | 0        | compa             | atibility v           | vith futu            | ely on the<br>re produc<br>ad-modif                  | ts, the v              | alue of               | a reserv                | •                      |          |
| 26            | 6          | C         | COMP2    |          | R/W     |          | 0        | for and<br>Other  | alog cor<br>vise, th  | mparato<br>e unit is | Clock Ga<br>2. If set,<br>unclocke<br>unit will g    | the unit<br>d and di   | receive<br>sabled.    | es a cloc<br>If the un  | k and fu               | nctions. |
| 25            | 5          | C         | COMP1    |          | R/W     |          | 0        | for and<br>Otherv | alog cor<br>vise, the | nparato<br>e unit is | Clock Ga<br>1. If set,<br>unclocke<br>unit will g    | the unit<br>d and di   | receive<br>sabled.    | es a cloc<br>If the un  | k and fu               | nctions. |
| 24            | 4          | C         | COMP0    |          | R/W     |          | 0        | for and<br>Other  | alog cor<br>vise, th  | mparato<br>e unit is | Clock Ga<br>r 0. If set,<br>unclocke<br>unit will g  | the unit<br>d and di   | receive<br>sabled.    | es a cloc<br>If the un  | k and fu               | nctions. |
| 23:           | 19         | re        | eserved  |          | RO      |          | 0        | compa             | atibility v           | vith futu            | ely on the<br>re produc<br>ad-modif                  | ts, the v              | alue of               | a reserv                | •                      |          |
| 18            | 3          | Т         | IMER2    |          | R/W     |          | 0        | Gener<br>functio  | al-Purp<br>ons. Oth   | ose Tim<br>erwise,   | Control.<br>er module<br>the unit is<br>vrites to th | e 2. If se<br>s uncloc | et, the ur<br>ked and | nit receiv<br>I disable | ves a clo<br>d. If the | ck and   |

Run Mode Clock Gating Control Register 1 (RCGC1)

Base 0x400F.E000 Offset 0x104

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                                    |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17        | TIMER1   | R/W  | 0     | Timer 1 Clock Gating Control. This bit controls the clock gating for<br>General-Purpose Timer module 1. If set, the unit receives a clock and<br>functions. Otherwise, the unit is unclocked and disabled. If the unit is<br>unclocked, reads or writes to the unit will generate a bus fault. |
| 16        | TIMER0   | R/W  | 0     | Timer 0 Clock Gating Control. This bit controls the clock gating for<br>General-Purpose Timer module 0. If set, the unit receives a clock and<br>functions. Otherwise, the unit is unclocked and disabled. If the unit is<br>unclocked, reads or writes to the unit will generate a bus fault. |
| 15:13     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 12        | 12C0     | R/W  | 0     | I2C0 Clock Gating Control. This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                               |
| 11:5      | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 4         | SSIO     | R/W  | 0     | SSI0 Clock Gating Control. This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                               |
| 3:2       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 1         | UART1    | R/W  | 0     | UART1 Clock Gating Control. This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                             |
| 0         | UART0    | R/W  | 0     | UART0 Clock Gating Control. This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                             |

# Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31      | 30       | 29             | 28       | 27         | 26       | 25       | 24                                                                                                       | 23                                                                                                                         | 22                                                                                                                             | 21                                                                                                                       | 20                                                                                                                                | 19                                                                                                                                         | 18                                                                                                                                 | 17                                                                                  | 16                                                              |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|----------------|----------|------------|----------|----------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1        | reserved       | 1        |            | COMP2    | COMP1    | COMP0                                                                                                    |                                                                                                                            | 1                                                                                                                              | reserved                                                                                                                 |                                                                                                                                   |                                                                                                                                            | TIMER2                                                                                                                             | TIMER1                                                                              | TIMER                                                           |  |  |  |  |
| Type<br>Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RO<br>0 | RO<br>0  | RO<br>0        | RO<br>0  | RO<br>0    | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                 | RO<br>0                                                                                                                    | RO<br>0                                                                                                                        | RO<br>0                                                                                                                  | RO<br>0                                                                                                                           | RO<br>0                                                                                                                                    | R/W<br>0                                                                                                                           | R/W<br>0                                                                            | R/W<br>0                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15      | 14       | 13             | 12       | 11         | 10       | 9        | 8                                                                                                        | 7                                                                                                                          | 6                                                                                                                              | 5                                                                                                                        | 4                                                                                                                                 | 3                                                                                                                                          | 2                                                                                                                                  | 1                                                                                   | 0                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | reserved |                | I2C0     |            |          |          | reserved                                                                                                 |                                                                                                                            |                                                                                                                                |                                                                                                                          | SSI0                                                                                                                              |                                                                                                                                            | erved                                                                                                                              | UART1                                                                               | UART                                                            |  |  |  |  |
| Type<br>Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RO<br>0 | RO<br>0  | RO<br>0        | R/W<br>0 | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0                                                                                                  | RO<br>0                                                                                                                    | RO<br>0                                                                                                                        | RO<br>0                                                                                                                  | R/W<br>0                                                                                                                          | RO<br>0                                                                                                                                    | RO<br>0                                                                                                                            | R/W<br>0                                                                            | R/W<br>0                                                        |  |  |  |  |
| Bit/F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ield    |          | Name           |          | Туре       | F        | Reset    | Descri                                                                                                   | ption                                                                                                                      |                                                                                                                                |                                                                                                                          |                                                                                                                                   |                                                                                                                                            |                                                                                                                                    |                                                                                     |                                                                 |  |  |  |  |
| 31:27 reserved RO 0 Software should not rely on the value of compatibility with future products, the v preserved across a read-modify-write of the value of the v |         |          |                |          |            |          |          |                                                                                                          |                                                                                                                            |                                                                                                                                | alue of                                                                                                                  | a reserv                                                                                                                          | •                                                                                                                                          |                                                                                                                                    |                                                                                     |                                                                 |  |  |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6       |          | COMP2          |          | R/W        |          | 0        |                                                                                                          |                                                                                                                            |                                                                                                                                |                                                                                                                          |                                                                                                                                   |                                                                                                                                            |                                                                                                                                    |                                                                                     |                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |                |          |            |          |          |                                                                                                          | ,                                                                                                                          |                                                                                                                                |                                                                                                                          |                                                                                                                                   |                                                                                                                                            |                                                                                                                                    |                                                                                     |                                                                 |  |  |  |  |
| 2!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5       |          | COMP1          |          | R/W        |          | 0        | reads<br>Analog<br>for ana<br>Otherv                                                                     | or write<br>g Comp<br>alog co<br>wise, th                                                                                  | es to th<br>parator<br>mparat<br>e unit i                                                                                      | e unit will g<br>1 Clock G<br>or 1. If set<br>s unclocke                                                                 | generate<br>ating. Th<br>the uni<br>d and d                                                                                       | e a bus f<br>nis bit co<br>t receive<br>isabled.                                                                                           | ault.<br>ontrols th<br>es a cloc<br>If the un                                                                                      | e clock<br>k and fu                                                                 | gating<br>nctions                                               |  |  |  |  |
| 2!<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |          | COMP1<br>COMP0 |          | R/W<br>R/W |          | 0        | reads<br>Analog<br>for ana<br>Otherv<br>reads<br>Analog<br>for ana<br>Otherv                             | or write<br>g Comp<br>alog co<br>vise, th<br>or write<br>g Comp<br>alog co<br>vise, th                                     | es to th<br>parator<br>mparat<br>e unit i<br>es to th<br>parator<br>mparat<br>e unit i                                         | e unit will g<br>1 Clock G<br>or 1. If set<br>s unclocke                                                                 | generate<br>ating. Th<br>the uni<br>d and d<br>generate<br>ating. Th<br>the uni<br>d and d                                        | e a bus f<br>nis bit co<br>t receive<br>isabled.<br>e a bus f<br>nis bit co<br>t receive<br>isabled.                                       | ault.<br>ontrols th<br>es a cloc<br>If the un<br>ault.<br>ontrols th<br>es a cloc<br>If the un                                     | e clock<br>k and fu<br>nit is unc<br>e clock<br>k and fu                            | gating<br>nction:<br>lockec<br>gating<br>nction:                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4       |          |                |          |            |          |          | reads<br>Analog<br>for ana<br>Otherw<br>reads<br>Analog<br>for ana<br>Otherw<br>reads<br>Softwa<br>compa | or write<br>g Comp<br>alog co<br>vise, th<br>or write<br>g Comp<br>alog co<br>vise, th<br>or write<br>are sho<br>atibility | es to the<br>parator<br>mparate<br>e unit i<br>es to the<br>parator<br>mparate<br>e unit i<br>es to the<br>uld not<br>with fur | e unit will g<br>1 Clock G<br>tor 1. If set,<br>s unclocke<br>e unit will g<br>0 Clock G<br>tor 0. If set,<br>s unclocke | generate<br>ating. Th<br>the uni<br>d and d<br>generate<br>ating. Th<br>the uni<br>d and d<br>generate<br>e value o<br>cts, the v | e a bus f<br>nis bit cc<br>t receive<br>isabled.<br>e a bus f<br>nis bit cc<br>t receive<br>isabled.<br>e a bus f<br>of a rese<br>value of | ault.<br>ontrols th<br>es a cloc<br>If the un<br>ault.<br>ontrols th<br>es a cloc<br>If the un<br>ault.<br>erved bit.<br>a reserve | e clock<br>k and fu<br>iit is unc<br>e clock<br>k and fu<br>iit is unc<br>. To prov | gating<br>nction<br>lockec<br>gating<br>nction<br>lockec<br>ide |  |  |  |  |

Sleep Mode Clock Gating Control Register 1 (SCGC1)

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                                    |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17        | TIMER1   | R/W  | 0     | Timer 1 Clock Gating Control. This bit controls the clock gating for<br>General-Purpose Timer module 1. If set, the unit receives a clock and<br>functions. Otherwise, the unit is unclocked and disabled. If the unit is<br>unclocked, reads or writes to the unit will generate a bus fault. |
| 16        | TIMER0   | R/W  | 0     | Timer 0 Clock Gating Control. This bit controls the clock gating for<br>General-Purpose Timer module 0. If set, the unit receives a clock and<br>functions. Otherwise, the unit is unclocked and disabled. If the unit is<br>unclocked, reads or writes to the unit will generate a bus fault. |
| 15:13     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 12        | 12C0     | R/W  | 0     | I2C0 Clock Gating Control. This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                               |
| 11:5      | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 4         | SSIO     | R/W  | 0     | SSI0 Clock Gating Control. This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                               |
| 3:2       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 1         | UART1    | R/W  | 0     | UART1 Clock Gating Control. This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                             |
| 0         | UART0    | R/W  | 0     | UART0 Clock Gating Control. This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                             |

# Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Base 0x4<br>Offset 0x<br>Type R/W                                | 124                                                                                                                                                                                                                                                                                       | 00000000 | 0        |          |                                                                                                                                                                                                                                                                                                      |          |          |                                                                                                                                                                                                                                                                                                                                                            |                       |                      |                                                   |                    |                       |                        |          |          |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|---------------------------------------------------|--------------------|-----------------------|------------------------|----------|----------|--|
|                                                                  | 31                                                                                                                                                                                                                                                                                        | 30       | 29       | 28       | 27                                                                                                                                                                                                                                                                                                   | 26       | 25       | 24                                                                                                                                                                                                                                                                                                                                                         | 23                    | 22                   | 21                                                | 20                 | 19                    | 18                     | 17       | 16       |  |
|                                                                  |                                                                                                                                                                                                                                                                                           | 1 I      | reserved |          | 1                                                                                                                                                                                                                                                                                                    | COMP2    | COMP1    | COMP0                                                                                                                                                                                                                                                                                                                                                      |                       |                      | reserved                                          |                    |                       | TIMER2                 | TIMER1   | TIMER0   |  |
| Type<br>Reset                                                    | RO<br>0                                                                                                                                                                                                                                                                                   | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                                                                                                                                                                                                                                                                                              | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                                                                                                                                                                                   | RO<br>0               | RO<br>0              | RO<br>0                                           | RO<br>0            | RO<br>0               | R/W<br>0               | R/W<br>0 | R/W<br>0 |  |
| _                                                                | 15                                                                                                                                                                                                                                                                                        | 14       | 13       | 12       | 11                                                                                                                                                                                                                                                                                                   | 10       | 9        | 8                                                                                                                                                                                                                                                                                                                                                          | 7                     | 6                    | 5                                                 | 4                  | 3                     | 2                      | 1        | 0        |  |
|                                                                  |                                                                                                                                                                                                                                                                                           | reserved |          | I2C0     |                                                                                                                                                                                                                                                                                                      | 1        | 1        | reserved                                                                                                                                                                                                                                                                                                                                                   |                       |                      | 1                                                 | SSI0               | rese                  | erved                  | UART1    | UART0    |  |
| Type<br>Reset                                                    | RO<br>0                                                                                                                                                                                                                                                                                   | RO<br>0  | RO<br>0  | R/W<br>0 | RO<br>0                                                                                                                                                                                                                                                                                              | RO<br>0  | RO<br>0  | RO<br>0                                                                                                                                                                                                                                                                                                                                                    | RO<br>0               | RO<br>0              | RO<br>0                                           | R/W<br>0           | RO<br>0               | RO<br>0                | R/W<br>0 | R/W<br>0 |  |
| Bit/Field Name Type Reset Description                            |                                                                                                                                                                                                                                                                                           |          |          |          |                                                                                                                                                                                                                                                                                                      |          |          |                                                                                                                                                                                                                                                                                                                                                            |                       |                      |                                                   |                    |                       |                        |          |          |  |
| 31:27 reserved RO 0 Software shou compatibility w preserved acro |                                                                                                                                                                                                                                                                                           |          |          |          |                                                                                                                                                                                                                                                                                                      |          |          |                                                                                                                                                                                                                                                                                                                                                            | vith futu             | re produc            | ts, the v                                         | alue of            | a reserv              | •                      |          |          |  |
| 20                                                               | 6                                                                                                                                                                                                                                                                                         | (        | COMP2    |          | R/W                                                                                                                                                                                                                                                                                                  |          | 0        | <ul> <li>preserved across a read-modify-write operation.</li> <li>Analog Comparator 2 Clock Gating. This bit controls the clock gating for analog comparator 2. If set, the unit receives a clock and functions Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.</li> </ul> |                       |                      |                                                   |                    |                       |                        |          |          |  |
| 25                                                               | 5                                                                                                                                                                                                                                                                                         | (        | COMP1    |          | R/W                                                                                                                                                                                                                                                                                                  |          | 0        | for an<br>Other                                                                                                                                                                                                                                                                                                                                            | alog con<br>wise, the | nparato<br>e unit is | Clock Ga<br>1. If set,<br>unclocke<br>unit will g | the uni<br>d and d | t receive<br>isabled. | es a cloc<br>If the ur | k and fu | nctions. |  |
| 24                                                               | 24 COMP0 R/W 0 Analog Comparator 0 Clock Gating. This bit controls the clock g<br>for analog comparator 0. If set, the unit receives a clock and fun<br>Otherwise, the unit is unclocked and disabled. If the unit is unclocked<br>reads or writes to the unit will generate a bus fault. |          |          |          |                                                                                                                                                                                                                                                                                                      |          |          |                                                                                                                                                                                                                                                                                                                                                            |                       | nctions.             |                                                   |                    |                       |                        |          |          |  |
| 23:                                                              | 19                                                                                                                                                                                                                                                                                        | r        | eserved  |          | RO                                                                                                                                                                                                                                                                                                   |          | 0        | 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.                                                                                                                                                               |                       |                      |                                                   |                    |                       |                        |          |          |  |
| 18                                                               | 8                                                                                                                                                                                                                                                                                         | I        | TIMER2   |          | R/W 0 Timer 2 Clock Gating Control. This bit controls the clock gating for<br>General-Purpose Timer module 2. If set, the unit receives a clock and<br>functions. Otherwise, the unit is unclocked and disabled. If the unit is<br>unclocked, reads or writes to the unit will generate a bus fault. |          |          |                                                                                                                                                                                                                                                                                                                                                            |                       |                      |                                                   |                    |                       |                        |          |          |  |

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1) Base 0x400F.E000

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                                    |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17        | TIMER1   | R/W  | 0     | Timer 1 Clock Gating Control. This bit controls the clock gating for<br>General-Purpose Timer module 1. If set, the unit receives a clock and<br>functions. Otherwise, the unit is unclocked and disabled. If the unit is<br>unclocked, reads or writes to the unit will generate a bus fault. |
| 16        | TIMER0   | R/W  | 0     | Timer 0 Clock Gating Control. This bit controls the clock gating for<br>General-Purpose Timer module 0. If set, the unit receives a clock and<br>functions. Otherwise, the unit is unclocked and disabled. If the unit is<br>unclocked, reads or writes to the unit will generate a bus fault. |
| 15:13     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 12        | 12C0     | R/W  | 0     | I2C0 Clock Gating Control. This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                               |
| 11:5      | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 4         | SSIO     | R/W  | 0     | SSI0 Clock Gating Control. This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                               |
| 3:2       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                                  |
| 1         | UART1    | R/W  | 0     | UART1 Clock Gating Control. This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                             |
| 0         | UART0    | R/W  | 0     | UART0 Clock Gating Control. This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                             |

#### Register 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

|                                                                                                                                                                           | 31                                                                                                                                                                                                                                                         |   | 30      | 29      | 28      | 27       | 26      | 25      | 24                                                                                                                                                                                                                                                                                                 | 23        | 22                      | 21                    | 20       | 19                                 | 18       | 17        | 16        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|---------|---------|----------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|-----------------------|----------|------------------------------------|----------|-----------|-----------|--|
|                                                                                                                                                                           |                                                                                                                                                                                                                                                            | T |         | 1       | 1       | 1 1<br>1 |         | 1       | rese                                                                                                                                                                                                                                                                                               | rved      | r                       |                       | 1        |                                    | 1        |           | 1         |  |
| Type<br>Reset                                                                                                                                                             | RC<br>0                                                                                                                                                                                                                                                    | ) | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                                                                                                            | RO<br>0   | RO<br>0                 | RO<br>0               | RO<br>0  | RO<br>0                            | RO<br>0  | RO<br>0   | RO<br>0   |  |
|                                                                                                                                                                           | 15                                                                                                                                                                                                                                                         | ; | 14      | 13      | 12      | 11       | 10      | 9       | 8                                                                                                                                                                                                                                                                                                  | 7         | 6                       | 5                     | 4        | 3                                  | 2        | 1         | 0         |  |
|                                                                                                                                                                           |                                                                                                                                                                                                                                                            | 1 |         |         | rese    | erved    |         | •       | •                                                                                                                                                                                                                                                                                                  | GPIOH     | GPIOG                   | GPIOF                 | GPIOE    | GPIOD                              | GPIOC    | GPIOB     | GPIOA     |  |
| Type<br>Reset                                                                                                                                                             | RC<br>0                                                                                                                                                                                                                                                    | ) | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                                                                                                            | R/W<br>0  | R/W<br>0                | R/W<br>0              | R/W<br>0 | R/W<br>0                           | R/W<br>0 | R/W<br>0  | R/W<br>0  |  |
| Bit/Field Name Type Reset Description                                                                                                                                     |                                                                                                                                                                                                                                                            |   |         |         |         |          |         |         |                                                                                                                                                                                                                                                                                                    |           |                         |                       |          |                                    |          |           |           |  |
| 31:8 reserved RO 0 Software should not rely on the value of a reserv compatibility with future products, the value of a r preserved across a read-modify-write operation. |                                                                                                                                                                                                                                                            |   |         |         |         |          |         |         |                                                                                                                                                                                                                                                                                                    |           | a reserv                |                       |          |                                    |          |           |           |  |
| 7                                                                                                                                                                         | ,                                                                                                                                                                                                                                                          |   |         | GPIOH   |         | R/W      |         | 0       | Port H Clock Gating Control. This bit controls the clock gating for Port H. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.                                       |           |                         |                       |          |                                    |          |           |           |  |
| 6                                                                                                                                                                         | i                                                                                                                                                                                                                                                          |   |         | GPIOG   |         | R/W      |         | 0       | G. If s<br>unclo                                                                                                                                                                                                                                                                                   | et, the u | init recei<br>d disable | ves a cl<br>d. If the | ock and  | controls t<br>function<br>inclocke | s. Other | wise, the | e unit is |  |
| 5                                                                                                                                                                         | i                                                                                                                                                                                                                                                          |   |         | GPIOF   |         | R/W      |         | 0       | unit will generate a bus fault.<br>Port F Clock Gating Control. This bit controls the clock gating for Po<br>F. If set, the unit receives a clock and functions. Otherwise, the unit<br>unclocked and disabled. If the unit is unclocked, reads or writes to th<br>unit will generate a bus fault. |           |                         |                       |          |                                    |          |           | unit is   |  |
| 4                                                                                                                                                                         |                                                                                                                                                                                                                                                            |   |         | GPIOE   |         | R/W      |         | 0       | Port E Clock Gating Control. This bit controls the clock gating for Po<br>E. If set, the unit receives a clock and functions. Otherwise, the unit<br>unclocked and disabled. If the unit is unclocked, reads or writes to t<br>unit will generate a bus fault.                                     |           |                         |                       |          |                                    |          |           |           |  |
| 3                                                                                                                                                                         | 3 GPIOD R/W 0 Port D Clock Gating Control. This bit controls the clock gating<br>D. If set, the unit receives a clock and functions. Otherwise, the<br>unclocked and disabled. If the unit is unclocked, reads or write<br>unit will generate a bus fault. |   |         |         |         |          |         |         |                                                                                                                                                                                                                                                                                                    | e unit is |                         |                       |          |                                    |          |           |           |  |

Run Mode Clock Gating Control Register 2 (RCGC2)

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                                                  |
|-----------|-------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | GPIOC | R/W  | 0     | Port C Clock Gating Control. This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 1         | GPIOB | R/W  | 0     | Port B Clock Gating Control. This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 0         | GPIOA | R/W  | 0     | Port A Clock Gating Control. This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |

# Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

|                                                                                                                                                                                                                                                   | 31      | 1   | 30      | 29      | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                                                                                                                           | 23                    | 22                      | 21                       | 20       | 19                    | 18       | 17        | 16       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|---------|---------|---------|---------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------------|----------|-----------------------|----------|-----------|----------|
|                                                                                                                                                                                                                                                   |         | 1   |         | 1       | 1       | · ·     |         | 1       | rese                                                                                                                                                                                                                                                                                         | rved                  | r                       | 1                        |          | 1                     |          | 1         | 1        |
| Type<br>Reset                                                                                                                                                                                                                                     | R(<br>0 |     | RO<br>0                                                                                                                                                                                                                                                                                      | RO<br>0               | RO<br>0                 | RO<br>0                  | RO<br>0  | RO<br>0               | RO<br>0  | RO<br>0   | RO<br>0  |
|                                                                                                                                                                                                                                                   | 15      | 5   | 14      | 13      | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                                                                                                                            | 7                     | 6                       | 5                        | 4        | 3                     | 2        | 1         | 0        |
|                                                                                                                                                                                                                                                   |         | - 1 |         | 1       | res     | erved   |         | 1       | 1                                                                                                                                                                                                                                                                                            | GPIOH                 | GPIOG                   | GPIOF                    | GPIOE    | GPIOD                 | GPIOC    | GPIOB     | GPIO.    |
| Type<br>Reset                                                                                                                                                                                                                                     | R(<br>0 |     | RO<br>0                                                                                                                                                                                                                                                                                      | R/W<br>0              | R/W<br>0                | R/W<br>0                 | R/W<br>0 | R/W<br>0              | R/W<br>0 | R/W<br>0  | R/W<br>0 |
| Bit/F                                                                                                                                                                                                                                             | ield    |     |         | Name    |         | Туре    |         | Reset   | Descr                                                                                                                                                                                                                                                                                        | iption                |                         |                          |          |                       |          |           |          |
| 31:8 reserved RO 0 Software should not rely on<br>compatibility with future proc<br>preserved across a read-mo                                                                                                                                    |         |     |         |         |         |         |         |         |                                                                                                                                                                                                                                                                                              | e produ               | cts, the v              | value of                 | a reserv | •                     |          |           |          |
| 7                                                                                                                                                                                                                                                 | ,       |     |         | GPIOH   |         | R/W     |         | 0       | Port H Clock Gating Control. This bit controls the clock gating for H<br>H. If set, the unit receives a clock and functions. Otherwise, the ur<br>unclocked and disabled. If the unit is unclocked, reads or writes to<br>unit will generate a bus fault.                                    |                       |                         |                          |          |                       |          |           |          |
| 6                                                                                                                                                                                                                                                 | 5       |     |         | GPIOG   |         | R/W     |         | 0       | G. If s<br>uncloo                                                                                                                                                                                                                                                                            | et, the uncertaintent | init recei<br>d disable | ives a cle<br>ed. If the | ock and  | ontrols t<br>function | s. Other | wise, the | e unit   |
| 5                                                                                                                                                                                                                                                 | 5       |     |         | GPIOF   |         | R/W     |         | 0       | unit will generate a bus fault.<br>Port F Clock Gating Control. This bit controls the clock gating for F<br>F. If set, the unit receives a clock and functions. Otherwise, the un<br>unclocked and disabled. If the unit is unclocked, reads or writes to<br>unit will generate a bus fault. |                       |                         |                          |          |                       |          |           | unit i   |
| 4                                                                                                                                                                                                                                                 | Ļ       |     |         | GPIOE   |         | R/W     |         | 0       | Port E Clock Gating Control. This bit controls the clock gating for E. If set, the unit receives a clock and functions. Otherwise, the u unclocked and disabled. If the unit is unclocked, reads or writes to unit will generate a bus fault.                                                |                       |                         |                          |          |                       |          |           |          |
| 3 GPIOD R/W 0 Port D Clock Gating Control. This bit controls the clock gating D. If set, the unit receives a clock and functions. Otherwise, the unclocked and disabled. If the unit is unclocked, reads or write unit will generate a bus fault. |         |     |         |         |         |         |         |         |                                                                                                                                                                                                                                                                                              | e unit                |                         |                          |          |                       |          |           |          |

Sleep Mode Clock Gating Control Register 2 (SCGC2)

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                                                  |
|-----------|-------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | GPIOC | R/W  | 0     | Port C Clock Gating Control. This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 1         | GPIOB | R/W  | 0     | Port B Clock Gating Control. This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 0         | GPIOA | R/W  | 0     | Port A Clock Gating Control. This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |

# Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

| Base 0x4<br>Offset 0x<br>Type R/W                                                                                                                                                          | 128     |   | 00000   | 0       |                                                                                                                                                                                                   |         |         |                         |                                                                                                                                                                                         |                                                   |                        |                        |          |          |          |           |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------|------------------------|----------|----------|----------|-----------|-----------|
|                                                                                                                                                                                            | 31      |   | 30      | 29      | 28                                                                                                                                                                                                | 27      | 26      | 25                      | 24                                                                                                                                                                                      | 23                                                | 22                     | 21                     | 20       | 19       | 18       | 17        | 16        |
|                                                                                                                                                                                            |         |   |         |         | ľ                                                                                                                                                                                                 |         |         | 1                       |                                                                                                                                                                                         | i<br>erved                                        |                        | ľ                      | Ì        | 1        |          |           |           |
| Type<br>Reset                                                                                                                                                                              | RO<br>0 |   | २О<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                           | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0                                                                                                                                                                                 | RO<br>0                                           | RO<br>0                | RO<br>0                | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0   | RO<br>0   |
|                                                                                                                                                                                            | 15      |   | 14      | 13      | 12                                                                                                                                                                                                | 11      | 10      | 9                       | 8                                                                                                                                                                                       | 7                                                 | 6                      | 5                      | 4        | 3        | 2        | 1         | 0         |
|                                                                                                                                                                                            |         | 1 |         |         | rese                                                                                                                                                                                              | rved    |         |                         | •                                                                                                                                                                                       | GPIOH                                             | GPIOG                  | GPIOF                  | GPIOE    | GPIOD    | GPIOC    | GPIOB     | GPIOA     |
| Type<br>Reset                                                                                                                                                                              | RO<br>0 |   | २०<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                           | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0                                                                                                                                                                                 | R/W<br>0                                          | R/W<br>0               | R/W<br>0               | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0  | R/W<br>0  |
| Bit/Field Name Type Reset Descripti                                                                                                                                                        |         |   |         |         |                                                                                                                                                                                                   |         |         |                         | ription                                                                                                                                                                                 |                                                   |                        |                        |          |          |          |           |           |
| 31:8 reserved RO                                                                                                                                                                           |         |   |         |         |                                                                                                                                                                                                   |         |         |                         | comp                                                                                                                                                                                    | are shou<br>atibility v<br>rved acr               | vith futur             | e produ                | cts, the | value of | a reserv |           |           |
| 7                                                                                                                                                                                          |         |   |         | GPIOH   | IOH R/W 0 Port H Clock Gating Control. This bit controls<br>H. If set, the unit receives a clock and functio<br>unclocked and disabled. If the unit is unclock<br>unit will generate a bus fault. |         |         |                         |                                                                                                                                                                                         |                                                   |                        |                        |          | function | s. Other | wise, the | e unit is |
| 6                                                                                                                                                                                          |         |   |         | GPIOG   |                                                                                                                                                                                                   | R/W     |         | 0                       | G. If s<br>unclo                                                                                                                                                                        | G Clock (<br>set, the u<br>cked and<br>rill gener | nit recei<br>d disable | ves a cl<br>ed. If the | ock and  | function | s. Other | wise, the | e unit is |
| unit will generate a bus fault.<br>5 GPIOF R/W 0 Port F Clock Gating Control.<br>F. If set, the unit receives a c<br>unclocked and disabled. If th<br>unit will generate a bus fault.      |         |   |         |         |                                                                                                                                                                                                   |         |         | ves a clo<br>ed. If the | ock and f                                                                                                                                                                               | functions                                         | . Otherv               | vise, the              | unit is  |          |          |           |           |
| 4                                                                                                                                                                                          |         |   |         | GPIOE   |                                                                                                                                                                                                   | R/W     |         | 0                       | Port E Clock Gating Control. This bit controls<br>E. If set, the unit receives a clock and functio<br>unclocked and disabled. If the unit is unclock<br>unit will generate a bus fault. |                                                   |                        |                        |          |          |          | wise, the | e unit is |
| 3 GPIOD R/W 0 Port D Clock Gating Control. This bit cont<br>D. If set, the unit receives a clock and fun<br>unclocked and disabled. If the unit is uncl<br>unit will generate a bus fault. |         |   |         |         |                                                                                                                                                                                                   |         |         | function                | s. Other                                                                                                                                                                                | wise, the                                         | e unit is              |                        |          |          |          |           |           |

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                                                  |
|-----------|-------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | GPIOC | R/W  | 0     | Port C Clock Gating Control. This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 1         | GPIOB | R/W  | 0     | Port B Clock Gating Control. This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |
| 0         | GPIOA | R/W  | 0     | Port A Clock Gating Control. This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault. |

ADC0 Reset Control. Reset control for SAR ADC module 0.

preserved across a read-modify-write operation.

preserved across a read-modify-write operation.

WDT Reset Control. Reset control for Watchdog unit.

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be

Software should not rely on the value of a reserved bit. To provide

compatibility with future products, the value of a reserved bit should be

### Register 27: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

| Offset 0x<br>Type R/W |         | x000000 | 00       |          |          |         |         |          |             |            |         |                                          |          |         |          |          |
|-----------------------|---------|---------|----------|----------|----------|---------|---------|----------|-------------|------------|---------|------------------------------------------|----------|---------|----------|----------|
|                       | 31      | 30      | 29       | 28       | 27       | 26      | 25      | 24       | 23          | 22         | 21      | 20                                       | 19       | 18      | 17       | 16       |
|                       |         | I       | 1        | reserved | <b> </b> |         | I       | CAN0     |             |            |         | reserved                                 |          |         | 1        | SARADC0  |
| Type<br>Reset         | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | R/W<br>0 | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0                                  | RO<br>0  | RO<br>0 | RO<br>0  | R/W<br>0 |
|                       | 15      | 14      | 13       | 12       | 11       | 10      | 9       | 8        | 7           | 6          | 5       | 4                                        | 3        | 2       | 1        | 0        |
|                       |         | Î       | Î        | 1        | Î        | rese    | erved   | 1        |             | i i        | r       | ì                                        | WDT      |         | reserved | 1        |
| Type<br>Reset         | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0                                  | R/W<br>0 | RO<br>0 | RO<br>0  | RO<br>0  |
| Bit/F                 | ield    |         | Name     |          | Туре     | F       | Reset   | Descr    | iption      |            |         |                                          |          |         |          |          |
| 31:                   | 25      |         | reserved | 1        | RO       |         | 0       | compa    | atibility v | vith futur | e produ | ne value o<br>icts, the v<br>ify-write o | alue of  | a reser |          |          |
| 24                    | 4       |         | CAN0     |          | R/W      |         | 0       | CAN0     | Reset (     | Control. I | Reset c | ontrol for                               | CAN ur   | nit O.  |          |          |
| 23:                   | 17      |         | reserved | 1        | RO       |         | 0       | compa    | atibility v | vith futur | e produ | ne value o<br>icts, the v<br>ify-write o | alue of  | a reser | •        |          |

0

0

0

0

R/W

RO

R/W

RO

Software Reset Control 0 (SRCR0) Base 0x400F.E000 Offset 0x040

16

15:4

3

2:0

SARADC0

reserved

WDT

reserved

### Register 28: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Software Reset Control 1 (SRCR1) Base 0x400F.E000 Offset 0x044 Type R/W, reset 0x00000000

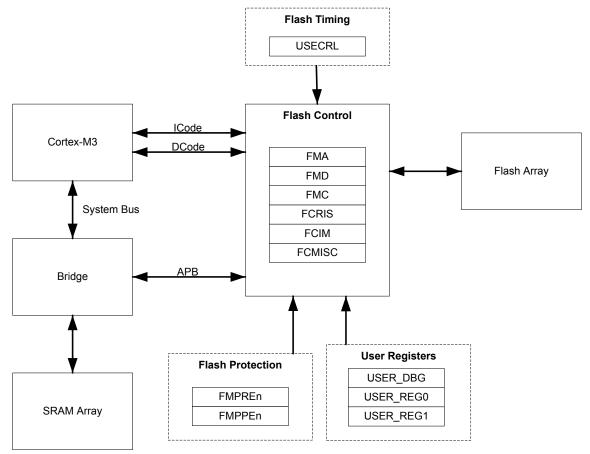
| Type R/M                                                                                                                                     | , 16361 0 |          | 0        |          |         |          |          |                                                                                                                                                                                               |             |            |          |              |           |                             |          |           |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|----------|---------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|----------|--------------|-----------|-----------------------------|----------|-----------|
|                                                                                                                                              | 31        | 30       | 29       | 28       | 27      | 26       | 25       | 24                                                                                                                                                                                            | 23          | 22         | 21       | 20           | 19        | 18                          | 17       | 16        |
|                                                                                                                                              |           |          | reserved |          |         | COMP2    | COMP1    | COMP0                                                                                                                                                                                         |             |            | reserved |              |           | TIMER2                      | TIMER1   | TIMER0    |
| Type<br>Reset                                                                                                                                | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                                                                                                      | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0      | RO<br>0   | R/W<br>0                    | R/W<br>0 | R/W<br>0  |
|                                                                                                                                              | 15        | 14       | 13       | 12       | 11      | 10       | 9        | 8                                                                                                                                                                                             | 7           | 6          | 5        | 4            | 3         | 2                           | 1        | 0         |
|                                                                                                                                              |           | reserved |          | I2C0     |         |          |          | reserved                                                                                                                                                                                      |             |            |          | SSI0         | rese      | erved                       | UART1    | UART0     |
| Type<br>Reset                                                                                                                                | RO<br>0   | RO<br>0  | RO<br>0  | R/W<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0                                                                                                                                                                                       | RO<br>0     | RO<br>0    | RO<br>0  | R/W<br>0     | RO<br>0   | RO<br>0                     | R/W<br>0 | R/W<br>0  |
| Bit/F                                                                                                                                        | ield      |          | Name     |          | Туре    | F        | Reset    | Descri                                                                                                                                                                                        | iption      |            |          |              |           |                             |          |           |
| 31:27 reserved RO 0 Software should not rely on the value<br>compatibility with future products, the<br>preserved across a read-modify-write |           |          |          |          |         |          |          | cts, the v                                                                                                                                                                                    | alue of     | a reserv   |          |              |           |                             |          |           |
| 26                                                                                                                                           | 6         | (        | COMP2    |          | R/W     |          | 0        | Analo                                                                                                                                                                                         | g Comp      | 2 Reset    | Control. | . Reset c    | control f | or analo                    | g compa  | irator 2. |
| 25                                                                                                                                           | 5         | (        | COMP1    |          | R/W     |          | 0        | Analog                                                                                                                                                                                        | g Comp      | 1 Reset    | Control. | Reset o      | control f | or analo                    | g compa  | rator 1.  |
| 24                                                                                                                                           | 1         | (        | COMP0    |          | R/W     |          | 0        | Analog                                                                                                                                                                                        | g Comp      | 0 Reset    | Control. | Reset c      | control f | or analo                    | g compa  | rator 0.  |
| 23:                                                                                                                                          | 19        | r        | eserved  |          | RO      |          | 0        | compa                                                                                                                                                                                         | atibility w | ith futur/ | e produc |              | alue of   | erved bit<br>a reserv<br>n. |          |           |
| 18                                                                                                                                           | 3         | ſ        | TIMER2   |          | R/W     |          | 0        | Timer<br>2.                                                                                                                                                                                   | 2 Reset     | Control.   | Reset co | ontrol for   | Genera    | al-Purpos                   | se Timer | module    |
| 17                                                                                                                                           | 7         | ٦        | TIMER1   |          | R/W     |          | 0        | Timer<br>1.                                                                                                                                                                                   | 1 Reset     | Control.   | Reset co | ontrol for   | Genera    | al-Purpos                   | se Timer | module    |
| 16                                                                                                                                           | 6         | ٢        | TIMER0   |          | R/W     |          | 0        | Timer<br>0.                                                                                                                                                                                   | 0 Reset     | Control.   | Reset co | ontrol for   | Genera    | al-Purpos                   | se Timer | module    |
| 15:                                                                                                                                          | 13        | r        | eserved  |          | RO      |          | 0        | compa                                                                                                                                                                                         | atibility w | ith futur/ | e produc |              | alue of   | erved bit<br>a reserv<br>n. |          |           |
| 12                                                                                                                                           | 2         |          | I2C0     |          | R/W     |          | 0        | 12C0 F                                                                                                                                                                                        | Reset Co    | ontrol. R  | eset con | itrol for la | 2C unit   | 0.                          |          |           |
| 11:                                                                                                                                          | :5        | r        | eserved  |          | RO      |          | 0        | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |             |            |          |              |           |                             |          |           |
| 4                                                                                                                                            |           |          | SSI0     |          | R/W     |          | 0        | SSI0 F                                                                                                                                                                                        | Reset Co    | ontrol. R  | eset cor | ntrol for S  | SSI unit  | 0.                          |          |           |
| 3:                                                                                                                                           | 2         | r        | eserved  |          | RO      |          | 0        | compa                                                                                                                                                                                         | atibility w | ith futur  | e produc |              | alue of   | erved bit<br>a reserv<br>n. |          |           |
| 1                                                                                                                                            |           |          | UART1    |          | R/W     |          | 0        | UART                                                                                                                                                                                          | 1 Reset     | Control    | Reset o  | control fo   | or UART   | unit 1.                     |          |           |

| Bit/Field | Name  | Туре | Reset | Description                                         |
|-----------|-------|------|-------|-----------------------------------------------------|
| 0         | UART0 | R/W  | 0     | UART0 Reset Control. Reset control for UART unit 0. |

### Register 29: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Software Reset Control 2 (SRCR2) Base 0x400F.E000 Offset 0x048 Type R/W, reset 0x00000000


| _             | 31      | 30                       | 29       | 28       | 27   | 26      | 25      | 24          | 23                                                                                                                                                              | 22       | 21       | 20         | 19       | 18      | 17    | 16      |  |
|---------------|---------|--------------------------|----------|----------|------|---------|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|----------|---------|-------|---------|--|
|               |         | IIIIIIIIIIIIIIIIIIIIIIII |          |          |      |         |         |             |                                                                                                                                                                 |          |          |            |          |         |       |         |  |
| Turna         | DO      | RO                       | RO       | RO       | RO   | RO      | RO      | RO          | RO                                                                                                                                                              | RO       | RO       | RO         | RO       | RO      | RO    | RO      |  |
| Type<br>Reset | RO<br>0 | RU<br>0                  | RU<br>0  | 0        | 0    | к0<br>0 | RU<br>0 | RU<br>0     | к0<br>0                                                                                                                                                         | 0        | к0<br>0  | к0<br>0    | к0<br>0  | RU<br>0 | 0     | кО<br>0 |  |
|               |         |                          |          |          |      |         |         |             |                                                                                                                                                                 |          |          |            |          |         |       |         |  |
|               | 15      | 14                       | 13       | 12       | 11   | 10      | 9       | 8           | 7                                                                                                                                                               | 6        | 5        | 4          | 3        | 2       | 1     | 0       |  |
|               |         |                          |          | reserved |      |         |         |             | GPIOH                                                                                                                                                           | GPIOG    | GPIOF    | GPIOE      | GPIOD    | GPIOC   | GPIOB | GPIOA   |  |
| Туре          | RO      | RO                       | RO       | RO       | RO   | RO      | RO      | RO          | R/W                                                                                                                                                             | R/W      | R/W      | R/W        | R/W      | R/W     | R/W   | R/W     |  |
| Reset         | 0       | 0                        | 0        | 0        | 0    | 0       | 0       | 0           | 0                                                                                                                                                               | 0        | 0        | 0          | 0        | 0       | 0     | 0       |  |
| Bit/Fi        | ield    |                          | Name     |          | Туре |         | Reset   | Description |                                                                                                                                                                 |          |          |            |          |         |       |         |  |
| 31:           | 8       |                          | reserved |          | RO   |         | 0       | compa       | Software should not rely on the value of a reserved<br>compatibility with future products, the value of a re<br>preserved across a read-modify-write operation. |          |          |            | a reserv |         |       |         |  |
| 7             |         |                          | GPIOH    |          | R/W  |         | 0       | Port H      | Port H Reset Control. Reset control for GPIO Port H.                                                                                                            |          |          |            |          |         |       |         |  |
| 6             |         |                          | GPIOG    |          | R/W  |         | 0       | Port G      | 6 Reset                                                                                                                                                         | Control. | Reset co | ontrol foi | r gpio f | Port G. |       |         |  |
| 5             |         |                          | GPIOF    |          | R/W  |         | 0       | Port F      | Port F Reset Control. Reset control for GPIO Port F.                                                                                                            |          |          |            |          |         |       |         |  |
| 4             |         |                          | GPIOE    |          | R/W  |         | 0       | Port E      | Port E Reset Control. Reset control for GPIO Port E.                                                                                                            |          |          |            |          |         |       |         |  |
| 3             |         |                          | GPIOD    |          | R/W  |         | 0       | Port D      | Reset                                                                                                                                                           | Control. | Reset co | ontrol for | r GPIO F | Port D. |       |         |  |
| 2             |         |                          | GPIOC    |          | R/W  |         | 0       | Port C      | Reset                                                                                                                                                           | Control. | Reset co | ontrol for | r GPIO F | Port C. |       |         |  |
| 1             |         |                          | GPIOB    |          | R/W  |         | 0       | Port B      | Reset                                                                                                                                                           | Control. | Reset co | ontrol for | GPIO F   | Port B. |       |         |  |
| 0             |         |                          | GPIOA    |          | R/W  |         | 0       | Port A      | Reset                                                                                                                                                           | Control. | Reset co | ontrol for | GPIO F   | Port A. |       |         |  |

### 7 Internal Memory

The LM3S2139 microcontroller comes with 16 KB of bit-banded SRAM and 64 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

### 7.1 Block Diagram

### Figure 7-1. Flash Block Diagram



### 7.2 Functional Description

This section describes the functionality of both the flash and SRAM memories.

### 7.2.1 SRAM Memory

The internal SRAM of the Stellaris<sup>®</sup> devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset \* 32) + (bit number \* 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 \* 32) + (3 \* 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, "Memory Map" in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual.* 

### 7.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

See also Appendix A, Serial Flash Loader on page 461 for a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface.

### 7.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

### 7.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in one pair of 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read by software or debuggers. If cleared, the block may only be executed. The contents of the memory block are prohibited from being accessed as data and traversing the DCode bus.

The policies may be combined as shown in Table 7-1 on page 111.

| FMPPEn | FMPREn | Protection                                                                                                                                                                                         |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0      |        | Execute-only protection. The block may only be executed and may not be written or erased. This mode is used to protect code.                                                                       |
| 1      | 0      | The block may be written, erased or executed, but not read. This combination is unlikely to be used.                                                                                               |
| 0      |        | Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access. |
| 1      | 1      | No protection. The block may be written, erased, executed or read.                                                                                                                                 |

An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt may be optionally generated (by setting the AMASK bit in the **FIM** register) to alert software developers of poorly behaving software during the development and debug phases.

An access that attempts to read an RE-protected block is prohibited. Such accesses return data filled with all 0s. A controller interrupt may be optionally generated to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. Details on programming these bits are discussed in "Nonvolatile Register Programming" on page 112.

### 7.3 Flash Memory Initialization and Configuration

### 7.3.1 Flash Programming

The Stellaris<sup>®</sup> devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

### 7.3.1.1 To program a 32-bit word

- 1. Write source data to the **FMD** register.
- 2. Write the target address to the FMA register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.
- 4. Poll the **FMC** register until the WRITE bit is cleared.

### 7.3.1.2 To perform an erase of a 1-KB page

- 1. Write the page address to the **FMA** register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the **FMC** register.
- 3. Poll the **FMC** register until the **ERASE** bit is cleared.

### 7.3.1.3 To perform a mass erase of the flash

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the **FMC** register.
- 2. Poll the **FMC** register until the MERASE bit is cleared.

### 7.3.2 Nonvolatile Register Programming

This section discusses how to update registers that are resident within the flash memory itself. These registers exist in a separate space from the main flash array and are not affected by an ERASE or MASS ERASE operation. These nonvolatile registers are updated by using the COMT bit in the **FMC** register to activate a write operation. For the **USER\_DBG** register, the data to be written must be loaded into the **FMD** register before it is "committed". All other registers are R/W and can have their operation tried before committing them to nonvolatile memory.

**Important:** These registers can only have bits changed from 1 to 0 by the user and there is no mechanism for the user to erase them back to a 1 value.

In addition, the **USER\_REG0**, **USER\_REG1**, and **USER\_DBG** use bit 31 (NW) of their respective registers to indicate that they are available for user write. These three registers can only be written once whereas the flash protection registers may be written multiple times. Table 7-2 on page 112 provides the FMA address required for commitment of each of the registers and the source of the data to be written when the COMT bit of the **FMC** register is written with a value of 0xA442.0008. After writing the COMT bit, the user may poll the **FMC** register to wait for the commit operation to complete.

| Register to be Committed | FMA Value   | Data Source |
|--------------------------|-------------|-------------|
| FMPRE0                   | 0x0000.0000 | FMPRE0      |
| FMPRE1                   | 0x0000.0002 | FMPRE1      |
| FMPRE2                   | 0x0000.0004 | FMPRE2      |
| FMPRE3                   | 0x0000.0008 | FMPRE3      |
| FMPPE0                   | 0x0000.0001 | FMPPE0      |
| FMPPE1                   | 0x0000.0003 | FMPPE1      |
| FMPPE2                   | 0x0000.0005 | FMPPE2      |
| FMPPE3                   | 0x0000.0007 | FMPPE3      |
| USER_REG0                | 0x8000.0000 | USER_REG0   |
| USER_REG1                | 0x8000.0001 | USER_REG1   |
| USER_DBG                 | 0x7510.0000 | FMD         |

### Table 7-2. Flash Resident Registers<sup>a</sup>

a. Which FMPREn and FMPPEn registers are available depend on the flash size of your particular Stellaris® device.

### 7.4 Register Map

Table 7-3 on page 112 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** registers are relative to the Flash control base address of 0x400F.D000. The **FMPREn**, **FMPPEn**, **USECRL**, **USER\_DBG**, and **USER\_REGn** registers are relative to the System Control base address of 0x400F.E000.

| Table 7-3 | . Internal | Memory | Register | Мар |
|-----------|------------|--------|----------|-----|
|-----------|------------|--------|----------|-----|

| Offset    | Name         | Туре | Reset       | Description          | See<br>page |
|-----------|--------------|------|-------------|----------------------|-------------|
| Flash Cor | ntrol Offset |      |             |                      |             |
| 0x000 FMA |              | R/W  | 0x0000.0000 | Flash Memory Address | 114         |

| Offset   | Name           | Туре  | Reset       | Description                                        | See<br>page |
|----------|----------------|-------|-------------|----------------------------------------------------|-------------|
| 0x004    | FMD            | R/W   | 0x0000.0000 | Flash Memory Data                                  | 115         |
| 0x008    | FMC            | R/W   | 0x0000.0000 | Flash Memory Control                               | 116         |
| 0x00C    | FCRIS          | RO    | 0x0000.0000 | Flash Controller Raw Interrupt Status              | 118         |
| 0x010    | FCIM           | R/W   | 0x0000.0000 | Flash Controller Interrupt Mask                    | 119         |
| 0x014    | FCMISC         | R/W1C | 0x0000.0000 | Flash Controller Masked Interrupt Status and Clear | 120         |
| System C | control Offset |       |             |                                                    |             |
| 0x130    | FMPRE0         | R/W   | BV          | Flash Memory Protection Read Enable 0              | 122         |
| 0x200    | FMPRE0         | R/W   | BV          | Flash Memory Protection Read Enable 0              | 122         |
| 0x134    | FMPPE0         | R/W   | BV          | Flash Memory Protection Program Enable 0           | 123         |
| 0x400    | FMPPE0         | R/W   | BV          | Flash Memory Protection Program Enable 0           | 123         |
| 0x140    | USECRL         | R/W   | 0x16        | USec Reload                                        | 121         |
| 0x1D0    | USER_DBG       | R/W   | 0xFFFF.FFFE | User Debug                                         | 124         |
| 0x1E0    | USER_REG0      | R/W   | 0x9FFF.FFFF | User Register 0                                    | 125         |
| 0x1E4    | USER_REG1      | R/W   | 0x9FFF.FFFF | User Register 1                                    | 126         |
| 0x204    | FMPRE1         | R/W   | 0x0000.0000 | Flash Memory Protection Read Enable 1              | 127         |
| 0x208    | FMPRE2         | R/W   | 0x0000.0000 | Flash Memory Protection Read Enable 2              | 128         |
| 0x20C    | FMPRE3         | R/W   | 0x0000.0000 | Flash Memory Protection Read Enable 3              | 129         |
| 0x404    | FMPPE1         | R/W   | 0x0000.0000 | Flash Memory Protection Program Enable 1           | 130         |
| 0x408    | FMPPE2         | R/W   | 0x0000.0000 | Flash Memory Protection Program Enable 2           | 131         |
| 0x40C    | FMPPE3         | R/W   | 0x0000.0000 | Flash Memory Protection Program Enable 3           | 132         |

### 7.5 Flash Register Descriptions (Flash Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset.

Flash Memory Address (FMA)

### Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

#### Base 0x400F.D000 Offset 0x000 Type R/W, reset 0x0000.0000 16 31 30 29 28 27 26 25 24 23 22 21 20 18 17 19 OFFSET Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 10 9 8 7 6 5 3 2 0 11 4 1 OFFSET Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description OFFSET R/W Address Offset 31:0 0x0

Address offset in flash where operation is performed, except for nonvolatile registers (see "Nonvolatile Register Programming" on page 112 for details on values for this field).

### Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

| Base 0x4<br>Offset 0x0 | Flash Memory Data (FMD)<br>Base 0x400F.D000<br>Offset 0x004<br>Type R/W, reset 0x0000.0000 |          |          |          |                 |          |          |           |                      |          |          |          |          |          |          |          |
|------------------------|--------------------------------------------------------------------------------------------|----------|----------|----------|-----------------|----------|----------|-----------|----------------------|----------|----------|----------|----------|----------|----------|----------|
|                        | 31                                                                                         | 30       | 29       | 28       | 27              | 26       | 25       | 24        | 23                   | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
|                        |                                                                                            | 1        | r        | T        | r r<br>I        |          | T        | T<br>DA   | T<br>ATA             | T        | r        | r        | ı        | 1        | T        |          |
| Туре                   | R/W                                                                                        | R/W      | R/W      | R/W      | R/W             | R/W      | R/W      | R/W       | R/W                  | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      |
| Reset                  | 0                                                                                          | 0        | 0        | 0        | 0               | 0        | 0        | 0         | 0                    | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                        | 15                                                                                         | 14       | 13       | 12       | 11              | 10       | 9        | 8         | 7                    | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
|                        |                                                                                            |          | ~        |          |                 |          |          |           | <u>^</u>             | ~        |          |          |          |          |          |          |
|                        |                                                                                            | 1        | T        | 1        | r r<br>I        |          | T        | D/        | I<br>ATA             | T        | T        | 1        | 1        | 1        | ı        |          |
| Туре                   | R/W                                                                                        | R/W      | R/W      | R/W      | r r<br>I<br>R/W | R/W      | R/W      | D/<br>R/W | I<br>ATA<br>I<br>R/W | R/W      | R/W      | R/W      | I<br>R/W | R/W      | R/W      | R/W      |
| Type<br>Reset          | R/W<br>0                                                                                   | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0        | R/W<br>0 | R/W<br>0 |           |                      | R/W<br>0 |
|                        | 0                                                                                          |          |          |          |                 | 0        |          | R/W<br>0  | R/W                  |          |          |          |          |          |          |          |
| Reset                  | o<br>ield                                                                                  |          | 0        |          | 0               | 0        | 0        | R/W<br>0  | R/W<br>0             |          |          |          |          |          |          |          |

June 26, 2007

### Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 114). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 115) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

| Flash N<br>Base 0x4                     |         | -       | ntrol | (FMC)   |         |         |         |         |                   |                          |                        |                       |                        |                            |                                                   |                        |           |
|-----------------------------------------|---------|---------|-------|---------|---------|---------|---------|---------|-------------------|--------------------------|------------------------|-----------------------|------------------------|----------------------------|---------------------------------------------------|------------------------|-----------|
| Offset 0x<br>Type R/W                   | 800     |         | 0.000 | )       |         |         |         |         |                   |                          |                        |                       |                        |                            |                                                   |                        |           |
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31      | 30      |       | 29      | 28      | 27      | 26      | 25      | 24                | 23                       | 22                     | 21                    | 20                     | 19                         | 18                                                | 17                     | 16        |
|                                         |         | T       | ï     | T       | l l     | r       |         | 1       | WR                | I<br>KEY                 | 1                      | I                     | I                      |                            | 1 1                                               |                        |           |
| Type<br>Reset                           | WO<br>0 | WC<br>0 |       | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0           | WO<br>0                  | WO<br>0                | WO<br>0               | WO<br>0                | WO<br>0                    | WO<br>0                                           | WO<br>0                | WO<br>0   |
|                                         | 15      | 14      |       | 13      | 12      | 11      | 10      | 9       | 8                 | 7                        | 6                      | 5                     | 4                      | 3                          | 2                                                 | 1                      | 0         |
|                                         |         | •       |       | '       |         |         | res     | served  |                   | '                        | •                      |                       | •                      | СОМТ                       | MERASE                                            | ERASE                  | WRITE     |
| Type<br>Reset                           | RO<br>0 | RC<br>0 |       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0           | RO<br>0                  | RO<br>0                | RO<br>0               | RO<br>0                | R/W<br>0                   | R/W<br>0                                          | R/W<br>0               | R/W<br>0  |
| Bit/F                                   | ield    |         | I     | Name    |         | Туре    |         | Reset   | Descr             | ription                  |                        |                       |                        |                            |                                                   |                        |           |
| 31:                                     | 16      |         | N     | /RKEY   |         | WO      |         | 0x0     | Flash             | Write Ke                 | еу                     |                       |                        |                            |                                                   |                        |           |
|                                         |         |         |       |         |         |         |         |         | of acc<br>field f | cidental f               | lash writ<br>e to occເ | es. The<br>ur. Writes | value 0x<br>s to the I | دA442 n<br>F <b>MC</b> reថ | o minimiz<br>nust be w<br>gister with<br>he value | ritten in<br>nout this | to this   |
| 15                                      | :4      |         | re    | served  |         | RO      |         | 0       | comp              |                          | vith futur             | e produ               | cts, the v             | alue of                    | erved bit.<br>a reserve<br>n.                     | •                      |           |
| 3                                       | i       |         | C     | COMT    |         | R/W     |         | 0       | Comr              | nit Regis                | ster Valu              | е                     |                        |                            |                                                   |                        |           |
|                                         |         |         |       |         |         |         |         |         |                   | nit (write<br>fect on th |                        |                       |                        | volatile                   | storage.                                          | A write                | of 0 has  |
|                                         |         |         |       |         |         |         |         |         | previo            |                          | mit acce               | ss is cor             | nplete, a              | a 0 is ret                 | s is prov<br>turned; o<br>1.                      |                        |           |
|                                         |         |         |       |         |         |         |         |         | This c            | can take                 | up to 50               | μs.                   |                        |                            |                                                   |                        |           |
| 2                                       |         |         | M     | ERASE   |         | R/W     |         | 0       | Mass              | Erase F                  | lash Me                | mory                  |                        |                            |                                                   |                        |           |
|                                         |         |         |       |         |         |         |         |         |                   | bit is se<br>of 0 has    |                        |                       | -                      |                            | device is                                         | all eras               | ed. A     |
|                                         |         |         |       |         |         |         |         |         | previo            | ous mass                 | s erase a              | access is             | s comple               | ete, a 0                   | ccess is<br>is returne<br>ete, a 1 is             | ed; othe               | rwise, if |
|                                         |         |         |       |         |         |         |         |         | This c            | can take                 | up to 25               | 0 ms.                 |                        |                            |                                                   |                        |           |

| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                       |
|-----------|-------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | ERASE | R/W  | 0     | Erase a Page of Flash Memory                                                                                                                                                                      |
|           |       |      |       | If this bit is set, the page of flash main memory as specified by the contents of <b>FMA</b> is erased. A write of 0 has no effect on the state of this bit.                                      |
|           |       |      |       | If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned. |
|           |       |      |       | This can take up to 25 ms.                                                                                                                                                                        |
| 0         | WRITE | R/W  | 0     | Write a Word into Flash Memory                                                                                                                                                                    |
|           |       |      |       | If this bit is set, the data stored in <b>FMD</b> is written into the location as specified by the contents of <b>FMA</b> . A write of 0 has no effect on the state of this bit.                  |
|           |       |      |       | If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.          |
|           |       |      |       | This can take up to 50 μs.                                                                                                                                                                        |

June 26, 2007

### Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000

| JI ,          |      |    |          |    |      |    |          |         |           |                           |          |            |          |        |            |           |
|---------------|------|----|----------|----|------|----|----------|---------|-----------|---------------------------|----------|------------|----------|--------|------------|-----------|
|               | 31   | 30 | 29       | 28 | 27   | 26 | 25       | 24      | 23        | 22                        | 21       | 20         | 19       | 18     | 17         | 16        |
|               |      | 1  | 1        | 1  | г г  |    | 1        | rese    | rved      | 1 I                       |          |            |          | 1      | 1          |           |
| Turne         | RO   | RO | RO       | RO | RO   | RO | RO       | RO      | RO        | RO                        | RO       | RO         | RO       | RO     | RO         | RO        |
| Type<br>Reset | 0    | 0  | 0        | 0  | 0    | 0  | КU<br>0  | КU<br>0 | 0         | 0                         | 0        | 0          | 0        | 0      | 0          | 0         |
|               |      |    | 10       | 10 |      | 40 | <u> </u> | •       | _         |                           | _        |            |          |        |            | •         |
| I             | 15   | 14 | 13       | 12 | 11   | 10 | 9        | 8       | 7         | 6                         | 5        | 4          | 3        | 2      | 1          | 0         |
|               |      |    |          |    |      |    | res      | erved   |           |                           |          |            |          |        | PRIS       | ARIS      |
| Туре          | RO   | RO | RO       | RO | RO   | RO | RO       | RO      | RO        | RO                        | RO       | RO         | RO       | RO     | RO         | RO        |
| Reset         | 0    | 0  | 0        | 0  | 0    | 0  | 0        | 0       | 0         | 0                         | 0        | 0          | 0        | 0      | 0          | 0         |
|               |      |    |          |    |      |    |          |         |           |                           |          |            |          |        |            |           |
| Bit/F         | ield |    | Name     |    | Туре |    | Reset    | Descr   | iption    |                           |          |            |          |        |            |           |
|               |      |    |          |    |      |    |          |         |           |                           |          |            |          |        |            |           |
| 31:           | :2   |    | reserved |    | RO   |    | 0        |         |           | uld not re                |          |            |          |        | •          |           |
|               |      |    |          |    |      |    |          |         |           | vith future<br>oss a rea  |          |            |          |        | ed bit sr  | ioula pe  |
|               |      |    |          |    |      |    |          | preser  | veu aci   | 055 8 108                 | au-mou   | iy-write t | speratio |        |            |           |
| 1             |      |    | PRIS     |    | RO   |    | 0        | Progra  | amming    | Raw Inte                  | errupt S | tatus      |          |        |            |           |
|               |      |    |          |    |      |    |          | This b  | it indica | tes the c                 | urrent s | tate of th | e progra | ammina | cycle If   | set the   |
|               |      |    |          |    |      |    |          |         |           | cycle coi                 |          |            | 1 0      |        | ,          | ,         |
|               |      |    |          |    |      |    |          |         |           | d. Progra                 |          |            |          |        |            |           |
|               |      |    |          |    |      |    |          | -       |           | ough the                  | Flash I  | lemory     | Control  | (FMC)  | register b | oits (see |
|               |      |    |          |    |      |    |          | page    | 116).     |                           |          |            |          |        |            |           |
| 0             |      |    | ARIS     |    | RO   |    | 0        | Acces   | s Raw I   | nterrupt                  | Status   |            |          |        |            |           |
|               |      |    |          |    |      |    |          |         |           | •                         |          |            |          |        |            |           |
|               |      |    |          |    |      |    |          |         |           | tes if the f<br>the flash |          | • •        |          |        | •          | •         |
|               |      |    |          |    |      |    |          |         |           | ead Enal                  |          | •          |          |        |            | -         |
|               |      |    |          |    |      |    |          |         |           | able (FMI                 | •        |            |          |        | -          |           |
|               |      |    |          |    |      |    |          | •       |           | access th                 | ,        | 0          |          | ,      |            |           |
|               |      |    |          |    |      |    |          |         | -         |                           |          |            |          |        |            |           |

### Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

This register controls whether the flash controller generates interrupts to the controller.

| Flash Controller Interrupt Mask (FCIM)                          |  |
|-----------------------------------------------------------------|--|
| Base 0x400F.D000<br>Offset 0x010<br>Type R/W, reset 0x0000.0000 |  |

|                    | 31 | 30 | 29                        | 28 | 27                | 26 | 25              | 24                                                                                                                                                                                                                                                                  | 23   | 22 | 21 | 20 | 19 | 18 | 17    | 16    |
|--------------------|----|----|---------------------------|----|-------------------|----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|----|----|----|----|-------|-------|
|                    |    | 1  | r r                       |    | r r<br>1          |    | •               | rese                                                                                                                                                                                                                                                                | rved |    |    | 1  |    | r  | I     |       |
| Туре               | RO | RO | RO                        | RO | RO                | RO | RO              | RO                                                                                                                                                                                                                                                                  | RO   | RO | RO | RO | RO | RO | RO    | RO    |
| Reset              | 0  | 0  | 0                         | 0  | 0                 | 0  | 0               | 0                                                                                                                                                                                                                                                                   | 0    | 0  | 0  | 0  | 0  | 0  | 0     | 0     |
|                    |    |    |                           |    |                   |    |                 |                                                                                                                                                                                                                                                                     |      |    |    |    |    |    |       |       |
|                    | 15 | 14 | 13                        | 12 | 11                | 10 | 9               | 8                                                                                                                                                                                                                                                                   | 7    | 6  | 5  | 4  | 3  | 2  | 1     | 0     |
|                    |    | T  | r r                       |    | r r<br>1          |    | rese            | erved                                                                                                                                                                                                                                                               |      |    |    | 1  |    | r  | PMASK | AMASK |
| Туре               | RO | RO | RO                        | RO | RO                | RO | RO              | RO                                                                                                                                                                                                                                                                  | RO   | RO | RO | RO | RO | RO | R/W   | R/W   |
| Reset              | 0  | 0  | 0                         | 0  | 0                 | 0  | 0               | 0                                                                                                                                                                                                                                                                   | 0    | 0  | 0  | 0  | 0  | 0  | 0     | 0     |
| Bit/Fi<br>31:<br>1 | 2  |    | Name<br>reserved<br>PMASK |    | Type<br>RO<br>R/W |    | Reset<br>0<br>0 | <ul> <li>Description</li> <li>Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.</li> </ul>                                 |      |    |    |    |    |    |       |       |
| 0                  |    |    | AMASK                     |    | R/W               |    | 0               | Access Interrupt Mask<br>This bit controls the reporting of the access raw interrupt status to the<br>controller. If set, an access-generated interrupt is promoted to the<br>controller. Otherwise, interrupts are recorded but suppressed from the<br>controller. |      |    |    |    |    |    |       | the   |

### Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

Flash Controller Masked Interrupt Status and Clear (FCMISC) Base 0x400F.D000 Offset 0x014 Type R/W1C, reset 0x0000.0000

|             | 31 | 30 | 29                        | 28 | 27                  | 26 | 25              | 24                         | 23                                  | 22                              | 21                           | 20                                                   | 19                                        | 18                   | 17         | 16        |
|-------------|----|----|---------------------------|----|---------------------|----|-----------------|----------------------------|-------------------------------------|---------------------------------|------------------------------|------------------------------------------------------|-------------------------------------------|----------------------|------------|-----------|
|             |    | 1  | 1 1                       |    | · ·                 |    | 1               | rese                       | rved<br>I                           | 1                               |                              | 1                                                    | 1                                         | 1                    | 1          |           |
| Туре        | RO | RO | RO                        | RO | RO                  | RO | RO              | RO                         | RO                                  | RO                              | RO                           | RO                                                   | RO                                        | RO                   | RO         | RO        |
| Reset       | 0  | 0  | 0                         | 0  | 0                   | 0  | 0               | 0                          | 0                                   | 0                               | 0                            | 0                                                    | 0                                         | 0                    | 0          | 0         |
|             | 15 | 14 | 13                        | 12 | 11                  | 10 | 9               | 8                          | 7                                   | 6                               | 5                            | 4                                                    | 3                                         | 2                    | 1          | 0         |
|             |    | 1  |                           |    | · ·                 |    | rese            | erved                      | 1                                   | 1                               |                              | 1                                                    | 1                                         | 1                    | PMISC      | AMISC     |
| Туре        | RO | RO | RO                        | RO | RO                  | RO | RO              | RO                         | RO                                  | RO                              | RO                           | RO                                                   | RO                                        | RO                   | R/W1C      | R/W1C     |
| Reset       | 0  | 0  | 0                         | 0  | 0                   | 0  | 0               | 0                          | 0                                   | 0                               | 0                            | 0                                                    | 0                                         | 0                    | 0          | 0         |
| Bit/F<br>31 |    |    | Name<br>reserved<br>PMISC |    | Type<br>RO<br>R/W1C |    | Reset<br>0<br>0 | compa<br>prese             | are shou<br>atibility v<br>rved acr | vith futur<br>oss a rea         | e produ<br>ad-moc            | ne value<br>ucts, the v<br>lify-write<br>pt Status   | value of<br>operatio                      | a reserv<br>n.       | •          |           |
|             |    |    |                           |    |                     |    |                 | This b<br>progra<br>by wri | oit indica<br>amming<br>ting a 1.   | tes whet<br>cycle co<br>The PRI | her an<br>mplete<br>s bit in | interrupt<br>d and wa<br>the <b>FCR</b><br>s cleared | was sigi<br>s not ma<br>I <b>S</b> regist | naled be<br>isked. T | his bit is | cleared   |
| 0           | 1  |    | AMISC                     |    | R/W1C               |    | 0               | Acces                      | s Mask                              | ed Interru                      | upt Stat                     | tus and C                                            | lear                                      |                      |            |           |
|             |    |    |                           |    |                     |    |                 | acces<br>a 1. T            | s was at                            | tempted                         | and wa                       | iterrupt w<br>s not mas<br><b>S</b> register         | sked. Th                                  | is bit is o          | cleared by | y writing |

#### 7.6 Flash Register Descriptions (System Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset.

### Register 7: USec Reload (USECRL), offset 0x140

**Note:** Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

| USec R<br>Base 0x4<br>Offset 0x7<br>Type R/W | 00F.E00<br>140 |    | RL)              |      |            |    |            |                                   |                                |                                       |                   |            |            |          |     |     |
|----------------------------------------------|----------------|----|------------------|------|------------|----|------------|-----------------------------------|--------------------------------|---------------------------------------|-------------------|------------|------------|----------|-----|-----|
|                                              | 31             | 30 | 29               | 28   | 27         | 26 | 25         | 24                                | 23                             | 22                                    | 21                | 20         | 19         | 18       | 17  | 16  |
|                                              |                | 1  | Ì                |      | 1          |    | 1          | rese                              | rved                           | Î                                     |                   | 1          |            |          |     | r   |
| Туре                                         | RO             | RO | RO               | RO   | RO         | RO | RO         | RO                                | RO                             | RO                                    | RO                | RO         | RO         | RO       | RO  | RO  |
| Reset                                        | 0              | 0  | 0                | 0    | 0          | 0  | 0          | 0                                 | 0                              | 0                                     | 0                 | 0          | 0          | 0        | 0   | 0   |
|                                              | 15             | 14 | 13               | 12   | 11         | 10 | 9          | 8                                 | 7                              | 6                                     | 5                 | 4          | 3          | 2        | 1   | 0   |
|                                              |                | 1  | 1                | rese | rved       |    | 1          | 1                                 |                                | 1                                     |                   | US         | EC         |          |     |     |
| Туре                                         | RO             | RO | RO               | RO   | RO         | RO | RO         | RO                                | R/W                            | R/W                                   | R/W               | R/W        | R/W        | R/W      | R/W | R/W |
| Reset                                        | 0              | 0  | 0                | 0    | 0          | 0  | 0          | 0                                 | 0                              | 0                                     | 0                 | 1          | 1          | 0        | 0   | 0   |
| Bit/Fi<br>31:                                |                | 1  | Name<br>reserved |      | Type<br>RO |    | Reset<br>0 | compa                             | are shou<br>atibility v        | uld not re<br>vith futur<br>oss a rea | e produ           | cts, the v | alue of a  | a reserv | •   |     |
| 7:(                                          | 0              |    | USEC             |      | R/W        |    | 0x18       | Micros<br>MHz -<br>progra<br>USEC | second l<br>1 of the<br>ammed. | Reload \<br>controlle                 | /alue<br>er clock | when the   | e flash is | being e  |     |     |

### Register 8: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200

**Note:** This register is aliased for backwards compatability.

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

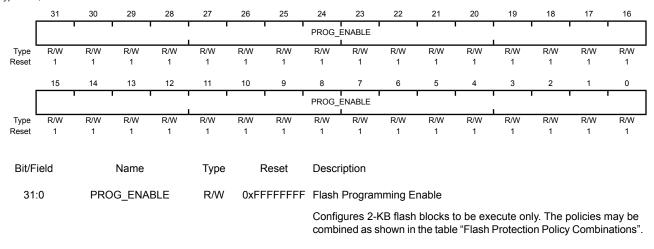
Flash Memory Protection Read Enable 0 (FMPRE0)

Base 0x400F.D000 Offset 0x130 and 0x200 Type R/W, reset 0xFFFF.FFFF

|       | 31   | 30  | 29     | 28  | 27       | 26   | 25     | 24    | 23                             | 22       | 21      | 20  | 19     | 18  | 17  | 16  |
|-------|------|-----|--------|-----|----------|------|--------|-------|--------------------------------|----------|---------|-----|--------|-----|-----|-----|
|       |      | 1   | 1      | 1   | r r<br>I |      | 1 I    | READ_ | I<br>ENABLE                    |          | 1       | 1   | ı<br>I | 1   | I   |     |
| Туре  | R/W  | R/W | R/W    | R/W | R/W      | R/W  | R/W    | R/W   | R/W                            | R/W      | R/W     | R/W | R/W    | R/W | R/W | R/W |
| Reset | 1    | 1   | 1      | 1   | 1        | 1    | 1      | 1     | 1                              | 1        | 1       | 1   | 1      | 1   | 1   | 1   |
|       | 15   | 14  | 13     | 12  | 11       | 10   | 9      | 8     | 7                              | 6        | 5       | 4   | 3      | 2   | 1   | 0   |
|       |      | T   | 1      | 1   | г т<br>1 |      | I I    | READ_ | I<br>ENABLE                    | Γ        | T       | 1   | 1      | 1   | I   | 1   |
| Туре  | R/W  | R/W | R/W    | R/W | R/W      | R/W  | R/W    | R/W   | R/W                            | R/W      | R/W     | R/W | R/W    | R/W | R/W | R/W |
| Reset | 1    | 1   | 1      | 1   | 1        | 1    | 1      | 1     | 1                              | 1        | 1       | 1   | 1      | 1   | 1   | 1   |
|       |      |     |        |     | -        |      |        | _     |                                |          |         |     |        |     |     |     |
| Bit/F | ield |     | Name   |     | Туре     | ł    | Reset  | Desci | ription                        |          |         |     |        |     |     |     |
| 31    | :0   | REA | ND_ENA | BLE | R/W      | 0xFI | FFFFFF | The p | Read Er<br>olicies m<br>Combin | nay be c | ombined |     |        |     |     |     |
|       |      |     |        |     |          |      |        | Value | 9                              | Descri   | ption   |     |        |     |     |     |

0xFFFFFFF Enables 64 KB of flash.

### Register 9: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400


**Note:** This register is aliased for backwards compatability.

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 0 (FMPPE0)

Base 0x400F.D000 Offset 0x134 and 0x400 Type R/W, reset 0xFFFF.FFFF



Value Description

0xFFFFFFF Enables 64 KB of flash.

### Register 10: User Debug (USER\_DBG), offset 0x1D0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides a write-once mechanism to disable external debugger access to the device in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0 disables any external debugger access to the device permanently, starting with the next power-up cycle of the device. The NOTWRITTEN bit (bit 31) indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once.

| User De<br>Base 0x4<br>Offset 0x7<br>Type R/W | 00F.E000<br>1D0 | о —      | -   |     |     |     |        |                   |                       |            |          |           |            |            |           |           |
|-----------------------------------------------|-----------------|----------|-----|-----|-----|-----|--------|-------------------|-----------------------|------------|----------|-----------|------------|------------|-----------|-----------|
|                                               | 31              | 30       | 29  | 28  | 27  | 26  | 25     | 24                | 23                    | 22         | 21       | 20        | 19         | 18         | 17        | 16        |
|                                               | NW              |          | 1   | 1   |     |     |        |                   | DATA                  | 1          | 1        | 1         | 1          | 1          | 1         |           |
| Туре                                          | R/W             | R/W      | R/W | R/W | R/W | R/W | R/W    | R/W               | R/W                   | R/W        | R/W      | R/W       | R/W        | R/W        | R/W       | R/W       |
| Reset                                         | 1               | 1        | 1   | 1   | 1   | 1   | 1      | 1                 | 1                     | 1          | 1        | 1         | 1          | 1          | 1         | 1         |
| _                                             | 15              | 14       | 13  | 12  | 11  | 10  | 9      | 8                 | 7                     | 6          | 5        | 4         | 3          | 2          | 1         | 0         |
|                                               |                 | 1        | I   | 1   | г т |     | DAT    | A                 |                       | 1          | 1        | 1         |            | 1          | DBG1      | DBG0      |
| Туре                                          | R/W             | R/W<br>1 | R/W | R/W | R/W | R/W | R/W    | R/W               | R/W                   | R/W<br>1   | R/W      | R/W<br>1  | R/W        | R/W        | R/W       | R/W       |
| Reset                                         | 1               | 1        | 1   | 1   | 1   | 1   | 1      | 1                 | 1                     | 1          | 1        | 1         | 1          | 1          | 1         | 0         |
| Bit/Field Name Type Reset Description         |                 |          |     |     |     |     |        |                   | ription               |            |          |           |            |            |           |           |
| 31 NW                                         |                 |          |     |     | R/W |     | 1      | User I<br>writter | Debug N<br>n.         | lot Writte | en. Spec | ifies tha | t this 32  | -bit dwo   | rd has n  | ot been   |
| 30:2 DATA R/W 0x1FFFFf                        |                 |          |     |     |     |     | FFFFFF |                   | Data. Co<br>an only t |            |          | data valu | ie. This f | ield is in | itialized | to all 1s |
| 1 DBG1 R/W 1 Debug Control<br>to be available |                 |          |     |     |     |     |        |                   |                       | DBG1 bit   | must be  | 1 and D   | BG0 mus    | st be 0 fo | r debug   |           |
| 0 DBG0 R/W 0 Debug Contro<br>to be availabl   |                 |          |     |     |     |     |        |                   |                       | DBG1 bit   | must be  | 1 and D   | BG0 mus    | st be 0 fo | r debug   |           |

### Register 11: User Register 0 (USER\_REG0), offset 0x1E0

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

### User Register 0 (USER\_REG0)

Base 0x400F.E000 Offset 0x1E0

Type R/W, reset 0x9FFF.FFFF

|       | ,                                     |     |     |                |                        |          |           |                       |            |          |           |            |            |           |           |     |   |
|-------|---------------------------------------|-----|-----|----------------|------------------------|----------|-----------|-----------------------|------------|----------|-----------|------------|------------|-----------|-----------|-----|---|
|       | 31                                    | 30  | 29  | 28             | 27                     | 26       | 25        | 24                    | 23         | 22       | 21        | 20         | 19         | 18        | 17        | 16  | _ |
|       | NW                                    |     | 1   |                |                        |          |           |                       | DATA       |          |           |            | ı<br>1     | 1         |           |     |   |
| Туре  | R/W                                   | R/W | R/W | R/W            | R/W                    | R/W      | R/W       | R/W                   | R/W        | R/W      | R/W       | R/W        | R/W        | R/W       | R/W       | R/W |   |
| Reset | 1                                     | 0   | 0   | 1              | 1                      | 1        | 1         | 1                     | 1          | 1        | 1         | 1          | 1          | 1         | 1         | 1   |   |
| -     | 15                                    | 14  | 13  | 12             | 11                     | 10       | 9         | 8                     | 7          | 6        | 5         | 4          | 3          | 2         | 1         | 0   |   |
|       |                                       | I   | 1   |                |                        |          | 1 1       | DA                    | I I<br>ATA |          |           |            | 1          | 1         | I         | 1   |   |
| Туре  | R/W                                   | R/W | R/W | R/W            | R/W                    | R/W      | R/W       | R/W                   | R/W        | R/W      | R/W       | R/W        | R/W        | R/W       | R/W       | R/W |   |
| Reset | 1                                     | 1   | 1   | 1              | 1                      | 1        | 1         | 1                     | 1          | 1        | 1         | 1          | 1          | 1         | 1         | 1   |   |
|       | /Field Name Type Reset<br>31 NW R/W 1 |     |     | Descr<br>Not W | 'iption<br>/ritten. S∣ | pecifies | that this | 32-bit d              | word ha    | s not be | en writte | en.        |            |           |           |     |   |
| 30:   |                                       |     |     |                | 0x1F                   | FFFFFF   |           | Data. Co<br>an only b |            |          | lata valu | ie. This f | ield is in | itialized | to all 1s |     |   |

### Register 12: User Register 1 (USER\_REG1), offset 0x1E4

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

20

R/W

1

4

R/W

1

19

R/W

1

3

R/W

1

18

R/W

1

2

R/W

1

17

R/W

1

1

R/W

1

16

R/W

1

0

R/W

1

#### User Register 1 (USER\_REG1) Base 0x400F.E000 Offset 0x1E4 Type R/W, reset 0x9FFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 NW DATA R/W Туре 0 0 Reset 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 DATA Туре R/W Reset 1 1 1 1 1 1 1 1 1 1 1

| Bit/Field | Name | Туре | Reset      | Description                                                                                                |
|-----------|------|------|------------|------------------------------------------------------------------------------------------------------------|
| 31        | NW   | R/W  | 1          | Not Written. Specifies that this 32-bit dword has not been written.                                        |
| 30:0      | DATA | R/W  | 0x1FFFFFFF | User Data. Contains the user data value. This field is initialized to all 1s and can only be written once. |

### Register 13: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

| _                | 31   | 30  | 29    | 28  | 27       | 26   | 25     | 24     | 23                             | 22      | 21  | 20  | 19  | 18  | 17  | 16  |
|------------------|------|-----|-------|-----|----------|------|--------|--------|--------------------------------|---------|-----|-----|-----|-----|-----|-----|
|                  |      |     |       |     | · ·      |      |        | READ_I | ENABLE                         |         |     |     |     | I   |     |     |
| <b>ц</b><br>Туре | R/W  | R/W | R/W   | R/W | R/W      | R/W  | R/W    | R/W    | R/W                            | R/W     | R/W | R/W | R/W | R/W | R/W | R/W |
| leset            | 0    | 0   | 0     | 0   | 0        | 0    | 0      | 0      | 0                              | 0       | 0   | 0   | 0   | 0   | 0   | 0   |
|                  | 15   | 14  | 13    | 12  | 11       | 10   | 9      | 8      | 7                              | 6       | 5   | 4   | 3   | 2   | 1   | 0   |
|                  |      | ſ   | 1     | 1   | 1 1<br>1 |      | і I    | READ_I | ENABLE                         |         | r   |     |     | 1   | r   | 1   |
| Туре             | R/W  | R/W | R/W   | R/W | R/W      | R/W  | R/W    | R/W    | R/W                            | R/W     | R/W | R/W | R/W | R/W | R/W | R/W |
| leset            | 0    | 0   | 0     | 0   | 0        | 0    | 0      | 0      | 0                              | 0       | 0   | 0   | 0   | 0   | 0   | 0   |
| Bit/Fi           | ield |     | Name  |     | Туре     | F    | Reset  | Descr  | iption                         |         |     |     |     |     |     |     |
| 31:              | 0    | REA | D_ENA | BLE | R/W      | 0x0( | 000000 | The p  | Read Er<br>olicies m<br>Combin | ay be c |     |     |     |     |     |     |

Flash Memory Protection Read Enable 1 (FMPRE1) Base 0x400F.E000

Value Description

0x00000000 Enables 64 KB of flash.

### Register 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

| Offset 0x<br>Type R/W |                                       | x0000.00 | 00       |          |          |          |          |          |                                |          |          |          |          |          |          |          |
|-----------------------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|--------------------------------|----------|----------|----------|----------|----------|----------|----------|
|                       | 31                                    | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23                             | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
|                       |                                       | I        |          | 1        |          |          | 1 1      | READ_I   | ENABLE                         |          | 1        |          |          | I        | I        | ,        |
| Type<br>Reset         | R/W<br>0                              | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                       | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
|                       | 15                                    | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7                              | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
|                       |                                       | 1        | r        | 1        | г т<br>1 |          | 1 1      | READ_I   | I I<br>ENABLE                  |          | 1 1      |          |          | I        | 1        |          |
| Type<br>Reset         | R/W<br>0                              | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                       | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| Bit/F                 | Bit/Field Name Type Reset Description |          |          |          |          |          |          |          |                                |          |          |          |          |          |          |          |
| 31                    | :0                                    | REA      | D_ENA    | BLE      | R/W      | 0x0(     | 0000000  | The p    | Read En<br>olicies m<br>Combin | ay be c  | ombined  |          |          |          |          |          |

Flash Memory Protection Read Enable 2 (FMPRE2)

Base 0x400F.E000

Value Description

0x0000000 Enables 64 KB of flash.

### Register 15: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

| _                | 31   | 30  | 29    | 28  | 27       | 26   | 25     | 24     | 23                   | 22      | 21  | 20  | 19     | 18  | 17  | 16  |
|------------------|------|-----|-------|-----|----------|------|--------|--------|----------------------|---------|-----|-----|--------|-----|-----|-----|
|                  |      |     |       |     | · ·      |      |        | READ_  | ENABLE               |         |     |     |        | I   |     | 1   |
| <b>і</b><br>Туре | R/W  | R/W | R/W   | R/W | R/W      | R/W  | R/W    | R/W    | R/W                  | R/W     | R/W | R/W | R/W    | R/W | R/W | R/W |
| Reset            | 0    | 0   | 0     | 0   | 0        | 0    | 0      | 0      | 0                    | 0       | 0   | 0   | 0      | 0   | 0   | 0   |
|                  | 15   | 14  | 13    | 12  | 11       | 10   | 9      | 8      | 7                    | 6       | 5   | 4   | 3      | 2   | 1   | 0   |
|                  |      | r   | 1     | 1   | г г<br>1 |      | і I    | READ_E | ENABLE               |         |     |     | I<br>I | I   | 1   | r   |
| Туре             | R/W  | R/W | R/W   | R/W | R/W      | R/W  | R/W    | R/W    | R/W                  | R/W     | R/W | R/W | R/W    | R/W | R/W | R/W |
| leset            | 0    | 0   | 0     | 0   | 0        | 0    | 0      | 0      | 0                    | 0       | 0   | 0   | 0      | 0   | 0   | 0   |
| Bit/Fi           | ield |     | Name  |     | Туре     | F    | Reset  | Descr  | iption               |         |     |     |        |     |     |     |
| 31:              | 0    | REA | D_ENA | BLE | R/W      | 0x0( | 000000 | The p  | Read Er<br>olicies m | ay be c |     |     |        |     |     |     |

Flash Memory Protection Read Enable 3 (FMPRE3) Base 0x400F.E000

Value Description

0x00000000 Enables 64 KB of flash.

# Register 16: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 1 (FMPPE1) Base 0x400F.E000 Offset 0x404 Type R/W, reset 0x0000.0000

|               | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23                                 | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
|---------------|----------|----------|----------|----------|----------|----------|----------|----------|------------------------------------|----------|----------|----------|----------|----------|----------|----------|
|               |          | 1        | 1        | 1        | г г<br>1 |          |          | PROG_I   | I I<br>ENABLE<br>I                 |          |          |          | 1        | I        |          |          |
| Type<br>Reset | R/W<br>0                           | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| _             | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7                                  | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
|               |          | T        | 1        | I        | г т<br>1 |          | 1 1      | PROG_I   | I I<br>ENABLE                      |          | ſ        | r i      | r<br>1   | I        |          |          |
| Туре          | R/W                                | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      |
| Reset         | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0                                  | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Bit/F         | ield     |          | Name     |          | Туре     | F        | Reset    | Descr    | iption                             |          |          |          |          |          |          |          |
| 31:           | :0       | PRC      | G_ENA    | BLE      | R/W      | 0x0(     | 000000   | only. 7  | Program<br>The polic<br>ction Poli | ies may  | be com   | bined as |          |          |          |          |

Value Description 0x00000000 Enables 64 KB of flash.

### Register 17: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 2 (FMPPE2) Base 0x400F.E000 Offset 0x408

Type R/W, reset 0x0000.0000

| -             | 31               | 30       | 29       | 28       | 27       | 26       | 25       | 24                                | 23       | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
|---------------|------------------|----------|----------|----------|----------|----------|----------|-----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|               |                  | 1        | 1        | 1        |          |          |          | PROG_                             | ENABLE   |          | 1        | 1        |          | 1        | 1        | '        |
| Type<br>Reset | R/W<br>0         | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                          | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| _             | 15               | 14       | 13       | 12       | 11       | 10       | 9        | 8                                 | 7        | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
|               |                  | 1        | I        | I        | і і      |          | 1 1      | PROG_                             | ENABLE   |          |          | 1        |          | 1        | 1        |          |
| Туре          | R/W              | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W                               | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      |
| Reset         | 0                | 0        | 0        | 0        | 0        | 0        | 0        | 0                                 | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|               |                  |          |          |          |          |          |          |                                   |          |          |          |          |          |          |          |          |
| Bit/Fi        | ield             |          | Name     |          | Туре     | F        | Reset    | Descr                             | ription  |          |          |          |          |          |          |          |
| 31:           | 31:0 PROG_ENABLE |          |          | R/W      | 0x0      | 000000   | only.    | Program<br>The polic<br>ction Pol | ies may  | be com   | bined as |          |          |          |          |          |
|               |                  |          |          |          |          |          |          |                                   |          |          |          |          |          |          |          |          |

Value Description 0x00000000 Enables 64 KB of flash.

# Register 18: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C

**Note:** Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 3 (FMPPE3) Base 0x400F.E000 Offset 0x400 Type R/W, reset 0x0000.0000

|               | <i>'</i>         |                |          |          |          |          |          |                                    |          |          |          |          |          |          |          |          |
|---------------|------------------|----------------|----------|----------|----------|----------|----------|------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|               | 31               | 30             | 29       | 28       | 27       | 26       | 25       | 24                                 | 23       | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
|               |                  | 1              | 1        | 1        |          |          | 1 1      | PROG_                              | ENABLE   |          |          |          | 1        | I        |          |          |
| Type<br>Reset | R/W<br>0         | R/W<br>0       | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                           | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
|               | 15               | 14             | 13       | 12       | 11       | 10       | 9        | 8                                  | 7        | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
| [             |                  | 1              | 1        | I        |          |          | 1 1      | PROG_                              | ENABLE   |          | 1        |          |          | r        |          | $\Box$   |
| Туре          | R/W              | R/W            | R/W      | R/W      | R/W      | R/W      | R/W      | R/W                                | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      |
| Reset         | 0                | 0              | 0        | 0        | 0        | 0        | 0        | 0                                  | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Bit/F         |                  | Name Type Rese |          |          | Reset    | Descr    | •        |                                    |          |          |          |          |          |          |          |          |
| 31:           | 31:0 PROG_ENABLE |                |          | R/W      | 0x0(     | 0000000  | only.    | Program<br>The polic<br>ction Poli | ies may  | be com   | bined as |          |          |          |          |          |

Value Description 0x00000000 Enables 64 KB of flash.

### 8 General-Purpose Input/Outputs (GPIOs)

The GPIO module is composed of eight physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G, and Port H). The GPIO module is FiRM-compliant and supports 24-56 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:

- Programmable control for GPIO interrupts
  - Interrupt generation masking
  - Edge-triggered on rising, falling, or both
  - Level-sensitive on High or Low values
- 5-V-tolerant input/outputs
- Bit masking in both read and write operations through address lines
- Programmable control for GPIO pad configuration
  - Weak pull-up or pull-down resistors
  - 2-mA, 4-mA, and 8-mA pad drive
  - Slew rate control for the 8-mA drive
  - Open drain enables
  - Digital input enables

### 8.1 **Function Description**

Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Each GPIO port is a separate hardware instantiation of the same physical block. The LM3S2139 microcontroller contains eight ports and thus eight of these physical GPIO blocks.

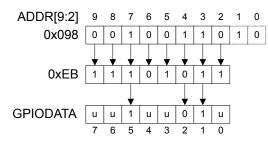
### 8.1.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

### 8.1.1.1 Data Direction Operation

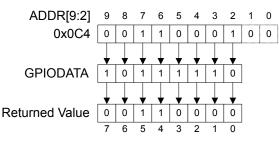
The **GPIO Direction (GPIODIR)** register (see page 141) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data

direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.


### 8.1.1.2 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 140) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.


For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 8-1 on page 134, where u is data unchanged by the write.

### Figure 8-1. GPIODATA Write Example



During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 8-2 on page 134.

### Figure 8-2. GPIODATA Read Example



### 8.1.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- **GPIO Interrupt Sense (GPIOIS)** register (see page 142)
- GPIO Interrupt Both Edges (GPIOIBE) register (see page 143)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 144)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 145).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 146 and page 147). As the name implies, the **GPIOMIS** register only shows interrupt conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC registers until the conversion is completed.

Interrupts are cleared by writing a 1 to the GPIO Interrupt Clear (GPIOICR) register (see page 148).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

### 8.1.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 149), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

### 8.1.4 Commit Control

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 149) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 159) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 160) have been set to 1.

### 8.1.5 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the **GPIODR2R**, **GPIODR4R**, **GPIODR8R**, **GPIOODR**, **GPIOPUR**, **GPIOPDR**, **GPIOSLR**, and **GPIODEN** registers.

### 8.1.6 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

### 8.2 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) are configured out of reset to be undriven (tristate): **GPIOAFSEL=**0, **GPIODEN=**0, **GPIOPDR=**0, and **GPIOPUR=**0. Table 8-1 on page 136 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 8-2 on page 136 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

| Configuration                                 | GPIO Reg | gister Bit V | alue <sup>a</sup> |     |     |     |      |      |      |     |
|-----------------------------------------------|----------|--------------|-------------------|-----|-----|-----|------|------|------|-----|
|                                               | AFSEL    | DIR          | ODR               | DEN | PUR | PDR | DR2R | DR4R | DR8R | SLR |
| Digital Input (GPIO)                          | 0        | 0            | 0                 | 1   | ?   | ?   | Х    | Х    | X    | X   |
| Digital Output (GPIO)                         | 0        | 1            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Open Drain Input<br>(GPIO)                    | 0        | 0            | 1                 | 1   | X   | X   | X    | X    | X    | X   |
| Open Drain Output<br>(GPIO)                   | 0        | 1            | 1                 | 1   | X   | X   | ?    | ?    | ?    | ?   |
| Open Drain<br>Input/Output (I <sup>2</sup> C) | 1        | X            | 1                 | 1   | X   | X   | ?    | ?    | ?    | ?   |
| Digital Input (Timer<br>CCP)                  | 1        | X            | 0                 | 1   | ?   | ?   | X    | X    | X    | X   |
| Digital Output (Timer<br>PWM)                 | 1        | X            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Digital Input/Output<br>(SSI)                 | 1        | X            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Digital Input/Output<br>(UART)                | 1        | X            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |
| Analog Input<br>(Comparator)                  | 0        | 0            | 0                 | 0   | 0   | 0   | X    | X    | X    | X   |
| Digital Output<br>(Comparator)                | 1        | X            | 0                 | 1   | ?   | ?   | ?    | ?    | ?    | ?   |

### Table 8-1. GPIO Pad Configuration Examples

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

### Table 8-2. GPIO Interrupt Configuration Example

| Register |                               | Pin 2 Bit Val | ue <sup>a</sup> |   |   |   |   |   |   |
|----------|-------------------------------|---------------|-----------------|---|---|---|---|---|---|
|          | Interrupt<br>Event<br>Trigger | 7             | 6               | 5 | 4 | 3 | 2 | 1 | 0 |
| GPIOIS   | 0=edge<br>1=level             | X             | X               | x | х | x | 0 | х | Х |

| Register | Desired                                                                     | Pin 2 Bit Value <sup>a</sup> |   |   |   |   |   |   |   |  |  |  |  |  |  |
|----------|-----------------------------------------------------------------------------|------------------------------|---|---|---|---|---|---|---|--|--|--|--|--|--|
|          | Interrupt<br>Event<br>Trigger                                               | 7                            | 6 | 5 | 4 | 3 | 2 | 1 | 0 |  |  |  |  |  |  |
| GPIOIBE  | 0=single<br>edge<br>1=both<br>edges                                         | Х                            | X | Х | X | Х | 0 | Х | x |  |  |  |  |  |  |
| GPIOIEV  | 0=Low level,<br>or negative<br>edge<br>1=High level,<br>or positive<br>edge |                              | X | x | X | X | 1 | x | X |  |  |  |  |  |  |
| GPIOIM   | 0=masked<br>1=not<br>masked                                                 | 0                            | 0 | 0 | 0 | 0 | 1 | 0 | 0 |  |  |  |  |  |  |

a. X=Ignored (don't care bit)

### 8.3 Register Map

Table 8-3 on page 138 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

- GPIO Port A: 0x4000.4000
- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000
- GPIO Port F: 0x4002.5000
- GPIO Port G: 0x4002.6000
- GPIO Port H: 0x4002.7000

Important: The GPIO registers in this chapter are duplicated in each GPIO block, however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to those unconnected bits has no effect and reading those unconnected bits returns no meaningful data.

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

The default register type for the **GPIOCR** register is RO for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only

GPIOs that are protected by the **GPIOCR** register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.

The default reset value for the **GPIOCR** register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-commitable. Because of this, the default reset value of **GPIOCR** for GPIO Port B is 0x0000.007F while the default reset value of **GPIOCR** for Port C is 0x0000.00F0.

### Table 8-3. GPIO Register Map

| Offset | Name          | Туре | Reset         | Description                      | See<br>page |
|--------|---------------|------|---------------|----------------------------------|-------------|
| 0x000  | GPIODATA      | R/W  | 0x0000.0000   | GPIO Data                        | 140         |
| 0x400  | GPIODIR       | R/W  | 0x0000.0000   | GPIO Direction                   | 141         |
| 0x404  | GPIOIS        | R/W  | 0x0000.0000   | GPIO Interrupt Sense             | 142         |
| 0x408  | GPIOIBE       | R/W  | 0x0000.0000   | GPIO Interrupt Both Edges        | 143         |
| 0x40C  | GPIOIEV       | R/W  | 0x0000.0000   | GPIO Interrupt Event             | 144         |
| 0x410  | GPIOIM        | R/W  | 0x0000.0000   | GPIO Interrupt Mask              | 145         |
| 0x414  | GPIORIS       | RO   | 0x0000.0000   | GPIO Raw Interrupt Status        | 146         |
| 0x418  | GPIOMIS       | RO   | 0x0000.0000   | GPIO Masked Interrupt Status     | 147         |
| 0x41C  | GPIOICR       | W1C  | 0x0000.0000   | GPIO Interrupt Clear             | 148         |
| 0x420  | GPIOAFSEL     | R/W  | -             | GPIO Alternate Function Select   | 149         |
| 0x500  | GPIODR2R      | R/W  | 0x0000.00FF   | GPIO 2-mA Drive Select           | 151         |
| 0x504  | GPIODR4R      | R/W  | 0x0000.0000   | GPIO 4-mA Drive Select           | 152         |
| 0x508  | GPIODR8R      | R/W  | 0x0000.0000   | GPIO 8-mA Drive Select           | 153         |
| 0x50C  | GPIOODR       | R/W  | 0x0000.0000   | GPIO Open Drain Select           | 154         |
| 0x510  | GPIOPUR       | R/W  | -             | GPIO Pull-Up Select              | 155         |
| 0x514  | GPIOPDR       | R/W  | 0x0000.0000   | GPIO Pull-Down Select            | 156         |
| 0x518  | GPIOSLR       | R/W  | 0x0000.0000   | GPIO Slew Rate Control Select    | 157         |
| 0x51C  | GPIODEN       | R/W  | -             | GPIO Digital Enable              | 158         |
| 0x520  | GPIOLOCK      | R/W  | 0x0000.0001   | GPIO Lock                        | 159         |
| 0x524  | GPIOCR        | -    | -             | GPIO Commit                      | 160         |
| 0xFD0  | GPIOPeriphID4 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 4 | 162         |
| 0xFD4  | GPIOPeriphID5 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 5 | 163         |
| 0xFD8  | GPIOPeriphID6 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 6 | 164         |
| 0xFDC  | GPIOPeriphID7 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 7 | 165         |
| 0xFE0  | GPIOPeriphID0 | RO   | 0x0x0000.0061 | GPIO Peripheral Identification 0 | 166         |
| 0xFE4  | GPIOPeriphID1 | RO   | 0x0x0000.0000 | GPIO Peripheral Identification 1 | 167         |

| Offset | Name          | Туре | Reset         | Description                      | See<br>page |
|--------|---------------|------|---------------|----------------------------------|-------------|
| 0xFE8  | GPIOPeriphID2 | RO   | 0x0x0000.0018 | GPIO Peripheral Identification 2 | 168         |
| 0xFEC  | GPIOPeriphID3 | RO   | 0x0x0000.0001 | GPIO Peripheral Identification 3 | 169         |
| 0xFF0  | GPIOPCellID0  | RO   | 0x0x0000.000D | GPIO PrimeCell Identification 0  | 170         |
| 0xFF4  | GPIOPCellID1  | RO   | 0x0x0000.00F0 | GPIO PrimeCell Identification 1  | 171         |
| 0xFF8  | GPIOPCellID2  | RO   | 0x0x0000.0005 | GPIO PrimeCell Identification 2  | 172         |
| 0xFFC  | GPIOPCellID3  | RO   | 0x0x0000.00B1 | GPIO PrimeCell Identification 3  | 173         |

### 8.4 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

### Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 141).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

### GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x000

Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                                                                                                                                                                        | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|
|               |         | '       | •        |         | , ,     |         | 1       | rese    | rved                                                                                                                                                                                      | 1        | •        | •        | 1        | 1        | 1        | •        |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO<br>0                                                                                                                                                                                   | RO       |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | U                                                                                                                                                                                         | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                                                                                                                                                                         | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
|               |         |         | •        | rese    | rved    |         |         |         |                                                                                                                                                                                           | 1        | 1        | DA       | TA<br>I  | 1        | 1        | •        |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0                                                                                                                                                                                  | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                                                                                                                                                                         | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| Bit/F         | ield    |         | Name     |         | Туре    |         | Reset   | Descr   | iption                                                                                                                                                                                    |          |          |          |          |          |          |          |
| 31:           | :8      | I       | reserved |         | RO      |         | 0       | compa   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation. |          |          |          |          |          |          |          |
| 7:            | 0       |         | DATA     |         | R/W     |         | 0       | GPIO    | Data                                                                                                                                                                                      |          |          |          |          |          |          |          |

# This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines $i_{paddr}[9:2]$ . Reads from this register return its current state. Writes to this register only affect bits that are not masked by $i_{paddr}[9:2]$ and are configured as outputs. See "Data Register Operation" on page 134 for examples of reads and writes.

### Register 2: GPIO Direction (GPIODIR), offset 0x400

The **GPIODIR** register is the data direction register. Bits set to 1 in the **GPIODIR** register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

### GPIO Direction (GPIODIR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x400 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29      | 28      | 27      | 26      | 25          | 24      | 23      | 22         | 21      | 20                           | 19      | 18      | 17      | 16      |
|---------------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|------------|---------|------------------------------|---------|---------|---------|---------|
|               |         |         | •       |         |         |         | •           | rese    | rved    | •          |         |                              | 1       | •       |         | 1       |
| Type<br>Reset | RO<br>0     | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                      | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |
| Reset         |         |         |         |         |         |         |             |         |         |            |         |                              |         |         |         |         |
| I             | 15      | 14      | 13      | 12      | 11      | 10      | 9           | 8       | 7       | 6          | 5       | 4                            | 3       | 2       | 1       | 0       |
|               |         | •       |         | rese    | rved    |         |             |         |         | •          |         | D                            | ir<br>I | •       | -       |         |
| Туре          | RO          | RO      | R/W     | R/W        | R/W     | R/W                          | R/W     | R/W     | R/W     | R/W     |
| Reset         | 0       | 0       | 0       | 0       | 0       | 0       | 0           | 0       | 0       | 0          | 0       | 0                            | 0       | 0       | 0       | 0       |
|               |         |         |         |         | _       |         |             | _       |         |            |         |                              |         |         |         |         |
| Bit/F         | ield    |         | Name    |         | Туре    | I       | Reset       | Descr   | iption  |            |         |                              |         |         |         |         |
| 31:           | C       |         |         |         |         | compa   | atibility v |         | e produ | cts, the v | alue of | erved bit.<br>a reserv<br>n. | •       |         |         |         |

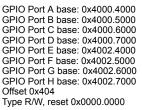
GPIO Data Direction

0: Pins are inputs.

1: Pins are outputs.

7:0

DIR


R/W

0x00

### Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

### GPIO Interrupt Sense (GPIOIS)



|       | 31 | 30 | 29 | 28   | 27    | 26 | 25 | 24   | 23   | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
|-------|----|----|----|------|-------|----|----|------|------|-----|-----|-----|-----|-----|-----|-----|
|       |    | 1  | 1  |      | 1     | 1  |    | rese | rved |     |     |     |     | 1   |     |     |
| Туре  | RO | RO | RO | RO   | RO    | RO | RO | RO   | RO   | RO  | RO  | RO  | RO  | RO  | RO  | RO  |
| Reset | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 15 | 14 | 13 | 12   | 11    | 10 | 9  | 8    | 7    | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|       |    | •  | -  | rese | erved | •  | -  | -    |      |     |     | 15  | 3   |     |     | •   |
| Туре  | RO | RO | RO | RO   | RO    | RO | RO | RO   | R/W  | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| Reset | 0  | 0  | 0  | 0    | 0     | 0  | 0  | 0    | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       |    |    |    |      |       |    |    |      |      |     |     |     |     |     |     |     |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31:8      | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 7:0       | IS       | R/W  | 0x00  | GPIO Interrupt Sense                                                                                                                                                                          |
|           |          |      |       | 0: Edge on corresponding his is detected (edge consitive)                                                                                                                                     |

0: Edge on corresponding pin is detected (edge-sensitive).

1: Level on corresponding pin is detected (level-sensitive).

### Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 142) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 144). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

#### GPIO Interrupt Both Edges (GPIOIBE)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port C base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x408 Type R/W, reset 0x0000.0000

|       | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24                        | 23          | 22                     | 21       | 20         | 19            | 18                          | 17      | 16  |
|-------|------|----|----------|------|------|----|-------|---------------------------|-------------|------------------------|----------|------------|---------------|-----------------------------|---------|-----|
|       |      | 1  | 1 1      |      |      |    | 1     | rese                      | rved        |                        |          |            |               | 1                           | 1       | 1   |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO                        | RO          | RO                     | RO       | RO         | RO            | RO                          | RO      | RO  |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0                         | 0           | 0                      | 0        | 0          | 0             | 0                           | 0       | 0   |
|       | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8                         | 7           | 6                      | 5        | 4          | 3             | 2                           | 1       | 0   |
|       |      | 1  |          | rese | rved |    | 1     | 1                         |             |                        |          | I          | 1<br>3E<br>1  | I                           | 1       |     |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO                        | R/W         | R/W                    | R/W      | R/W        | R/W           | R/W                         | R/W     | R/W |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0                         | 0           | 0                      | 0        | 0          | 0             | 0                           | 0       | 0   |
| Bit/F | ield |    | Name     |      | Туре | F  | Reset | Descr                     | iption      |                        |          |            |               |                             |         |     |
| 31:   | 8    |    | reserved |      | RO   |    | 0     | compa                     | atibility v |                        | e produ  | cts, the v | alue of       | erved bit<br>a reserv<br>n. | •       |     |
| 7:0   | D    |    | IBE      |      | R/W  |    | 0x00  | GPIO Interrupt Both Edges |             |                        |          |            |               |                             |         |     |
|       |      |    |          |      |      |    |       |                           |             | neration<br>gister (se |          | ,          | the <b>GP</b> | IO Interr                   | upt Eve | nt  |
|       |      |    |          |      |      |    |       | 1: Bot                    | h edges     | on the c               | correspo | nding pi   | n trigge      | r an inte                   | rrupt.  |     |

Note:

GPIOIEV.

Single edge is determined by the corresponding bit in

### Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 142). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

### GPIO Interrupt Event (GPIOIEV)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x40C Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                  | 23          | 22         | 21      | 20      | 19       | 18                           | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------------------------------------------------------------------|-------------|------------|---------|---------|----------|------------------------------|----------|----------|
|               |         |         |          |         |         |         | •       | rese                                                                | rved        |            |         |         |          | •                            | •        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                             | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                      | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                   | 7           | 6          | 5       | 4       | 3        | 2                            | 1        | 0        |
| [             | 15      | 14      | 1        | rese    | 1       | 10      | 1       | 1                                                                   | ,<br>       |            | 5       |         |          | 1                            | · ·      | <u> </u> |
|               |         |         |          | Tese    | l       |         |         |                                                                     |             |            |         |         | . v<br>I |                              |          |          |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO                                                                  | R/W         | R/W        | R/W     | R/W     | R/W      | R/W                          | R/W      | R/W      |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0                                                                   | 0           | 0          | 0       | 0       | 0        | 0                            | 0        | 0        |
| Bit/Fi        | ield    |         | Name     |         | Туре    | F       | Reset   | Descr                                                               | iption      |            |         |         |          |                              |          |          |
| 31:           | :8      |         | reserved |         | RO      |         | 0       | compa                                                               | atibility w | vith futur | e produ |         | alue of  | erved bit.<br>a reserv<br>n. | •        |          |
| 7:0           | 0       |         | IEV      |         | R/W     | (       | 0x00    | GPIO                                                                | Interrup    | t Event    |         |         |          |                              |          |          |
|               |         |         |          |         |         |         |         | 0: Falling edge or Low levels on corresponding pins trigger interru |             |            |         |         |          |                              | errupts. |          |

1: Rising edge or High levels on corresponding pins trigger interrupts.

# Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The GPIOIM register is the interrupt mask register. Bits set to High in GPIOIM allow the corresponding pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

#### GPIO Interrupt Mask (GPIOIM)

| GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>Offset 0x<br>Type R/W | rt C base<br>rt D base<br>rt E base<br>rt F base<br>rt G base<br>rt H base<br>410 | 0x4000.<br>0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>6000<br>7000 |      |           |    |            |                          |                                               |                         |                                  |           |                       |                       |                        |      |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|------|-----------|----|------------|--------------------------|-----------------------------------------------|-------------------------|----------------------------------|-----------|-----------------------|-----------------------|------------------------|------|
|                                                                                                               | 31                                                                                | 30                                                                                   | 29                                                   | 28   | 27        | 26 | 25         | 24                       | 23                                            | 22                      | 21                               | 20        | 19                    | 18                    | 17                     | 16   |
|                                                                                                               |                                                                                   |                                                                                      |                                                      |      |           |    | 1          | rese                     | rved                                          | 1                       | 1                                |           | 1                     | 1                     | 1                      | ,    |
| Туре                                                                                                          | RO                                                                                | RO                                                                                   | RO                                                   | RO   | RO        | RO | RO         | RO                       | RO                                            | RO                      | RO                               | RO        | RO                    | RO                    | RO                     | RO   |
| Reset                                                                                                         | 0                                                                                 | 0                                                                                    | 0                                                    | 0    | 0         | 0  | 0          | 0                        | 0                                             | 0                       | 0                                | 0         | 0                     | 0                     | 0                      | 0    |
|                                                                                                               | 15                                                                                | 14                                                                                   | 13                                                   | 12   | 11        | 10 | 9          | 8                        | 7                                             | 6                       | 5                                | 4         | 3                     | 2                     | 1                      | 0    |
|                                                                                                               |                                                                                   |                                                                                      |                                                      | rese | rved      |    | ì          |                          |                                               | I                       | I                                | I<br>IN   | I<br>NE               | 1                     | 1                      |      |
| Туре                                                                                                          | RO                                                                                | RO                                                                                   | RO                                                   | RO   | RO        | RO | RO         | RO                       | R/W                                           | R/W                     | R/W                              | R/W       | R/W                   | R/W                   | R/W                    | R/W  |
|                                                                                                               | 0                                                                                 |                                                                                      |                                                      |      |           |    |            |                          |                                               |                         |                                  |           |                       |                       | 0                      | 0    |
| Reset                                                                                                         | 0                                                                                 | 0                                                                                    | 0                                                    | 0    | 0         | 0  | 0          | 0                        | 0                                             | 0                       | 0                                | 0         | 0                     | 0                     | U                      | -    |
| Reset<br>Bit/F                                                                                                |                                                                                   | 0                                                                                    | 0<br>Name                                            | 0    | о<br>Туре |    | 0<br>Reset | 0<br>Descr               |                                               | 0                       | 0                                | 0         | 0                     | 0                     | 0                      | -    |
|                                                                                                               | ield                                                                              |                                                                                      |                                                      |      |           |    |            | Descr<br>Softwa<br>compa | iption<br>are shou<br>atibility v             | uld not re<br>vith futu | ely on th                        | e value o | of a rese<br>value of | erved bit<br>a reserv | . To prov<br>ed bit sh | vide |
| Bit/F                                                                                                         | ield<br>:8                                                                        |                                                                                      | Name                                                 |      | Туре      |    | Reset      | Descr<br>Softw<br>compa  | iption<br>are shou<br>atibility v<br>rved acr | uld not re<br>vith futu | ely on th<br>re produ<br>ad-modi | e value o | of a rese<br>value of | erved bit<br>a reserv | . To prov              | vide |

1: Corresponding pin interrupt is not masked.

#### Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 145). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x414 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21       | 20         | 19        | 18        | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|----------|------------|-----------|-----------|----------|----------|
|               |         |         |          |         |         |         | 1       | rese    | rved                                 |            |          |            |           | 1         | 1        | -        |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5        | 4          | 3         | 2         | 1        | 0        |
|               |         |         |          | rese    | rved    |         | 1       | 1       |                                      | · · · · ·  |          | R          | S         | 1         | 1        |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0  | RO<br>0  |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |          |            |           |           |          |          |
| 31:           | :8      |         | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | /ith futur | e produ  | cts, the v | alue of   | a reserv  | •        |          |
| 7:            | 0       |         | RIS      |         | RO      |         | 0x00    | GPIO    | Interrup                             | t Raw Si   | tatus    |            |           |           |          |          |
|               |         |         |          |         |         |         |         |         | cts the st<br>o maskir               |            | nterrupt | trigger o  | conditior | n detecti | on on pi | ns (raw, |

0: Corresponding pin interrupt requirements not met.1: Corresponding pin interrupt has met requirements.

June 26, 2007

#### Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC interrupt needs to be disabled in the SETNA register and the PortB interrupt handler polls the ADC registers until the conversion is completed.

**GPIOMIS** is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x418 Type RO, reset 0x000.0000

|               | ,       |            |                                |         |                                       |         |         |         |             |            |           |            |                                      |            |         |         |
|---------------|---------|------------|--------------------------------|---------|---------------------------------------|---------|---------|---------|-------------|------------|-----------|------------|--------------------------------------|------------|---------|---------|
|               | 31      | 30         | 29                             | 28      | 27                                    | 26      | 25      | 24      | 23          | 22         | 21        | 20         | 19                                   | 18         | 17      | 16      |
|               |         | 1          |                                |         | , , , , , , , , , , , , , , , , , , , |         | I       | rese    | rved        |            |           |            |                                      |            |         |         |
| Type<br>Reset | RO<br>0 | RO<br>0    | RO<br>0                        | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0 |
|               | 15      | 14         | 13                             | 12      | 11                                    | 10      | 9       | 8       | 7           | 6          | 5         | 4          | 3                                    | 2          | 1       | 0       |
|               |         | 1          | 1 1                            | rese    | r r                                   |         | 1       | 1       |             | · · · ·    | -         | M          | I                                    | -          | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0    | RO<br>0                        | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0 |
|               |         |            |                                |         |                                       |         |         |         |             |            |           |            |                                      |            |         |         |
| Bit/F         | ield    |            | Name                           |         | Туре                                  | I       | Reset   | Descr   | iption      |            |           |            |                                      |            |         |         |
| 31            | :8      |            | Name Type Res<br>reserved RO 0 |         |                                       |         |         |         | atibility v | vith futur | e produo  | cts, the v | of a rese<br>/alue of a<br>operation | a reserv   | •       |         |
| 7:            | 0       | MIS RO 0x0 |                                |         |                                       |         |         | GPIO    | Masked      | Interrup   | ot Status |            |                                      |            |         |         |
|               |         |            |                                |         |                                       |         |         | Maske   | ed value    | of interr  | upt due   | to corre   | sponding                             | g pin.     |         |         |
|               |         |            |                                |         |                                       |         |         | 0: Cor  | respond     | ling GPI   | O line in | terrupt n  | ot active                            | <b>)</b> . |         |         |
|               |         |            |                                |         |                                       |         |         |         |             |            |           |            |                                      |            |         |         |

1: Corresponding GPIO line asserting interrupt.

## Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

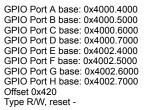
#### GPIO Interrupt Clear (GPIOICR) GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000

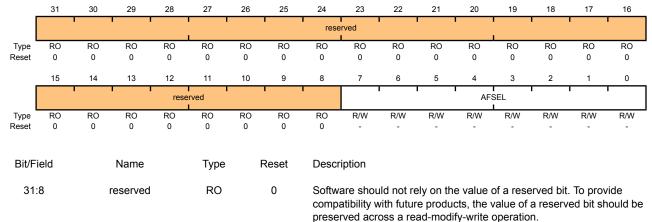
| GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0x4<br>Type W10 | t G base<br>t H base<br>11C | e: 0x4002<br>e: 0x4002 | .6000<br>7000 |         |         |         |         |         |             |                                       |           |            |          |          |          |          |
|------------------------------------------------------------|-----------------------------|------------------------|---------------|---------|---------|---------|---------|---------|-------------|---------------------------------------|-----------|------------|----------|----------|----------|----------|
| _                                                          | 31                          | 30                     | 29            | 28      | 27      | 26      | 25      | 24      | 23          | 22                                    | 21        | 20         | 19       | 18       | 17       | 16       |
|                                                            |                             | T                      |               |         | 1       |         | T       | rese    | rved        | I                                     |           | I          | 1        |          | 1        |          |
| Type<br>Reset                                              | RO<br>0                     | RO<br>0                | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0                               | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |
|                                                            | 15                          | 14                     | 13            | 12      | 11      | 10      | 9       | 8       | 7           | 6                                     | 5         | 4          | 3        | 2        | 1        | 0        |
|                                                            |                             |                        |               | rese    | ved     |         | •       | •       |             | 1                                     | 1         |            | C        |          | 1        | •        |
| Type<br>Reset                                              | RO<br>0                     | RO<br>0                | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | W1C<br>0    | W1C<br>0                              | W1C<br>0  | W1C<br>0   | W1C<br>0 | W1C<br>0 | W1C<br>0 | W1C<br>0 |
| Bit/Fi                                                     | ield                        |                        | Name          |         | Туре    |         | Reset   | Descr   | iption      |                                       |           |            |          |          |          |          |
| 31:                                                        | 8                           | I                      | reserved      |         | RO      |         | 0       | compa   | atibility v | uld not re<br>with futur<br>oss a rea | e produ   | cts, the v | alue of  | a reserv |          |          |
| 7:0                                                        | C                           |                        | IC            |         | W1C     |         | 0x00    | GPIO    | Interrup    | t Clear                               |           |            |          |          |          |          |
|                                                            |                             |                        |               |         |         |         |         | 0: Cor  | rrespond    | ding inter                            | rupt is u | inaffecte  | ed.      |          |          |          |
|                                                            |                             |                        |               |         |         |         |         | 1: Cor  | rrespond    | ding inter                            | rupt is c | leared.    |          |          |          |          |

June 26, 2007

#### Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.


The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 149) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 159) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 160) have been set to 1.


Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down resistors connected to both of them at the same time. If both pins are pulled Low during reset, the controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors, and apply RST or power-cycle the part.

In addition, it is possible to create a software sequence that prevents the debugger from connecting to the Stellaris<sup>®</sup> microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

GPIO Alternate Function Select (GPIOAFSEL)





| Bit/Field | Name  | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------|-------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0       | AFSEL | R/W  | -     | GPIO Alternate Function Select                                                                                                                                                                                                                                                                                                                                                                      |
|           |       |      |       | 0: Software control of corresponding GPIO line (GPIO mode).                                                                                                                                                                                                                                                                                                                                         |
|           |       |      |       | 1: Hardware control of corresponding GPIO line (alternate hardware function).                                                                                                                                                                                                                                                                                                                       |
|           |       |      |       | Note: The default reset value for the <b>GPIOAFSEL</b> , <b>GPIOPUR</b> , and <b>GPIODEN</b> registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is |

0x0000.000F.

## Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.6000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x500 Type R/W, reset 0x0000.00FF

| _             | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24      | 23        | 22         | 21         | 20        | 19        | 18        | 17        | 16      |
|---------------|---------|---------|----------|---------|----------|---------|---------|---------|-----------|------------|------------|-----------|-----------|-----------|-----------|---------|
|               |         |         | т т      |         | , ,<br>, |         | 1       | rese    | erved     |            |            | •         | 1         | 1         |           |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 |
| 1 COOL        | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8       | 7         |            |            |           | 3         | 2         | 1         |         |
| ſ             | 15      | 14      | 13       |         | r r      | 10      | 9       | •       | ,         | 6          | 5          | 4         | 1         | 1         | ,<br>,    | 0       |
|               |         |         |          | rese    | rved     |         |         |         |           |            |            | DR        | RV2<br>I  |           |           |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | R/W       | R/W        | R/W        | R/W       | R/W       | R/W<br>1  | R/W       | R/W     |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0       | 0       | 0       |           |            |            | '         |           |           |           | I       |
|               |         |         |          |         | _        |         |         | _       |           |            |            |           |           |           |           |         |
| Bit/Fi        | ield    |         | Name     |         | Туре     | ŀ       | Reset   | Descr   | ription   |            |            |           |           |           |           |         |
| 31:           | 8       |         | reserved |         | RO       |         | 0       | Softw   | are shou  | ıld not re | ely on the | e value o | of a rese | erved bit | To prov   | ide     |
|               |         |         |          |         |          |         |         | •       |           |            | •          | -         |           | a reserv  | ed bit sh | ould be |
|               |         |         |          |         |          |         |         | prese   | rved acro | oss a rea  | ad-modi    | fy-write  | operatio  | n.        |           |         |
| 7:0           | C       |         | DRV2     |         | R/W      |         | DxFF    | Outpu   | it Pad 2- | mA Driv    | e Enable   | е         |           |           |           |         |
|               |         |         |          |         |          |         |         | A writ  | e of 1 to | either G   |            | 4[n] or G | PIODR     | 8[n] clea | ars the   |         |

A write of 1 to either **GPIODR4[n]** or **GPIODR8[n]** clears the corresponding 2-mA enable bit. The change is effective on the second clock cycle after the write.

### Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.7000 Offset 0x504 Type R/W, reset 0x000.0000

| _             | 31      | 30      | 29      | 28      | 27      | 26      | 25      | 24      | 23          | 22       | 21       | 20         | 19      | 18                           | 17      | 16      |
|---------------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|----------|----------|------------|---------|------------------------------|---------|---------|
|               |         |         | т т     |         |         |         | •       | rese    | rved        |          |          |            |         | 1                            |         |         |
| Type<br>Reset | RO<br>0     | RO<br>0  | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0                      | RO<br>0 | RO<br>0 |
| Neset         |         |         |         |         |         |         |         |         |             |          |          |            |         |                              | U       |         |
|               | 15      | 14      | 13      | 12      | 11      | 10      | 9       | 8       | 7           | 6        | 5        | 4          | 3       | 2                            | 1       | 0       |
|               |         |         |         | rese    | rved    |         |         |         |             |          |          | DR         | 2V4     | •                            |         |         |
| Туре          | RO      | R/W         | R/W      | R/W      | R/W        | R/W     | R/W                          | R/W     | R/W     |
| Reset         | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0           | 0        | 0        | 0          | 0       | 0                            | 0       | 0       |
| Bit/F         | ield    |         | Name    |         | Туре    | F       | Reset   | Descr   | iption      |          |          |            |         |                              |         |         |
| 31:           | :8      |         |         |         |         |         | 0       | compa   | atibility v |          | e produc | cts, the v | alue of | erved bit.<br>a reserv<br>n. |         |         |
| 7:0           | 0       |         | DRV4    |         | R/W     |         | 0x00    | Outpu   | it Pad 4-   | mA Driv  | e Enable | e          |         |                              |         |         |
|               |         |         |         |         |         |         |         | A writ  | e of 1 to   | either G |          | 2[n] or G  | PIODR   | 8[n] clea                    | ars the |         |

A write of 1 to either **GPIODR2[n]** or **GPIODR8[n]** clears the corresponding 4-mA enable bit. The change is effective on the second clock cycle after the write.

## Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x508 Type R/W, reset 0x0000.0000

|       | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24     | 23          | 22              | 21      | 20         | 19      | 18                          | 17      | 16  |
|-------|------|----|----------|------|------|----|-------|--------|-------------|-----------------|---------|------------|---------|-----------------------------|---------|-----|
|       |      | 1  |          |      |      |    | 1     | rese   | rved        | 1               |         |            |         | 1                           | 1       |     |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO     | RO          | RO              | RO      | RO         | RO      | RO                          | RO      | RO  |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0      | 0           | 0               | 0       | 0          | 0       | 0                           | 0       | 0   |
|       | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8      | 7           | 6               | 5       | 4          | 3       | 2                           | 1       | 0   |
|       |      | •  |          | rese | rved |    | •     | •      |             | 1               |         | DR         | V8      | 1                           | 1       |     |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO     | R/W         | R/W             | R/W     | R/W        | R/W     | R/W                         | R/W     | R/W |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0      | 0           | 0               | 0       | 0          | 0       | 0                           | 0       | 0   |
|       |      |    |          |      | _    | _  |       | _      |             |                 |         |            |         |                             |         |     |
| Bit/F | ield |    | Name     |      | Туре | ŀ  | Reset | Descr  | iption      |                 |         |            |         |                             |         |     |
| 31:   | :8   |    | reserved |      | RO   |    | 0     | compa  | atibility v |                 | e produ | cts, the v | alue of | erved bit<br>a reserv<br>m. | •       |     |
| 7:0   | 0    |    | DRV8     |      | R/W  |    | 0x00  | Outpu  | it Pad 8-   | mA Driv         | e Enabl | е          |         |                             |         |     |
|       |      |    |          |      |      |    |       | A writ | e of 1 to   | either <b>G</b> |         | 2[n] or G  | PIODR   | 4[n] clea                   | ars the |     |

A write of 1 to either **GPIODR2[n]** or **GPIODR4[n]** clears the corresponding 8-mA enable bit. The change is effective on the second clock cycle after the write.

#### Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 158). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open drain input if the corresponding bit in the **GPIODIR** register is set to 0; and as an open drain output when set to 1.

When using the I<sup>2</sup>C module, the **GPIO Alternate Function Select (GPIOAFSEL)** register bit for PB2 and PB3 should be set to 1 (see examples in "Initialization and Configuration" on page 136).

#### GPIO Open Drain Select (GPIOODR)

| GPIO Port A base: 0x4000.4000 |
|-------------------------------|
| GPIO Port B base: 0x4000.5000 |
| GPIO Port C base: 0x4000.6000 |
| GPIO Port D base: 0x4000.7000 |
| GPIO Port E base: 0x4002.4000 |
| GPIO Port F base: 0x4002.5000 |
| GPIO Port G base: 0x4002.6000 |
| GPIO Port H base: 0x4002.7000 |
| Offset 0x50C                  |
| T                             |

Type R/W, reset 0x0000.0000

|               | 31      | 30                              | 29      | 28      | 27      | 26      | 25      | 24                                   | 23         | 22      | 21         | 20       | 19       | 18      | 17      | 16      |
|---------------|---------|---------------------------------|---------|---------|---------|---------|---------|--------------------------------------|------------|---------|------------|----------|----------|---------|---------|---------|
|               |         |                                 |         |         | · ·     |         | •       | rese                                 | erved      |         | •          |          |          | •       | •       |         |
| Type<br>Reset | RO<br>0 | RO<br>0                         | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 |
|               | 15      | 14                              | 13      | 12      | 11      | 10      | 9       | 8                                    | 7          | 6       | 5          | 4        | 3        | 2       | 1       | 0       |
|               |         |                                 |         | rese    | rved    |         | 1       | 1                                    |            |         | 1          | l<br>OI  | DE       | 1       | 1       |         |
| Туре          | RO      | RO                              | RO      | RO      | RO      | RO      | RO      | RO                                   | R/W        | R/W     | R/W        | R/W      | R/W      | R/W     | R/W     | R/W     |
| Reset         | 0       | 0                               | 0       | 0       | 0       | 0       | 0       | 0                                    | 0          | 0       | 0          | 0        | 0        | 0       | 0       | 0       |
| Bit/F         | ield    |                                 | Name    |         | Туре    | F       | Reset   | Descr                                | iption     |         |            |          |          |         |         |         |
| 31:           | :8      | Name Type Rese<br>reserved RO 0 |         |         |         | 0       | compa   | are shou<br>atibility w<br>rved acro | /ith futur | e produ | cts, the v | alue of  | a reserv | •       |         |         |
| 7:            | 0       |                                 | ODE     |         | R/W     |         | 0x00    | Outpu                                | It Pad O   | pen Dra | in Enabl   | е        |          |         |         |         |
|               |         |                                 |         |         |         |         |         | 0: Op                                | en drain   | configu | ration is  | disabled | I.       |         |         |         |

1: Open drain configuration is enabled.

# Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 156).

#### GPIO Pull-Up Select (GPIOPUR)

GPIO Port A base: 0x4000.4000

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0xt<br>Type R/W | rt C bas<br>rt D bas<br>rt E bas<br>rt F bas<br>rt F bas<br>rt G bas<br>rt H bas<br>510 | e: 0x4000<br>e: 0x4000<br>e: 0x4002<br>e: 0x4002<br>e: 0x4002<br>e: 0x4002<br>e: 0x4002 | .6000<br>.7000<br>.4000<br>.5000<br>.6000 |         |         |         |         |         |             |            |         |                                       |         |          |     |                  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|---------|---------|---------|---------|---------|-------------|------------|---------|---------------------------------------|---------|----------|-----|------------------|
|                                                                                                            | 31                                                                                      | 30                                                                                      | 29                                        | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21      | 20                                    | 19      | 18       | 17  | 16               |
|                                                                                                            |                                                                                         | 1                                                                                       | 1                                         | 1       |         |         | T       | rese    | rved        | 1          |         | 1                                     |         | 1        |     |                  |
| Туре                                                                                                       | RO                                                                                      | RO                                                                                      | RO                                        | RO      | RO      | RO      | RO      | RO      | RO          | RO         | RO      | RO                                    | RO      | RO       | RO  | RO               |
| Reset                                                                                                      | 0                                                                                       | 0                                                                                       | 0                                         | 0       | 0       | 0       | 0       | 0       | 0           | 0          | 0       | 0                                     | 0       | 0        | 0   | 0                |
|                                                                                                            | 15                                                                                      | 14                                                                                      | 13                                        | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5       | 4                                     | 3       | 2        | 1   | 0                |
|                                                                                                            |                                                                                         | •                                                                                       | •                                         | rese    | rved    |         | •       |         |             | •          |         | Pl                                    | JE      | •        |     |                  |
| Type<br>Reset                                                                                              | RO<br>0                                                                                 | RO<br>0                                                                                 | RO<br>0                                   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W         | R/W        | R/W     | R/W                                   | R/W     | R/W      | R/W | R/W              |
| Reset                                                                                                      | 0                                                                                       | 0                                                                                       | 0                                         | 0       | 0       | 0       | 0       | 0       | -           | -          | -       | -                                     | -       | -        | -   | -                |
| Bit/F                                                                                                      | ield                                                                                    |                                                                                         | Name                                      |         | Туре    |         | Reset   | Descr   | iption      |            |         |                                       |         |          |     |                  |
| 31:                                                                                                        | :8                                                                                      |                                                                                         | reservec                                  | t       | RO      |         | 0       | compa   | atibility v | vith futur | e produ | e value o<br>cts, the v<br>fy-write o | alue of | a reserv |     | vide<br>nould be |
| 7:0                                                                                                        | 0                                                                                       |                                                                                         | PUE                                       |         | R/W     |         | -       | Pad V   | Veak Pu     | II-Up En   | able    |                                       |         |          |     |                  |
|                                                                                                            |                                                                                         |                                                                                         |                                           |         |         |         |         |         |             |            |         | ears the ve on the                    | •       | •        |     |                  |

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

# Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

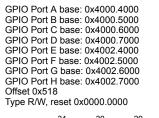
The GPIOPDR register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in GPIOPDR automatically clears the corresponding bit in the GPIO Pull-Up Select (GPIOPUR) register (see page 155).

#### GPIO Pull-Down Select (GPIOPDR)

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0x5<br>Type R/M | t A base<br>t B base<br>t C base<br>t D base<br>t E base<br>t F base<br>t G base<br>t H base<br>514 | : 0x4000.<br>: 0x4000.<br>: 0x4000.<br>: 0x4000.<br>: 0x4002.<br>: 0x4002.<br>: 0x4002.<br>: 0x4002. | 4000<br>5000<br>6000<br>7000<br>4000<br>5000<br>6000<br>7000 |         |         |         |         |         |             |            |          |            |                                   |          |          |                  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|---------|---------|---------|---------|-------------|------------|----------|------------|-----------------------------------|----------|----------|------------------|
|                                                                                                            | 31                                                                                                  | 30                                                                                                   | 29                                                           | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21       | 20         | 19                                | 18       | 17       | 16               |
|                                                                                                            |                                                                                                     |                                                                                                      |                                                              | 1       |         |         | 1       | rese    | rved        |            | 1        |            | 1                                 |          |          | 1                |
| Туре                                                                                                       | RO                                                                                                  | RO                                                                                                   | RO                                                           | RO      | RO      | RO      | RO      | RO      | RO          | RO         | RO       | RO         | RO                                | RO       | RO       | RO               |
| Reset                                                                                                      | 0                                                                                                   | 0                                                                                                    | 0                                                            | 0       | 0       | 0       | 0       | 0       | 0           | 0          | 0        | 0          | 0                                 | 0        | 0        | 0                |
|                                                                                                            | 15                                                                                                  | 14                                                                                                   | 13                                                           | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5        | 4          | 3                                 | 2        | 1        | 0                |
|                                                                                                            |                                                                                                     |                                                                                                      |                                                              | rese    | rved    |         | •       | '       |             | 1          | 1        | PI         | DE                                | 1        | 1        | ·                |
| Type<br>Reset                                                                                              | RO<br>0                                                                                             | RO<br>0                                                                                              | RO<br>0                                                      | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0    | R/W<br>0   | R/W<br>0 | R/W<br>0   | R/W<br>0                          | R/W<br>0 | R/W<br>0 | R/W<br>0         |
| Reset                                                                                                      | 0                                                                                                   | 0                                                                                                    | 0                                                            | 0       | 0       | 0       | 0       | 0       | U           | 0          | 0        | 0          | 0                                 | 0        | 0        | 0                |
| Bit/F                                                                                                      | ield                                                                                                |                                                                                                      | Name                                                         |         | Туре    |         | Reset   | Descr   | iption      |            |          |            |                                   |          |          |                  |
| 31:                                                                                                        | 8                                                                                                   | r                                                                                                    | reserved                                                     | I       | RO      |         | 0       | compa   | atibility v | vith futur | e produ  | cts, the v | of a rese<br>value of<br>operatio | a reserv |          | vide<br>nould be |
|                                                                                                            |                                                                                                     |                                                                                                      |                                                              |         |         |         | 0x00    | Ded     |             |            | Enable   |            |                                   |          |          |                  |
| 7:0                                                                                                        | D                                                                                                   |                                                                                                      | PDE                                                          |         | R/W     |         | 0,000   | Pauv    | veak Pu     |            |          |            |                                   |          |          |                  |

write.

### Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518


The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 153).

#### GPIO Slew Rate Control Select (GPIOSLR)

SRL

R/W

0



|               | 31      | 30      | 29      | 28      | 27                                    | 26      | 25      | 24      | 23          | 22         | 21       | 20                                       | 19           | 18       | 17       | 16               |
|---------------|---------|---------|---------|---------|---------------------------------------|---------|---------|---------|-------------|------------|----------|------------------------------------------|--------------|----------|----------|------------------|
|               |         | 1       | 1       | 1       | , , , , , , , , , , , , , , , , , , , |         | 1       | rese    | rved        | 1          | 1        | 1                                        |              | 1        | 1        |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                                  | RO<br>0      | RO<br>0  | RO<br>0  | RO<br>0          |
| _             | 15      | 14      | 13      | 12      | 11                                    | 10      | 9       | 8       | 7           | 6          | 5        | 4                                        | 3            | 2        | 1        | 0                |
|               |         | 1       | 1       | rese    | rved                                  |         | 1       | -       |             | 1          | 1        | SI                                       | I<br>RL<br>I | I        | 1        |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0    | R/W<br>0   | R/W<br>0 | R/W<br>0                                 | R/W<br>0     | R/W<br>0 | R/W<br>0 | R/W<br>0         |
|               | Ū       | Ū       | Ū       | Ū       | Ū                                     | Ū       | Ū       | Ū       | Ū           | Ũ          | Ū        | Ū                                        | Ū            | Ū        | Ū        | Ū                |
| Bit/Fi        | ield    |         | Name    |         | Туре                                  | I       | Reset   | Descr   | iption      |            |          |                                          |              |          |          |                  |
| 31:           | 8       |         | reserve | d       | RO                                    |         | 0       | compa   | atibility v | vith futur | e produ  | ie value o<br>icts, the v<br>ify-write o | alue of      | a reserv | •        | vide<br>hould be |

Slew Rate Limit Enable (8-mA drive only)

0: Slew rate control disabled.

1: Slew rate control enabled.

7:0

### Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C

The **GPIODEN** register is the digital enable register. By default, with the exception of the GPIO signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven (tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or alternate function), the corresponding GPIODEN bit must be set.

#### GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x51C Type R/W, reset -

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                  | 22         | 21      | 20         | 19           | 18       | 17      | 16               |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------------------------------|------------|---------|------------|--------------|----------|---------|------------------|
|               |         | 1       |          |         |         |         |         | rese    | rved                                |            |         |            |              | 1        | 1       | 1                |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                             | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0      | RO<br>0  | RO<br>0 | RO<br>0          |
| Resel         |         |         |          | -       | -       | -       | U       | 0       | 0                                   | 0          | 0       | 0          | U            | 0        | 0       | 0                |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                   | 6          | 5       | 4          | 3            | 2        | 1       | 0                |
|               |         | •       |          | rese    | rved    |         | •       | 1       |                                     |            |         | DE         | I<br>EN<br>I | 1        | 1       |                  |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | R/W                                 | R/W        | R/W     | R/W        | R/W          | R/W      | R/W     | R/W              |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | -                                   | -          | -       | -          | -            | -        | -       | -                |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                              |            |         |            |              |          |         |                  |
| 31            | :8      |         | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility v<br>rved acr | vith futur | e produ | cts, the v | alue of      | a reserv | •       | vide<br>nould be |
| 7:            | 0       |         | DEN      |         | R/W     |         | -       | Digita  | l Enable                            |            |         |            |              |          |         |                  |
|               |         |         |          |         |         |         |         | 0: Dig  | ital funct                          | tions dis  | abled.  |            |              |          |         |                  |

1: Digital functions enabled.

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

#### Register 19: GPIO Lock (GPIOLOCK), offset 0x520

The **GPIOLOCK** register enables write access to the **GPIOCR** register (see page 160). Writing 0x1ACCE551 to the GPIOLOCK register will unlock the GPIOCR register. Writing any other value to the GPIOLOCK register re-enables the locked state. Reading the GPIOLOCK register returns the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses are disabled, or locked, reading the GPIOLOCK register returns 0x00000001. When write accesses are enabled, or unlocked, reading the GPIOLOCK register returns 0x00000000.

#### GPIO Lock (GPIOLOCK)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x520

Type R/W, reset 0x0000.0001

| 215 - | ,    |     |      |     |         |      |         |       |          |     |     |     |     |     |     |     |
|-------|------|-----|------|-----|---------|------|---------|-------|----------|-----|-----|-----|-----|-----|-----|-----|
|       | 31   | 30  | 29   | 28  | 27      | 26   | 25      | 24    | 23       | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
|       |      | 1   | 1    | 1   | r 1     |      | 1 1     |       | 1        |     |     | 1   | 1 1 |     | T   |     |
|       |      |     |      |     | _       |      |         | LC    | CK       |     |     |     | -   |     |     |     |
| Туре  | R/W  | R/W | R/W  | R/W | R/W     | R/W  | R/W     | R/W   | R/W      | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|       |      |     |      |     |         |      |         |       |          |     |     |     |     |     |     |     |
| Reset | 0    | 0   | 0    | 0   | 0       | 0    | 0       | 0     | 0        | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|       | 45   |     | 40   | 40  |         | 4.0  | •       | •     | -        | •   | -   |     | •   | •   |     |     |
|       | 15   | 14  | 13   | 12  | 11      | 10   | 9       | 8     | 7        | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|       |      | 1   | 1    | I   |         |      | 1 1     | 10    | I<br>DCK |     |     | 1   |     |     |     | '   |
|       |      |     |      |     |         |      |         | LC    | I        |     |     |     |     |     |     |     |
| Туре  | R/W  | R/W | R/W  | R/W | R/W     | R/W  | R/W     | R/W   | R/W      | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
| Reset | 0    | 0   | 0    | 0   | 0       | 0    | 0       | 0     | 0        | 0   | 0   | 0   | 0   | 0   | 0   | 1   |
|       |      |     |      |     |         |      |         |       |          |     |     |     |     |     |     |     |
|       |      |     |      |     |         |      |         |       |          |     |     |     |     |     |     |     |
|       |      |     |      |     | _       |      |         | _     |          |     |     |     |     |     |     |     |
| Bit/F | ield |     | Name |     | Туре    |      | Reset   | Descr | ription  |     |     |     |     |     |     |     |
|       |      |     |      |     |         |      |         |       |          |     |     |     |     |     |     |     |
| 31    | ۰O   |     | LOCK |     | R/W     | 0.00 | 0000001 | GPIO  | Lock     |     |     |     |     |     |     |     |
| 51    | .0   |     | LOOK |     | 1.7.4.4 | 0.00 | 0000001 |       | LUCK     |     |     |     |     |     |     |     |
|       |      |     |      |     |         |      |         |       |          |     |     |     |     |     |     |     |

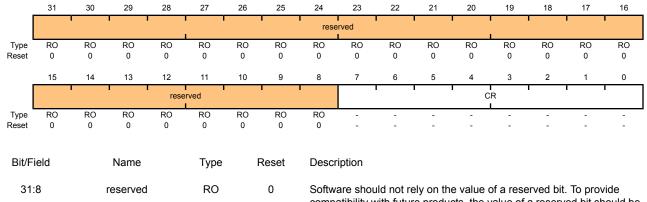
A write of the value 0x1ACCE551 unlocks the GPIO Commit (GPIOCR) register for write access. A write of any other value reapplies the lock, preventing any register updates. A read of this register returns the following values:

locked: 0x0000001

unlocked: 0x0000000

#### Register 20: GPIO Commit (GPIOCR), offset 0x524

The **GPIOCR** register is the commit register. The value of the **GPIOCR** register determines which bits of the **GPIOAFSEL** register will be committed when a write to the **GPIOAFSEL** register is performed. If a bit in the **GPIOCR** register is a zero, the data being written to the corresponding bit in the **GPIOAFSEL** register will not be committed and will retain its previous value. If a bit in the **GPIOCR** register is a one, the data being written to the corresponding bit of the **GPIOAFSEL** register will be committed to the register and will reflect the new value.


The contents of the **GPIOCR** register can only be modified if the **GPIOLOCK** register is unlocked. Writes to the GPIOCR register will be ignored if the **GPIOLOCK** register is locked.

Important: This register is designed to prevent accidental programming of the **GPIOAFSEL** registers that control connectivity to the JTAG/SWD debug hardware. By initializing the bits of the **GPIOCR** register to 0 for PB7 and PC[3:0], the JTAG/SWD debug port can only be converted to GPIOs through a deliberate set of writes to the **GPIOLOCK**, **GPIOCR**, and **GPIOAFSEL** registers.

Because this protection is currently only implemented on the JTAG/SWD pins on PB7 and PC[3:0], all of the other bits in the **GPIOCR** registers cannot be written with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit new values to the **GPIOAFSEL** register bits of these other pins.

#### GPIO Commit (GPIOCR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x524 Type -, reset -



compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0       | CR   | -    | -     | GPIO Commit                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           |      |      |       | On a bit-wise basis, any bit set allows the corresponding GPIOAFSEL bit to be set to its alternate function.                                                                                                                                                                                                                                                                                                                                                           |
|           |      |      |       | Note: The default register type for the <b>GPIOCR</b> register is RO for<br>all GPIO pins, with the exception of the five JTAG/SWD pins<br>(PB7 and PC[3:0]). These five pins are currently the only<br>GPIOs that are protected by the <b>GPIOCR</b> register. Because<br>of this, the register type for GPIO Port B7 and GPIO Port<br>C[3:0] is R/W.                                                                                                                 |
|           |      |      |       | The default reset value for the <b>GPIOCR</b> register is<br>0x0000.00FF for all GPIO pins, with the exception of the five<br>JTAG/SWD pins (PB7 and PC[ $3:0$ ]). To ensure that the<br>JTAG port is not accidentally programmed as a GPIO, these<br>five pins default to non-commitable. Because of this, the<br>default reset value of <b>GPIOCR</b> for GPIO Port B is<br>0x0000.007F while the default reset value of <b>GPIOCR</b> for Port<br>C is 0x0000.00F0. |

# Register 21: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0xf<br>Type RO, | t B base:<br>t C base:<br>t D base:<br>t E base:<br>t F base:<br>t G base:<br>t H base:<br>=D0 | 0x4000.<br>0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>6000<br>7000 |      |      |    |       |       |                                     |            |           |            |         |          |    |    |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|------|------|----|-------|-------|-------------------------------------|------------|-----------|------------|---------|----------|----|----|
|                                                                                                            | 31                                                                                             | 30                                                                                   | 29                                                   | 28   | 27   | 26 | 25    | 24    | 23                                  | 22         | 21        | 20         | 19      | 18       | 17 | 16 |
|                                                                                                            | - T                                                                                            | 1                                                                                    | · · · ·                                              |      | r    |    | 1     | rese  | rved                                |            | · · · ·   |            |         |          | 1  | ,  |
| Туре                                                                                                       | RO                                                                                             | RO                                                                                   | RO                                                   | RO   | RO   | RO | RO    | RO    | RO                                  | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset                                                                                                      | 0                                                                                              | 0                                                                                    | 0                                                    | 0    | 0    | 0  | 0     | 0     | 0                                   | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
| _                                                                                                          | 15                                                                                             | 14                                                                                   | 13                                                   | 12   | 11   | 10 | 9     | 8     | 7                                   | 6          | 5         | 4          | 3       | 2        | 1  | 0  |
|                                                                                                            |                                                                                                | 1                                                                                    |                                                      | rese | ved  |    | 1     | 1     |                                     |            |           | PI         | D4      | I        | 1  |    |
| Туре                                                                                                       | RO                                                                                             | RO                                                                                   | RO                                                   | RO   | RO   | RO | RO    | RO    | RO                                  | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset                                                                                                      | 0                                                                                              | 0                                                                                    | 0                                                    | 0    | 0    | 0  | 0     | 0     | 0                                   | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
| Bit/Fi                                                                                                     | ield                                                                                           |                                                                                      | Name                                                 |      | Туре |    | Reset | Descr | iption                              |            |           |            |         |          |    |    |
| 31:                                                                                                        | 8                                                                                              | r                                                                                    | eserved                                              |      | RO   |    | 0     | compa | are shou<br>atibility v<br>rved acr | vith futur | e produc  | cts, the v | alue of | a reserv | •  |    |
| 7:0                                                                                                        | C                                                                                              |                                                                                      | PID4                                                 |      | RO   |    | 0x00  | GPIO  | Periphe                             | ral ID Re  | egister[7 | :0]        |         |          |    |    |

# Register 22: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0xf<br>Type RO, | t B base:<br>t C base:<br>t D base:<br>t E base:<br>t F base:<br>t G base:<br>t H base:<br>=D4 | 0x4000.<br>0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>6000<br>7000 |      |      |    |       |       |                                     |            |           |            |         |          |    |    |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|------|------|----|-------|-------|-------------------------------------|------------|-----------|------------|---------|----------|----|----|
| _                                                                                                          | 31                                                                                             | 30                                                                                   | 29                                                   | 28   | 27   | 26 | 25    | 24    | 23                                  | 22         | 21        | 20         | 19      | 18       | 17 | 16 |
|                                                                                                            |                                                                                                |                                                                                      |                                                      |      |      |    | 1     | rese  | erved                               |            |           |            | 1       | 1        | 1  | ,  |
| Туре                                                                                                       | RO                                                                                             | RO                                                                                   | RO                                                   | RO   | RO   | RO | RO    | RO    | RO                                  | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset                                                                                                      | 0                                                                                              | 0                                                                                    | 0                                                    | 0    | 0    | 0  | 0     | 0     | 0                                   | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
|                                                                                                            | 15                                                                                             | 14                                                                                   | 13                                                   | 12   | 11   | 10 | 9     | 8     | 7                                   | 6          | 5         | 4          | 3       | 2        | 1  | 0  |
|                                                                                                            |                                                                                                | ļ                                                                                    |                                                      | rese | rved |    | 1     | 1     |                                     |            |           | PI         | D5      | 1        | 1  | '  |
| Туре                                                                                                       | RO                                                                                             | RO                                                                                   | RO                                                   | RO   | RO   | RO | RO    | RO    | RO                                  | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset                                                                                                      | 0                                                                                              | 0                                                                                    | 0                                                    | 0    | 0    | 0  | 0     | 0     | 0                                   | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
| Bit/Fi                                                                                                     | ield                                                                                           |                                                                                      | Name                                                 |      | Туре |    | Reset | Descr | iption                              |            |           |            |         |          |    |    |
| 31:                                                                                                        | 8                                                                                              | r                                                                                    | eserved                                              |      | RO   |    | 0     | compa | are shou<br>atibility v<br>rved acr | vith futur | e produo  | cts, the v | alue of | a reserv | •  |    |
| 7:0                                                                                                        | 0                                                                                              |                                                                                      | PID5                                                 |      | RO   |    | 0x00  | GPIO  | Periphe                             | ral ID Re  | egister[1 | 5:8]       |         |          |    |    |

# Register 23: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0xf<br>Type RO, | t B base:<br>t C base:<br>t D base:<br>t E base:<br>t F base:<br>t G base:<br>t H base:<br>=D8 | 0x4000.<br>0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>6000<br>7000 |      |      |    |       |       |                                     |            |           |            |         |          |    |    |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------|------|------|----|-------|-------|-------------------------------------|------------|-----------|------------|---------|----------|----|----|
|                                                                                                            | 31                                                                                             | 30                                                                                   | 29                                                   | 28   | 27   | 26 | 25    | 24    | 23                                  | 22         | 21        | 20         | 19      | 18       | 17 | 16 |
|                                                                                                            | - T                                                                                            |                                                                                      |                                                      |      | r    |    | 1     | rese  | rved                                |            |           |            |         |          |    |    |
| Туре                                                                                                       | RO                                                                                             | RO                                                                                   | RO                                                   | RO   | RO   | RO | RO    | RO    | RO                                  | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset                                                                                                      | 0                                                                                              | 0                                                                                    | 0                                                    | 0    | 0    | 0  | 0     | 0     | 0                                   | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
| _                                                                                                          | 15                                                                                             | 14                                                                                   | 13                                                   | 12   | 11   | 10 | 9     | 8     | 7                                   | 6          | 5         | 4          | 3       | 2        | 1  | 0  |
|                                                                                                            |                                                                                                |                                                                                      |                                                      | rese | rved |    |       | 1     |                                     |            |           | PI         | D6      | I        | I  |    |
| Туре                                                                                                       | RO                                                                                             | RO                                                                                   | RO                                                   | RO   | RO   | RO | RO    | RO    | RO                                  | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset                                                                                                      | 0                                                                                              | 0                                                                                    | 0                                                    | 0    | 0    | 0  | 0     | 0     | 0                                   | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
| Bit/Fi                                                                                                     | ield                                                                                           |                                                                                      | Name                                                 |      | Туре |    | Reset | Descr | iption                              |            |           |            |         |          |    |    |
| 31:                                                                                                        | 8                                                                                              | r                                                                                    | reserved                                             |      | RO   |    | 0     | comp  | are shou<br>atibility v<br>rved acr | vith futur | e produc  | cts, the v | alue of | a reserv | •  |    |
| 7:0                                                                                                        | 0                                                                                              |                                                                                      | PID6                                                 |      | RO   |    | 0x00  | GPIO  | Periphe                             | ral ID R   | egister[2 | 3:16]      |         |          |    |    |

# Register 24: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0xf<br>Type RO, | t B base:<br>t C base:<br>t D base:<br>t E base:<br>t F base:<br>t G base<br>t H base:<br>=DC | 0x4000.<br>0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>6000<br>7000 |      |       |    |       |       |                                     |            |           |            |         |          |    |    |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|------|-------|----|-------|-------|-------------------------------------|------------|-----------|------------|---------|----------|----|----|
| _                                                                                                          | 31                                                                                            | 30                                                                        | 29                                                   | 28   | 27    | 26 | 25    | 24    | 23                                  | 22         | 21        | 20         | 19      | 18       | 17 | 16 |
|                                                                                                            |                                                                                               |                                                                           |                                                      |      | · · · |    | 1     | rese  | I<br>erved                          |            |           |            |         |          |    |    |
| Туре                                                                                                       | RO                                                                                            | RO                                                                        | RO                                                   | RO   | RO    | RO | RO    | RO    | RO                                  | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset                                                                                                      | 0                                                                                             | 0                                                                         | 0                                                    | 0    | 0     | 0  | 0     | 0     | 0                                   | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
|                                                                                                            | 15                                                                                            | 14                                                                        | 13                                                   | 12   | 11    | 10 | 9     | 8     | 7                                   | 6          | 5         | 4          | 3       | 2        | 1  | 0  |
|                                                                                                            |                                                                                               | l                                                                         |                                                      | rese | rved  |    | 1     | 1     |                                     |            |           | PI         | D7      |          | I  | '  |
| Туре                                                                                                       | RO                                                                                            | RO                                                                        | RO                                                   | RO   | RO    | RO | RO    | RO    | RO                                  | RO         | RO        | RO         | RO      | RO       | RO | RO |
| Reset                                                                                                      | 0                                                                                             | 0                                                                         | 0                                                    | 0    | 0     | 0  | 0     | 0     | 0                                   | 0          | 0         | 0          | 0       | 0        | 0  | 0  |
| Bit/F                                                                                                      | ield                                                                                          |                                                                           | Name                                                 |      | Туре  |    | Reset | Descr | ription                             |            |           |            |         |          |    |    |
| 31:                                                                                                        | 8                                                                                             | r                                                                         | reserved                                             |      | RO    |    | 0     | comp  | are shou<br>atibility v<br>rved acr | vith futur | e produc  | cts, the v | alue of | a reserv |    |    |
| 7:0                                                                                                        | 0                                                                                             |                                                                           | PID7                                                 |      | RO    |    | 0x00  | GPIO  | Periphe                             | ral ID Re  | egister[3 | 1:24]      |         |          |    |    |

## Register 25: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

| GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>Offset 0x<br>Type RO | rt B base:<br>rt C base:<br>rt D base:<br>rt E base:<br>rt F base:<br>rt G base:<br>rt H base:<br>FE0 | 0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>6000<br>7000 |         |                       |         |                 |                                               |                                                                          |                                                        |                                         |                                                     |                                          |                                             |                             |                       |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|---------|-----------------------|---------|-----------------|-----------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|------------------------------------------|---------------------------------------------|-----------------------------|-----------------------|
|                                                                                                   | 31                                                                                                    | 30                                                                        | 29                                                   | 28      | 27                    | 26      | 25              | 24                                            | 23                                                                       | 22                                                     | 21                                      | 20                                                  | 19                                       | 18                                          | 17                          | 16                    |
|                                                                                                   |                                                                                                       |                                                                           | Ì                                                    | Ì       | i i                   |         | 1               | rese                                          | erved                                                                    | Î                                                      | Î                                       |                                                     | 1                                        | Î                                           | 1                           | 1                     |
| Туре                                                                                              | RO                                                                                                    | RO                                                                        | RO                                                   | RO      | RO                    | RO      | RO              | RO                                            | RO                                                                       | RO                                                     | RO                                      | RO                                                  | RO                                       | RO                                          | RO                          | RO                    |
| Reset                                                                                             | 0                                                                                                     | 0                                                                         | 0                                                    | 0       | 0                     | 0       | 0               | 0                                             | 0                                                                        | 0                                                      | 0                                       | 0                                                   | 0                                        | 0                                           | 0                           | 0                     |
|                                                                                                   | 15                                                                                                    | 14                                                                        | 13                                                   | 12      | 11                    | 10      | 9               | 8                                             | 7                                                                        | 6                                                      | 5                                       | 4                                                   | 3                                        | 2                                           | 1                           | 0                     |
|                                                                                                   |                                                                                                       |                                                                           |                                                      |         | 1 1                   |         |                 |                                               |                                                                          | 1                                                      | 1                                       |                                                     | 1                                        |                                             |                             |                       |
|                                                                                                   |                                                                                                       |                                                                           |                                                      | rese    | erved                 |         | •               |                                               |                                                                          | •                                                      |                                         | PI                                                  | iD0                                      | -                                           | -                           |                       |
| Туре                                                                                              | RO                                                                                                    | RO                                                                        | RO                                                   | RO      | RO                    | RO      | RO              | RO                                            | RO                                                                       | RO                                                     | RO                                      | RO                                                  | RO                                       | RO                                          | RO                          | RO                    |
| Type<br>Reset                                                                                     | RO<br>0                                                                                               | RO<br>0                                                                   | RO<br>0                                              |         |                       | RO<br>0 | RO<br>0         | RO<br>0                                       | RO<br>0                                                                  | RO<br>1                                                | RO<br>1                                 |                                                     |                                          | RO<br>0                                     | RO<br>0                     | RO<br>1               |
|                                                                                                   | 0                                                                                                     |                                                                           |                                                      | RO      | RO                    | 0       |                 |                                               | 0                                                                        |                                                        |                                         | RO                                                  | RO                                       |                                             |                             |                       |
| Reset                                                                                             | o<br>Tield                                                                                            | 0                                                                         | 0                                                    | RO<br>0 | RO<br>0               | 0       | 0               | 0<br>Descr<br>Softwa<br>compa                 | 0<br>iption<br>are shou<br>atibility v                                   | 1<br>uld not ro<br>vith futu                           |                                         | RO<br>0<br>e value                                  | RO<br>0<br>of a rese<br>value of         | 0<br>erved bit<br>a reserv                  | 0<br>. To prov              | 1<br>vide             |
| Reset<br>Bit/F                                                                                    | o<br>Field<br>:8                                                                                      | 0                                                                         | <sup>0</sup><br>Name                                 | RO<br>0 | RO<br>0<br>Type       | 0       | 0<br>Reset      | 0<br>Descr<br>Softwa<br>compa<br>prese        | 0<br>ription<br>are shou<br>atibility v<br>rved acr                      | 1<br>uld not re<br>vith futur<br>oss a re              | 1<br>ely on the<br>re produc            | RO<br>0<br>e value<br>cts, the v                    | RO<br>0<br>of a rese<br>value of         | 0<br>erved bit<br>a reserv                  | 0<br>. To prov              | 1<br>vide             |
| Reset<br>Bit/F<br>31                                                                              | o<br>Field<br>:8                                                                                      | 0                                                                         | 0<br>Name<br>reserved                                | RO<br>0 | RO<br>0<br>Type<br>RO | 0       | o<br>Reset<br>0 | 0<br>Descr<br>Softw<br>compa<br>prese<br>GPIO | <sup>0</sup><br>iption<br>are shou<br>atibility v<br>rved acr<br>Periphe | 1<br>uld not re<br>vith futur<br>oss a re<br>eral ID R | 1<br>ely on the<br>re produc<br>ad-modi | RO<br>0<br>e value<br>cts, the v<br>fy-write<br>:0] | RO<br>0<br>of a resevalue of<br>operatio | <sup>0</sup><br>erved bit<br>a reserv<br>n. | 0<br>. To prov<br>ed bit sh | 1<br>ride<br>nould be |

# Register 26: GPIO Peripheral Identification 1(GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)

| GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>Offset 0x<br>Type RO | rt B base:<br>rt C base:<br>rt D base:<br>rt E base:<br>rt F base:<br>rt G base<br>rt H base:<br>FE4 | 0x4000<br>0x4000<br>0x4000<br>0x4002<br>0x4002<br>0x4002<br>0x4002<br>0x4002 | 5000<br>6000<br>7000<br>4000<br>5000<br>.6000<br>.7000 |         |                       |         |                 |                                                 |                                                               |                                                        |                                         |                                                          |                                              |                                             |                             |                       |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------|---------|-----------------------|---------|-----------------|-------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------------------|---------------------------------------------|-----------------------------|-----------------------|
|                                                                                                   | 31                                                                                                   | 30                                                                           | 29                                                     | 28      | 27                    | 26      | 25              | 24                                              | 23                                                            | 22                                                     | 21                                      | 20                                                       | 19                                           | 18                                          | 17                          | 16                    |
|                                                                                                   |                                                                                                      |                                                                              | 1                                                      |         | , , ,                 |         | 1               | rese                                            | rved                                                          | 1                                                      | 1                                       |                                                          |                                              |                                             | 1                           | ,                     |
| Туре                                                                                              | RO                                                                                                   | RO                                                                           | RO                                                     | RO      | RO                    | RO      | RO              | RO                                              | RO                                                            | RO                                                     | RO                                      | RO                                                       | RO                                           | RO                                          | RO                          | RO                    |
| Reset                                                                                             | 0                                                                                                    | 0                                                                            | 0                                                      | 0       | 0                     | 0       | 0               | 0                                               | 0                                                             | 0                                                      | 0                                       | 0                                                        | 0                                            | 0                                           | 0                           | 0                     |
|                                                                                                   | 15                                                                                                   | 14                                                                           | 13                                                     | 12      | 11                    | 10      | 9               | 8                                               | 7                                                             | 6                                                      | 5                                       | 4                                                        | 3                                            | 2                                           | 1                           | 0                     |
|                                                                                                   |                                                                                                      |                                                                              |                                                        |         |                       |         |                 |                                                 |                                                               |                                                        | 1                                       |                                                          |                                              |                                             | I                           |                       |
|                                                                                                   |                                                                                                      |                                                                              |                                                        | rese    | rved                  |         |                 |                                                 |                                                               | -                                                      |                                         | PI                                                       | D1                                           |                                             |                             |                       |
| Туре                                                                                              | RO                                                                                                   | RO                                                                           | RO                                                     | RO      | RO                    | RO      | RO              | RO                                              | RO                                                            | RO                                                     | RO                                      | RO                                                       | RO                                           | RO                                          | RO                          | RO                    |
| Type<br>Reset                                                                                     | RO<br>0                                                                                              | RO<br>0                                                                      | RO<br>0                                                |         | L                     | RO<br>0 | RO<br>0         | RO<br>0                                         | RO<br>0                                                       | RO<br>0                                                | RO<br>0                                 |                                                          | L                                            | RO<br>0                                     | RO<br>0                     | RO<br>0               |
|                                                                                                   | 0                                                                                                    |                                                                              |                                                        | RO      | RO                    | 0       |                 |                                                 | 0                                                             |                                                        |                                         | RO                                                       | RO                                           |                                             |                             |                       |
| Reset                                                                                             | o<br>Tield                                                                                           | 0                                                                            | 0                                                      | RO<br>0 | RO<br>0               | 0       | 0               | 0<br>Descr<br>Softwa<br>compa                   | o<br>iption<br>are shou<br>atibility v                        | 0<br>uld not re<br>vith futur                          |                                         | RO<br>0<br>e value o<br>cts, the v                       | RO<br>0<br>of a rese<br>value of             | 0<br>erved bit<br>a reserv                  | 0<br>. To prov              | 0<br>vide             |
| Reset<br>Bit/F                                                                                    | o<br>Field<br>:8                                                                                     | 0                                                                            | 0<br>Name                                              | RO<br>0 | RO<br>0<br>Type       | 0       | 0<br>Reset      | 0<br>Descr<br>Softwa<br>compa<br>prese          | o<br>iption<br>are shou<br>atibility v<br>rved acr            | 0<br>uld not re<br>vith futur<br>oss a re              | 0<br>ely on th                          | RO<br>0<br>e value o<br>cts, the v<br>fy-write o         | RO<br>0<br>of a rese<br>value of             | 0<br>erved bit<br>a reserv                  | 0<br>. To prov              | 0<br>vide             |
| Reset<br>Bit/F<br>31                                                                              | o<br>Field<br>:8                                                                                     | 0                                                                            | 0<br>Name<br>reserved                                  | RO<br>0 | RO<br>0<br>Type<br>RO | 0       | o<br>Reset<br>0 | 0<br>Descr<br>Softwa<br>compa<br>preser<br>GPIO | 0<br>iption<br>are shou<br>atibility v<br>rved acr<br>Periphe | 0<br>uld not re<br>vith futur<br>oss a re<br>eral ID R | 0<br>ely on the<br>re produc<br>ad-modi | RO<br>0<br>e value o<br>cts, the v<br>fy-write o<br>5:8] | RO<br>0<br>of a rese<br>value of<br>operatio | <sup>0</sup><br>erved bit<br>a reserv<br>n. | 0<br>. To prov<br>ed bit sh | o<br>vide<br>nould be |

# Register 27: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)

| GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>GPIO Po<br>Offset 0x<br>Type RO | rt C base:<br>rt D base:<br>rt E base:<br>rt F base:<br>rt G base:<br>rt H base:<br>FE8 | 0x4000.<br>0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>.6000<br>7000 |      |                 |         |            |                                        |                                                    |                                           |                              |                                    |                      |                            |                |           |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|------|-----------------|---------|------------|----------------------------------------|----------------------------------------------------|-------------------------------------------|------------------------------|------------------------------------|----------------------|----------------------------|----------------|-----------|
|                                                                                                              | 31                                                                                      | 30                                                                        | 29                                                    | 28   | 27              | 26      | 25         | 24                                     | 23                                                 | 22                                        | 21                           | 20                                 | 19                   | 18                         | 17             | 16        |
|                                                                                                              |                                                                                         |                                                                           | 1 1                                                   |      | r r<br>1        |         | 1          | rese                                   | rved                                               | 1                                         | 1 1                          |                                    |                      | 1                          | 1              | 1         |
| Туре                                                                                                         | RO                                                                                      | RO                                                                        | RO                                                    | RO   | RO              | RO      | RO         | RO                                     | RO                                                 | RO                                        | RO                           | RO                                 | RO                   | RO                         | RO             | RO        |
| Reset                                                                                                        | 0                                                                                       | 0                                                                         | 0                                                     | 0    | 0               | 0       | 0          | 0                                      | 0                                                  | 0                                         | 0                            | 0                                  | 0                    | 0                          | 0              | 0         |
|                                                                                                              | 15                                                                                      | 14                                                                        | 13                                                    | 12   | 11              | 10      | 9          | 8                                      | 7                                                  | 6                                         | 5                            | 4                                  | 3                    | 2                          | 1              | 0         |
|                                                                                                              |                                                                                         | l                                                                         |                                                       | rese | rved            |         | •          | 1                                      |                                                    | 1                                         |                              | PI                                 | D2                   |                            | 1              | '         |
|                                                                                                              |                                                                                         |                                                                           |                                                       |      | I               |         |            |                                        |                                                    |                                           |                              |                                    | 1                    |                            |                |           |
| Туре                                                                                                         | RO                                                                                      | RO                                                                        | RO                                                    | RO   | RO              | RO      | RO         | RO                                     | RO                                                 | RO                                        | RO                           | RO                                 | RO                   | RO                         | RO             | RO        |
| Type<br>Reset                                                                                                | RO<br>0                                                                                 | RO<br>0                                                                   | RO<br>0                                               |      |                 | RO<br>0 | RO<br>0    | RO<br>0                                | RO<br>0                                            | RO<br>0                                   | RO<br>0                      |                                    | L                    | RO<br>0                    | RO<br>0        | RO<br>0   |
|                                                                                                              | 0                                                                                       |                                                                           |                                                       | RO   | RO              | 0       |            |                                        | 0                                                  |                                           |                              | RO                                 | RO                   |                            |                |           |
| Reset                                                                                                        | o<br>ïeld                                                                               | 0                                                                         | 0                                                     | RO   | RO<br>0         | 0       | 0          | 0<br>Descr<br>Softwa<br>compa          | o<br>iption<br>are shou<br>atibility v             | 0<br>uld not re<br>vith futur             |                              | RO<br>1<br>e value o<br>cts, the v | RO<br>1<br>of a rese | 0<br>erved bit<br>a reserv | o<br>. To prov | 0<br>vide |
| Reset<br>Bit/F                                                                                               | o<br>ïeld<br>:8                                                                         | 0                                                                         | <sup>0</sup><br>Name                                  | RO   | RO<br>0<br>Type | 0       | 0<br>Reset | 0<br>Descr<br>Softwa<br>compa<br>prese | 0<br>iption<br>are shou<br>atibility v<br>rved acr | 0<br>uld not re<br>vith futur<br>oss a re | 0<br>ely on the<br>re produc | RO<br>1<br>e value<br>cts, the v   | RO<br>1<br>of a rese | 0<br>erved bit<br>a reserv | o<br>. To prov | 0<br>vide |

# Register 28: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

| GPIO PO<br>GPIO PO<br>GPIO PO<br>GPIO PO<br>GPIO PO<br>GPIO PO<br>GPIO PO<br>Offset 0x<br>Type RO | rt C base<br>rt D base<br>rt E base<br>rt F base<br>rt G base<br>rt H base<br>FEC | 0x4000<br>0x4000<br>0x4000<br>0x4002<br>0x4002<br>0x4002<br>0x4002<br>0x4002 | 5000<br>6000<br>7000<br>4000<br>5000<br>.6000<br>7000 |         |                 |         |                 |                                              |                                                               |                                           |                                         |                                                      |                                        |                                             |                             |                       |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|---------|-----------------|---------|-----------------|----------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-----------------------------------------|------------------------------------------------------|----------------------------------------|---------------------------------------------|-----------------------------|-----------------------|
|                                                                                                   | 31                                                                                | 30                                                                           | 29                                                    | 28      | 27              | 26      | 25              | 24                                           | 23                                                            | 22                                        | 21                                      | 20                                                   | 19                                     | 18                                          | 17                          | 16                    |
|                                                                                                   |                                                                                   |                                                                              | 1                                                     |         | r r<br>1        |         | ı               | rese                                         | rved                                                          |                                           | r                                       | ſ                                                    | 1                                      | 1                                           | 1                           | 1                     |
| Туре                                                                                              | RO<br>0                                                                           | RO                                                                           | RO<br>0                                               | RO      | RO              | RO      | RO              | RO                                           | RO                                                            | RO<br>0                                   | RO                                      | RO                                                   | RO                                     | RO<br>0                                     | RO                          | RO                    |
| Reset                                                                                             | U                                                                                 | 0                                                                            | 0                                                     | 0       | 0               | 0       | 0               | 0                                            | 0                                                             | 0                                         | 0                                       | 0                                                    | 0                                      | 0                                           | 0                           | 0                     |
|                                                                                                   | 15                                                                                | 14                                                                           | 13                                                    | 12      | 11              | 10      | 9               | 8                                            | 7                                                             | 6                                         | 5                                       | 4                                                    | 3                                      | 2                                           | 1                           | 0                     |
|                                                                                                   |                                                                                   |                                                                              | •                                                     | rese    | rved            |         | •               | •                                            |                                                               | 1                                         | 1                                       | PI                                                   | D3                                     | 1                                           | 1                           | '                     |
|                                                                                                   |                                                                                   |                                                                              |                                                       |         |                 |         |                 |                                              |                                                               |                                           |                                         |                                                      |                                        |                                             |                             |                       |
| Type<br>Reset                                                                                     | RO<br>0                                                                           | RO<br>0                                                                      | RO<br>0                                               | RO<br>0 | RO<br>0         | RO<br>0 | RO<br>0         | RO<br>0                                      | RO<br>0                                                       | RO<br>0                                   | RO<br>0                                 | RO<br>0                                              | RO<br>0                                | RO<br>0                                     | RO<br>0                     | RO<br>1               |
|                                                                                                   | 0                                                                                 |                                                                              |                                                       |         |                 | 0       |                 |                                              | 0                                                             |                                           |                                         |                                                      |                                        |                                             |                             |                       |
| Reset                                                                                             | o<br>ield                                                                         | 0                                                                            | 0                                                     | 0       | 0               | 0       | 0               | 0<br>Descr<br>Softw<br>comp                  | o<br>iption<br>are shou<br>atibility v                        | 0<br>Ild not re<br>vith futur             | 0<br>ely on th                          | 0<br>e value o<br>cts, the v                         | o<br>of a rese<br>value of             | 0<br>erved bit<br>a reserv                  | o<br>. To prov              | 1                     |
| Reset<br>Bit/F                                                                                    | o<br>ïeld<br>:8                                                                   | 0                                                                            | 0<br>Name                                             | 0       | о               | 0       | 0<br>Reset      | 0<br>Descr<br>Softw<br>comp<br>prese         | o<br>iption<br>are shou<br>atibility w<br>rved acro           | 0<br>Ild not re<br>vith futur<br>oss a re | 0<br>ely on the<br>re produc            | 0<br>e value o<br>cts, the v<br>fy-write o           | o<br>of a rese<br>value of             | 0<br>erved bit<br>a reserv                  | o<br>. To prov              | 1<br>vide             |
| Reset<br>Bit/F<br>31                                                                              | o<br>ïeld<br>:8                                                                   | 0                                                                            | 0<br>Name<br>reserved                                 | 0       | o<br>Type<br>RO | 0       | o<br>Reset<br>0 | 0<br>Descr<br>Softw<br>comp<br>prese<br>GPIO | 0<br>iption<br>are shou<br>atibility v<br>rved acr<br>Periphe | 0<br>vith futur<br>oss a re<br>ral ID R   | 0<br>ely on the<br>re produc<br>ad-modi | 0<br>e value o<br>cts, the v<br>fy-write o<br>11:24] | 0<br>of a rese<br>value of<br>operatio | <sup>0</sup><br>erved bit<br>a reserv<br>n. | 0<br>. To prov<br>ed bit sh | 1<br>vide<br>nould be |

### Register 29: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0xF | t B base<br>t C base<br>t D base<br>t E base<br>t F base<br>t G base<br>t H base<br>FO | e: 0x4000.<br>e: 0x4000.<br>e: 0x4000.<br>e: 0x4000.<br>e: 0x4002.<br>e: 0x4002.<br>e: 0x4002.<br>e: 0x4002.<br>x0x0000.0 | 5000<br>6000<br>7000<br>4000<br>5000<br>.6000<br>7000 |      |            | -, |            |       |          |           |             |            |              |          |    |                  |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|------------|----|------------|-------|----------|-----------|-------------|------------|--------------|----------|----|------------------|
|                                                                                                | 31                                                                                     | 30                                                                                                                        | 29                                                    | 28   | 27         | 26 | 25         | 24    | 23       | 22        | 21          | 20         | 19           | 18       | 17 | 16               |
| [                                                                                              |                                                                                        | r                                                                                                                         | i i                                                   |      | r r        |    | ı          | rese  | rved     |           |             |            | 1            | Ì        | T  | 1                |
| Туре                                                                                           | RO                                                                                     | RO                                                                                                                        | RO                                                    | RO   | RO         | RO | RO         | RO    | RO       | RO        | RO          | RO         | RO           | RO       | RO | RO               |
| Reset                                                                                          | 0                                                                                      | 0                                                                                                                         | 0                                                     | 0    | 0          | 0  | 0          | 0     | 0        | 0         | 0           | 0          | 0            | 0        | 0  | 0                |
|                                                                                                | 15                                                                                     | 14                                                                                                                        | 13                                                    | 12   | 11         | 10 | 9          | 8     | 7        | 6         | 5           | 4          | 3            | 2        | 1  | 0                |
|                                                                                                |                                                                                        | 1                                                                                                                         |                                                       | rese | rved       |    | 1          | 1     |          |           | · · · · · · | CI         | I<br>D0<br>I | 1        | ſ  | '                |
| Туре                                                                                           | RO                                                                                     | RO                                                                                                                        | RO                                                    | RO   | RO         | RO | RO         | RO    | RO       | RO        | RO          | RO         | RO           | RO       | RO | RO               |
| Reset                                                                                          | 0                                                                                      | 0                                                                                                                         | 0                                                     | 0    | 0          | 0  | 0          | 0     | 0        | 0         | 0           | 0          | 1            | 1        | 0  | 1                |
| Bit/Fi<br>31:                                                                                  |                                                                                        | I                                                                                                                         | Name<br>reserved                                      |      | Type<br>RO | I  | Reset<br>0 | compa | are shou | ith futur | e produc    | cts, the v | value of     | a reserv |    | vide<br>hould be |
| 7:0                                                                                            | D                                                                                      |                                                                                                                           | CID0                                                  |      | RO         |    | 0x0D       | GPIO  | PrimeC   | ell ID Re | gister[7:   | 0]         |              |          |    |                  |

Provides software a standard cross-peripheral identification system.

# Register 30: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

#### GPIO PrimeCell Identification 1 (GPIOPCellID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.7000 Offset 0xFF4 Type RO, reset 0x0x0000.00F0

|               | 31        | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                                                                                                                                                                         | 22      | 21      | 20      | 19      | 18      | 17      | 16      |  |
|---------------|-----------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--|
|               |           | Î       | Î        | 1       | r î     |         | î       | rese    | rved                                                                                                                                                                                       |         |         | i i     |         | Î       | î       | )       |  |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
|               | 15        | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                                                                                                                                                                          | 6       | 5       | 4       | 3       | 2       | 1       | 0       |  |
|               |           |         |          | rese    | rved    |         | 1       | 1       |                                                                                                                                                                                            |         |         | CI      | D1      | ı       | 1       |         |  |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>1                                                                                                                                                                                    | RO<br>1 | RO<br>1 | RO<br>1 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
| Bit/F         | Bit/Field |         | Name     |         |         |         | Reset   | Descr   | iption                                                                                                                                                                                     |         |         |         |         |         |         |         |  |
| 31:8          |           |         | reserved |         | RO      | RO 0    |         | compa   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |         |         |         |         |         |         |         |  |
| 7:0           |           |         | CID1     |         | RO      |         | 0xF0    | GPIO    | GPIO PrimeCell ID Register[15:8]                                                                                                                                                           |         |         |         |         |         |         |         |  |

Provides software a standard cross-peripheral identification system.

### Register 31: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)

| GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>GPIO Por<br>Offset 0xf<br>Type RO, | rt B base:<br>rt C base<br>rt D base<br>rt E base:<br>rt F base:<br>rt G base<br>rt H base<br>FF8 | 0x4000.<br>0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 5000<br>6000<br>7000<br>4000<br>5000<br>.6000<br>.7000 |         |         |                                                                                                                                                                                               |         |         |           |           |           |          |          |           |           |         |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-----------|-----------|-----------|----------|----------|-----------|-----------|---------|
|                                                                                                            | 31                                                                                                | 30                                                                                   | 29                                                     | 28      | 27      | 26                                                                                                                                                                                            | 25      | 24      | 23        | 22        | 21        | 20       | 19       | 18        | 17        | 16      |
|                                                                                                            |                                                                                                   |                                                                                      | 1                                                      |         | r r     |                                                                                                                                                                                               | 1       | rese    | rved      |           |           |          |          |           | 1         |         |
| Туре                                                                                                       | RO                                                                                                | RO                                                                                   | RO                                                     | RO      | RO      | RO                                                                                                                                                                                            | RO      | RO      | RO        | RO        | RO        | RO       | RO       | RO        | RO        | RO      |
| Reset                                                                                                      | 0                                                                                                 | 0                                                                                    | 0                                                      | 0       | 0       | 0                                                                                                                                                                                             | 0       | 0       | 0         | 0         | 0         | 0        | 0        | 0         | 0         | 0       |
|                                                                                                            | 15                                                                                                | 14                                                                                   | 13                                                     | 12      | 11      | 10                                                                                                                                                                                            | 9       | 8       | 7         | 6         | 5         | 4        | 3        | 2         | 1         | 0       |
|                                                                                                            |                                                                                                   | I                                                                                    |                                                        | rese    | rved    |                                                                                                                                                                                               |         | •       |           |           |           | CI       | D2       | 1         |           | '       |
| Type<br>Reset                                                                                              | RO<br>0                                                                                           | RO<br>0                                                                              | RO<br>0                                                | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0 | RO<br>0 | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0  | RO<br>0  | RO<br>1   | RO<br>0   | RO<br>1 |
| Bit/Fi                                                                                                     | ield                                                                                              |                                                                                      | Name                                                   |         | Туре    |                                                                                                                                                                                               | Reset   | Descr   | iption    |           |           |          |          |           |           |         |
| 31:8                                                                                                       |                                                                                                   | reserved                                                                             |                                                        | RO 0    |         | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |         |         |           |           |           |          |          |           |           |         |
| 7:0                                                                                                        | 0                                                                                                 |                                                                                      | CID2                                                   |         | RO      |                                                                                                                                                                                               | 0x05    | GPIO    | PrimeC    | ell ID Re | gister[23 | 3:16]    |          |           |           |         |
|                                                                                                            |                                                                                                   |                                                                                      |                                                        |         |         |                                                                                                                                                                                               |         | Provid  | les softv | vare a st | andard o  | cross-pe | ripheral | identific | ation sys | stem.   |

# Register 32: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)

GPIO Port A base: 0x4000.4000

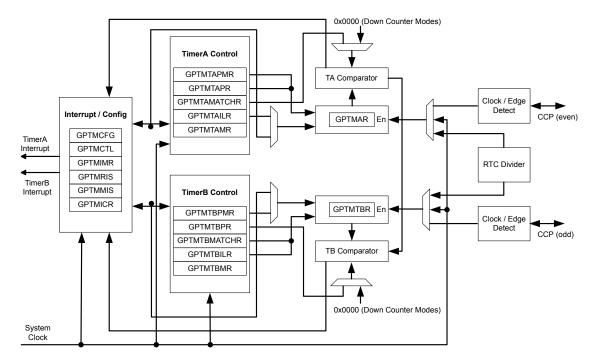
| GPIO Poi<br>GPIO Poi<br>GPIO Poi<br>GPIO Poi<br>GPIO Poi<br>GPIO Poi<br>Offset 0xl | rt B base:<br>rt C base:<br>rt D base:<br>rt E base:<br>rt F base:<br>rt G base:<br>rt H base:<br>FFC<br>, reset 0x0 | 0x4000.<br>0x4000.<br>0x4002.<br>0x4002.<br>0x4002.<br>0x4002. | 6000<br>7000<br>4000<br>5000<br>6000<br>7000 |         |            |         |             |                                                                                                                                                                                               |           |           |         |          |           |           |          |        |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|---------|------------|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|----------|-----------|-----------|----------|--------|--|
|                                                                                    | 31                                                                                                                   | 30                                                             | 29                                           | 28      | 27         | 26      | 25          | 24                                                                                                                                                                                            | 23        | 22        | 21      | 20       | 19        | 18        | 17       | 16     |  |
|                                                                                    | ľ                                                                                                                    |                                                                | 1 1                                          |         |            |         | 1           | rese                                                                                                                                                                                          | rved      |           |         |          |           |           | Ì        | '      |  |
| Туре                                                                               | RO                                                                                                                   | RO                                                             | RO                                           | RO      | RO         | RO      | RO          | RO                                                                                                                                                                                            | RO        | RO        | RO      | RO       | RO        | RO        | RO       | RO     |  |
| Reset                                                                              | 0                                                                                                                    | 0                                                              | 0                                            | 0       | 0          | 0       | 0           | 0                                                                                                                                                                                             | 0         | 0         | 0       | 0        | 0         | 0         | 0        | 0      |  |
|                                                                                    | 15                                                                                                                   | 14                                                             | 13                                           | 12      | 11         | 10      | 9           | 8                                                                                                                                                                                             | 7         | 6         | 5       | 4        | 3         | 2         | 1        | 0      |  |
|                                                                                    | I                                                                                                                    |                                                                |                                              | rese    | rved       |         | I           | 1                                                                                                                                                                                             |           |           |         | CI       | D3        |           | 1        | '      |  |
| Туре                                                                               | RO<br>0                                                                                                              | RO<br>0                                                        | RO<br>0                                      | RO<br>0 | RO         | RO<br>0 | RO<br>0     | RO<br>0                                                                                                                                                                                       | RO        | RO<br>0   | RO<br>1 | RO<br>1  | RO<br>0   | RO<br>0   | RO<br>0  | RO     |  |
| Reset                                                                              | U                                                                                                                    | U                                                              | 0                                            | U       | 0          | U       | U           | U                                                                                                                                                                                             | 1         | U         | 1       | 1        | U         | U         | U        | 1      |  |
| Bit/F                                                                              | ield                                                                                                                 | Name                                                           |                                              |         | Type Reset |         | Description |                                                                                                                                                                                               |           |           |         |          |           |           |          |        |  |
| 31:8                                                                               |                                                                                                                      | reserved                                                       |                                              |         | RO         | RO 0    |             | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |           |           |         |          |           |           |          |        |  |
| 7:                                                                                 | 0                                                                                                                    |                                                                | CID3                                         |         | RO         |         | 0xB1        |                                                                                                                                                                                               | PrimeCo   |           | • •     | •        |           |           |          |        |  |
|                                                                                    |                                                                                                                      |                                                                |                                              |         |            |         |             | Provid                                                                                                                                                                                        | les softw | vare a st | andard  | cross-pe | eripheral | identific | ation sy | rstem. |  |

# 9 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris<sup>®</sup> General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1, and Timer 2). Each GPTM block provides two 16-bit timer/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions. The trigger signals from all of the general-purpose timers are ORed together before reaching the ADC module, so only one timer should be used to trigger ADC events.

**Note:** Timer2 is an internal timer and can only be used to generate internal interrupts or trigger ADC events.


The General-Purpose Timer Module is one timing resource available on the Stellaris<sup>®</sup> microcontrollers. Other timer resources include the System Timer (SysTick) (see "System Timer (SysTick)" on page 35).

The following modes are supported:

- 32-bit Timer modes
  - Programmable one-shot timer
  - Programmable periodic timer
  - Real-Time Clock using 32.768-KHz input clock
  - Software-controlled event stalling (excluding RTC mode)
- 16-bit Timer modes
  - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
  - Programmable one-shot timer
  - Programmable periodic timer
  - Software-controlled event stalling
- 16-bit Input Capture modes
  - Input edge count capture
  - Input edge time capture
- 16-bit PWM mode
  - Simple PWM mode with software-programmable output inversion of the PWM signal

# 9.1 Block Diagram





# 9.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 186), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 187), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 188). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

### 9.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the **GPTM TimerA Interval Load** (**GPTMTAILR**) register (see page 197) and the **GPTM TimerB Interval Load** (**GPTMTBILR**) register (see page 198). The prescale counters are initialized to 0x00: the **GPTM TimerA Prescale** (**GPTMTAPR**) register (see page 201) and the **GPTM TimerB Prescale** (**GPTMTBPR**) register (see page 202).

#### 9.2.2 32-Bit Timer Operating Modes

**Note:** Both the odd- and even-numbered CCP pins are used for 16-bit mode. Only the even-numbered CCP pins are used for 32-bit mode.

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- **GPTM TimerA Interval Load (GPTMTAILR)** register [15:0], see page 197
- **GPTM TimerB Interval Load (GPTMTBILR)** register [15:0], see page 198
- **GPTM TimerA (GPTMTAR)** register [15:0], see page 205
- **GPTM TimerB (GPTMTBR)** register [15:0], see page 206

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

#### 9.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 187), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 189), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and output triggers when it reaches the 0x0000000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status (GPTMRIS) register (see page 193), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 195). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR) register (see page 191), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 194).

The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000.0000 state, and deasserted on the following clock cycle. It is enabled by setting the TAOTE bit in **GPTMCTL**, and can trigger SoC-level events such as ADC conversions.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is asserted, the timer freezes counting until the signal is deasserted.

#### 9.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is

loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 199) by the controller.

The input clock on the CCP0, CCP2 or CCP4 pins is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTIMR**, the GPTM also sets the RTCMIS bit in **GPTMISR** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

#### 9.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 186). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an *n* to reference both.

#### 9.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and output triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt.

The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000 state, and deasserted on the following clock cycle. It is enabled by setting the TnOTE bit in the **GPTMCTL** register, and can trigger SoC-level events such as ADC conversions.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TRSTALL bit in the **GPTMCTL** register is enabled, the timer freezes counting until the signal is deasserted.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 25-MHz clock with Tc=20 ns (clock period).

| Prescale | #Clock (T c) <sup>a</sup> | Max Time | Units |
|----------|---------------------------|----------|-------|
| 00000000 | 1                         | 2.6214   | mS    |
| 00000001 | 2                         | 5.2428   | mS    |
| 00000010 | 3                         | 27.8642  | mS    |
|          |                           |          |       |
| 11111100 | 254                       | 665.8458 | mS    |
| 11111110 | 255                       | 668.4672 | mS    |
| 11111111 | 256                       | 671.0886 | mS    |

#### Table 9-1. 16-Bit Timer With Prescaler Configurations

a. Tc is the clock period.

#### 9.2.3.2 16-Bit Input Edge Count Mode

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 9-2 on page 179 shows how input edge count mode works. In this case, the timer start value is set to **GPTMnILR** =0x000A and the match value is set to **GPTMnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMnMR** register.

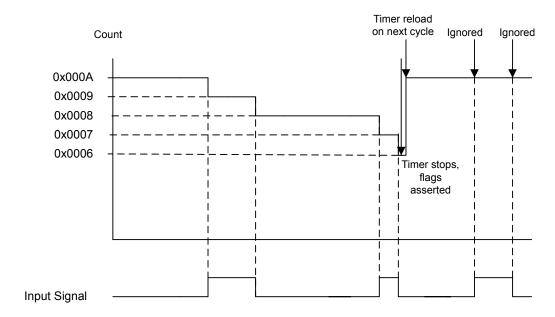
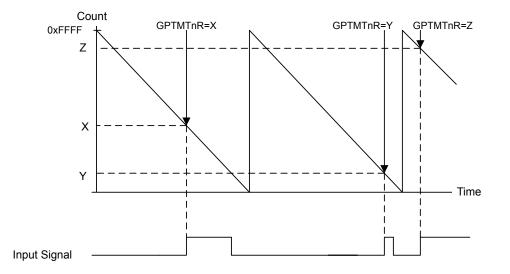
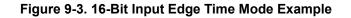



Figure 9-2. 16-Bit Input Edge Count Mode Example

# 9.2.3.3 16-Bit Input Edge Time Mode

**Note:** The prescaler is not available in 16-Bit Input Edge Time mode.


In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of both rising and falling edges. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCnTL** register.


When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current **Tn** counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

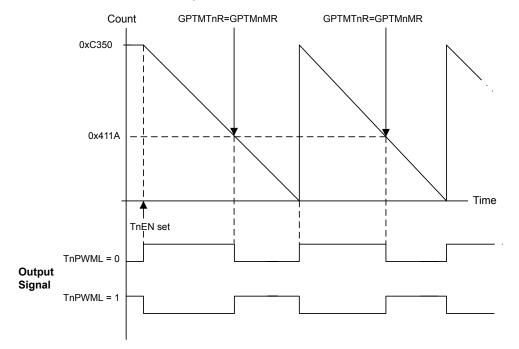
After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMnILR** register.

Figure 9-3 on page 180 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).






#### 9.2.3.4 16-Bit PWM Mode

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** (and **GPTMTNPR** if using a prescaler) and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 9-4 on page 181 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMnIRL**=0xC350 and the match value is **GPTMnMR**=0x411A.



#### Figure 9-4. 16-Bit PWM Mode Example

## 9.3 Initialization and Configuration

To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMERO, TIMER1, and TIMER2 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

#### 9.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
  - a. Write a value of 0x1 for One-Shot mode.
  - b. Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 182. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

#### 9.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4 pins. To enable the RTC feature, follow these steps:

- 1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the counter is re-loaded with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

#### 9.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
  - a. Write a value of 0x1 for One-Shot mode.
  - **b.** Write a value of 0x2 for Periodic mode.
- If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 182. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

#### 9.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the **TREVENT** field of the **GPTM Control (GPTMCTL)** register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 183-step 9 on page 183.

#### 9.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the **GPTM Configuration (GPTMCFG)** register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TREVENT field of the **GPTM Control (GPTMCTL)** register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TREN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the **GPTMRIS** register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the **GPTM**

**Interrupt Clear (GPTMICR)** register. The time at which the event happened can be obtained by reading the **GPTM Timern (GPTMTnR)** register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

#### 9.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. Set the TREN bit in the **GPTM Control (GPTMCTL)** register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

## 9.4 Register Map

Table 9-2 on page 184 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000 0x4003.0000
- Timer1: 0x4003.1000 0x4003.1000
- Timer2: 0x4003.2000 0x4003.2000

#### Table 9-2. Timers Register Map

| Offset | Name     | Туре | Reset         | Description         | See<br>page |
|--------|----------|------|---------------|---------------------|-------------|
| 0x000  | GPTMCFG  | R/W  | 0x0x0000.0000 | GPTM Configuration  | 186         |
| 0x004  | GPTMTAMR | R/W  | 0x0x0000.0000 | GPTM TimerA Mode    | 187         |
| 0x008  | GPTMTBMR | R/W  | 0x0x0000.0000 | GPTM TimerB Mode    | 188         |
| 0x00C  | GPTMCTL  | R/W  | 0x0x0000.0000 | GPTM Control        | 189         |
| 0x018  | GPTMIMR  | R/W  | 0x0x0000.0000 | GPTM Interrupt Mask | 191         |

| Offset | Name         | Туре | Reset                                                        | Description                  | See<br>page |
|--------|--------------|------|--------------------------------------------------------------|------------------------------|-------------|
| 0x01C  | GPTMRIS      | RO   | 0x0x0000.0000                                                | GPTM Raw Interrupt Status    | 193         |
| 0x020  | GPTMMIS      | RO   | 0x0x0000.0000                                                | GPTM Masked Interrupt Status | 194         |
| 0x024  | GPTMICR      | W1C  | 0x0x0000.0000                                                | GPTM Interrupt Clear         | 195         |
| 0x028  | GPTMTAILR    | R/W  | 0x0000.FFFF<br>(16-bit mode)<br>0xFFFF.FFFF<br>(32-bit mode) | GPTM TimerA Interval Load    | 197         |
| 0x02C  | GPTMTBILR    | R/W  | 0x0000.FFFF                                                  | GPTM TimerB Interval Load    | 198         |
| 0x030  | GPTMTAMATCHR | R/W  | 0x0000.FFFF<br>(16-bit mode)<br>0xFFFF.FFFF<br>(32-bit mode) | GPTM TimerA Match            | 199         |
| 0x034  | GPTMTBMATCHR | R/W  | 0x0000.FFFF                                                  | GPTM TimerB Match            | 200         |
| 0x038  | GPTMTAPR     | R/W  | 0x0000.0000                                                  | GPTM TimerA Prescale         | 201         |
| 0x03C  | GPTMTBPR     | R/W  | 0x0000.0000                                                  | GPTM TimerB Prescale         | 202         |
| 0x040  | GPTMTAPMR    | R/W  | 0x0000.0000                                                  | GPTM TimerA Prescale Match   | 203         |
| 0x044  | GPTMTBPMR    | R/W  | 0x0000.0000                                                  | GPTM TimerB Prescale Match   | 204         |
| 0x048  | GPTMTAR      | RO   | 0x0000.FFFF<br>(16-bit mode)<br>0xFFFF.FFFF<br>(32-bit mode) | GPTM TimerA                  | 205         |
| 0x04C  | GPTMTBR      | RO   | 0x0000.FFFF                                                  | GPTM TimerB                  | 206         |

# 9.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

## Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

#### GPTM Configuration (GPTMCFG)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x000 Type R/W, reset 0x0x0000.0000

| 11    | ,    |    |          |         |       |    |          |        |                                     |            |           |            |           |          |         |                  |
|-------|------|----|----------|---------|-------|----|----------|--------|-------------------------------------|------------|-----------|------------|-----------|----------|---------|------------------|
|       | 31   | 30 | 29       | 28      | 27    | 26 | 25       | 24     | 23                                  | 22         | 21        | 20         | 19        | 18       | 17      | 16               |
|       |      |    | •        |         | · · · |    |          | rese   | rved                                |            |           |            |           | 1        | 1       |                  |
| Туре  | RO   | RO | RO       | RO<br>0 | RO    | RO | RO       | RO     | RO                                  | RO<br>0    | RO        | RO         | RO        | RO       | RO      | RO               |
| Reset | 0    | 0  | 0        |         | 0     | 0  | 0        | 0      | 0                                   | 0          | 0         | 0          | 0         | 0        | 0       | 0                |
|       | 15   | 14 | 13       | 12      | 11    | 10 | 9        | 8      | 7                                   | 6          | 5         | 4          | 3         | 2        | 1       | 0                |
|       |      |    | •        |         | · ·   |    | reserved |        |                                     |            |           |            |           |          | GPTMCFG | ;                |
| Туре  | RO   | RO | RO       | RO<br>0 | RO    | RO | RO       | RO     | RO                                  | RO<br>0    | RO        | RO         | RO        | R/W      | R/W     | R/W              |
| Reset | 0    | 0  | 0        | U       | 0     | 0  | 0        | 0      | 0                                   | 0          | 0         | 0          | 0         | 0        | 0       | 0                |
| Bit/F | ield |    | Name     |         | Туре  | I  | Reset    | Descr  | iption                              |            |           |            |           |          |         |                  |
| 31    | :3   |    | reserved |         | RO    |    | 0        | compa  | are shou<br>atibility v<br>rved acr | vith futur | e produ   | cts, the v | alue of   | a reserv | •       | vide<br>nould be |
| 2:    | 0    | G  | SPTMCF(  | G       | R/W   |    | 0        | GPTM   | I Config                            | uration    |           |            |           |          |         |                  |
|       |      |    |          |         |       |    |          | 0x0: 3 | 82-bit tim                          | er config  | guration. |            |           |          |         |                  |
|       |      |    |          |         |       |    |          | 0x1:3  | 82-bit rea                          | al-time cl | ock (RT   | C) coun    | ter confi | guration |         |                  |
|       |      |    |          |         |       |    |          | 0x2: F | Reserved                            | ł.         |           |            |           |          |         |                  |
|       |      |    |          |         |       |    |          |        |                                     |            |           |            |           |          |         |                  |

0x3: Reserved.

0x4-0x7: 16-bit timer configuration, function is controlled by bits 1:0 of **GPTMTAMR** and **GPTMTBMR**.

## Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

#### GPTM TimerA Mode (GPTMTAMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x004 Type R/W, reset 0x0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25         | 24                                                                                                                               | 23          | 22         | 21                              | 20       | 19         | 18                            | 17       | 16       |  |  |  |  |  |
|---------------|---------|---------|----------|---------|---------|---------|------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------------------------------|----------|------------|-------------------------------|----------|----------|--|--|--|--|--|
| ſ             |         | 1       | 1 1      |         |         |         | 1          | rese                                                                                                                             | rved        |            | 1                               | 1        |            | 1 1                           |          |          |  |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                                                                                                                          | RO<br>0     | RO<br>0    | RO<br>0                         | RO<br>0  | RO<br>0    | RO<br>0                       | RO<br>0  | RO<br>0  |  |  |  |  |  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9          | 8                                                                                                                                | 7           | 6          | 5                               | 4        | 3          | 2                             | 1        | 0        |  |  |  |  |  |
| ſ             |         | 1       | 1 1      |         | ľ       | rese    | n<br>erved | 1 1                                                                                                                              |             |            | 1                               | 1        | TAAMS      | TACMR                         | TA       | MR       |  |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                                                                                                                          | RO<br>0     | RO<br>0    | RO<br>0                         | RO<br>0  | R/W<br>0   | R/W<br>0                      | R/W<br>0 | R/W<br>0 |  |  |  |  |  |
| Bit/Fi        | eld     |         | Name     |         | Туре    | F       | Reset      | Descri                                                                                                                           | iption      |            |                                 |          |            |                               |          |          |  |  |  |  |  |
| 31:           | 4       |         | reserved |         | RO      |         | 0          | compa                                                                                                                            | atibility v | ith futur/ | e produ                         | cts, the |            | erved bit.<br>a reserve<br>n. |          |          |  |  |  |  |  |
| 3             |         |         | TAAMS    |         | R/W     |         | 0          | GPTM TimerA Alternate Mode Select                                                                                                |             |            |                                 |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 0: Capture mode is enabled.                                                                                                      |             |            |                                 |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 1: PWM mode is enabled.                                                                                                          |             |            |                                 |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 1: PWM mode is enabled.         Note:       To enable PWM mode, you must also clear the TACMR bit and set the TAMR field to 0x2. |             |            |                                 |          |            |                               |          |          |  |  |  |  |  |
| 2             |         |         | TACMR    |         | R/W     |         | 0          | GPTN                                                                                                                             | I TimerA    | Capture    | e Mode                          |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 0: Edg                                                                                                                           | je-Coun     | t mode.    |                                 |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 1: Edg                                                                                                                           | je-Time     | mode.      |                                 |          |            |                               |          |          |  |  |  |  |  |
| 1:0           | )       |         | TAMR     |         | R/W     |         | 0          | GPTN                                                                                                                             | I TimerA    | Mode       |                                 |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 0x0: R                                                                                                                           | leserved    | Ι.         |                                 |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 0x1: C                                                                                                                           | ne-Sho      | t Timer r  | node.                           |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 0x2: P                                                                                                                           | eriodic     | Timer m    | ode.                            |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            | 0x3: C                                                                                                                           | apture i    | node.      |                                 |          |            |                               |          |          |  |  |  |  |  |
|               |         |         |          |         |         |         |            |                                                                                                                                  |             |            | sed on tl<br>ster (16-          |          |            | ation def                     | fined by | bits 2:0 |  |  |  |  |  |
|               |         |         |          |         |         |         |            | In 16-I<br>Timer/                                                                                                                |             | configu    | ration, T                       | AMR COR  | ntrols the | 16-bit tir                    | mer moo  | des for  |  |  |  |  |  |
|               |         |         |          |         |         |         |            |                                                                                                                                  |             |            | ration, th<br><b>/IR</b> are ig |          | ter contro | ols the m                     | ode and  | d the    |  |  |  |  |  |

#### Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

#### GPTM TimerB Mode (GPTMTBMR)

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31                                                                                                     | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                               | 23                   | 22        | 21         | 20         | 19                | 18              | 17         | 16       |  |  |  |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------|---------|----------|---------|---------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|------------|------------|-------------------|-----------------|------------|----------|--|--|--|--|--|
| ſ                                       |                                                                                                        | 1       | 1 1      |         |         |         | 1       | rese                                                                                                                             | rved                 |           |            |            |                   | r r             |            |          |  |  |  |  |  |
| Type<br>Reset                           | RO<br>0                                                                                                | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                          | RO<br>0              | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0           | RO<br>0         | RO<br>0    | RO<br>0  |  |  |  |  |  |
|                                         | 15                                                                                                     | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                | 7                    | 6         | 5          | 4          | 3                 | 2               | 1          | 0        |  |  |  |  |  |
| [                                       | -                                                                                                      | 1       | 1 1      |         | · · · · |         | erved   | 1                                                                                                                                | -                    |           |            | ·          | TBAMS             | TBCMR           | TBI        |          |  |  |  |  |  |
| Type<br>Reset                           | RO<br>0                                                                                                | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                          | RO<br>0              | RO<br>0   | RO<br>0    | RO<br>0    | R/W<br>0          | R/W<br>0        | R/W<br>0   | R/W<br>0 |  |  |  |  |  |
| Bit/Fi                                  | eld                                                                                                    |         | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                            | iption               |           |            |            |                   |                 |            |          |  |  |  |  |  |
| 31:                                     | 4                                                                                                      |         | reserved |         | RO      |         | 0       |                                                                                                                                  |                      |           |            |            |                   | erved bit.      | •          |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         |                                                                                                                                  | -                    |           |            |            | value of operatio | a reserve<br>n. | ed bit sh  | ould be  |  |  |  |  |  |
| 3                                       |                                                                                                        |         | TBAMS    |         | R/W     |         | 0       |                                                                                                                                  |                      |           |            |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 0: Capture mode is enabled.                                                                                                      |                      |           |            |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 1: PWM mode is enabled.                                                                                                          |                      |           |            |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 1: PWM mode is enabled.         Note:       To enable PWM mode, you must also clear the TBCMR bit and set the TBMR field to 0x2. |                      |           |            |            |                   |                 |            |          |  |  |  |  |  |
| 2                                       |                                                                                                        |         | TBCMR    |         | R/W     |         | 0       | GPTM                                                                                                                             | 1 TimerE             | Capture   | e Mode     |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 0: Edg                                                                                                                           | ge-Coun              | t mode.   |            |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 1: Edg                                                                                                                           | ge-Time              | mode.     |            |            |                   |                 |            |          |  |  |  |  |  |
| 1:0                                     | )                                                                                                      |         | TBMR     |         | R/W     |         | 0       | GPTM                                                                                                                             | 1 TimerE             | Mode      |            |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 0x0: F                                                                                                                           | Reserved             | ł.        |            |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 0x1: C                                                                                                                           | )ne-Sho              | t Timer r | node.      |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 0x2: F                                                                                                                           | Periodic             | Timer m   | ode.       |            |                   |                 |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | 0x3: C                                                                                                                           | apture i             | node.     |            |            |                   |                 |            |          |  |  |  |  |  |
|                                         | The timer mode is based on the timer configuration defined by bits 2:0 in the <b>GPTMCFG</b> register. |         |          |         |         |         |         |                                                                                                                                  |                      |           |            |            |                   | bits 2:0        |            |          |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         | In 16-<br>for Tin                                                                                                                |                      | configui  | ration, th | iese bits  | control           | the 16-bi       | it timer r | nodes    |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         |                                                                                                                                  | bit timer<br>ITAMR i |           | ation, th  | iis regist | ter's con         | tents are       | ignored    | l and    |  |  |  |  |  |
|                                         |                                                                                                        |         |          |         |         |         |         |                                                                                                                                  |                      |           |            |            |                   |                 |            |          |  |  |  |  |  |

## Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the GPTMCFG and GMTMTnMR registers to fine-tune the timer configuration, and to enable other features such as timer stall and the output trigger. The output trigger can be used to initiate transfers on the ADC module.

#### GPTM Control (GPTMCTL)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x00C Type R/W, reset 0x0x0000.0000

|               | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24                                | 23                      | 22         | 21        | 20         | 19        | 18       | 17                      | 16       |  |  |                                   |  |  |  |  |  |  |  |
|---------------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------|-------------------------|------------|-----------|------------|-----------|----------|-------------------------|----------|--|--|-----------------------------------|--|--|--|--|--|--|--|
|               |          |          |          | · ·      |          |          |          | rese                              | erved                   |            | l         |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
| Type<br>Reset | RO<br>0                           | RO<br>0                 | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0                 | RO<br>0  |  |  |                                   |  |  |  |  |  |  |  |
|               | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8                                 | 7                       | 6          | 5         | 4          | 3         | 2        | 1                       | 0        |  |  |                                   |  |  |  |  |  |  |  |
|               | reserved | TBPWML   | TBOTE    | reserved | TBEV     | ENT      | TBSTALL  | TBEN                              | reserved                | TAPWML     | TAOTE     | RTCEN      | TAEV      | /ENT     | TASTALL                 | TAEN     |  |  |                                   |  |  |  |  |  |  |  |
| Type<br>Reset | RO<br>0  | R/W<br>0 | R/W<br>0 | RO<br>0  | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                          | RO<br>0                 | R/W<br>0   | R/W<br>0  | R/W<br>0   | R/W<br>0  | R/W<br>0 | R/W<br>0                | R/W<br>0 |  |  |                                   |  |  |  |  |  |  |  |
| Bit/F         | ield     |          | Name     |          | Туре     | F        | Reset    | Descr                             | iption                  |            |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
| 31:           | 15       | r        | eserved  | I        | RO       |          | 0        | comp                              |                         | ith futur  | e produo  | cts, the v | alue of a | a reserv | . To provi<br>ed bit sh |          |  |  |                                   |  |  |  |  |  |  |  |
| 14            | 4        | Т        | BPWMI    | _        | R/W      |          | 0        | GPTM TimerB PWM Output Level      |                         |            |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 0: Output is unaffected.          |                         |            |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 1: Output is inverted.            |                         |            |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
| 1:            | 3        |          | твоте    |          | R/W      |          | 0        | GPTM TimerB Output Trigger Enable |                         |            |           |            |           |          |                         |          |  |  | GPTM TimerB Output Trigger Enable |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 0: The                            | e output                | TimerB t   | rigger is | disable    | d.        |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 1: The                            | e output                | TimerB t   | rigger is | enabled    | 1.        |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
| 12            | 2        | r        | eserved  | I        | RO       |          | 0        | comp                              |                         | ith futur  | e produo  | cts, the v | alue of a | a reserv | . To provi<br>ed bit sh |          |  |  |                                   |  |  |  |  |  |  |  |
| 11:           | 10       | Т        | BEVEN    | т        | R/W      |          | 0        | GPTN                              | 1 TimerB                | Event N    | /lode     |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 00: Po                            | ositive ed              | dge.       |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 01: N                             | egative e               | edge.      |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 10: R                             | eserved.                |            |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 11: Bo                            | oth edge                | s.         |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
| 9             |          | Т        | BSTALI   | -        | R/W      |          | 0        | GPTN                              | 1 TimerB                | Stall Er   | able      |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 0: TimerB stalling is disabled.   |                         |            |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 1: Tim                            | nerB stal               | ling is er | abled.    |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
| 8             |          |          | TBEN     |          | R/W      |          | 0        | GPTN                              | 1 TimerB                | Enable     |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          | 0: Tim                            | nerB is di              | isabled.   |           |            |           |          |                         |          |  |  |                                   |  |  |  |  |  |  |  |
|               |          |          |          |          |          |          |          |                                   | erB is er<br>I on the ( |            | -         |            | ng or the | capture  | logic is e              | enabled  |  |  |                                   |  |  |  |  |  |  |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 6         | TAPWML   | R/W  | 0     | GPTM TimerA PWM Output Level                                                                                                                                                                  |
|           |          |      |       | 0: Output is unaffected.                                                                                                                                                                      |
|           |          |      |       | 1: Output is inverted.                                                                                                                                                                        |
| 5         | TAOTE    | R/W  | 0     | GPTM TimerA Output Trigger Enable                                                                                                                                                             |
|           |          |      |       | 0: The output TimerA trigger is disabled.                                                                                                                                                     |
|           |          |      |       | 1: The output TimerA trigger is enabled.                                                                                                                                                      |
| 4         | RTCEN    | R/W  | 0     | GPTM RTC Enable                                                                                                                                                                               |
|           |          |      |       | 0: RTC counting is disabled.                                                                                                                                                                  |
|           |          |      |       | 1: RTC counting is enabled.                                                                                                                                                                   |
| 3:2       | TAEVENT  | R/W  | 0     | GPTM TimerA Event Mode                                                                                                                                                                        |
|           |          |      |       | 00: Positive edge.                                                                                                                                                                            |
|           |          |      |       | 01: Negative edge.                                                                                                                                                                            |
|           |          |      |       | 10: Reserved.                                                                                                                                                                                 |
|           |          |      |       | 11: Both edges.                                                                                                                                                                               |
| 1         | TASTALL  | R/W  | 0     | GPTM TimerA Stall Enable                                                                                                                                                                      |
|           |          |      |       | 0: TimerA stalling is disabled.                                                                                                                                                               |
|           |          |      |       | 1: TimerA stalling is enabled.                                                                                                                                                                |
| 0         | TAEN     | R/W  | 0     | GPTM TimerA Enable                                                                                                                                                                            |
|           |          |      |       | 0: TimerA is disabled.                                                                                                                                                                        |
|           |          |      |       | 1: TimerA is enabled and begins counting or the capture logic is enabled based on the <b>GPTMCFG</b> register.                                                                                |

## Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

#### GPTM Interrupt Mask (GPTMIMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x018 Type R/W, reset 0x0x0000.0000

| ,             | 31      | 30      | 29       | 28      | 27      | 26       | 25                       | 24                                 | 23          | 22                                    | 21       | 20         | 19       | 18       | 17      | 16      |  |  |
|---------------|---------|---------|----------|---------|---------|----------|--------------------------|------------------------------------|-------------|---------------------------------------|----------|------------|----------|----------|---------|---------|--|--|
|               |         | •       |          |         |         |          |                          | rese                               | rved        |                                       |          |            |          | l        |         |         |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                  | RO<br>0                            | RO<br>0     | RO<br>0                               | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 |  |  |
|               | 15      | 14      | 13       | 12      | 11      | 10       | 9                        | 8                                  | 7           | 6                                     | 5        | 4          | 3        | 2        | 1       | 0       |  |  |
|               |         | 1       | reserved |         |         | CBEIM    | CBMIM                    | ТВТОІМ                             |             | rese                                  | rved     |            | RTCIM    | CAEIM    | CAMIM   | TATOIM  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0                 | R/W<br>0                           | R/W<br>0    | R/W<br>0                              |          |            |          |          |         |         |  |  |
| Bit/F         | ield    |         | Name     |         | Туре    | F        | Reset                    | Description                        |             |                                       |          |            |          |          |         |         |  |  |
| 31:           | 11      |         | reserved |         | RO      |          | 0                        | compa                              | atibility v | uld not re<br>vith futur<br>oss a rea | e produo | cts, the v | value of | a reserv |         |         |  |  |
| 1(            | D       |         | CBEIM    |         | R/W     |          | 0                        | GPTM CaptureB Event Interrupt Mask |             |                                       |          |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          |                          | 0: Inte                            | errupt is   | disabled                              |          |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          |                          | 1: Interrupt is enabled.           |             |                                       |          |            |          |          |         |         |  |  |
| 9             |         |         | CBMIM    |         | R/W     |          | 0                        | GPTM CaptureB Match Interrupt Mask |             |                                       |          |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          |                          |                                    |             | disabled                              |          |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          |                          | 1: Inte                            | errupt is   | enabled.                              |          |            |          |          |         |         |  |  |
| 8             |         |         | TBTOIM   |         | R/W     |          | 0                        |                                    |             | 3 Time-O                              |          | upt Mas    | k        |          |         |         |  |  |
|               |         |         |          |         |         |          |                          |                                    |             | disabled                              |          |            |          |          |         |         |  |  |
| _             |         |         |          |         |         |          |                          |                                    |             | enabled.                              |          |            |          |          | -       |         |  |  |
| 7:            | 4       |         | reserved |         | RO      |          | 0                        | compa                              | atibility v | uld not re<br>vith futur<br>oss a rea | e produo | cts, the v | value of | a reserv |         |         |  |  |
| 3             |         |         | RTCIM    |         | R/W     |          | 0                        | GPTM                               | 1 RTC Ir    | nterrupt N                            | /lask    |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          |                          | 0: Inte                            | errupt is   | disabled                              |          |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          |                          | 1: Inte                            | errupt is   | enabled.                              |          |            |          |          |         |         |  |  |
| 2             |         |         | CAEIM    |         | R/W     |          | 0                        | GPTM CaptureA Event Interrupt Mask |             |                                       |          |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          |                          |                                    |             | disabled                              |          |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          |                          | 1: Inte                            | errupt is   | enabled.                              |          |            |          |          |         |         |  |  |
| 1             |         |         | CAMIM    |         | R/W     |          | 0                        |                                    |             | eA Matc                               |          | ipt Mask   | K        |          |         |         |  |  |
|               |         |         |          |         |         |          |                          |                                    |             | disabled                              |          |            |          |          |         |         |  |  |
|               |         |         |          |         |         |          | 1: Interrupt is enabled. |                                    |             |                                       |          |            |          |          |         |         |  |  |

| Bit/Field | Name   | Туре | Reset | Description                         |
|-----------|--------|------|-------|-------------------------------------|
| 0         | TATOIM | R/W  | 0     | GPTM TimerA Time-Out Interrupt Mask |
|           |        |      |       | 0: Interrupt is disabled.           |
|           |        |      |       | 1: Interrupt is enabled.            |

## Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

#### GPTM Raw Interrupt Status (GPTMRIS)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x01C Type RO, reset 0x0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                              | 23          | 22                                    | 21         | 20        | 19         | 18        | 17      | 16      |  |  |
|---------------|---------|---------|----------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------|-------------|---------------------------------------|------------|-----------|------------|-----------|---------|---------|--|--|
|               |         |         |          |         |         |         |         | rese                                                                                            | rved        |                                       |            |           |            |           |         |         |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                         | RO<br>0     | RO<br>0                               | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0 | RO<br>0 |  |  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                               | 7           | 6                                     | 5          | 4         | 3          | 2         | 1       | 0       |  |  |
|               |         |         | reserved |         |         | CBERIS  | CBMRIS  | TBTORIS                                                                                         |             | rese                                  |            |           | RTCRIS     | CAERIS    | CAMRIS  | TATORIS |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                         | RO<br>0     | RO<br>0                               | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0   | RO<br>0 | RO<br>0 |  |  |
| Bit/Fi        | eld     |         | Name     |         | Туре    | F       | Reset   | Descri                                                                                          | iption      |                                       |            |           |            |           |         |         |  |  |
| 31:1          | 11      | I       | reserved |         | RO      |         | 0       | compa                                                                                           | atibility v | uld not re<br>vith futur<br>oss a rea | e produc   | cts, the  | value of   | a reserv  | •       |         |  |  |
| 10            | )       |         | CBERIS   |         | RO      |         | 0       | GPTN                                                                                            | I Captur    | eB Even                               | t Raw Ir   | iterrupt  |            |           |         |         |  |  |
|               |         |         |          |         |         |         |         | GPTM CaptureB Event Raw Interrupt This is the CaptureB Event interrupt status prior to masking. |             |                                       |            |           |            |           |         |         |  |  |
| 9             |         |         | CBMRIS   |         | RO      |         | 0       | GPTN                                                                                            | I Captur    | eB Matc                               | h Raw Iı   | nterrupt  |            |           |         |         |  |  |
|               |         |         |          |         |         |         |         | This is                                                                                         | the Ca      | ptureB N                              | latch int  | errupt s  | tatus prie | or to ma  | sking.  |         |  |  |
| 8             |         | ٦       | TBTORIS  |         | RO      |         | 0       | GPTN                                                                                            | I TimerE    | 3 Time-O                              | ut Raw     | Interrup  | t          |           |         |         |  |  |
|               |         |         |          |         |         |         |         | This is                                                                                         | the Tin     | nerB time                             | e-out inte | errupt st | tatus pric | or to mas | sking.  |         |  |  |
| 7:4           | 1       | ļ       | reserved |         | RO      |         | 0       | compa                                                                                           | atibility v | uld not re<br>vith futur<br>oss a rea | e produc   | cts, the  | value of   | a reserv  |         |         |  |  |
| 3             |         |         | RTCRIS   |         | RO      |         | 0       | GPTN                                                                                            | I RTC R     | aw Inter                              | rupt       |           |            |           |         |         |  |  |
|               |         |         |          |         |         |         |         | This is                                                                                         | the RT      | C Event                               | interrup   | t status  | prior to r | masking   |         |         |  |  |
| 2             |         |         | CAERIS   |         | RO      |         | 0       | GPTN                                                                                            | I Captur    | eA Even                               | t Raw Ir   | iterrupt  |            |           |         |         |  |  |
|               |         |         |          |         |         |         |         | This is                                                                                         | the Ca      | ptureA E                              | vent inte  | errupt st | tatus pric | or to mas | sking.  |         |  |  |
| 1             |         |         | CAMRIS   |         | RO      |         | 0       | GPTN                                                                                            | I Captur    | eA Matc                               | h Raw lı   | nterrupt  |            |           |         |         |  |  |
|               |         |         |          |         |         |         |         | This is                                                                                         | the Ca      | ptureA N                              | latch int  | errupt s  | tatus prie | or to ma  | sking.  |         |  |  |
| 0             |         | -       | TATORIS  |         | RO      |         | 0       | GPTN                                                                                            | I TimerA    | Time-O                                | ut Raw     | Interrup  | t          |           |         |         |  |  |
|               |         |         |          |         |         |         |         | This th                                                                                         | ne Time     | rA time-c                             | out interr | upt stat  | us prior f | to maski  | ng.     |         |  |  |

## Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

#### GPTM Masked Interrupt Status (GPTMMIS)

| Timer0 base: 0x4003.0000    |   |
|-----------------------------|---|
| Timer1 base: 0x4003.1000    |   |
| Timer2 base: 0x4003.2000    |   |
| Offset 0x020                |   |
| Type RO, reset 0x0x0000.000 | 0 |

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 |                                                  |          |         |         |         |         |         |             |                                      |            |           |           |           |         |         |
|-----------------------------------------|-------------------------------------------------|--------------------------------------------------|----------|---------|---------|---------|---------|---------|-------------|--------------------------------------|------------|-----------|-----------|-----------|---------|---------|
|                                         | 31                                              | 30                                               | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22                                   | 21         | 20        | 19        | 18        | 17      | 16      |
|                                         |                                                 |                                                  | · ·      |         | 1       |         |         | resei   | rved        |                                      |            |           | 1         |           |         |         |
| Type<br>Reset                           | RO<br>0                                         | RO<br>0                                          | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 | RO<br>0 |
|                                         | 15                                              | 14                                               | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6                                    | 5          | 4         | 3         | 2         | 1       | 0       |
| [                                       |                                                 | Î                                                | reserved |         | Î       | CBEMIS  | CBMMIS  | TBTOMIS |             | i<br>rese                            | rved       | İ         | RTCMIS    | CAEMIS    | CAMMIS  | TATOMIS |
| Type<br>Reset                           | RO<br>0                                         | RO<br>0                                          | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 | RO<br>0 |
| Bit/Fi                                  | eld                                             |                                                  | Name     |         | Туре    | F       | Reset   | Descri  | iption      |                                      |            |           |           |           |         |         |
| 31:'                                    | 11                                              |                                                  | reserved |         | RO      |         | 0       | compa   | atibility v | uld not re<br>vith futur<br>oss a re | e produ    | cts, the  | value of  | a reserv  |         |         |
| 10                                      | )                                               |                                                  | CBEMIS   |         | RO      |         | 0       |         |             | eB Ever                              |            |           | •         | er maskii | ng.     |         |
| 9                                       |                                                 |                                                  | CBMMIS   |         | RO      |         | 0       | GPTM    | I Captur    | ·<br>·eB Matc                        | h Maske    | ed Interr | upt       |           | C       |         |
|                                         |                                                 | -                                                |          |         | DO      |         | 0       |         |             | ptureB n                             |            | •         |           | er maski  | ng.     |         |
| 8                                       |                                                 |                                                  | TBTOMIS  |         | RO      |         | 0       |         |             | 3 Time-C<br>nerB time                |            |           |           | er maski  | ng.     |         |
| 7:4                                     | 1                                               |                                                  | reserved |         | RO      |         | 0       | compa   | atibility v | uld not re<br>vith futur<br>oss a re | e produ    | cts, the  | value of  | a reserv  | •       |         |
| 3                                       |                                                 |                                                  | RTCMIS   |         | RO      |         | 0       |         |             | lasked lr<br>C event                 | •          | t status  | after ma  | sking.    |         |         |
| 2                                       |                                                 |                                                  | CAEMIS   |         | RO      |         | 0       |         |             | reA Ever                             |            |           |           | 0         |         |         |
|                                         |                                                 |                                                  |          |         |         |         |         | This is | the Ca      | ptureA e                             | event inte | errupt st | atus afte | r maskii  | ng.     |         |
| 1                                       |                                                 | CAMMIS RO 0 GPTM CaptureA Match Masked Interrupt |          |         |         |         |         |         |             |                                      |            |           |           |           |         |         |
|                                         |                                                 |                                                  |          |         |         |         |         | This is | the Ca      | ptureA n                             | natch int  | errupt s  | tatus aft | er maski  | ng.     |         |
| 0                                       |                                                 | -                                                | TATOMIS  |         | RO      |         | 0       | GPTM    | I TimerA    | A Time-C                             | ut Mask    | ed Inter  | rupt      |           |         |         |
|                                         |                                                 |                                                  |          |         |         |         |         | This is | the Tin     | nerA tim                             | e-out inte | errupt st | atus afte | er maski  | ng.     |         |

## Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

#### GPTM Interrupt Clear (GPTMICR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x024 Type W1C, reset 0x0x0000.0000

| Type W10      | C, reset | 0x0x0000                     | 0.0000   |         |         |         |         |          |          |                         |           |           |           |          |           |          |
|---------------|----------|------------------------------|----------|---------|---------|---------|---------|----------|----------|-------------------------|-----------|-----------|-----------|----------|-----------|----------|
| _             | 31       | 30                           | 29       | 28      | 27      | 26      | 25      | 24       | 23       | 22                      | 21        | 20        | 19        | 18       | 17        | 16       |
|               |          | 1                            | 1        |         |         | 1       |         | reser    | ved      |                         |           | 1         | 1<br>1    | 1        | I         | 1        |
| Type<br>Reset | RO<br>0  | RO<br>0                      | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0                 | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0  | RO<br>0   | RO<br>0  |
|               | 15       | 14                           | 13       | 12      | 11      | 10      | 9       | 8        | 7        | 6                       | 5         | 4         | 3         | 2        | 1         | 0        |
| ſ             | 10       | 1                            | reserved |         |         | r       | СВМСІМТ | TBTOCINT | 1        | rese                    |           | ·         | RTCCINT   | CAECINT  | r         |          |
| Туре          | RO       | RO                           | RO       | RO      | RO      | W1C     | W1C     | W1C      | RO       | RO                      | RO        | RO        | W1C       | W1C      | W1C       | W1C      |
| Reset         | 0        | 0                            | 0        | 0       | 0       | 0       | 0       | 0        | 0        | 0                       | 0         | 0         | 0         | 0        | 0         | 0        |
| Bit/Fi        | old      |                              | Name     |         | Туре    |         | Reset   | Descri   | ntion    |                         |           |           |           |          |           |          |
| DIVIT         | eiu      |                              | name     |         | туре    | 1       | 10301   | Descri   | plion    |                         |           |           |           |          |           |          |
| 31:1          | 11       |                              | reserved |         | RO      |         | 0       |          |          | ld not re               |           |           |           |          | •         |          |
|               |          |                              |          |         |         |         |         | •        |          | vith futur<br>oss a rea | •         | -         |           |          |           |          |
| 10            | )        |                              | CBECINI  | Г       | W1C     |         | 0       | GPTM     | Captur   | eB Even                 | t Interru | ipt Clea  | r         |          |           |          |
|               |          |                              |          |         |         |         |         | 0: The   | interrup | ot is unat              | fected.   |           |           |          |           |          |
|               |          |                              |          |         |         |         |         | 1: The   | interrup | ot is clea              | red.      |           |           |          |           |          |
| 9             |          |                              | CBMCIN   | Г       | W1C     |         | 0       | GPTM     | Captur   | eB Matc                 | h Interru | upt Clea  | r         |          |           |          |
|               |          |                              |          |         |         |         |         | 0: The   | interrup | ot is unat              | fected.   |           |           |          |           |          |
|               |          |                              |          |         |         |         |         | 1: The   | interrup | ot is clea              | red.      |           |           |          |           |          |
| 8             |          | Г                            | FBTOCIN  | т       | W1C     |         | 0       | GPTM     | TimerB   | Time-O                  | ut Interr | upt Clea  | ar        |          |           |          |
|               |          |                              |          |         |         |         |         | 0: The   | interrup | ot is unat              | fected.   |           |           |          |           |          |
|               |          |                              |          |         |         |         |         | 1: The   | interrup | ot is clea              | red.      |           |           |          |           |          |
| 7:4           | 1        |                              | reserved |         | RO      |         | 0       |          |          | Id not re               |           |           |           |          | •         |          |
|               |          |                              |          |         |         |         |         | •        |          | vith futur<br>oss a rea | •         | -         |           |          | ed bit sr | iould be |
| 3             |          |                              | RTCCINT  | Г       | W1C     |         | 0       | GPTM     | RTC In   | iterrupt C              | Clear     |           |           |          |           |          |
|               |          |                              |          |         |         |         |         | 0: The   | interrup | ot is unaf              | fected.   |           |           |          |           |          |
|               |          |                              |          |         |         |         |         | 1: The   | interrup | ot is clea              | red.      |           |           |          |           |          |
| 2             |          |                              | CAECINI  | Г       | W1C     |         | 0       | GPTM     | Captur   | eA Even                 | t Interru | ipt Clea  | r         |          |           |          |
|               |          |                              |          |         |         |         |         | 0: The   | interrup | ot is unat              | fected.   |           |           |          |           |          |
|               |          | 1: The interrupt is cleared. |          |         |         |         |         |          |          |                         |           |           |           |          |           |          |
| 1             |          |                              | CAMCIN   | г       | W1C     |         | 0       | GPTM     | Captur   | eA Matc                 | h Raw I   | nterrupt  |           |          |           |          |
|               |          |                              |          |         |         |         |         | This is  | the Ca   | ptureA m                | natch inf | terrupt s | tatus aft | er maski | ing.      |          |

| Bit/Field | Name     | Туре | Reset | Description                        |
|-----------|----------|------|-------|------------------------------------|
| 0         | TATOCINT | W1C  | 0     | GPTM TimerA Time-Out Raw Interrupt |
|           |          |      |       | 0: The interrupt is unaffected.    |
|           |          |      |       | 1: The interrupt is cleared.       |

## Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

|               |          | X0000.FF | ·FF (16-bi | t mode) a | ind 0xFFF      | F.FFFF ( | 32-bit mo                      | de)              |                            |          |          |                                          |            |                     |          |          |
|---------------|----------|----------|------------|-----------|----------------|----------|--------------------------------|------------------|----------------------------|----------|----------|------------------------------------------|------------|---------------------|----------|----------|
|               | 31       | 30       | 29         | 28        | 27             | 26       | 25                             | 24               | 23                         | 22       | 21       | 20                                       | 19         | 18                  | 17       | 16       |
|               |          |          | •          | •         |                |          |                                | TAI              | LRH                        | •        | •        | •                                        |            | •                   | •        |          |
| Туре          | R/W      | R/W      | R/W        | R/W       | R/W            | R/W      | R/W                            | R/W              | R/W                        | R/W      | R/W      | R/W                                      | R/W        | R/W                 | R/W      | R/W      |
| Reset         | 0        | 1        | 1          | 0         | 1              | 0        | 1                              | 1                | 1                          | 1        | 0        | 1                                        | 1          | 1                   | 1        | 0        |
|               | 15       | 14       | 13         | 12        | 11             | 10       | 9                              | 8                | 7                          | 6        | 5        | 4                                        | 3          | 2                   | 1        | 0        |
|               |          | Î        | 1          | I         | <del>г г</del> |          |                                | TAI              | I<br>LRL                   | I        | 1        | I                                        | 1          |                     | I        |          |
| Type<br>Reset | R/W<br>1 | R/W<br>1 | R/W<br>1   | R/W<br>1  | R/W<br>1       | R/W<br>1 | R/W<br>1                       | R/W<br>1         | R/W<br>1                   | R/W<br>1 | R/W<br>1 | R/W<br>1                                 | R/W<br>1   | R/W<br>1            | R/W<br>1 | R/W<br>1 |
| Bit/F         | ield     |          | Name       |           | Туре           | F        | Reset                          | Descr            | iption                     |          |          |                                          |            |                     |          |          |
| 31:           | 16       |          | TAILRH     |           | R/W            | 0:       | FFFF                           | GPTM             | 1 TimerA                   | Interva  | I Load R | legister l                               | High       |                     |          |          |
|               |          |          |            |           |                | 0x00     | bit mode<br>00 (16-bi<br>node) | it When<br>Timer | B Interv                   | /al Loac | I (GPTN  | de via th<br>I <b>TBILR)</b><br>nt value | register   | loads th            | is value |          |
|               |          |          |            |           |                |          |                                |                  | bit mode<br>of <b>GPTN</b> | ,        | ld reads | as 0 an                                  | d does r   | iot have            | an effec | t on th  |
| 15:           | :0       |          | TAILRL     |           | R/W            | 0:       | (FFFF                          | GPTN             | 1 TimerA                   | Interva  | I Load R | legister l                               | _ow        |                     |          |          |
| 15            | :0       |          | IAILRL     |           | R/W            | 0        | (FFFF                          | For bo           | oth 16- a                  | ind 32-b | it modes | s, writing                               | this field | d loads t<br>TMTAIL |          | oun      |

GPTM TimerA Interval Load (GPTMTAILR)

## Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, **GPTMTBILR** returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x02C Type R/W, reset 0x0000.FFFF

|                               | 31             | 30         | 29  | 28  | 27   | 26  | 25    | 24    | 23                                  | 22         | 21       | 20         | 19      | 18         | 17  | 16        |
|-------------------------------|----------------|------------|-----|-----|------|-----|-------|-------|-------------------------------------|------------|----------|------------|---------|------------|-----|-----------|
|                               |                | 1          |     |     |      |     |       | rese  | erved                               |            | 1        |            |         | 1          | 1   |           |
| Туре                          | RO             | RO         | RO  | RO  | RO   | RO  | RO    | RO    | RO                                  | RO         | RO       | RO         | RO      | RO         | RO  | RO        |
| Reset                         | 0              | 0          | 0   | 0   | 0    | 0   | 0     | 0     | 0                                   | 0          | 0        | 0          | 0       | 0          | 0   | 0         |
|                               | 15             | 14         | 13  | 12  | 11   | 10  | 9     | 8     | 7                                   | 6          | 5        | 4          | 3       | 2          | 1   | 0         |
|                               |                | T          | 1 1 |     | T    |     | 1     | TBI   | I<br>LRL                            | ſ          | 1        | I          | 1       | 1          | I   |           |
| Туре                          | R/W            | R/W        | R/W | R/W | R/W  | R/W | R/W   | R/W   | R/W                                 | R/W        | R/W      | R/W        | R/W     | R/W        | R/W | R/W       |
| Reset                         | 1              | 1          | 1   | 1   | 1    | 1   | 1     | 1     | 1                                   | 1          | 1        | 1          | 1       | 1          | 1   | 1         |
| Bit/F                         | Bit/Field Name |            |     |     | Туре | F   | Reset | Descr | ription                             |            |          |            |         |            |     |           |
| 31:                           | 16             | 6 reserved |     |     | RO   |     | 0     | comp  | are shou<br>atibility v<br>rved acr | vith futur | e produ  | cts, the v | alue of | a reserv   | •   |           |
| 15:0 TBILRL R/W 0xFFFF GPTM T |                |            |     |     |      |     |       |       |                                     | Interva    | I Load R | egister    |         |            |     |           |
|                               |                |            |     |     |      |     |       | When  | the GP                              |            | 0        |            |         | timer, a v |     | his field |

When the GPTM is not configured as a 32-bit timer, a write to this field updates **GPTMTBILR**. In 32-bit mode, writes are ignored, and reads return the current value of **GPTMTBILR**.

## Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

#### GPTM TimerA Match (GPTMTAMATCHR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x030

Offset 0x030 Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)

|                  | 31                                                                                                                                                     | 30       | 29       | 28       | 27    | 26       | 25       | 24       | 23        | 22         | 21        | 20       | 19       | 18       | 17         | 16                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|-------|----------|----------|----------|-----------|------------|-----------|----------|----------|----------|------------|---------------------------|
|                  |                                                                                                                                                        | 1        | 1 1      |          | 1 1   |          |          | TAN      | IRH       | Î          |           |          | 1        | 1        | 1          | ·                         |
| <b>І</b><br>Туре | R/W                                                                                                                                                    | R/W      | R/W      | R/W      | R/W   | R/W      | R/W      | R/W      | R/W       | R/W        | R/W       | R/W      | R/W      | R/W      | R/W        | R/W                       |
| Reset            | 0                                                                                                                                                      | 1        | 1        | 0        | 1     | 0        | 1        | 1        | 1         | 1          | 0         | 1        | 1        | 1        | 1          | 0                         |
| _                | 15                                                                                                                                                     | 14       | 13       | 12       | 11    | 10       | 9        | 8        | 7         | 6          | 5         | 4        | 3        | 2        | 1          | 0                         |
|                  |                                                                                                                                                        | 1        | 1 1      |          |       |          |          | TAN      | IRL       |            | I         |          | 1        | 1        | 1          | '                         |
| Type<br>Reset    | R/W<br>1                                                                                                                                               | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W   | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1  | R/W<br>1   | R/W<br>1  | R/W<br>1 | R/W<br>1 | R/W<br>1 | R/W<br>1   | R/W<br>1                  |
| Reset            | 1                                                                                                                                                      | I        | I        | I        | 1     | I        | I        | I        | I         | I          | I         | I        | I        | I        | I          | I                         |
|                  | : ما ما                                                                                                                                                |          | Nama     |          | Turne |          | Decet    | Decer    |           |            |           |          |          |          |            |                           |
| Bit/Fi           | leid                                                                                                                                                   |          | Name     |          | Туре  | I        | Reset    | Descri   | iption    |            |           |          |          |          |            |                           |
| 31:"             | 31:16 TAMRH R/W 0xFFFF GPTM TimerA Match Register High<br>(32-bit mode)                                                                                |          |          |          |       |          |          |          |           |            |           |          |          |          |            |                           |
|                  | (32-bit mode)<br>0x0000 (16-bit When configured for 32-bit Real-Time Clock (RTC) mode via the                                                          |          |          |          |       |          |          |          |           |            |           |          |          |          |            | he                        |
|                  | 0x0000 (16-bit<br>mode) When configured for 32-bit Real-Time Clock (RTC) mode via the<br>GPTMCFG register, this value is compared to the upper half of |          |          |          |       |          |          |          |           |            |           |          |          |          |            |                           |
|                  |                                                                                                                                                        |          |          |          |       |          |          | GPTM     | ITAR, to  | determi    | ne mato   | h events | 5.       |          |            |                           |
|                  |                                                                                                                                                        |          |          |          |       |          |          |          |           | ,          |           | as 0 an  | d does r | not have | an effec   | ct on the                 |
|                  |                                                                                                                                                        |          |          |          |       |          |          | state o  | of GPTN   | TBMAT      | CHR.      |          |          |          |            |                           |
| 15:              | 0                                                                                                                                                      |          | TAMRL    |          | R/W   | 0        | xFFFF    | GPTN     | I TimerA  | Match F    | Register  | Low      |          |          |            |                           |
|                  |                                                                                                                                                        |          |          |          |       |          |          | When     | configu   | red for 3  | 2-bit Re  | al-Time  | Clock (F | RTC) mo  | de via tl  | he                        |
|                  |                                                                                                                                                        |          |          |          |       |          |          |          |           | gister, th |           |          |          | the lowe | er half of | :                         |
|                  |                                                                                                                                                        |          |          |          |       |          |          | GPTM     | ITAR, to  | determi    | ne mato   | h events | 5.       |          |            |                           |
|                  |                                                                                                                                                        |          |          |          |       |          |          |          | •         | red for P  |           | -        |          | •        | GPTM       | TAILR,                    |
|                  |                                                                                                                                                        |          |          |          |       |          |          | detern   | nines the | e duty cy  | cie of tr | ie outpu |          | signal.  |            |                           |
|                  |                                                                                                                                                        |          |          |          |       |          |          |          | •         | red for E  | •         |          | -        |          | •          |                           |
|                  |                                                                                                                                                        |          |          |          |       |          |          |          |           | le events  |           |          |          |          |            | The total<br><b>TAILR</b> |
|                  |                                                                                                                                                        |          |          |          |       |          |          |          | this val  |            |           |          |          |          |            |                           |
|                  |                                                                                                                                                        |          |          |          |       |          |          |          |           |            |           |          |          |          |            |                           |

## Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

GPTM TimerB Match (GPTMTBMATCHR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x034 Type R/W, reset 0x0000.FFFF

|       | 31   | 30  | 29    | 28  | 27    | 26  | 25    | 24    | 23          | 22         | 21       | 20                              | 19       | 18       | 17   | 16        |
|-------|------|-----|-------|-----|-------|-----|-------|-------|-------------|------------|----------|---------------------------------|----------|----------|------|-----------|
|       |      | 1   |       |     | · · · |     | 1     | rese  | rved        | 1          | 1        | 1                               | 1        | 1        | 1    | 1         |
| Туре  | RO   | RO  | RO    | RO  | RO    | RO  | RO    | RO    | RO          | RO         | RO       | RO                              | RO       | RO       | RO   | RO        |
| Reset | 0    | 0   | 0     | 0   | 0     | 0   | 0     | 0     | 0           | 0          | 0        | 0                               | 0        | 0        | 0    | 0         |
|       | 15   | 14  | 13    | 12  | 11    | 10  | 9     | 8     | 7           | 6          | 5        | 4                               | 3        | 2        | 1    | 0         |
|       |      | 1   |       |     |       |     | 1     | ТВГ   | MRL         | 1          | 1        | 1                               |          | 1        | 1    | 1         |
| Туре  | R/W  | R/W | R/W   | R/W | R/W   | R/W | R/W   | R/W   | R/W         | R/W        | R/W      | R/W                             | R/W      | R/W      | R/W  | R/W       |
| Reset | 1    | 1   | 1     | 1   | 1     | 1   | 1     | 1     | 1           | 1          | 1        | 1                               | 1        | 1        | 1    | 1         |
| Bit/F | ield |     | Name  |     | Туре  | I   | Reset | Descr | ription     |            |          |                                 |          |          |      |           |
| 31:   | 16   |     |       |     |       |     | 0     | comp  | atibility v | vith futur | e produ  | e value<br>cts, the<br>fy-write | value of | a reserv | •    |           |
| 15    | :0   |     | TBMRL |     | R/W   | 0   | xFFFF | GPTN  | /I TimerE   | 8 Match    | Register | Low                             |          |          |      |           |
|       |      |     |       |     |       |     |       |       | •           |            |          | ode, this<br>ne outpu           |          | 0        | GPTM | ſBILR,    |
|       |      |     |       |     |       |     |       |       | •           |            | 0        | unt mod<br>many eo              | -        |          | 0    | The total |

When configured for Edge Count mode, this value along with **GPTMTBILR**, determines how many edge events are counted. The total number of edge events counted is equal to the value in **GPTMTBILR** minus this value.

## Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

#### GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x038 Type R/W, reset 0x0000.0000

|       | 31   | 30              | 29    | 28   | 27   | 26 | 25    | 24     | 23                     | 22         | 21       | 20                                    | 19       | 18         | 17       | 16       |
|-------|------|-----------------|-------|------|------|----|-------|--------|------------------------|------------|----------|---------------------------------------|----------|------------|----------|----------|
|       |      |                 |       |      |      |    | 1     | rese   | rved                   |            |          |                                       |          |            |          |          |
| Туре  | RO   | RO              | RO    | RO   | RO   | RO | RO    | RO     | RO                     | RO         | RO       | RO                                    | RO       | RO         | RO       | RO       |
| Reset | 0    | 0               | 0     | 0    | 0    | 0  | 0     | 0      | 0                      | 0          | 0        | 0                                     | 0        | 0          | 0        | 0        |
|       | 15   | 14              | 13    | 12   | 11   | 10 | 9     | 8      | 7                      | 6          | 5        | 4                                     | 3        | 2          | 1        | 0        |
|       |      | 1               | 1 1   | rese | rved |    | 1     | T      |                        |            |          | TAF                                   | PSR<br>I |            |          |          |
| Туре  | RO   | RO              | RO    | RO   | RO   | RO | RO    | RO     | R/W                    | R/W        | R/W      | R/W                                   | R/W      | R/W        | R/W      | R/W      |
| Reset | 0    | 0               | 0     | 0    | 0    | 0  | 0     | 0      | 0                      | 0          | 0        | 0                                     | 0        | 0          | 0        | 0        |
| Bit/F | ield | Name Type Reset |       |      |      |    | Descr | iption |                        |            |          |                                       |          |            |          |          |
| 31    | :8   | reserved        |       |      | RO   |    | 0     | compa  | atibility v            | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv   | •        |          |
| 7:    | 0    |                 | TAPSR |      | R/W  |    | 0     | GPTM   | 1 TimerA               | Presca     | е        |                                       |          |            |          |          |
|       |      |                 |       |      |      |    |       |        | egister lo<br>register |            | value or | n a write.                            | A read   | returns tl | he curre | nt value |

Refer to Table 9-1 on page 178 for more details and an example.

## Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

#### GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x03C Type R/W, reset 0x0000.0000

| -             | 31            | 30       | 29      | 28      | 27      | 26      | 25      | 24      | 23                                  | 22         | 21       | 20         | 19       | 18        | 17       | 16       |
|---------------|---------------|----------|---------|---------|---------|---------|---------|---------|-------------------------------------|------------|----------|------------|----------|-----------|----------|----------|
|               |               | •        |         |         | · ·     |         | 1       | rese    | erved                               |            |          |            |          |           |          | •        |
| Type<br>Reset | RO<br>0       | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                             | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0  |
|               | 15            | 14       | 13      | 12      | 11      | 10      | 9       | 8       | 7                                   | 6          | 5        | 4          | 3        | 2         | 1        | 0        |
|               |               | 1        | 1 1     | rese    | rved    |         | 1       | 1       |                                     | 1          | I        | I<br>TBF   | PSR      | I         | I        |          |
| Type<br>Reset | RO<br>0       | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0                            | R/W<br>0   | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0  | R/W<br>0 | R/W<br>0 |
| Bit/F         | it/Field Name |          |         |         | Туре    |         | Reset   | Descr   | iption                              |            |          |            |          |           |          |          |
| 31:           | :8            | reserved |         |         | RO      |         | 0       | compa   | are shou<br>atibility v<br>rved acr | vith futur | e produ  | cts, the v | alue of  | a reserv  |          |          |
| 7:(           | 0             |          | TBPSR   |         | R/W     |         | 0       |         | 1 TimerB<br>egister lo              |            |          | n a write. | A read   | returns t | he curre | nt value |

of this register.

Refer to Table 9-1 on page 178 for more details and an example.

June 26, 2007

## Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

#### GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x040 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25       | 24      | 23          | 22         | 21       | 20                                    | 19       | 18       | 17       | 16               |
|---------------|---------|---------|----------|---------|---------|---------|----------|---------|-------------|------------|----------|---------------------------------------|----------|----------|----------|------------------|
|               |         | 1       |          |         |         |         | <b>'</b> | rese    | erved       |            |          |                                       |          |          |          |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0          |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9        | 8       | 7           | 6          | 5        | 4                                     | 3        | 2        | 1        | 0                |
|               |         | 1       | 1 1      | rese    | erved   |         | 1        | 1       |             | r          | r        | I<br>TAP:                             | I<br>SMR | r        | ı –      |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | R/W<br>0    | R/W<br>0   | R/W<br>0 | R/W<br>0                              | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0         |
| Bit/F         | ield    |         | Name     |         | Туре    |         | Reset    | Descr   | iption      |            |          |                                       |          |          |          |                  |
| 31:           | :8      |         | reserved |         | RO      |         | 0        | compa   | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv | •        | vide<br>nould be |
| 7:            | 0       |         | TAPSMR   | ł       | R/W     |         | 0        | GPTM    | 1 TimerA    | Presca     | le Match | ı                                     |          |          |          |                  |
|               |         |         |          |         |         |         |          | This v  | alue is ι   | used alo   | naside G | ЭРТМТА                                | матсн    | R to det | ect time | r match          |

This value is used alongside **GPTMTAMATCHR** to detect timer match events while using a prescaler.

## Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

#### GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x044 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25       | 24      | 23          | 22         | 21              | 20                                    | 19      | 18       | 17       | 16      |
|---------------|---------|---------|----------|---------|---------|---------|----------|---------|-------------|------------|-----------------|---------------------------------------|---------|----------|----------|---------|
|               |         | 1       |          |         |         |         | <b>'</b> | rese    | rved        |            |                 |                                       |         |          | •        |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0         | RO<br>0                               | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0 |
| Reset         |         |         |          |         |         |         |          |         | -           |            |                 |                                       |         |          | U        |         |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9        | 8       | 7           | 6          | 5               | 4                                     | 3       | 2        | 1        | 0       |
|               |         |         |          | rese    | rved    |         | 1        | •       |             | I          | 1               | TBP                                   | SMR     |          | 1        | '       |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO       | RO      | R/W         | R/W        | R/W             | R/W                                   | R/W     | R/W      | R/W      | R/W     |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0        | 0       | 0           | 0          | 0               | 0                                     | 0       | 0        | 0        | 0       |
| Bit/F         | ield    |         | Name     |         | Туре    |         | Reset    | Descr   | iption      |            |                 |                                       |         |          |          |         |
| 31            | :8      |         | reserved |         | RO      |         | 0        | compa   | atibility v | vith futur | e produ         | e value o<br>cts, the v<br>fy-write o | alue of | a reserv | •        |         |
| 7:            | 0       |         | TBPSMR   | 1       | R/W     |         | 0        | GPTM    | 1 TimerE    | 8 Presca   | le Match        | ı                                     |         |          |          |         |
|               |         |         |          |         |         |         |          | This v  | alue is i   | ised alo   | naside <b>(</b> | PTMTB                                 | матсн   | R to det | ect time | r match |

This value is used alongside **GPTMTBMATCHR** to detect timer match events while using a prescaler.

## Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

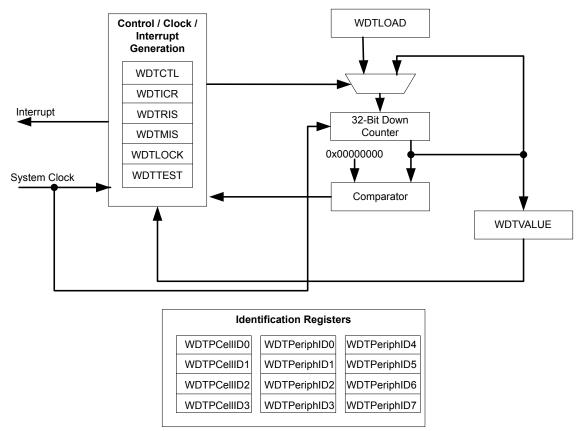
#### GPTM TimerA (GPTMTAR) Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x048 Type RO, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode) 29 28 25 24 23 22 21 17 16 31 30 27 26 20 19 18 TARH Туре RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO Reset 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TARL RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 **Bit/Field** Name Туре Reset Description RO 0xFFFF GPTM TimerA Register High 31:16 TARH (32-bit mode) If the GPTMCFG is in a 32-bit mode, TimerB value is read. If the 0x0000 (16-bit GPTMCFG is in a 16-bit mode, this is read as zero. mode) 15:0 TARL RO 0xFFFF GPTM TimerA Register Low A read returns the current value of the GPTM TimerA Count Register, except in Input Edge Count mode, when it returns the timestamp from the last edge event.

## Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

| GPTM<br>Timer0 ba<br>Timer1 ba<br>Timer2 ba<br>Offset 0x<br>Type RO          | ase: 0x4<br>ase: 0x4<br>ase: 0x4<br>04C | 4003.00<br>4003.10<br>4003.20 | 00<br>00<br>00 | BR) |    |          |    |       |       |          |          |         |          |          |          |    |    |
|------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|----------------|-----|----|----------|----|-------|-------|----------|----------|---------|----------|----------|----------|----|----|
|                                                                              | 31                                      | 30                            |                | 29  | 28 | 27       | 26 | 25    | 24    | 23       | 22       | 21      | 20       | 19       | 18       | 17 | 16 |
|                                                                              |                                         | 1                             | 1              |     | 1  | 1 1<br>1 |    | 1     | rese  | rved     | , ,      |         | 1        |          |          | 1  | 1  |
| Туре                                                                         | RO                                      | RC                            | )              | RO  | RO | RO       | RO | RO    | RO    | RO       | RO       | RO      | RO       | RO       | RO       | RO | RO |
| Reset                                                                        | 0                                       | 0                             |                | 0   | 0  | 0        | 0  | 0     | 0     | 0        | 0        | 0       | 0        | 0        | 0        | 0  | 0  |
|                                                                              | 15                                      | 14                            |                | 13  | 12 | 11       | 10 | 9     | 8     | 7        | 6        | 5       | 4        | 3        | 2        | 1  | 0  |
|                                                                              | TBRL                                    |                               |                |     |    |          |    |       |       |          |          |         |          |          |          |    |    |
| Туре                                                                         | RO                                      | RC                            | )              | RO  | RO | RO       | RO | RO    | RO    | RO       | RO       | RO      | RO       | RO       | RO       | RO | RO |
| Reset                                                                        | 1                                       | 1                             |                | 1   | 1  | 1        | 1  | 1     | 1     | 1        | 1        | 1       | 1        | 1        | 1        | 1  | 1  |
| Bit/F                                                                        | ïeld                                    |                               | N              | ame |    | Туре     |    | Reset | Descr | iption   |          |         |          |          |          |    |    |
| 31:16 reserved RO 0 Software should<br>compatibility with<br>preserved acros |                                         |                               |                |     |    |          |    |       |       |          |          | e produ | cts, the | value of | a reserv |    |    |
| 15                                                                           | :0                                      |                               | Т              | BRL |    | RO       | 0  | xFFFF | GPTM  | 1 TimerE | 3        |         |          |          |          |    |    |
| A read ret<br>except in<br>the last ec                                       |                                         |                               |                |     |    |          |    |       |       |          | t Edge C |         |          |          |          |    | •  |

# 10 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.

The Stellaris<sup>®</sup> Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, a locking register, and user-enabled stalling.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

## 10.1 Block Diagram





# 10.2 Functional Description

The Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register. Once the Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

## **10.3** Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the **WDTLOAD** register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

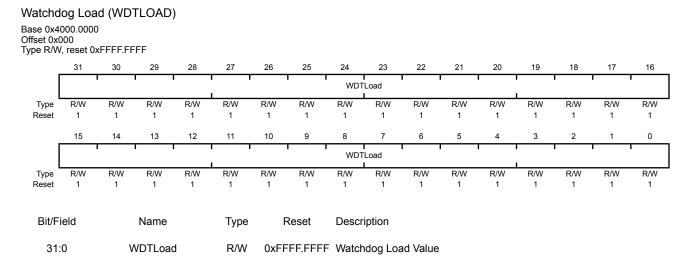
If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACC.E551.

## 10.4 Register Map

Table 10-1 on page 208 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

| Table 10-1. Watch | dog Timer | <b>Register Map</b> |
|-------------------|-----------|---------------------|
|-------------------|-----------|---------------------|

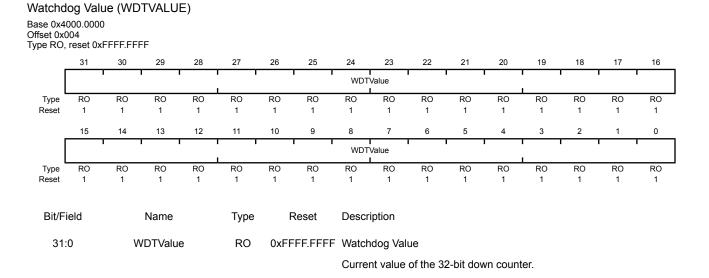
| Offset | Name     | Туре | Reset       | Description                      | See<br>page |
|--------|----------|------|-------------|----------------------------------|-------------|
| 0x000  | WDTLOAD  | R/W  | 0xFFFF.FFFF | Watchdog Load                    | 210         |
| 0x004  | WDTVALUE | RO   | 0xFFFF.FFFF | Watchdog Value                   | 211         |
| 0x008  | WDTCTL   | R/W  | 0x0000.0000 | Watchdog Control                 | 212         |
| 0x00C  | WDTICR   | WO   | -           | Watchdog Interrupt Clear         | 213         |
| 0x010  | WDTRIS   | RO   | 0x0000.0000 | Watchdog Raw Interrupt Status    | 214         |
| 0x014  | WDTMIS   | RO   | 0x0000.0000 | Watchdog Masked Interrupt Status | 215         |
| 0x418  | WDTTEST  | R/W  | 0x0000.0000 | Watchdog Test                    | 216         |


| Offset | Name         | Туре | Reset       | Description                          | See<br>page |
|--------|--------------|------|-------------|--------------------------------------|-------------|
| 0xC00  | WDTLOCK      | R/W  | 0x0000.0000 | Watchdog Lock                        | 217         |
| 0xFD0  | WDTPeriphID4 | RO   | 0x0000.0000 | Watchdog Peripheral Identification 4 | 218         |
| 0xFD4  | WDTPeriphID5 | RO   | 0x0000.0000 | Watchdog Peripheral Identification 5 | 219         |
| 0xFD8  | WDTPeriphID6 | RO   | 0x0000.0000 | Watchdog Peripheral Identification 6 | 220         |
| 0xFDC  | WDTPeriphID7 | RO   | 0x0000.0000 | Watchdog Peripheral Identification 7 | 221         |
| 0xFE0  | WDTPeriphID0 | RO   | 0x0000.0005 | Watchdog Peripheral Identification 0 | 222         |
| 0xFE4  | WDTPeriphID1 | RO   | 0x0000.0018 | Watchdog Peripheral Identification 1 | 223         |
| 0xFE8  | WDTPeriphID2 | RO   | 0x0000.0018 | Watchdog Peripheral Identification 2 | 224         |
| 0xFEC  | WDTPeriphID3 | RO   | 0x0000.0001 | Watchdog Peripheral Identification 3 | 225         |
| 0xFF0  | WDTPCellID0  | RO   | 0x0000.000D | Watchdog PrimeCell Identification 0  | 226         |
| 0xFF4  | WDTPCellID1  | RO   | 0x0000.00F0 | Watchdog PrimeCell Identification 1  | 227         |
| 0xFF8  | WDTPCellID2  | RO   | 0x0000.0005 | Watchdog PrimeCell Identification 2  | 228         |
| 0xFFC  | WDTPCellID3  | RO   | 0x0000.00B1 | Watchdog PrimeCell Identification 3  | 229         |

# 10.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.

## Register 1: Watchdog Load (WDTLOAD), offset 0x000


This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.



#### June 26, 2007

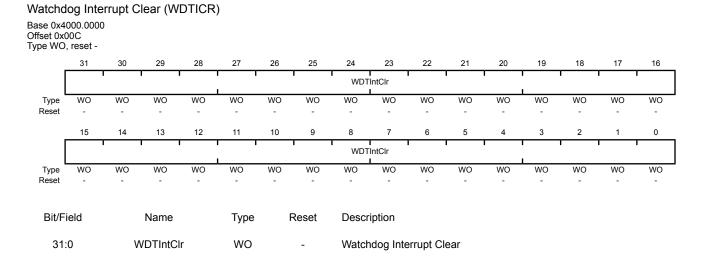
## Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.



## Register 3: Watchdog Control (WDTCTL), offset 0x008

This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.


When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

| Watchd<br>Base 0x4<br>Offset 0x0<br>Type R/W | 000.000 | 0  | /DTCTL   | )  |          |    |                                                                                                                                                                                               |            |                       |           |          |           |              |          |            |         |
|----------------------------------------------|---------|----|----------|----|----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-----------|----------|-----------|--------------|----------|------------|---------|
|                                              | 31      | 30 | 29       | 28 | 27       | 26 | 25                                                                                                                                                                                            | 24         | 23                    | 22        | 21       | 20        | 19           | 18       | 17         | 16      |
|                                              |         | 1  | 1 1      |    | ı ı<br>I |    | 1                                                                                                                                                                                             | rese       | rved                  | 1         |          | 1         | 1            |          | 1          | •       |
| Туре                                         | RO      | RO | RO       | RO | RO       | RO | RO                                                                                                                                                                                            | RO         | RO                    | RO        | RO       | RO        | RO           | RO       | RO         | RO      |
| Reset                                        | 0       | 0  | 0        | 0  | 0        | 0  | 0                                                                                                                                                                                             | 0          | 0                     | 0         | 0        | 0         | 0            | 0        | 0          | 0       |
|                                              | 15      | 14 | 13       | 12 | 11       | 10 | 9                                                                                                                                                                                             | 8          | 7                     | 6         | 5        | 4         | 3            | 2        | 1          | 0       |
|                                              |         | 1  |          |    | · · ·    |    | rese                                                                                                                                                                                          | l<br>erved | 1                     |           |          |           |              |          | RESEN      | INTEN   |
| Туре                                         | RO      | RO | RO       | RO | RO       | RO | RO                                                                                                                                                                                            | RO         | RO                    | RO        | RO       | RO        | RO           | RO       | R/W        | R/W     |
| Reset                                        | 0       | 0  | 0        | 0  | 0        | 0  | 0                                                                                                                                                                                             | 0          | 0                     | 0         | 0        | 0         | 0            | 0        | 0          | 0       |
| Bit/Field                                    |         |    | Name     |    | Туре     |    | Reset                                                                                                                                                                                         | Descr      | iption                |           |          |           |              |          |            |         |
| 31:                                          | 31:2    |    | reserved |    | RO       | 0  | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |            |                       |           |          |           |              |          |            |         |
| 1                                            |         |    | RESEN    |    | R/W      |    | 0                                                                                                                                                                                             | Watch      | ndog Res              | set Enab  | le       |           |              |          |            |         |
|                                              |         |    |          |    |          |    |                                                                                                                                                                                               | 0: Dis     | abled.                |           |          |           |              |          |            |         |
|                                              |         |    |          |    |          |    |                                                                                                                                                                                               | 1: Ena     | able the              | Watchdo   | og modu  | le reset  | output.      |          |            |         |
| 0                                            |         |    | INTEN    |    | R/W      |    | 0                                                                                                                                                                                             | Watch      | ndog Inte             | errupt Er | able     |           |              |          |            |         |
|                                              |         |    |          |    |          |    |                                                                                                                                                                                               |            | errupt ev<br>dware re |           | oled (on | ce this b | it is set, i | t can or | nly be cle | ared by |

1: Interrupt event enabled. Once enabled, all writes are ignored.

## Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.



## Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

#### Watchdog Raw Interrupt Status (WDTRIS)

Base 0x4000.0000 Offset 0x010 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28         | 27      | 26      | 25      | 24                                                                                                                                                                       | 23      | 22        | 21        | 20         | 19      | 18             | 17      | 16      |
|---------------|---------|---------|----------|------------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|------------|---------|----------------|---------|---------|
|               |         |         | 1        | 1          | · · ·   |         | 1       | rese                                                                                                                                                                     | rved    | 1         | 1         |            |         | 1              | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                  | RO<br>0 | RO<br>0   | RO<br>0   | RO<br>0    | RO<br>0 | RO<br>0        | RO<br>0 | RO<br>0 |
| Reset         |         |         |          |            |         |         |         |                                                                                                                                                                          |         |           |           |            |         |                | 0       | -       |
|               | 15      | 14      | 13       | 12         | 11      | 10      | 9       | 8                                                                                                                                                                        | 7       | 6         | 5         | 4          | 3       | 2              | 1       | 0       |
|               |         | •       | •        |            |         |         | •       | reserved                                                                                                                                                                 |         | •         | •         |            |         |                |         | WDTRIS  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                  | RO<br>0 | RO<br>0   | RO<br>0   | RO<br>0    | RO<br>0 | RO<br>0        | RO<br>0 | RO<br>0 |
| Bit/F         | ield    |         | Name     | Type Reset |         |         |         | Description                                                                                                                                                              |         |           |           |            |         |                |         |         |
| 31            | :1      |         | reserved | t          | RO      |         | 0       | Software should not rely on the value of a reserved bit.<br>compatibility with future products, the value of a reserv<br>preserved across a read-modify-write operation. |         |           |           |            |         |                |         |         |
| 0             | )       |         | WDTRIS   | 6          | RO      |         | 0       | Watch                                                                                                                                                                    | idog Ra | w Interru | upt Statu | IS         |         |                |         |         |
|               |         |         |          |            |         |         |         | Gives                                                                                                                                                                    | the raw | interrup  | t state ( | prior to n | nasking | ) of <b>WD</b> | FINTR.  |         |

## Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

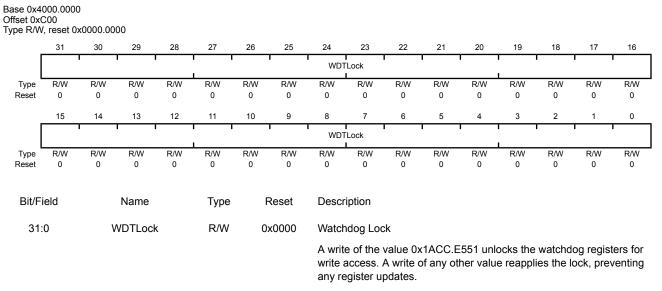
#### Watchdog Masked Interrupt Status (WDTMIS)

Base 0x4000.0000 Offset 0x014 Type RO, reset 0x0000.0000

|               | 31                       | 30                                                            | 29      | 28      | 27       | 26      | 25      | 24                                                                              | 23         | 22         | 21         | 20      | 19       | 18      | 17      | 16      |
|---------------|--------------------------|---------------------------------------------------------------|---------|---------|----------|---------|---------|---------------------------------------------------------------------------------|------------|------------|------------|---------|----------|---------|---------|---------|
|               |                          | 1                                                             |         |         | r<br>1   |         | 1       | rese                                                                            | rved       | 1 1        |            | · · ·   |          | 1       | 1       | ,       |
| Type<br>Reset | RO<br>0                  | RO<br>0                                                       | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                         | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 |
|               | 15                       | 14                                                            | 13      | 12      | 11       | 10      | 9       | 8                                                                               | 7          | 6          | 5          | 4       | 3        | 2       | 1       | 0       |
|               |                          | 1                                                             | 1 1     |         | <b> </b> |         |         | reserved                                                                        |            | 1 1        |            |         |          | 1       | 1       | WDTMIS  |
| Type<br>Reset | RO<br>0                  | RO<br>0                                                       | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                                                                         | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 |
| Bit/F         | Bit/Field Name Type Rese |                                                               |         | Reset   | Descri   | ption   |         |                                                                                 |            |            |            |         |          |         |         |         |
| 31            | :1                       | reserved RO 0 Software show<br>compatibility<br>preserved act |         |         |          |         |         |                                                                                 | with futur | e produ    | cts, the v | alue of | a reserv | •       |         |         |
| 0             | 1                        |                                                               | WDTMIS  | i       | RO       |         | 0       | Watch                                                                           | dog Ma     | asked Inte | errupt S   | itatus  |          |         |         |         |
|               |                          |                                                               |         |         |          |         |         | Gives the masked interrupt state (after masking) of the <b>WDTIN</b> interrupt. |            |            |            |         |          |         | NTR     |         |

## Register 7: Watchdog Test (WDTTEST), offset 0x418

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.


#### Watchdog Test (WDTTEST)

Base 0x4000.0000 Offset 0x418 Type R/W, reset 0x0000.0000

|       | 31                                                                                                                                                                                  | 30 | 29    | 28       | 27   | 26 | 25    | 24                    | 23                                                                                                                                                                                                      | 22        | 21 | 20   | 19    | 18 | 17 | 16 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|----------|------|----|-------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|------|-------|----|----|----|
|       |                                                                                                                                                                                     | 1  | 1     | 1 1      | 1    |    | 1     | rese                  | rved                                                                                                                                                                                                    | 1         | 1  | 1    | 1     | 1  | 1  | 1  |
|       |                                                                                                                                                                                     |    |       |          |      |    |       |                       | 1                                                                                                                                                                                                       |           |    |      |       |    |    |    |
| Туре  | RO                                                                                                                                                                                  | RO | RO    | RO       | RO   | RO | RO    | RO                    | RO                                                                                                                                                                                                      | RO        | RO | RO   | RO    | RO | RO | RO |
| Reset | 0                                                                                                                                                                                   | 0  | 0     | 0        | 0    | 0  | 0     | 0                     | 0                                                                                                                                                                                                       | 0         | 0  | 0    | 0     | 0  | 0  | 0  |
|       |                                                                                                                                                                                     |    |       |          |      |    |       |                       |                                                                                                                                                                                                         |           |    |      |       |    |    |    |
|       | 15                                                                                                                                                                                  | 14 | 13    | 12       | 11   | 10 | 9     | 8                     | 7                                                                                                                                                                                                       | 6         | 5  | 4    | 3     | 2  | 1  | 0  |
|       |                                                                                                                                                                                     | 1  | •     | reserved |      |    | •     | STALL                 |                                                                                                                                                                                                         | •         | 1  | rese | erved | 1  |    | •  |
| Туре  | RO                                                                                                                                                                                  | RO | RO    | RO       | RO   | RO | RO    | R/W                   | RO                                                                                                                                                                                                      | RO        | RO | RO   | RO    | RO | RO | RO |
| Reset | 0                                                                                                                                                                                   | 0  | 0     | 0        | 0    | 0  | 0     | 0                     | 0                                                                                                                                                                                                       | 0         | 0  | 0    | 0     | 0  | 0  | 0  |
|       | Bit/Field                                                                                                                                                                           |    | Name  |          | Туре |    | Reset | Descr                 | •                                                                                                                                                                                                       |           |    |      |       |    |    |    |
| 31    | 31:9 reserved                                                                                                                                                                       |    |       | 1        | RO   |    | 0     | compa                 | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.           |           |    |      |       |    |    |    |
| 8     | ;                                                                                                                                                                                   |    | STALL |          | R/W  |    | 0     | Watchdog Stall Enable |                                                                                                                                                                                                         |           |    |      |       |    |    |    |
|       | S SIALL NW U                                                                                                                                                                        |    |       |          |      |    |       | debug                 | When set to 1, if the Stellaris <sup>®</sup> microcontroller is stopped with a debugger, the watchdog timer stops counting. Once the microcontroller is restarted, the watchdog timer resumes counting. |           |    |      |       |    |    |    |
| 7:    | 7:0       reserved       RO       0       Software should not rely on the value of a recompatibility with future products, the value preserved across a read-modify-write operation |    |       |          |      |    |       |                       | value o                                                                                                                                                                                                 | f a reser | •  |      |       |    |    |    |

# Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACC.E551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).



A read of this register returns the following values:

Locked: 0x0000.0001

Unlocked: 0x0000.0000

Watchdog Lock (WDTLOCK)

# Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog Peripheral Identification 4 (WDTPeriphID4)

Base 0x4000.0000 Offset 0xFD0 Type RO, reset 0x0000.0000

|       | 31                            | 30 | 29       | 28 | 27   | 26 | 25    | 24    | 23                                  | 22         | 21       | 20         | 19           | 18       | 17 | 16 |
|-------|-------------------------------|----|----------|----|------|----|-------|-------|-------------------------------------|------------|----------|------------|--------------|----------|----|----|
|       |                               | •  |          |    | , ,  |    | 1     | rese  | rved                                |            |          |            | 1            | •        | 1  |    |
| Туре  | RO                            | RO | RO       | RO | RO   | RO | RO    | RO    | RO                                  | RO         | RO       | RO         | RO           | RO       | RO | RO |
| Reset | 0                             | 0  | 0        | 0  | 0    | 0  | 0     | 0     | 0                                   | 0          | 0        | 0          | 0            | 0        | 0  | 0  |
| _     | 15                            | 14 | 13       | 12 | 11   | 10 | 9     | 8     | 7                                   | 6          | 5        | 4          | 3            | 2        | 1  | 0  |
|       |                               |    |          |    |      |    |       |       |                                     |            |          | I<br>Pl    | I<br>D4<br>I | 1        | 1  |    |
| Туре  | RO                            | RO | RO       | RO | RO   | RO | RO    | RO    | RO                                  | RO         | RO       | RO         | RO           | RO       | RO | RO |
| Reset | 0                             | 0  | 0        | 0  | 0    | 0  | 0     | 0     | 0                                   | 0          | 0        | 0          | 0            | 0        | 0  | 0  |
| Bit/F | Reset 0 0 0<br>Bit/Field Name |    |          |    | Туре |    | Reset | Descr | iption                              |            |          |            |              |          |    |    |
| 31:   | 31:8                          |    | reserved |    | RO   |    | 0     | compa | are shou<br>atibility v<br>rved acr | vith futur | e produ  | cts, the v | alue of      | a reserv | •  |    |
| 7:0   | 7:0                           |    | PID4     |    | RO   |    | 0x00  | WDT   | Peripher                            | al ID Re   | gister[7 | :0]        |              |          |    |    |

### Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

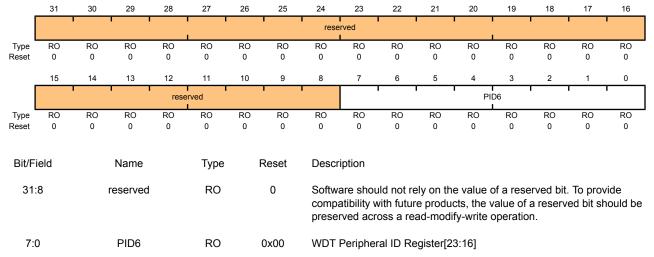
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog Peripheral Identification 5 (WDTPeriphID5)

Base 0x4000.0000

Offset 0xFD4 Type RO, reset 0x0000.0000

|                                             | 31            | 30      | 29      | 28       | 27       | 26       | 25      | 24      | 23                                   | 22         | 21      | 20         | 19      | 18       | 17      | 16               |
|---------------------------------------------|---------------|---------|---------|----------|----------|----------|---------|---------|--------------------------------------|------------|---------|------------|---------|----------|---------|------------------|
|                                             |               | 1       | 1       |          | · · ·    |          | 1       | rese    | rved                                 |            |         | 1          |         | 1        | 1       | 1                |
| Type<br>Reset                               | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0          |
| Reset                                       | U             | 0       | 0       | 0        | 0        | 0        | 0       | 0       | 0                                    | 0          | 0       | 0          | 0       | U        | U       | 0                |
|                                             | 15            | 14      | 13      | 12       | 11       | 10       | 9       | 8       | 7                                    | 6          | 5       | 4          | 3       | 2        | 1       | 0                |
| Type RO RO RO RO RO RO RO RO RO RO RO RO RO |               |         |         |          |          |          |         |         |                                      |            |         |            | I       | 1        | 1       |                  |
| Туре                                        | RO            | RO      | RO      | RO       | RO       | RO       | RO      | RO      | RO                                   | RO         | RO      | RO         | RO      | RO       | RO      | RO               |
| Reset                                       | 0             | 0       | 0       | 0        | 0        | 0        | 0       | 0       | 0                                    | 0          | 0       | 0          | 0       | 0        | 0       | 0                |
| Bit/F                                       | ield          |         | Name    |          | Туре     | I        | Reset   | Descr   | iption                               |            |         |            |         |          |         |                  |
| 31:                                         | 31:8 reserved |         |         |          | RO       |          | 0       | compa   | are shou<br>atibility w<br>rved acro | ith futur/ | e produ | cts, the v | alue of | a reserv |         | vide<br>nould be |
| 7:0 PID5 RO 0x00 WDT Pe                     |               |         |         | Peripher | al ID Re | gister[1 | 5:8]    |         |                                      |            |         |            |         |          |         |                  |


## Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000

Offset 0xFD8 Type RO, reset 0x0000.0000



### Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog Peripheral Identification 7 (WDTPeriphID7)

Base 0x4000.0000

Offset 0xFDC Type RO, reset 0x0000.0000

|                                       | 31            | 30 | 29   | 28 | 27       | 26       | 25    | 24    | 23                                   | 22         | 21      | 20         | 19      | 18       | 17 | 16               |
|---------------------------------------|---------------|----|------|----|----------|----------|-------|-------|--------------------------------------|------------|---------|------------|---------|----------|----|------------------|
|                                       |               |    |      |    | · · ·    |          | 1     | rese  | rved                                 |            |         |            |         | 1        | 1  | 1                |
| Туре                                  | RO            | RO | RO   | RO | RO       | RO       | RO    | RO    | RO                                   | RO         | RO      | RO         | RO      | RO       | RO | RO               |
| Reset                                 | 0             | 0  | 0    | 0  | 0        | 0        | 0     | 0     | 0                                    | 0          | 0       | 0          | 0       | 0        | 0  | 0                |
|                                       | 15            | 14 | 13   | 12 | 11       | 10       | 9     | 8     | 7                                    | 6          | 5       | 4          | 3       | 2        | 1  | 0                |
| Type RO RO RO RO RO RO RO RO RO RO RO |               |    |      |    |          |          |       |       |                                      |            |         |            | D7      | 1        | 1  | •                |
| Туре                                  | RO            | RO | RO   | RO | RO       | RO       | RO    | RO    | RO                                   | RO         | RO      | RO         | RO      | RO       | RO | RO               |
| Reset                                 | 0             | 0  | 0    | 0  | 0        | 0        | 0     | 0     | 0                                    | 0          | 0       | 0          | 0       | 0        | 0  | 0                |
| Bit/F                                 | ield          |    | Name |    | Туре     | I        | Reset | Descr | iption                               |            |         |            |         |          |    |                  |
| 31:                                   | 31:8 reserved |    |      |    | RO       |          | 0     | compa | are shou<br>atibility w<br>rved acro | vith futur | e produ | cts, the v | alue of | a reserv |    | vide<br>nould be |
| 7:0 PID7 RO 0x00 WDT Peripher         |               |    |      |    | al ID Re | gister[3 | 1:24] |       |                                      |            |         |            |         |          |    |                  |

## Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000

Offset 0xFE0 Type RO, reset 0x0000.0005

|                                           | 31              | 30 | 29 | 28 | 27       | 26 | 25      | 24        | 23        | 22                                    | 21       | 20          | 19      | 18       | 17 | 16    |
|-------------------------------------------|-----------------|----|----|----|----------|----|---------|-----------|-----------|---------------------------------------|----------|-------------|---------|----------|----|-------|
|                                           |                 | r  | l  |    | г г<br>1 |    | 1       | rese      | erved     | Ì                                     | •        | 1           |         | ĺ        | 1  | i I   |
| Туре                                      | RO              | RO | RO | RO | RO       | RO | RO      | RO        | RO        | RO                                    | RO       | RO          | RO      | RO       | RO | RO    |
| Reset                                     | 0               | 0  | 0  | 0  | 0        | 0  | 0       | 0         | 0         | 0                                     | 0        | 0           | 0       | 0        | 0  | 0     |
| _                                         | 15              | 14 | 13 | 12 | 11       | 10 | 9       | 8         | 7         | 6                                     | 5        | 4           | 3       | 2        | 1  | 0     |
| Type RO RO RO RO RO RO RO RO RO RO        |                 |    |    |    |          |    |         |           |           |                                       |          |             | D0      | 1        | 1  | · _ ] |
| Туре                                      | RO              | RO | RO | RO | RO       | RO | RO      | RO        | RO        | RO                                    | RO       | RO          | RO      | RO       | RO | RO    |
| Reset                                     | 0               | 0  | 0  | 0  | 0        | 0  | 0       | 0         | 0         | 0                                     | 0        | 0           | 0       | 1        | 0  | 1     |
| Bit/Fi                                    |                 |    |    |    | Туре     |    | Reset   | Descr     | iption    |                                       |          |             |         |          |    |       |
| 31:                                       | 31:8 reserved R |    |    |    |          |    | 0       | compa     | atibility | uld not re<br>with futur<br>ross a re | re produ | icts, the v | alue of | a reserv | •  |       |
| 7:0 PID0 RO 0x05 Watchdog Peripheral ID I |                 |    |    |    |          |    | ID Regi | ster[7:0] |           |                                       |          |             |         |          |    |       |

### Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog Peripheral Identification 1 (WDTPeriphID1)

Base 0x4000.0000

Offset 0xFE4 Type RO, reset 0x0000.0018

|                                             | 31            | 30 | 29   | 28      | 27       | 26        | 25      | 24         | 23                                   | 22         | 21      | 20         | 19      | 18       | 17 | 16 |
|---------------------------------------------|---------------|----|------|---------|----------|-----------|---------|------------|--------------------------------------|------------|---------|------------|---------|----------|----|----|
|                                             |               | 1  | 1    |         |          |           | 1       | rese       | rved                                 |            |         | 1          |         | 1        | 1  | •  |
| Туре                                        | RO            | RO | RO   | RO<br>0 | RO<br>0  | RO        | RO<br>0 | RO<br>0    | RO                                   | RO<br>0    | RO      | RO         | RO<br>0 | RO       | RO | RO |
| Reset                                       | 0             | 0  | 0    | 0       | 0        | 0         | 0       | U          | 0                                    | 0          | 0       | 0          | 0       | 0        | 0  | 0  |
|                                             | 15            | 14 | 13   | 12      | 11       | 10        | 9       | 8          | 7                                    | 6          | 5       | 4          | 3       | 2        | 1  | 0  |
| Type RO RO RO RO RO RO RO RO RO RO RO RO RO |               |    |      |         |          |           |         |            |                                      |            |         |            | 1       | 1        | •  |    |
| Туре                                        | RO            | RO | RO   | RO      | RO       | RO        | RO      | RO         | RO                                   | RO         | RO      | RO         | RO      | RO       | RO | RO |
| Reset                                       | 0             | 0  | 0    | 0       | 0        | 0         | 0       | 0          | 0                                    | 0          | 0       | 1          | 1       | 0        | 0  | 0  |
| Bit/F                                       | ield          |    | Name |         | Туре     | I         | Reset   | Descr      | iption                               |            |         |            |         |          |    |    |
| 31:                                         | 31:8 reserved |    |      |         | RO       |           | 0       | compa      | are shou<br>atibility w<br>rved acro | ith futur/ | e produ | cts, the v | alue of | a reserv |    |    |
| 7:0 PID1 RO 0x18 Watchdog                   |               |    |      |         | ndog Per | ipheral I | D Regis | ster[15:8] | ]                                    |            |         |            |         |          |    |    |

## Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

### Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000

Offset 0xFE8 Type RO, reset 0x0000.0018

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24          | 23                                   | 22             | 21      | 20         | 19      | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|-------------|--------------------------------------|----------------|---------|------------|---------|----------|---------|---------|
|               |         | 1       |          |         | · ·     |         | 1       | rese        | rved                                 |                |         | 1          | 1       |          | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0                              | RO<br>0        | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8           | 7                                    | 6              | 5       | 4          | 3       | 2        | 1       | 0       |
| [             |         | ı       | 1 1      | rese    | rved    |         |         | · · · · · · |                                      | <b>I</b><br>Pl | D2      |            | 1       |          |         |         |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO          | RO                                   | RO             | RO      | RO         | RO      | RO       | RO      | RO      |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0           | 0                                    | 0              | 0       | 1          | 1       | 0        | 0       | 0       |
| Bit/Fi        | ield    |         | Name     |         | Туре    | I       | Reset   | Descr       | iption                               |                |         |            |         |          |         |         |
| 31:           | 31:8    |         | reserved |         | RO      |         | 0       | compa       | are shou<br>atibility w<br>rved acro | ith futur      | e produ | cts, the v | alue of | a reserv | •       |         |
| 7:0           |         |         | PID2     |         | RO      |         | 0x18    | Watch       | ndog Per                             | ipheral I      | D Regis | ster[23:1  | 6]      |          |         |         |

### Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000

Offset 0xFEC Type RO, reset 0x0000.0001

|                                             | 31            | 30      | 29      | 28      | 27       | 26        | 25      | 24        | 23                                   | 22         | 21      | 20         | 19      | 18       | 17      | 16      |
|---------------------------------------------|---------------|---------|---------|---------|----------|-----------|---------|-----------|--------------------------------------|------------|---------|------------|---------|----------|---------|---------|
|                                             |               | 1       | 1 1     |         | г г<br>1 |           | 1       | rese      | l<br>erved                           |            |         |            | 1       | 1        | 1       | ,       |
| Type<br>Reset                               | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0   | RO<br>0 | RO<br>0   | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|                                             | 15            | 14      | 13      | 12      | 11       | 10        | 9       | 8         | 7                                    | 6          | 5       | 4          | 3       | 2        | 1       | 0       |
| Type R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 R0 |               |         |         |         |          |           |         |           |                                      |            |         | PI         | D3      | 1        | 1       | '       |
| Туре                                        | RO            | RO      | RO      | RO      | RO       | RO        | RO      | RO        | RO                                   | RO         | RO      | RO         | RO      | RO       | RO      | RO<br>1 |
| Reset                                       | 0             | 0       | 0       | 0       | 0        | 0         | 0       | 0         | 0                                    | 0          | 0       | 0          | 0       | 0        | 0       | 1       |
| Bit/F                                       | ield          |         | Name    |         | Туре     |           | Reset   | Descr     | ription                              |            |         |            |         |          |         |         |
| 31:                                         | 31:8 reserved |         |         |         | RO       |           | 0       | comp      | are shou<br>atibility w<br>rved acro | ith futur/ | e produ | cts, the v | alue of | a reserv |         |         |
| 7:0 PID3 RO 0x01 Watchd                     |               |         |         |         | ndog Per | ipheral I | D Regis | ster[31:2 | 4]                                   |            |         |            |         |          |         |         |

# Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog PrimeCell Identification 0 (WDTPCellID0)

Base 0x4000.0000 Offset 0xFF0 Type RO, reset 0x0000.000D

| _     | 31                              | 30 | 29   | 28   | 27 | 26    | 25    | 24     | 23          | 22         | 21      | 20                                    | 19      | 18       | 17 | 16 |
|-------|---------------------------------|----|------|------|----|-------|-------|--------|-------------|------------|---------|---------------------------------------|---------|----------|----|----|
|       |                                 | 1  |      |      |    |       |       | rese   | rved        |            |         |                                       |         | 1        |    |    |
| Туре  | RO                              | RO | RO   | RO   | RO | RO    | RO    | RO     | RO          | RO         | RO      | RO                                    | RO      | RO       | RO | RO |
| Reset | 0                               | 0  | 0    | 0    | 0  | 0     | 0     | 0      | 0           | 0          | 0       | 0                                     | 0       | 0        | 0  | 0  |
|       | 15                              | 14 | 13   | 12   | 11 | 10    | 9     | 8      | 7           | 6          | 5       | 4                                     | 3       | 2        | 1  | 0  |
|       |                                 |    |      |      |    |       |       |        |             |            |         |                                       | D0      | 1        | r  |    |
| Туре  | RO                              | RO | RO   | RO   | RO | RO    | RO    | RO     | RO          | RO         | RO      | RO                                    | RO      | RO       | RO | RO |
| Reset | 0                               | 0  | 0    | 0    | 0  | 0     | 0     | 0      | 0           | 0          | 0       | 0                                     | 1       | 1        | 0  | 1  |
| Bit/F | Reset 0 0 0 0<br>Bit/Field Name |    |      | Туре | F  | Reset | Descr | iption |             |            |         |                                       |         |          |    |    |
| 31:   | 31:8 res                        |    |      |      | RO |       | 0     | compa  | atibility v | vith futur | e produ | e value o<br>cts, the v<br>fy-write o | alue of | a reserv | •  |    |
| 7:0   |                                 |    | CID0 |      | RO | (     | 0x0D  | Watch  | ndog Prir   | meCell II  | D Regis | ter[7:0]                              |         |          |    |    |

# Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog PrimeCell Identification 1 (WDTPCellID1)

Base 0x4000.0000 Offset 0xFF4 Type RO, reset 0x0000.00F0

| _                | 31   | 30 | 29       | 28    | 27        | 26        | 25       | 24        | 23                                   | 22        | 21      | 20         | 19      | 18       | 17 | 16 |
|------------------|------|----|----------|-------|-----------|-----------|----------|-----------|--------------------------------------|-----------|---------|------------|---------|----------|----|----|
|                  |      | •  |          |       | , ,<br>,  |           | 1        | rese      | rved                                 |           |         |            |         | 1        | 1  |    |
| Туре             | RO   | RO | RO       | RO    | RO        | RO        | RO       | RO        | RO                                   | RO        | RO      | RO         | RO      | RO       | RO | RO |
| Reset            | 0    | 0  | 0        | 0     | 0         | 0         | 0        | 0         | 0                                    | 0         | 0       | 0          | 0       | 0        | 0  | 0  |
|                  | 15   | 14 | 13       | 12    | 11        | 10        | 9        | 8         | 7                                    | 6         | 5       | 4          | 3       | 2        | 1  | 0  |
|                  |      |    |          |       |           |           |          |           |                                      |           |         |            | D1      | 1        | 1  |    |
| Туре             | RO   | RO | RO       | RO    | RO        | RO        | RO       | RO        | RO                                   | RO        | RO      | RO         | RO      | RO       | RO | RO |
| Reset            | 0    | 0  | 0        | 0     | 0         | 0         | 0        | 0         | 1                                    | 1         | 1       | 1          | 0       | 0        | 0  | 0  |
| Bit/Fi           |      |    |          |       | Туре      | I         | Reset    | Descr     | iption                               |           |         |            |         |          |    |    |
| 31:              | 31:8 |    | reserved |       | RO        |           | 0        | compa     | are shou<br>atibility w<br>rved acro | ith futur | e produ | cts, the v | alue of | a reserv | •  |    |
| 7:0 CID1 RO 0xF0 |      |    |          | Watch | ndog Prir | neCell II | D Regist | ter[15:8] |                                      |           |         |            |         |          |    |    |

# Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog PrimeCell Identification 2 (WDTPCellID2)

Base 0x4000.0000 Offset 0xFF8 Type RO, reset 0x0000.0005

|       | 31                     | 30 | 29       | 28 | 27   | 26 | 25    | 24    | 23                                  | 22         | 21       | 20         | 19       | 18       | 17 | 16 |
|-------|------------------------|----|----------|----|------|----|-------|-------|-------------------------------------|------------|----------|------------|----------|----------|----|----|
|       |                        |    |          |    |      |    | •     | rese  | erved                               | 1          |          |            |          | •        | •  | •  |
| Туре  | RO                     | RO | RO       | RO | RO   | RO | RO    | RO    | RO                                  | RO         | RO       | RO         | RO       | RO       | RO | RO |
| Reset | 0                      | 0  | 0        | 0  | 0    | 0  | 0     | 0     | 0                                   | 0          | 0        | 0          | 0        | 0        | 0  | 0  |
|       | 15                     | 14 | 13       | 12 | 11   | 10 | 9     | 8     | 7                                   | 6          | 5        | 4          | 3        | 2        | 1  | 0  |
|       |                        |    |          |    |      |    |       |       |                                     |            |          | CI         | l<br>D2  | 1        | 1  |    |
| Туре  | RO                     | RO | RO       | RO | RO   | RO | RO    | RO    | RO                                  | RO         | RO       | RO         | RO       | RO       | RO | RO |
| Reset | 0                      | 0  | 0        | 0  | 0    | 0  | 0     | 0     | 0                                   | 0          | 0        | 0          | 0        | 1        | 0  | 1  |
| Bit/F | Reset 0 0<br>Bit/Field |    | Name     |    | Туре |    | Reset | Descr | ription                             |            |          |            |          |          |    |    |
| 31    | :8                     |    | reserved |    | RO   |    | 0     | comp  | are shou<br>atibility v<br>rved acr | vith futur | e produ  | cts, the v | value of | a reserv | •  |    |
| 7:0   |                        |    | CID2     |    | RO   |    | 0x05  | Watch | ndog Prii                           | meCell I   | D Regist | ter[23:16  | 6]       |          |    |    |

# Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC

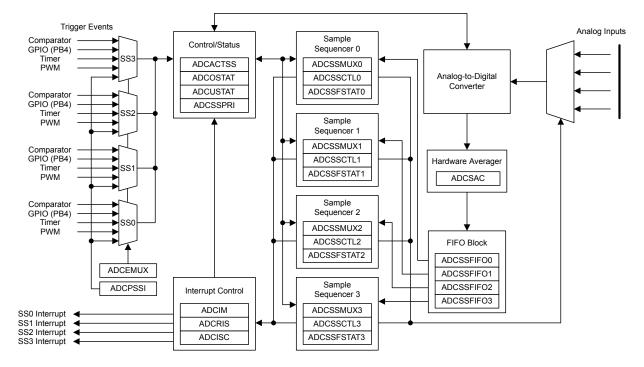
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

#### Watchdog PrimeCell Identification 3 (WDTPCellID3)

Base 0x4000.0000 Offset 0xFFC Type RO, reset 0x0000.00B1

| _      | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24    | 23          | 22         | 21      | 20                                     | 19      | 18       | 17 | 16 |
|--------|------|----|----------|------|------|----|-------|-------|-------------|------------|---------|----------------------------------------|---------|----------|----|----|
|        |      | 1  | , ,      |      | r r  |    | 1     | rese  | rved        |            |         | 1                                      |         | r        | ,  |    |
| Туре   | RO   | RO | RO       | RO   | RO   | RO | RO    | RO    | RO          | RO         | RO      | RO                                     | RO      | RO       | RO | RO |
| Reset  | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 0           | 0          | 0       | 0                                      | 0       | 0        | 0  | 0  |
|        | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8     | 7           | 6          | 5       | 4                                      | 3       | 2        | 1  | 0  |
|        |      | 1  | 1 1      | rese | rved |    | 1     | 1     |             | r 1        |         | CI                                     | D3      | 1        | 1  |    |
| Туре   | RO   | RO | RO       | RO   | RO   | RO | RO    | RO    | RO          | RO         | RO      | RO                                     | RO      | RO       | RO | RO |
| Reset  | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0     | 1           | 0          | 1       | 1                                      | 0       | 0        | 0  | 1  |
| Bit/Fi | ield |    | Name     |      | Туре | I  | Reset | Descr | iption      |            |         |                                        |         |          |    |    |
| 31:    | :8   |    | reserved |      | RO   |    | 0     | compa | atibility w | vith futur | e produ | e value o<br>cts, the v<br>ify-write o | alue of | a reserv | •  |    |
| 7:0    | 0    |    | CID3     |      | RO   |    | 0xB1  | Watch | ndog Prir   | neCell II  | ]       |                                        |         |          |    |    |

# 11 Analog-to-Digital Converter (ADC)


An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The Stellaris<sup>®</sup> ADC module features 10-bit conversion resolution and supports four input channels, plus an internal temperature sensor. The ADC module contains a programmable sequencer which allows for the sampling of multiple analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

The Stellaris<sup>®</sup> ADC provides the following features:

- Four analog input channels
- Single-ended and differential-input configurations
- Internal temperature sensor
- Sample rate of 250 thousand samples/second
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
  - Controller (software)
  - Timers
  - Analog Comparators
  - GPIO
- Hardware averaging of up to 64 samples for improved accuracy

# 11.1 Block Diagram



#### Figure 11-1. ADC Module Block Diagram

# 11.2 Functional Description

The Stellaris<sup>®</sup> ADC collects sample data by using a programmable sequence-based approach instead of the traditional single or double-sampling approach found on many ADC modules. Each *sample sequence* is a fully programmed series of consecutive (back-to-back) samples, allowing the ADC to collect data from multiple input sources without having to be re-configured or serviced by the controller. The programming of each sample in the sample sequence includes parameters such as the input source and mode (differential versus single-ended input), interrupt generation on sample completion, and the indicator for the last sample in the sequence.

### 11.2.1 Sample Sequencers

The sampling control and data capture is handled by the Sample Sequencers. All of the sequencers are identical in implementation except for the number of samples that can be captured and the depth of the FIFO. Table 11-1 on page 231 shows the maximum number of samples that each Sequencer can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit word, with the lower 10 bits containing the conversion result.

| Sequencer | Number of Samples | Depth of FIFO |
|-----------|-------------------|---------------|
| SS3       | 1                 | 1             |
| SS2       | 4                 | 4             |
| SS1       | 4                 | 4             |
| SS0       | 8                 | 8             |

For a given sample sequence, each sample is defined by two 4-bit nibbles in the **ADC Sample Sequence Input Multiplexer Select (ADCSSMUXn)** and **ADC Sample Sequence Control (ADCSSCTLn)** registers, where "n" corresponds to the sequence number. The **ADCSSMUXn** nibbles select the input pin, while the **ADCSSCTLn** nibbles contain the sample control bits corresponding to parameters such as temperature sensor selection, interrupt enable, end of sequence, and differential input mode. Sample Sequencers are enabled by setting the respective ASENn bit in the **ADC Active Sample Sequencer (ADCACTSS)** register, but can be configured before being enabled.

When configuring a sample sequence, multiple uses of the same input pin within the same sequence is allowed. In the **ADCSSCTLn** register, the Interrupt Enable (IE) bits can be set for any combination of samples, allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete execution of the sample sequence after the fifth sample.

After a sample sequence completes execution, the result data can be retrieved from the ADC Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers that read a single address to "pop" result data. For software debug purposes, the positions of the FIFO head and tail pointers are visible in the ADC Sample Sequence FIFO Status (ADCSSFSTATn) registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored using the ADCOSTAT and ADCUSTAT registers.

### 11.2.2 Module Control

Outside of the Sample Sequencers, the remainder of the control logic is responsible for tasks such as interrupt generation, sequence prioritization, and trigger configuration.

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider is configured automatically by hardware when the system XTAL is selected. The automatic clock divider configuration targets 16.667 MHz operation for all Stellaris<sup>®</sup> devices.

### 11.2.2.1 Interrupts

The Sample Sequencers dictate the events that cause interrupts, but they don't have control over whether the interrupt is actually sent to the interrupt controller. The ADC module's interrupt signal is controlled by the state of the MASK bits in the **ADC Interrupt Mask (ADCIM)** register. Interrupt status can be viewed at two locations: the **ADC Raw Interrupt Status (ADCRIS)** register, which shows the raw status of a Sample Sequencer's interrupt signal, and the **ADC Interrupt Status and Clear (ADCISC)** register, which shows the logical AND of the **ADCRIS** register's INR bit and the **ADCIM** register's MASK bits. Interrupts are cleared by writing a 1 to the corresponding IN bit in **ADCISC**.

### 11.2.2.2 Prioritization

When sampling events (triggers) happen concurrently, they are prioritized for processing by the values in the **ADC Sample Sequencer Priority (ADCSSPRI)** register. Valid priority values are in the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active Sample Sequencer units with the same priority do not provide consistent results, so software must ensure that all active Sample Sequencer units have a unique priority value.

### 11.2.2.3 Sampling Events

Sample triggering for each Sample Sequencer is defined in the **ADC Event Multiplexer Select** (ADCEMUX) register. The external peripheral triggering sources vary by Stellaris<sup>®</sup> family member,

but all devices share the "Controller" and "Always" triggers. Software can initiate sampling by setting the CH bits in the **ADC Processor Sample Sequence Initiate (ADCPSSI)** register.

When using the "Always" trigger, care must be taken. If a sequence's priority is too high, it is possible to starve other lower priority sequences.

### 11.2.3 Hardware Sample Averaging Circuit

Higher precision results can be generated using the hardware averaging circuit, however, the improved results are at the cost of throughput. Up to 64 samples can be accumulated and averaged to form a single data entry in the sequencer FIFO. Throughput is decreased proportionally to the number of samples in the averaging calculation. For example, if the averaging circuit is configured to average 16 samples, the throughput is decreased by a factor of 16.

By default the averaging circuit is off and all data from the converter passes through to the sequencer FIFO. The averaging hardware is controlled by the **ADC Sample Averaging Control (ADCSAC)** register (see page 247). There is a single averaging circuit and all input channels receive the same amount of averaging whether they are single-ended or differential.

### 11.2.4 Analog-to-Digital Converter

The converter itself generates a 10-bit output value for selected analog input. Special analog pads are used to minimize the distortion on the input.

### 11.2.5 Test Modes

There is a user-available test mode that allows for loopback operation within the digital portion of the ADC module. This can be useful for debugging software without having to provide actual analog stimulus. This mode is available through the **ADC Test Mode Loopback (ADCTMLB)** register (see page 265).

### 11.2.6 Internal Temperature Sensor

The internal temperature sensor provides an analog temperature reading as well as a reference voltage. The voltage at the output terminal SENSO is given by the following equation:

SENSO = 2.7 - ((T + 55) / 75)

This relation is shown in Figure 11-2 on page 234.

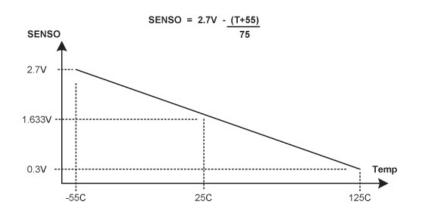



Figure 11-2. Internal Temperature Sensor Characteristic

# 11.3 Initialization and Configuration

In order for the ADC module to be used, the PLL must be enabled and using a supported crystal frequency (see the **RCC** register). Using unsupported frequencies can cause faulty operation in the ADC module.

### 11.3.1 Module Initialization

Initialization of the ADC module is a simple process with very few steps. The main steps include enabling the clock to the ADC and reconfiguring the Sample Sequencer priorities (if needed).

The initialization sequence for the ADC is as follows:

- 1. Enable the ADC clock by writing a value of 0x0001.0000 to the **RCGC1** register (see page 93).
- If required by the application, reconfigure the Sample Sequencer priorities in the ADCSSPRI register. The default configuration has Sample Sequencer 0 with the highest priority, and Sample Sequencer 3 as the lowest priority.

### **11.3.2** Sample Sequencer Configuration

Configuration of the Sample Sequencers is slightly more complex than the module initialization since each sample sequence is completely programmable.

The configuration for each Sample Sequencer should be as follows:

- Ensure that the Sample Sequencer is disabled by writing a 0 to the corresponding ASEN bit in the ADCACTSS register. Programming of the Sample Sequencers is allowed without having them enabled. Disabling the Sequencer during programming prevents erroneous execution if a trigger event were to occur during the configuration process.
- 2. Configure the trigger event for the Sample Sequencer in the **ADCEMUX** register.
- **3.** For each sample in the sample sequence, configure the corresponding input source in the **ADCSSMUXn** register.

- 4. For each sample in the sample sequence, configure the sample control bits in the corresponding nibble in the **ADCSSCTLn** register. When programming the last nibble, ensure that the END bit is set. Failure to set the END bit causes unpredictable behavior.
- 5. If interrupts are to be used, write a 1 to the corresponding MASK bit in the **ADCIM** register.
- 6. Enable the Sample Sequencer logic by writing a 1 to the corresponding ASEN bit in the **ADCACTSS** register.

# 11.4 Register Map

Table 11-2 on page 235 lists the ADC registers. The offset listed is a hexadecimal increment to the register's address, relative to the ADC base address of 0x4003.8000.

| Offset | Name        | Туре  | Reset       | Description                                    | See<br>page |
|--------|-------------|-------|-------------|------------------------------------------------|-------------|
| 0x000  | ADCACTSS    | R/W   | 0x0000.0000 | ADC Active Sample Sequencer                    | 237         |
| 0x004  | ADCRIS      | RO    | 0x0000.0000 | ADC Raw Interrupt Status                       | 238         |
| 0x008  | ADCIM       | R/W   | 0x0000.0000 | ADC Interrupt Mask                             | 239         |
| 0x00C  | ADCISC      | R/W1C | 0x0000.0000 | ADC Interrupt Status and Clear                 | 240         |
| 0x010  | ADCOSTAT    | R/W1C | 0x0000.0000 | ADC Overflow Status                            | 241         |
| 0x014  | ADCEMUX     | R/W   | 0x0000.0000 | ADC Event Multiplexer Select                   | 242         |
| 0x018  | ADCUSTAT    | R/W1C | 0x0000.0000 | ADC Underflow Status                           | 244         |
| 0x020  | ADCSSPRI    | R/W   | 0x0000.3210 | ADC Sample Sequencer Priority                  | 245         |
| 0x028  | ADCPSSI     | WO    | -           | ADC Processor Sample Sequence Initiate         | 246         |
| 0x030  | ADCSAC      | R/W   | 0x0000.0000 | ADC Sample Averaging Control                   | 247         |
| 0x040  | ADCSSMUX0   | R/W   | 0x0000.0000 | ADC Sample Sequence Input Multiplexer Select 0 | 248         |
| 0x044  | ADCSSCTL0   | R/W   | 0x0000.0000 | ADC Sample Sequence Control 0                  | 250         |
| 0x048  | ADCSSFIF00  | RO    | 0x0000.0000 | ADC Sample Sequence Result FIFO 0              | 253         |
| 0x04C  | ADCSSFSTAT0 | RO    | 0x0000.0100 | ADC Sample Sequence FIFO 0 Status              | 254         |
| 0x060  | ADCSSMUX1   | R/W   | 0x0000.0000 | ADC Sample Sequence Input Multiplexer Select 1 | 255         |
| 0x064  | ADCSSCTL1   | R/W   | 0x0000.0000 | ADC Sample Sequence Control 1                  | 256         |
| 0x068  | ADCSSFIF01  | RO    | 0x0000.0000 | ADC Sample Sequence Result FIFO 1              | 253         |
| 0x06C  | ADCSSFSTAT1 | RO    | 0x0000.0100 | ADC Sample Sequence FIFO 1 Status              | 254         |
| 0x080  | ADCSSMUX2   | R/W   | 0x0000.0000 | ADC Sample Sequence Input Multiplexer Select 2 | 258         |
| 0x084  | ADCSSCTL2   | R/W   | 0x0000.0000 | ADC Sample Sequence Control 2                  | 259         |
| 0x088  | ADCSSFIF02  | RO    | 0x0000.0000 | ADC Sample Sequence Result FIFO 2              | 253         |
| 0x08C  | ADCSSFSTAT2 | RO    | 0x0000.0100 | ADC Sample Sequence FIFO 2 Status              | 254         |
| 0x0A0  | ADCSSMUX3   | R/W   | 0x0000.0000 | ADC Sample Sequence Input Multiplexer Select 3 | 261         |

#### Table 11-2. ADC Register Map

| Offset | Name        | Туре | Reset       | Description                       | See<br>page |
|--------|-------------|------|-------------|-----------------------------------|-------------|
| 0x0A4  | ADCSSCTL3   | R/W  | 0x0000.0002 | ADC Sample Sequence Control 3     | 262         |
| 0x0A8  | ADCSSFIFO3  | RO   | 0x0000.0000 | ADC Sample Sequence Result FIFO 3 | 263         |
| 0x0AC  | ADCSSFSTAT3 | RO   | 0x0000.0100 | ADC Sample Sequence FIFO 3 Status | 264         |
| 0x100  | ADCTMLB     | R/W  | 0x0000.0000 | ADC Test Mode Loopback            | 265         |

# 11.5 Register Descriptions

The remainder of this section lists and describes the ADC registers, in numerical order by address offset.

# Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000

This register controls the activation of the Sample Sequencers. Each Sample Sequencer can be enabled/disabled independently.

#### ADC Active Sample Sequencer (ADCACTSS)

Base 0x4003.8000 Offset 0x000 Type R/W, reset 0x0000.0000

| _             | 31      | 30      | 29       | 28      | 27      | 26      | 25       | 24               | 23       | 22                      | 21       | 20        | 19        | 18         | 17         | 16       |
|---------------|---------|---------|----------|---------|---------|---------|----------|------------------|----------|-------------------------|----------|-----------|-----------|------------|------------|----------|
|               |         |         |          |         |         |         | <b>'</b> | rese             | rved     |                         |          |           |           | 1          | •          |          |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO       | RO               | RO       | RO                      | RO       | RO        | RO        | RO         | RO         | RO       |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0        | 0                | 0        | 0                       | 0        | 0         | 0         | 0          | 0          | 0        |
| 1             | 15      | 14      | 13       | 12      | 11      | 10      | 9        | 8                | 7        | 6                       | 5        | 4         | 3         | 2          | 1          | 0        |
|               |         |         |          |         |         | rese    | erved    |                  |          |                         |          |           | ASEN3     | ASEN2      | ASEN1      | ASEN0    |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0          | RO<br>0  | RO<br>0                 | RO<br>0  | RO<br>0   | R/W<br>0  | R/W<br>0   | R/W<br>0   | R/W<br>0 |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0        | 0                | 0        | 0                       | 0        | 0         | 0         | 0          | 0          | 0        |
| Bit/F         | iold    |         | Name     |         | Tuno    |         | Reset    | Descr            | intion   |                         |          |           |           |            |            |          |
| DIVE          | leiu    |         | Name     |         | Туре    | ſ       | Resel    | Desci            | ιριοπ    |                         |          |           |           |            |            |          |
| 31:           | 4       |         | reserved |         | RO      |         | 0        |                  |          | uld not re              |          |           |           |            |            |          |
|               |         |         |          |         |         |         |          |                  |          | vith futur<br>oss a rea |          |           |           |            | ed bit sh  | ould be  |
|               |         |         |          |         |         |         |          | preser           |          | 035 8 166               | au-moui  | iy-wille  | operatio  | 11.        |            |          |
| 3             |         |         | ASEN3    |         | R/W     |         | 0        | ADC S            | SS3 Ena  | able                    |          |           |           |            |            |          |
|               |         |         |          |         |         |         |          | •                |          | ther San                | •        |           |           |            |            | •        |
|               |         |         |          |         |         |         |          | seque<br>inactiv |          | ic for Sec              | quencer  | 3 is acti | ive. Othe | erwise, tł | ne Sequ    | encer is |
|               |         |         |          |         |         |         |          | macin            | /e.      |                         |          |           |           |            |            |          |
| 2             |         |         | ASEN2    |         | R/W     |         | 0        | ADC S            | SS2 Ena  | able                    |          |           |           |            |            |          |
|               |         |         |          |         |         |         |          | Speci            | fies whe | ther San                | nple Sec | quencer   | 2 is ena  | bled. If s | set, the s | ample    |
|               |         |         |          |         |         |         |          |                  | •        | ic for Sec              | quencer  | 2 is acti | ive. Othe | erwise, tł | ne Sequ    | encer is |
|               |         |         |          |         |         |         |          | inactiv          | /e.      |                         |          |           |           |            |            |          |
| 1             |         |         | ASEN1    |         | R/W     |         | 0        | ADC S            | SS1 Ena  | able                    |          |           |           |            |            |          |
|               |         |         |          |         |         |         |          | Speci            | fies whe | ther San                | nple Sec | quencer   | 1 is ena  | bled. If s | set, the s | ample    |
|               |         |         |          |         |         |         |          |                  |          | ic for Sec              | quencer  | 1 is acti | ive. Othe | erwise, tł | ne Sequ    | encer is |
|               |         |         |          |         |         |         |          | inactiv          | /e.      |                         |          |           |           |            |            |          |
| 0             |         |         | ASEN0    |         | R/W     |         | 0        | ADC S            | SS0 Ena  | able                    |          |           |           |            |            |          |
|               |         |         |          |         |         |         |          | Specit           | fies whe | ther San                | nple Sec | quencer   | 0 is ena  | bled. If s | set, the s | ample    |
|               |         |         |          |         |         |         |          | seque            | nce log  | ic for Sec              | quencer  | 0 is acti | ive. Othe | erwise, tł | ne Sequ    | encer is |

inactive.

# Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004

This register shows the status of the raw interrupt signal of each Sample Sequencer. These bits may be polled by software to look for interrupt conditions without having to generate controller interrupts.

#### ADC Raw Interrupt Status (ADCRIS)

Base 0x4003.8000 Offset 0x004 Type RO, reset 0x0000.0000

| _     | 31   | 30 | 29       | 28 | 27   | 26   | 25    | 24     | 23                | 22         | 21        | 20           | 19        | 18         | 17       | 16               |
|-------|------|----|----------|----|------|------|-------|--------|-------------------|------------|-----------|--------------|-----------|------------|----------|------------------|
|       |      |    | 1        | 1  |      |      | 1     | rese   | rved              | 1          |           | 1            |           | 1          |          | 1                |
| Туре  | RO   | RO | RO       | RO | RO   | RO   | RO    | RO     | RO                | RO         | RO        | RO           | RO        | RO         | RO       | RO               |
| Reset | 0    | 0  | 0        | 0  | 0    | 0    | 0     | 0      | 0                 | 0          | 0         | 0            | 0         | 0          | 0        | 0                |
| _     | 15   | 14 | 13       | 12 | 11   | 10   | 9     | 8      | 7                 | 6          | 5         | 4            | 3         | 2          | 1        | 0                |
|       |      |    | 1        | 1  |      | rese | erved | 1      |                   | 1          |           | 1            | INR3      | INR2       | INR1     | INR0             |
| Туре  | RO   | RO | RO       | RO | RO   | RO   | RO    | RO     | RO                | RO         | RO        | RO           | RO        | RO         | RO       | RO               |
| Reset | 0    | 0  | 0        | 0  | 0    | 0    | 0     | 0      | 0                 | 0          | 0         | 0            | 0         | 0          | 0        | 0                |
|       |      |    |          |    |      |      |       |        |                   |            |           |              |           |            |          |                  |
| Bit/F | ield |    | Name     |    | Туре | I    | Reset | Descr  | iption            |            |           |              |           |            |          |                  |
| 31:   | 4    |    | reserved |    | RO   |      | 0     | Softwa | are shou          | uld not re | elv on th | e value      | of a rese | erved bit. | To prov  | vide             |
|       |      |    |          |    |      |      |       |        |                   |            |           |              |           | a reserv   | •        |                  |
|       |      |    |          |    |      |      |       | prese  | rved acr          | oss a re   | ad-modi   | fy-write     | operatio  | n.         |          |                  |
| 3     |      |    | INR3     |    | RO   |      | 0     | SS3 F  | Raw Inte          | rrupt Sta  | atus      |              |           |            |          |                  |
|       |      |    |          |    |      |      |       |        |                   | •          |           | lo with it   | e roepor  |            |          | <b>3</b> IE bit  |
|       |      |    |          |    |      |      |       |        |                   |            |           |              |           | by writing |          |                  |
|       |      |    |          |    |      |      |       |        | SC IN3            |            |           |              |           |            |          |                  |
| 2     |      |    | INR2     |    | RO   |      | 0     | SS2 F  | ?aw Inte          | rrupt Sta  | atus      |              |           |            |          |                  |
| 2     |      |    | IINI VZ  |    | NO   |      | U     |        |                   | •          |           |              |           |            |          | <b>•</b> • • •   |
|       |      |    |          |    |      |      |       |        |                   |            |           |              |           | tive ADC   |          | <b>.2</b> IE bit |
|       |      |    |          |    |      |      |       |        | SC IN2            |            | 3011. 11  |              |           | Jy writing | gario    | uie              |
|       |      |    |          |    |      |      |       |        |                   |            |           |              |           |            |          |                  |
| 1     |      |    | INR1     |    | RO   |      | 0     | SS1 F  | Raw Inte          | rrupt Sta  | itus      |              |           |            |          |                  |
|       |      |    |          |    |      |      |       |        |                   |            |           |              |           |            |          | <b>1</b> IE bit  |
|       |      |    |          |    |      |      |       |        | omplete<br>SC IN1 |            | sion. Th  | iis bit is ( | cleared I | by writing | g a 1 to | the              |
|       |      |    |          |    |      |      |       |        |                   |            |           |              |           |            |          |                  |
| 0     |      |    | INR0     |    | RO   |      | 0     | SS0 F  | Raw Inte          | rrupt Sta  | atus      |              |           |            |          |                  |
|       |      |    |          |    |      |      |       | Set by | / hardwa          | ire when   | a samp    | le with it   | s respec  | tive ADC   | CSSCTL   | <b>.0</b> IE bit |
|       |      |    |          |    |      |      |       | has co | omplete           | d conver   | sion. Th  | is bit is o  | cleared I | ov writing | a 1 to   | the              |

ADCISC IN0 bit.

# Register 3: ADC Interrupt Mask (ADCIM), offset 0x008

This register controls whether the Sample Sequencer raw interrupt signals are promoted to controller interrupts. The raw interrupt signal for each Sample Sequencer can be masked independently.

| ADC In                 | terrupt  | Mask (  |          | )       |         |         |         |         |                                                   |           |                  |          |           |           |          |            |
|------------------------|----------|---------|----------|---------|---------|---------|---------|---------|---------------------------------------------------|-----------|------------------|----------|-----------|-----------|----------|------------|
| Base 0x4<br>Offset 0x0 | 003.8000 |         |          |         |         |         |         |         |                                                   |           |                  |          |           |           |          |            |
|                        | 31       | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                                | 22        | 21               | 20       | 19        | 18        | 17       | 16         |
|                        | ľ        |         | 1 1      |         |         |         | 1       | rese    | rved                                              |           |                  |          | 1         | 1         | 1        | '          |
| Туре                   | RO       | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO                                                | RO        | RO               | RO       | RO        | RO        | RO       | RO         |
| Reset                  | 0        | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                                 | 0         | 0                | 0        | 0         | 0         | 0        | 0          |
|                        | 15       | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                                 | 6         | 5                | 4        | 3         | 2         | 1        | 0          |
|                        |          |         |          |         |         | res     | erved   |         |                                                   |           |                  |          | MASK3     | MASK2     | MASK1    | MASK0      |
| Type<br>Reset          | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                           | RO<br>0   | RO<br>0          | RO<br>0  | R/W<br>0  | R/W<br>0  | R/W<br>0 | R/W<br>0   |
| 10000                  | 0        | Ū       | Ū        | Ū       | Ū       | Ū       | Ū       | Ū       | °,                                                | 0         | 0                | Ū        | Ū         | Ū         | Ū        | Ū          |
| Bit/F                  | ield     |         | Name     |         | Туре    |         | Reset   | Descr   | iption                                            |           |                  |          |           |           |          |            |
| 31                     | :4       | l       | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro              | ith futur | e produc         | cts, the | value of  | a reserv  | •        |            |
| 3                      | }        |         | MASK3    |         | R/W     |         | 0       | SS3 li  | nterrupt l                                        | Mask      |                  |          |           |           |          |            |
|                        |          |         |          |         |         |         |         | (ADC    | fies whet<br><b>RIS</b> regis<br>w interru<br>ot. | ster INR  | 3 bit) is        | promote  | ed to a c | ontroller | interrup | t. If set, |
| 2                      | 2        |         | MASK2    |         | R/W     |         | 0       | SS2 li  | nterrupt l                                        | Mask      |                  |          |           |           |          |            |
|                        |          |         |          |         |         |         |         | (ADC    | fies whe<br><b>RIS</b> regis<br>w interru<br>ot.  | ster INR  | 2 bit) is        | promote  | ed to a c | ontroller | interrup | t. If set, |
| 1                      |          |         | MASK1    |         | R/W     |         | 0       | SS1 li  | nterrupt l                                        | Mask      |                  |          |           |           |          |            |
|                        |          |         |          |         |         |         |         | (ADC    | fies whet<br><b>RIS</b> regis<br>w interru<br>ot. | ster INR  | 1 bit) is        | promote  | ed to a c | ontroller | interrup | t. If set, |
| 0                      | )        |         | MASK0    |         | R/W     |         | 0       | SS0 li  | nterrupt l                                        | Mask      |                  |          |           |           |          |            |
|                        |          |         |          |         |         |         |         | (ADC    | fies whet<br><b>RIS</b> regis<br>w interru<br>ot. | ster INR  | 0 <b>bit) is</b> | promote  | ed to a c | ontroller | interrup | t. If set, |

### Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C

This register provides the mechanism for clearing interrupt conditions, and shows the status of controller interrupts generated by the Sample Sequencers. When read, each bit field is the logical AND of the respective INR and MASK bits. Interrupts are cleared by writing a 1 to the corresponding bit position. If software is polling the ADCRIS instead of generating interrupts, the INR bits are still cleared via the **ADCISC** register, even if the IN bit is not set.

| Type R/W      |         | t 0x0000. | 0000     |         |         |         |         |         |             |            |           |           |            |                              |            |            |
|---------------|---------|-----------|----------|---------|---------|---------|---------|---------|-------------|------------|-----------|-----------|------------|------------------------------|------------|------------|
|               | 31      | 30        | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21        | 20        | 19         | 18                           | 17         | 16         |
|               |         |           |          |         |         |         | •       | rese    | rved        |            |           |           |            | •                            | •          |            |
| Туре          | RO      | RO        | RO       | RO      | RO      | RO      | RO      | RO      | RO          | RO         | RO        | RO        | RO         | RO                           | RO         | RO         |
| Reset         | 0       | 0         | 0        | 0       | 0       | 0       | 0       | 0       | 0           | 0          | 0         | 0         | 0          | 0                            | 0          | 0          |
| г             | 15      | 14        | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5         | 4         | 3          | 2                            | 1          | 0          |
|               |         |           |          |         | 1       | rese    | erved   |         | 1           |            |           | -         | IN3        | IN2                          | IN1        | INO        |
| Type<br>Reset | RO<br>0 | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0   | R/W1C<br>0 | R/W1C<br>0                   | R/W1C<br>0 | R/W1C<br>0 |
| Reset         | 0       | 0         | 0        | 0       | 0       | 0       | 0       | 0       | 0           | 0          | 0         | 0         | 0          | 0                            | 0          | 0          |
| Bit/F         | ield    |           | Name     |         | Туре    | I       | Reset   | Descr   | iption      |            |           |           |            |                              |            |            |
| 31:           | :4      | r         | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | e produ   | cts, the  |            | erved bit.<br>a reserv<br>n. | •          |            |
| 3             |         |           | IN3      |         | R/W1C   |         | 0       | SS3 Ir  | nterrupt    | Status a   | nd Clea   | r         |            |                              |            |            |
|               |         |           |          |         |         |         |         | provid  | ling a lev  |            | d interru | pt to the |            | nd INR3<br>er. It is cl      |            |            |
| 2             |         |           | IN2      |         | R/W1C   |         | 0       | SS2 Ir  | nterrupt    | Status a   | nd Clea   | r         |            |                              |            |            |
|               |         |           |          |         |         |         |         | provid  | ling a lev  |            | d interru | pt to the |            | nd INR2<br>er. It is cl      |            |            |
| 1             |         |           | IN1      |         | R/W1C   |         | 0       | SS1 lr  | nterrupt    | Status a   | nd Clea   | r         |            |                              |            |            |
|               |         |           |          |         |         |         |         | provid  | ling a lev  |            | d interru | pt to the |            | nd INR1<br>er. It is cl      |            |            |
| 0             |         |           | IN0      |         | R/W1C   |         | 0       | SS0 Ir  | nterrupt    | Status a   | nd Clea   | r         |            |                              |            |            |
|               |         |           |          |         |         |         |         | provid  | ling a lev  |            | d interru | pt to the |            | nd INR0<br>er. It is cl      |            |            |

ADC Interrupt Status and Clear (ADCISC)

Base 0x4003.8000 Offset 0x00C

# Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010

This register indicates overflow conditions in the Sample Sequencer FIFOs. Once the overflow condition has been handled by software, the condition can be cleared by writing a 1 to the corresponding bit position.

#### ADC Overflow Status (ADCOSTAT)

Base 0x4003.8000 Offset 0x010 Type R/W1C, reset 0x0000.0000

| _             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                          | 23                                | 22                                                                | 21                                | 20                  | 19                | 18                     | 17                    | 16                 |
|---------------|---------|---------|----------|---------|---------|---------|---------|-----------------------------|-----------------------------------|-------------------------------------------------------------------|-----------------------------------|---------------------|-------------------|------------------------|-----------------------|--------------------|
|               |         |         |          |         | · ·     |         | •       | rese                        | rved                              |                                                                   |                                   |                     | 1                 |                        |                       |                    |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0                           | RO<br>0                                                           | RO<br>0                           | RO<br>0             | RO<br>0           | RO<br>0                | RO<br>0               | RO<br>0            |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                           | 7                                 | 6                                                                 | 5                                 | 4                   | 3                 | 2                      | 1                     | 0                  |
|               | · · · · |         |          |         | · ·     | rese    | erved   |                             |                                   |                                                                   |                                   |                     | OV3               | OV2                    | OV1                   | OV0                |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0                           | RO<br>0                                                           | RO<br>0                           | RO<br>0             | R/W1C<br>0        | R/W1C<br>0             | R/W1C<br>0            | R/W1C<br>0         |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr                       | iption                            |                                                                   |                                   |                     |                   |                        |                       |                    |
| 31:           | 4       | r       | reserved |         | RO      |         | 0       | compa                       | atibility w                       | ld not re<br>vith future<br>oss a rea                             | e produc                          | ts, the             | value of          | a reserv               |                       |                    |
| 3             |         |         | OV3      |         | R/W1C   |         | 0       | SS3 F                       | IFO Ove                           | erflow                                                            |                                   |                     |                   |                        |                       |                    |
|               |         |         |          |         |         |         |         | overflo<br>When<br>bit is s | ow condi<br>an overl<br>set by ha | es that the<br>ition whe<br>flow is de<br>irdware t<br>by writing | ere the F<br>etected,<br>o indica | IFO is f<br>the mos | ull and a trecent | write wa               | as reque<br>Iropped a | ested.<br>and this |
| 2             |         |         | OV2      |         | R/W1C   |         | 0       | SS2 F                       | IFO Ove                           | erflow                                                            |                                   |                     |                   |                        |                       |                    |
|               |         |         |          |         |         |         |         | overflo<br>When<br>bit is s | ow condi<br>an overf<br>set by ha | es that the<br>ition whe<br>flow is de<br>irdware t<br>by writing | ere the F<br>etected,<br>o indica | IFO is f<br>the mos | ull and a trecent | write wa               | as reque<br>Iropped a | ested.<br>and this |
| 1             |         |         | OV1      |         | R/W1C   |         | 0       | SS1 F                       | IFO Ove                           | erflow                                                            |                                   |                     |                   |                        |                       |                    |
|               |         |         |          |         |         |         |         | overflo<br>When<br>bit is s | ow condi<br>an overl<br>set by ha | es that the<br>ition whe<br>flow is de<br>irdware t<br>by writing | ere the F<br>etected,<br>o indica | IFO is f<br>the mos | ull and a trecent | write wa<br>write is d | as reque<br>Iropped a | ested.<br>and this |
| 0             |         |         | OV0      |         | R/W1C   |         | 0       | SS0 F                       | IFO Ove                           | erflow                                                            |                                   |                     |                   |                        |                       |                    |
|               |         |         |          |         |         |         |         | overflo<br>When<br>bit is s | ow condi<br>an overl<br>set by ha | es that the<br>ition whe<br>flow is de<br>irdware t<br>by writing | ere the F<br>etected,<br>o indica | IFO is f<br>the mos | ull and a trecent | write wa               | as reque<br>Iropped a | ested.<br>and this |

# Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014

The **ADCEMUX** selects the event (trigger) that initiates sampling for each Sample Sequencer. Each Sample Sequencer can be configured with a unique trigger source.

#### ADC Event Multiplexer Select (ADCEMUX)

Base 0x4003.8000 Offset 0x014 Type R/W, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31   | 30  | 29        | 28  | 27   | 26  | 25        | 24    | 23        | 22                           | 21         | 20         | 19         | 18       | 17        | 16      |
|-----------------------------------------|------|-----|-----------|-----|------|-----|-----------|-------|-----------|------------------------------|------------|------------|------------|----------|-----------|---------|
|                                         |      |     |           |     |      |     |           | rese  | erved     |                              |            | 1          |            | 1        |           | 1       |
| Type                                    | RO   | RO  | RO        | RO  | RO   | RO  | RO        | RO    | RO        | RO                           | RO<br>0    | RO         | RO         | RO<br>0  | RO        | RO      |
| Reset                                   | 0    | 0   | 0         | 0   | 0    | 0   | 0         | 0     | 0         | 0                            |            | 0          | 0          |          | 0         | 0       |
|                                         | 15   | 14  | 13        | 12  | 11   | 10  | 9         | 8     | 7         | 6                            | 5          | 4          | 3          | 2        | 1         | 0       |
| Tuno                                    | R/W  | R/W | N3<br>R/W | R/W | R/W  | R/W | M2<br>R/W | R/W   | R/W       | R/W                          | M1<br>R/W  | R/W        | R/W        | R/W      | M0<br>R/W | R/W     |
| Type<br>Reset                           | 0    | 0   | 0         | 0   | 0    | 0   | 0         | 0     | 0         | 0                            | 0          | 0          | 0          | 0        | 0         | 0       |
|                                         |      |     |           |     |      |     |           |       |           |                              |            |            |            |          |           |         |
| Bit/F                                   | ield |     | Name      |     | Туре | F   | Reset     | Descr | ription   |                              |            |            |            |          |           |         |
| 31:                                     | 16   | r   | reserved  |     | RO   |     | 0         |       |           | uld not re                   |            |            |            |          | •         |         |
|                                         |      |     |           |     |      |     |           | •     | •         | vith futur<br>oss a re       | •          |            |            |          | ed bit sh | ould be |
|                                         |      |     |           |     |      |     |           | •     |           |                              |            | .,         |            |          |           |         |
| 15:                                     | 12   |     | EM3       |     | R/W  |     | 0         |       | Frigger S |                              |            |            | <b>_</b> . | -        |           |         |
|                                         |      |     |           |     |      |     |           |       |           | cts the ti                   |            |            |            | e Sequer | ncer 3.   |         |
|                                         |      |     |           |     |      |     |           | The v | alid cont | figuratior                   | ns for thi | is field a | re:        |          |           |         |
|                                         |      |     |           |     |      |     |           | EM B  | Binary Va | alue Eve                     | ent        |            |            |          |           |         |
|                                         |      |     |           |     |      |     |           | 0000  |           | Cor                          | ntroller ( | default)   |            |          |           |         |
|                                         |      |     |           |     |      |     |           | 0001  |           | Ana                          | alog Con   | nparator   | 0          |          |           |         |
|                                         |      |     |           |     |      |     |           | 0010  |           | Ana                          | alog Con   | nparator   | 1          |          |           |         |
|                                         |      |     |           |     |      |     |           | 0011  |           | Ana                          | alog Con   | nparator   | 2          |          |           |         |
|                                         |      |     |           |     |      |     |           | 0100  |           | Ext                          | ernal (G   | PIO PB4    | 4)         |          |           |         |
|                                         |      |     |           |     |      |     |           | 0101  |           | Tim                          | er         |            |            |          |           |         |
|                                         |      |     |           |     |      |     |           | 0110  |           | Res                          | served     |            |            |          |           |         |
|                                         |      |     |           |     |      |     |           | 0111  |           | Res                          | served     |            |            |          |           |         |
|                                         |      |     |           |     |      |     |           | 1000  |           | Res                          | served     |            |            |          |           |         |
|                                         |      |     |           |     |      |     |           | 1001  | -1110     | rese                         | erved      |            |            |          |           |         |
|                                         |      |     |           |     |      |     |           | 1111  |           | Alw                          | ays (cor   | ntinuous   | ly sampl   | le)      |           |         |
| 11:                                     | · Q  |     | EM2       |     | R/W  |     | 0         | 662 1 | Frigger S | alact                        |            |            |            |          |           |         |
| 11.                                     | .0   |     |           |     | D/ W |     | 0         |       |           |                              |            |            | 0          | 0        |           | 1       |
|                                         |      |     |           |     |      |     |           |       |           | cts the ti<br>the san        | 00         |            | •          | Sequer   | ncer 2. I | ne      |
| 7:                                      | 4    |     | EM1       |     | R/W  |     | 0         | SS1 1 | Frigger S | elect                        |            |            |            |          |           |         |
|                                         |      |     |           |     |      |     |           |       |           | cts the tre the tree the san |            |            |            | e Sequer | ncer 1. T | 'ne     |

| Bit/Field | Name | Туре | Reset | Description                                                                                                |
|-----------|------|------|-------|------------------------------------------------------------------------------------------------------------|
| 3:0       | EM0  | R/W  | 0     | SS0 Trigger Select                                                                                         |
|           |      |      |       | This field selects the trigger source for Sample Sequencer 0. The encodings are the same as those for EM3. |

# Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018

This register indicates underflow conditions in the Sample Sequencer FIFOs. The corresponding underflow condition can be cleared by writing a 1 to the relevant bit position.

### ADC Underflow Status (ADCUSTAT)

Base 0x4003.8000 Offset 0x018 Type R/W1C, reset 0x0000.0000

| Type R/W      | V1C, reset | t 0x0000 | .0000    |         |         |         |         |                |             |                       |                     |                       |                                          |            |            |            |
|---------------|------------|----------|----------|---------|---------|---------|---------|----------------|-------------|-----------------------|---------------------|-----------------------|------------------------------------------|------------|------------|------------|
|               | 31         | 30       | 29       | 28      | 27      | 26      | 25      | 24             | 23          | 22                    | 21                  | 20                    | 19                                       | 18         | 17         | 16         |
|               |            |          |          |         |         |         |         | rese           | erved       |                       | •                   | •                     |                                          |            |            |            |
| Type<br>Reset | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0        | RO<br>0     | RO<br>0               | RO<br>0             | RO<br>0               | RO<br>0                                  | RO<br>0    | RO<br>0    | RO<br>0    |
|               | 15         | 14       | 13       | 12      | 11      | 10      | 9       | 8              | 7           | 6                     | 5                   | 4                     | 3                                        | 2          | 1          | 0          |
|               | ľ          |          | · · · ·  |         | r r     | res     | erved   | 1              | 1           |                       | 1                   | 1                     | UV3                                      | UV2        | UV1        | UV0        |
| Type<br>Reset | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0        | RO<br>0     | RO<br>0               | RO<br>0             | RO<br>0               | R/W1C<br>0                               | R/W1C<br>0 | R/W1C<br>0 | R/W1C<br>0 |
|               |            |          |          |         | -       |         | _ /     | _              |             |                       |                     |                       |                                          |            |            |            |
| Bit/F         | ield       |          | Name     |         | Туре    |         | Reset   | Descr          | iption      |                       |                     |                       |                                          |            |            |            |
| 31            | :4         | I        | reserved |         | RO      |         | 0       | comp           | atibility v | ith futur             | e produ             | cts, the              | of a rese<br>value of<br>operatio        | a reserv   | •          |            |
| 3             | 3          |          | UV3      |         | R/W1C   |         | 0       | SS3 F          | IFO Un      | derflow               |                     |                       |                                          |            |            |            |
|               |            |          |          |         |         |         |         | under<br>The p | flow con    | dition wh<br>tic read | nere the<br>does no | FIFO is t<br>t move t | mple Sec<br>empty ar<br>the FIFC<br>a 1. | nd a read  | was rec    | uested.    |
| 2             | 2          |          | UV2      |         | R/W1C   |         | 0       | SS2 F          | IFO Un      | derflow               |                     |                       |                                          |            |            |            |
|               |            |          |          |         |         |         |         | under<br>The p | flow con    | dition wh<br>tic read | nere the<br>does no | FIFO is t<br>t move t | mple Sec<br>empty ar<br>the FIFC<br>a 1. | nd a read  | was rec    | uested.    |
| 1             |            |          | UV1      |         | R/W1C   |         | 0       | SS1 F          | FIFO Un     | derflow               |                     |                       |                                          |            |            |            |
|               |            |          |          |         |         |         |         | under<br>The p | flow con    | dition wh<br>tic read | nere the<br>does no | FIFO is t<br>t move t | mple Sec<br>empty ar<br>the FIFC<br>a 1. | nd a read  | was rec    | uested.    |
| 0             | )          |          | UV0      |         | R/W1C   |         | 0       | SS0 F          | FIFO Un     | derflow               |                     |                       |                                          |            |            |            |
|               |            |          |          |         |         |         |         | under          | flow con    | dition wł             | nere the            | FIFO is               | mple Sec<br>empty ar                     | nd a read  | was rec    | uested.    |

The problematic read does not move the FIFO pointers, and 0s are returned. This bit is cleared by writing a 1.

# **Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020**

This register sets the priority for each of the Sample Sequencers. Out of reset, Sequencer 0 has the highest priority, and sample sequence 3 has the lowest priority. When reconfiguring sequence priorities, each sequence must have a unique priority or the ADC behavior is inconsistent.

| fset 0x0<br>pe R/W | 020<br>/, reset 0: | )<br>k0000.32 | 10       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |          |                          |                                  |                      |                      |                       |                          |                    |                        |                 |
|--------------------|--------------------|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|--------------------------|----------------------------------|----------------------|----------------------|-----------------------|--------------------------|--------------------|------------------------|-----------------|
| r                  | 31                 | 30            | 29       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27      | 26      | 25       | 24                       | 23                               | 22                   | 21                   | 20                    | 19                       | 18                 | 17                     | 16              |
|                    |                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         | •        |                          |                                  |                      | -                    |                       |                          |                    |                        |                 |
| Type<br>Reset      | RO<br>0            | RO<br>0       | RO<br>0  | RO<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                  | RO<br>0                          | RO<br>0              | RO<br>0              | RO<br>0               | RO<br>0                  | RO<br>0            | RO<br>0                | RO<br>0         |
| -                  | 15                 | 14            | 13       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11      | 10      | 9        | 8                        | 7                                | 6                    | 5                    | 4                     | 3                        | 2                  | 1                      | 0               |
|                    | rese               | rved          | S        | <b>I</b><br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | reser   | ved     | s        | 1<br>S2                  | rese                             | erved                | s                    | <b>I</b><br>S1        | rese                     | erved              | S                      | S0              |
| Type<br>Reset      | RO<br>0            | RO<br>0       | R/W<br>1 | R/W<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RO<br>0 | RO<br>0 | R/W<br>1 | R/W<br>0                 | RO<br>0                          | RO<br>0              | R/W<br>0             | R/W<br>1              | RO<br>0                  | RO<br>0            | R/W<br>0               | R/W<br>0        |
| Bit/Fi             | ield               |               | Name     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Туре    | I       | Reset    | Descr                    | iption                           |                      |                      |                       |                          |                    |                        |                 |
| 31:"               | 14                 | I             | reserved | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RO      |         | 0        | compa                    | atibility v                      | vith futur           | e produ              | cts, the v            | alue of                  | a reserv           |                        |                 |
| 13:                | 12                 |               | SS3      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W     |         | 0x3      | SS3 F                    | Priority                         |                      |                      |                       |                          |                    |                        |                 |
|                    |                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |          | encod<br>and 3<br>unique | ling of S<br>is lowes<br>ely map | ample S<br>st. The p | equence<br>riorities | er 3. A p<br>assigned | riority er<br>d to the : | ncoding<br>Sequenc | of 0 is hi<br>cers mus | ighest<br>st be |
| 11:'               | 10                 | I             | reserved | 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 |         |         |          |                          |                                  |                      |                      |                       |                          |                    |                        |                 |
| 9:8                | 8                  |               | SS2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W     |         | 0x2      | SS2 F                    | Priority                         |                      |                      |                       |                          |                    |                        |                 |
|                    |                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |          |                          |                                  |                      |                      |                       | ed value                 | that spe           | cifies the             | e prior         |
| 7:0                | 6                  | I             | reserved | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RO      |         | 0        | compa                    | atibility v                      | vith futur           | e produ              | cts, the v            | alue of                  | a reserv           |                        |                 |
| 5:4                | 4                  |               | SS1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W     |         | 0x1      | SS1 F                    | Priority                         |                      |                      |                       |                          |                    |                        |                 |
|                    |                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |          |                          |                                  |                      | -                    |                       | ed value                 | that spe           | cifies the             | e priori        |
| 3:2                | 2                  | I             | reserved | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RO      |         | 0        | compa                    | atibility v                      | vith futur           | e produ              | cts, the v            | alue of                  | a reserv           |                        |                 |
| 1:(                | 0                  |               | SS0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W     |         | 0x0      | SS0 F                    | Priority                         |                      |                      |                       |                          |                    |                        |                 |
|                    |                    |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |          |                          |                                  | contains<br>ample S  | ,                    |                       | d value                  | that spe           | cifies the             | e prior         |

#### ADC Sample Sequencer Priority (ADCSSPRI) Base 0x4003.8000

# Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028

This register provides a mechanism for application software to initiate sampling in the Sample Sequencers. Sample sequences can be initiated individually or in any combination. When multiple sequences are triggered simultaneously, the priority encodings in **ADCSSPRI** dictate execution order.

#### ADC Processor Sample Sequence Initiate (ADCPSSI)

Base 0x4003.8000 Offset 0x028

Offset 0x028 Type WO, reset -

| 51            |                        |         |             |    |       |    |                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |    |    |    |           |             |          |        |  |
|---------------|------------------------|---------|-------------|----|-------|----|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|-----------|-------------|----------|--------|--|
|               | 31                     | 30      | 29          | 28 | 27    | 26 | 25                                                                                                                        | 24                                                                                                                                                                                                                          | 23                                                                                                                                                                                                                          | 22 | 21 | 20 | 19        | 18          | 17       | 16     |  |
|               |                        | •       |             |    |       |    | •                                                                                                                         | rese                                                                                                                                                                                                                        | erved                                                                                                                                                                                                                       |    |    |    |           | •           | •        | •      |  |
| Type<br>Reset | WO<br>-                | WO      | WO          | WO | WO    | WO | WO                                                                                                                        | WO                                                                                                                                                                                                                          | wo                                                                                                                                                                                                                          | WO | WO | WO | WO        | WO          | WO       | WO     |  |
| 10001         | 15                     | 14      | 13          | 12 | 11    | 10 | 9                                                                                                                         | 8                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                           | 6  | 5  | 4  | 3         | 2           | 1        | 0      |  |
| [             | 10                     | · · · · | 1           | 12 | · · · |    | rved                                                                                                                      |                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |    |    |    | SS3       | SS2         | SS1      | sso    |  |
| Туре          | WO                     | WO      | WO          | WO | WO    | WO | WO                                                                                                                        | WO                                                                                                                                                                                                                          | WO                                                                                                                                                                                                                          | WO | WO | WO | WO        | WO          | WO       | WO     |  |
| Reset         | -                      | -       | -           | -  | -     | -  | -                                                                                                                         | -                                                                                                                                                                                                                           | -                                                                                                                                                                                                                           | -  | -  | -  | -         | -           | -        | -      |  |
| Bit/F         | /Field Name Type Reset |         | Description |    |       |    |                                                                                                                           |                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |    |    |    |           |             |          |        |  |
| 31:           | 31:4                   |         | reserved    |    | WO    |    | -                                                                                                                         | Softw                                                                                                                                                                                                                       | Software should not rely on the value of a reserved bit. To provide                                                                                                                                                         |    |    |    |           |             |          |        |  |
|               |                        |         |             | -  |       |    | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |    |    |    |           |             |          |        |  |
| 3             | 3                      |         | SS3         |    | WO    |    | -                                                                                                                         | SS3 I                                                                                                                                                                                                                       | SS3 Initiate                                                                                                                                                                                                                |    |    |    |           |             |          |        |  |
|               |                        |         |             |    |       |    |                                                                                                                           |                                                                                                                                                                                                                             | Only a write by software is valid; a read of the register returns no meaningful data. When set by software, sampling is triggered on Sample Sequencer 3, assuming the Sequencer is enabled in the <b>ADCACTSS</b> register. |    |    |    |           |             |          |        |  |
| 2             |                        |         | SS2         |    | WO    |    | -                                                                                                                         | SS2 Initiate                                                                                                                                                                                                                |                                                                                                                                                                                                                             |    |    |    |           |             |          |        |  |
|               |                        |         |             |    |       |    |                                                                                                                           | mean<br>Seque                                                                                                                                                                                                               | Only a write by software is valid; a read of the reg<br>meaningful data. When set by software, sampling is<br>Sequencer 2, assuming the Sequencer is enabled<br>register.                                                   |    |    |    |           |             | gered on | Sample |  |
| 1             |                        |         | SS1         |    | WO    |    | -                                                                                                                         | SS1 Initiate                                                                                                                                                                                                                |                                                                                                                                                                                                                             |    |    |    |           |             |          |        |  |
|               |                        |         |             |    |       | r  |                                                                                                                           | Only a write by software is valid; a re<br>meaningful data. When set by softwar<br>Sequencer 1, assuming the Sequenc<br>register.                                                                                           |                                                                                                                                                                                                                             |    |    |    | , samplir | ng is trigg | gered on | Sample |  |
| 0             |                        |         | SS0         |    | WO    |    | -                                                                                                                         | SS0 Initiate                                                                                                                                                                                                                |                                                                                                                                                                                                                             |    |    |    |           |             |          |        |  |
| Ũ             |                        |         |             |    |       |    |                                                                                                                           | Only a write by software is valid; a read of the register returns no meaningful data. When set by software, sampling is triggered on Sample Sequencer 0, assuming the Sequencer is enabled in the <b>ADCACTSS</b> register. |                                                                                                                                                                                                                             |    |    |    |           |             |          |        |  |

# Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030

This register controls the amount of hardware averaging applied to conversion results. The final conversion result stored in the FIFO is averaged from  $2^{AVG}$  consecutive ADC samples at the specified ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If AVG=6, then 64 consecutive ADC samples are averaged to generate one result in the sequencer FIFO. An AVG = 7 provides unpredictable results.

ADC Sample Averaging Control (ADCSAC)

Base 0x4003.8000 Offset 0x030

Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27                                    | 26      | 25       | 24      | 23                                   | 22         | 21        | 20         | 19       | 18         | 17       | 16       |
|---------------|---------|---------|----------|---------|---------------------------------------|---------|----------|---------|--------------------------------------|------------|-----------|------------|----------|------------|----------|----------|
|               |         | 1       | 1        | ſ       | , ,                                   |         | 1        | rese    | erved                                |            |           |            |          | 1          | 1        | •        |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11                                    | 10      | 9        | 8       | 7                                    | 6          | 5         | 4          | 3        | 2          | 1        | 0        |
|               |         | 1       | 1 1      | 1       | , , , , , , , , , , , , , , , , , , , |         | reserved | 1       | 1                                    |            |           |            |          |            | AVG      |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | R/W<br>0   | R/W<br>0 | R/W<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре                                  | I       | Reset    | Descr   | iption                               |            |           |            |          |            |          |          |
| 31:           | :3      |         | reserved |         | RO                                    |         | 0        | compa   | are shou<br>atibility w<br>rved acro | ith futur/ | e produo  | cts, the v | alue of  | a reserv   |          |          |
| 2:            | 0       |         | AVG      |         | R/W                                   |         | 0        | Hardw   | vare Ave                             | raging C   | Control   |            |          |            |          |          |
|               |         |         |          |         |                                       |         |          | Speci   | fies the a                           | amount o   | of hardwa | are aver   | aging th | at will be | applied  | to ADC   |

Specifies the amount of hardware averaging that will be applied to ADC samples. The AVG field can be any value between 0 and 6. Entering a value of 7 creates unpredictable results.

### Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 0.

This register is 32-bits wide and contains information for eight possible samples.

#### ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0)

Base 0x4003.8000 Offset 0x040 Type R/W, reset 0x0000.0000

| <b>7</b> 1° - | 31             | 30         | 29       | 28       | 27            | 26         | 25       | 24                                                                                                                        | 23                                                                                                                                            | 22         | 21        | 20        | 19        | 18       | 17                       | 16       |  |
|---------------|----------------|------------|----------|----------|---------------|------------|----------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-----------|-----------|----------|--------------------------|----------|--|
|               | rese           | rved       | ed MUX7  |          | reserved MUX6 |            | JX6      | reserved                                                                                                                  |                                                                                                                                               | MUX5       |           | reserved  |           | MUX4     |                          |          |  |
| Type<br>Reset | RO<br>0        | RO<br>0    | R/W<br>0 | R/W<br>0 | RO<br>0       | RO<br>0    | R/W<br>0 | R/W<br>0                                                                                                                  | RO<br>0                                                                                                                                       | RO<br>0    | R/W<br>0  | R/W<br>0  | RO<br>0   | RO<br>0  | R/W<br>0                 | R/W<br>0 |  |
| Reset         | 15             |            | 13       | 12       |               |            | 9        | 8                                                                                                                         |                                                                                                                                               |            | 5         | 4         | 3         | 2        |                          | 0        |  |
| [             | rese           | 14<br>rved |          | JX3      | 11<br>rese    | 10<br>rved | 1        | JX2                                                                                                                       | 7 6<br>reserved                                                                                                                               |            | MUX1      |           | reserved  |          | 1<br>MU                  |          |  |
| Туре          | RO             | RO         | R/W      | R/W      | RO            | RO         | R/W      | R/W                                                                                                                       | RO                                                                                                                                            | RO         | R/W       | R/W       | RO        | RO       | R/W                      | R/W      |  |
| Reset         | 0              | 0          | 0        | 0        | 0             | 0          | 0        | 0                                                                                                                         | 0                                                                                                                                             | 0          | 0         | 0         | 0         | 0        | 0                        | 0        |  |
|               |                |            |          |          | -             |            | _ /      | _                                                                                                                         |                                                                                                                                               |            |           |           |           |          |                          |          |  |
| Bit/F         | Bit/Field Name |            |          | Туре     | I             | Reset      | Descr    | Description                                                                                                               |                                                                                                                                               |            |           |           |           |          |                          |          |  |
| 31:           | 30             |            | reserved | I        | RO            |            | 0        |                                                                                                                           |                                                                                                                                               |            |           |           |           |          | . To prov                |          |  |
|               |                |            |          |          |               |            |          | •                                                                                                                         | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                     |            |           |           |           |          |                          |          |  |
| 29:2          | 29:28 MUX7     |            |          |          | R/W           |            | 0        | 8th Sample Input Select                                                                                                   |                                                                                                                                               |            |           |           |           |          |                          |          |  |
|               |                |            |          |          |               |            |          | The MUX7 field is used during the eighth sample of a sequence executed                                                    |                                                                                                                                               |            |           |           |           |          |                          |          |  |
|               |                |            |          |          |               |            |          | with th                                                                                                                   | ne Samp                                                                                                                                       | ole Sequ   | encer. It | specifie  | s which   | of the a | nalog inp                | outs is  |  |
|               |                |            |          |          |               |            |          | •                                                                                                                         |                                                                                                                                               | 0          | 0         |           |           |          | et here ir<br>tes the ir |          |  |
|               |                |            |          |          |               |            |          | ADC1.                                                                                                                     |                                                                                                                                               |            |           |           |           |          |                          |          |  |
| 27:           | 26             | reserved   |          | RO       |               | 0          | Softw    | Software should not rely on the value of a reserved bit. To provide                                                       |                                                                                                                                               |            |           |           |           |          |                          |          |  |
|               |                |            |          |          |               |            |          | •                                                                                                                         | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                     |            |           |           |           |          |                          |          |  |
| 05.4          | 24             |            |          |          |               |            | 0        |                                                                                                                           |                                                                                                                                               |            |           |           |           |          |                          |          |  |
| 25:2          | 24             |            | MUX6     |          | R/W           |            | 0        | 7th Sample Input Select                                                                                                   |                                                                                                                                               |            |           |           |           |          |                          |          |  |
|               |                |            |          |          |               |            |          |                                                                                                                           | The MUX6 field is used during the seventh sample of a sequence executed with the Sample Sequencer and specifies which of the analog           |            |           |           |           |          |                          |          |  |
|               |                |            |          |          |               |            |          | inputs                                                                                                                    | is sam                                                                                                                                        | oled for t | he analo  | og-to-dig | ital conv | ersion.  |                          | -        |  |
| 23:           | 22             |            | reserved | ł        | RO            |            | 0        | Software should not rely on the value of a reserved bit. To provide                                                       |                                                                                                                                               |            |           |           |           |          |                          |          |  |
|               |                |            |          |          |               |            |          | compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                                                                                                                               |            |           |           |           |          |                          | ould be  |  |
| 01.4          | 20             |            |          |          |               |            | 0        |                                                                                                                           |                                                                                                                                               |            |           | <b>j</b>  |           |          |                          |          |  |
| 21:           | 20             | MUX5       |          | R/W      |               | 0          |          | 6th Sample Input Select<br>The MUX5 field is used during the sixth sample of a sequence executed                          |                                                                                                                                               |            |           |           |           |          |                          |          |  |
|               |                |            |          |          |               |            |          | with th                                                                                                                   | ne Samp                                                                                                                                       |            | encer ar  | nd specif | ies whic  |          | analog i                 |          |  |
| 10            | 10             |            |          | 1        |               |            | 0        |                                                                                                                           |                                                                                                                                               |            |           |           |           |          | <b>Ta</b>                | : d a    |  |
| 19:           | 10             |            | reserved | 1        | KÜ            | RO 0       |          |                                                                                                                           | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be |            |           |           |           |          |                          |          |  |
|               |                |            |          |          |               |            |          | prese                                                                                                                     | rved acr                                                                                                                                      | oss a rea  | ad-modi   | fy-write  | operatio  | n.       |                          |          |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Divi leiu | Manie    | туре | Reset | Description                                                                                                                                                                                   |
| 17:16     | MUX4     | R/W  | 0     | 5th Sample Input Select                                                                                                                                                                       |
|           |          |      |       | The MUX4 field is used during the fifth sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.     |
| 15:14     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 13:12     | MUX3     | R/W  | 0     | 4th Sample Input Select                                                                                                                                                                       |
|           |          |      |       | The MUX3 field is used during the fourth sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.    |
| 11:10     | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 9:8       | MUX2     | R/W  | 0     | 3rd Sample Input Select                                                                                                                                                                       |
|           |          |      |       | The MUX2 field is used during the third sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.     |
| 7:6       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 5:4       | MUX1     | R/W  | 0     | 2nd Sample Input Select                                                                                                                                                                       |
|           |          |      |       | The MUX1 field is used during the second sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.    |
| 3:2       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |
| 1:0       | MUX0     | R/W  | 0     | 1st Sample Input Select                                                                                                                                                                       |
|           |          |      |       | The MUX0 field is used during the first sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog to digital conversion      |

sampled for the analog-to-digital conversion.

# Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 0. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between.

This register is 32-bits wide and contains information for eight possible samples.

### ADC Sample Sequence Control 0 (ADCSSCTL0)

| Base 0x4<br>Offset 0x<br>Type R/W | 003.8000<br>044                               | )        | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |          | 0120)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                                                                                                                                                                                                                                                                                      |          |            |          |           |            |          |          |  |
|-----------------------------------|-----------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|-----------|------------|----------|----------|--|
|                                   | 31                                            | 30       | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28       | 27       | 26         | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24                                                           | 23                                                                                                                                                                                                                                                                                                                                   | 22       | 21         | 20       | 19        | 18         | 17       | 16       |  |
|                                   | TS7                                           | IE7      | END7                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D7       | TS6      | IE6        | END6                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D6                                                           | TS5                                                                                                                                                                                                                                                                                                                                  | IE5      | END5       | D5       | TS4       | IE4        | END4     | D4       |  |
| Type<br>Reset                     | R/W<br>0                                      | R/W<br>0 | R/W<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W<br>0 | R/W<br>0 | R/W<br>0   | R/W<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W<br>0                                                     | R/W<br>0                                                                                                                                                                                                                                                                                                                             | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0  | R/W<br>0   | R/W<br>0 | R/W<br>0 |  |
|                                   | 15                                            | 14       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12       | 11       | 10         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                            | 7                                                                                                                                                                                                                                                                                                                                    | 6        | 5          | 4        | 3         | 2          | 1        | 0        |  |
|                                   | TS3                                           | IE3      | END3                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D3       | TS2      | IE2        | END2                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D2                                                           | TS1                                                                                                                                                                                                                                                                                                                                  | IE1      | END1       | D1       | TS0       | IE0        | END0     | D0       |  |
| Type<br>Reset                     | R/W<br>0                                      | R/W<br>0 | R/W<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W<br>0 | R/W<br>0 | R/W<br>0   | R/W<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W<br>0                                                     | R/W<br>0                                                                                                                                                                                                                                                                                                                             | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0  | R/W<br>0   | R/W<br>0 | R/W<br>0 |  |
| Bit/F                             | Bit/Field                                     |          | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | Туре     | Type Reset |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | iption                                                                                                                                                                                                                                                                                                                               |          |            |          |           |            |          |          |  |
| 3                                 | 1                                             |          | TS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | R/W      |            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Sa                                                       | ample Te                                                                                                                                                                                                                                                                                                                             | mp Sen   | isor Sele  | ct       |           |            |          |          |  |
|                                   |                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |            | The TS7 bit is used during the eighth sample of the sample sequence<br>and specifies the input source of the sample. If set, the temperature<br>sensor is read. Otherwise, the input pin specified by the <b>ADCSSMUX</b><br>register is read.                                                                                                                                                                                                           |                                                              |                                                                                                                                                                                                                                                                                                                                      |          |            |          |           |            |          |          |  |
| 30                                | D                                             |          | IE7                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | R/W      |            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Sa                                                       | 8th Sample Interrupt Enable                                                                                                                                                                                                                                                                                                          |          |            |          |           |            |          |          |  |
|                                   | The II<br>and sp<br>the en<br>registe<br>When |          | The IE7 bit is used during the eighth sample of the sample sequence<br>and specifies whether the raw interrupt signal (INR0 bit) is asserted at<br>the end of the sample's conversion. If the MASK0 bit in the <b>ADCIM</b><br>register is set, the interrupt is promoted to a controller-level interrupt.<br>When this bit is set, the raw interrupt is asserted, otherwise it is not. It<br>is legal to have multiple samples within a sequence generate interrupts. |          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |                                                                                                                                                                                                                                                                                                                                      |          |            |          |           |            |          |          |  |
| 29                                | 9                                             |          | END7 R/W 0                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |            | 8th Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ample is                                                     | End of S                                                                                                                                                                                                                                                                                                                             | Sequenc  | e          |          |           |            |          |          |  |
|                                   |                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |            | The END7 bit indicates that this is the last sample of the sequence. It is possible to end the sequence on any sample position. Samples defined after the sample containing a set END are not requested for conversion even though the fields may be non-zero. It is required that software write the END bit somewhere within the sequence. (Sample Sequencer 3, which only has a single sample in the sequence, is hardwired to have the END bit set.) |                                                              |                                                                                                                                                                                                                                                                                                                                      |          |            |          |           |            |          |          |  |
|                                   |                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Setting                                                      | g this bit                                                                                                                                                                                                                                                                                                                           | indicate | es that th | iis samp | le is the | last in tl | he seque | ence.    |  |
| 28                                | В                                             |          | D7                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | R/W      |            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8th Sample Diff Input Select                                 |                                                                                                                                                                                                                                                                                                                                      |          |            |          |           |            |          |          |  |
|                                   |                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | The D7 bit indicates that the analog input is to be differentially sampled.<br>The corresponding <b>ADCSSMUXx</b> nibble must be set to the pair number<br>"i", where the paired inputs are "2i and 2i+1". The temperature sensor<br>does not have a differential option. When set, the analog inputs are<br>differentially sampled. |          |            |          |           |            |          |          |  |
| 2                                 | 7                                             |          | TS6                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | R/W      |            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7th Sample Temp Sensor Select                                |                                                                                                                                                                                                                                                                                                                                      |          |            |          |           |            |          |          |  |
|                                   |                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Same definition as $TS7$ but used during the seventh sample. |                                                                                                                                                                                                                                                                                                                                      |          |            |          |           |            |          |          |  |

| Bit/Field | Name | Туре | Reset | Description                                                                                    |
|-----------|------|------|-------|------------------------------------------------------------------------------------------------|
| 26        | IE6  | R/W  | 0     | 7th Sample Interrupt Enable<br>Same definition as IE7 but used during the seventh sample.      |
| 25        | END6 | R/W  | 0     | 7th Sample is End of Sequence<br>Same definition as END7 but used during the seventh sample.   |
| 24        | D6   | R/W  | 0     | 7th Sample Diff Input Select Same definition as D7 but used during the seventh sample.         |
| 23        | TS5  | R/W  | 0     | 6th Sample Temp Sensor Select<br>Same definition as TS7 but used during the sixth sample.      |
| 22        | IE5  | R/W  | 0     | 6th Sample Interrupt Enable<br>Same definition as IE7 but used during the sixth sample.        |
| 21        | END5 | R/W  | 0     | 6th Sample is End of Sequence<br>Same definition as END7 but used during the sixth sample.     |
| 20        | D5   | R/W  | 0     | 6th Sample Diff Input Select<br>Same definition as D7 but used during the sixth sample.        |
| 19        | TS4  | R/W  | 0     | 5th Sample Temp Sensor Select Same definition as ${\tt TS7}$ but used during the fifth sample. |
| 18        | IE4  | R/W  | 0     | 5th Sample Interrupt Enable Same definition as $IE7$ but used during the fifth sample.         |
| 17        | END4 | R/W  | 0     | 5th Sample is End of Sequence<br>Same definition as END7 but used during the fifth sample.     |
| 16        | D4   | R/W  | 0     | 5th Sample Diff Input Select<br>Same definition as D7 but used during the fifth sample.        |
| 15        | TS3  | R/W  | 0     | 4th Sample Temp Sensor Select<br>Same definition as TS7 but used during the fourth sample.     |
| 14        | IE3  | R/W  | 0     | 4th Sample Interrupt Enable<br>Same definition as IE7 but used during the fourth sample.       |
| 13        | END3 | R/W  | 0     | 4th Sample is End of Sequence<br>Same definition as END7 but used during the fourth sample.    |
| 12        | D3   | R/W  | 0     | 4th Sample Diff Input Select<br>Same definition as D7 but used during the fourth sample.       |
| 11        | TS2  | R/W  | 0     | 3rd Sample Temp Sensor Select<br>Same definition as TS7 but used during the third sample.      |

| Bit/Field | Name | Туре | Reset | Description                                                                     |
|-----------|------|------|-------|---------------------------------------------------------------------------------|
| 10        | IE2  | R/W  | 0     | 3rd Sample Interrupt Enable                                                     |
|           |      |      |       | Same definition as ${\tt IE7}$ but used during the third sample.                |
| 9         | END2 | R/W  | 0     | 3rd Sample is End of Sequence                                                   |
|           |      |      |       | Same definition as ${\tt END7}$ but used during the third sample.               |
| 8         | D2   | R/W  | 0     | 3rd Sample Diff Input Select                                                    |
|           |      |      |       | Same definition as ${\tt D7}$ but used during the third sample.                 |
| 7         | TS1  | R/W  | 0     | 2nd Sample Temp Sensor Select                                                   |
|           |      |      |       | Same definition as ${\tt TS7}$ but used during the second sample.               |
| 6         | IE1  | R/W  | 0     | 2nd Sample Interrupt Enable                                                     |
|           |      |      |       | Same definition as ${\tt IE7}$ but used during the second sample.               |
| 5         | END1 | R/W  | 0     | 2nd Sample is End of Sequence                                                   |
|           |      |      |       | Same definition as ${\tt END7}$ but used during the second sample.              |
| 4         | D1   | R/W  | 0     | 2nd Sample Diff Input Select                                                    |
|           |      |      |       | Same definition as ${\tt D7}$ but used during the second sample.                |
| 3         | TS0  | R/W  | 0     | 1st Sample Temp Sensor Select                                                   |
|           |      |      |       | Same definition as ${\tt TS7}$ but used during the first sample.                |
| 2         | IE0  | R/W  | 0     | 1st Sample Interrupt Enable                                                     |
|           |      |      |       | Same definition as ${\tt IE7}$ but used during the first sample.                |
| 1         | END0 | R/W  | 0     | 1st Sample is End of Sequence                                                   |
|           |      |      |       | Same definition as ${\tt END7}$ but used during the first sample.               |
|           |      |      |       | Since this sequencer has only one entry, this bit must be set.                  |
| 0         | D0   | R/W  | 0     | 1st Sample Diff Input Select                                                    |
|           |      |      |       | Same definition as ${\ensuremath{ {\rm D7}}}$ but used during the first sample. |

# Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048 Register 14: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068 Register 15: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088

This register contains the conversion results for samples collected with the Sample Sequencer (the **ADCSSFIF0** register is used for Sample Sequencer 0, **ADCSSFIF01** for Sequencer 1, and **ADCSSFIF02** for Sequencer 2). Reads of this register return conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

| Type RO,                                    | reset 0x | 0000.000 | 0       |    |       |    |       |       |                                      |            |         |            |           |          |    |    |
|---------------------------------------------|----------|----------|---------|----|-------|----|-------|-------|--------------------------------------|------------|---------|------------|-----------|----------|----|----|
|                                             | 31       | 30       | 29      | 28 | 27    | 26 | 25    | 24    | 23                                   | 22         | 21      | 20         | 19        | 18       | 17 | 16 |
|                                             |          | 1        |         |    | r<br> |    | 1     | rese  | rved                                 |            |         |            |           |          |    |    |
| Туре                                        | RO       | RO       | RO      | RO | RO    | RO | RO    | RO    | RO                                   | RO         | RO      | RO         | RO        | RO       | RO | RO |
| Reset                                       | 0        | 0        | 0       | 0  | 0     | 0  | 0     | 0     | 0                                    | 0          | 0       | 0          | 0         | 0        | 0  | 0  |
|                                             | 15       | 14       | 13      | 12 | 11    | 10 | 9     | 8     | 7                                    | 6          | 5       | 4          | 3         | 2        | 1  | 0  |
| Type RO RO RO RO RO RO RO RO RO RO RO RO RO |          |          |         |    |       |    |       |       |                                      |            |         |            |           |          |    |    |
| Туре                                        | RO       |          |         | RO |       | RO |       |       |                                      | RO         | RO      | RO         | RO        | RO       | RO | RO |
| Reset                                       | 0        | 0        | 0       | 0  | 0     | 0  | 0     | 0     | 0                                    | 0          | 0       | 0          | 0         | 0        | 0  | 0  |
|                                             |          |          |         |    |       |    |       |       |                                      |            |         |            |           |          |    |    |
| Bit/F                                       | ield     |          | Name    |    | Туре  | F  | Reset | Descr | iption                               |            |         |            |           |          |    |    |
| 31:                                         | 10       | r        | eserved | I  | RO    |    | 0     | compa | are shou<br>atibility w<br>rved acro | ith futur/ | e produ | cts, the v | alue of a | a reserv | •  |    |
| 9:                                          | C        |          | DATA    |    | RO    |    | 0     | Conve | ersion Re                            | esult Da   | ta      |            |           |          |    |    |

#### ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0)

Base 0x4003.8000 Offset 0x048

### Register 16: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C

#### Register 17: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C

#### Register 18: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C

This register provides a window into the Sample Sequencer, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO. The ADCSSFSTAT0 register provides status on FIF0, ADCSSFSTAT1 on FIFO1, and ADCSSFSTAT2 on FIFO2.

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)

Base 0x4003.8000 Offset 0x04C Type RO, reset 0x0000.0100

| .,,   |          |                                                                                                                                                                                                          | -       |      |      |          |                                                                                                          |                   |             |                      |          |                                       |            |            |         |          |
|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------|----------|----------------------------------------------------------------------------------------------------------|-------------------|-------------|----------------------|----------|---------------------------------------|------------|------------|---------|----------|
| -     | 31       | 30                                                                                                                                                                                                       | 29      | 28   | 27   | 26       | 25                                                                                                       | 24                | 23          | 22                   | 21       | 20                                    | 19         | 18         | 17      | 16       |
|       |          | т т                                                                                                                                                                                                      |         |      |      | 1        | 1                                                                                                        | rese              | rved        |                      |          |                                       |            |            |         |          |
| Туре  | RO       | RO                                                                                                                                                                                                       | RO      | RO   | RO   | RO       | RO                                                                                                       | RO                | RO          | RO                   | RO       | RO                                    | RO         | RO         | RO      | RO       |
| Reset | 0        | 0                                                                                                                                                                                                        | 0       | 0    | 0    | 0        | 0                                                                                                        | 0                 | 0           | 0                    | 0        | 0                                     | 0          | 0          | 0       | 0        |
| _     | 15       | 14                                                                                                                                                                                                       | 13      | 12   | 11   | 10       | 9                                                                                                        | 8                 | 7           | 6                    | 5        | 4                                     | 3          | 2          | 1       | 0        |
|       |          | reserved                                                                                                                                                                                                 |         | FULL |      | reserved | 1                                                                                                        | EMPTY             |             | HP                   | TR       | 1                                     |            | TP         | TR      |          |
| Туре  | RO       | RO                                                                                                                                                                                                       | RO      | RO   | RO   | RO       | RO                                                                                                       | RO                | RO          | RO                   | RO       | RO                                    | RO         | RO         | RO      | RO       |
| Reset | 0        | 0                                                                                                                                                                                                        | 0       | 0    | 0    | 0        | 0                                                                                                        | 1                 | 0           | 0                    | 0        | 0                                     | 0          | 0          | 0       | 0        |
|       |          |                                                                                                                                                                                                          |         |      | -    | _        | <b>.</b> .                                                                                               | _                 |             |                      |          |                                       |            |            |         |          |
| Bit/F | ield     |                                                                                                                                                                                                          | Name    |      | Туре | F        | Reset                                                                                                    | Descr             | iption      |                      |          |                                       |            |            |         |          |
| 31:   | 13       | reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |         |      |      |          |                                                                                                          |                   |             |                      |          |                                       |            |            |         |          |
| 12    | 2        | FULL RO 0 FIFO Full                                                                                                                                                                                      |         |      |      |          |                                                                                                          |                   |             |                      |          |                                       |            |            |         |          |
| 12    | <u>_</u> |                                                                                                                                                                                                          | IULL    |      | κυ   |          | 0                                                                                                        |                   |             |                      |          |                                       |            |            |         |          |
|       |          |                                                                                                                                                                                                          |         |      |      |          |                                                                                                          | When              | set, ind    | icates th            | at the F | IFO is cu                             | irrently f | ull.       |         |          |
| 11:   | 9        | re                                                                                                                                                                                                       | eserved | I    | RO   |          | 0                                                                                                        | compa             | atibility v | vith futur           | e produ  | e value o<br>cts, the v<br>fy-write o | alue of a  | a reserv   |         |          |
| 8     |          | E                                                                                                                                                                                                        | EMPTY   |      | RO   |          | 1                                                                                                        | FIFO I            | Empty       |                      |          |                                       |            |            |         |          |
|       |          |                                                                                                                                                                                                          |         |      |      |          |                                                                                                          | When              | set ind     | icates th            | at the F | IFO is cu                             | irrently e | empty      |         |          |
|       |          |                                                                                                                                                                                                          |         |      |      |          |                                                                                                          |                   |             |                      |          |                                       |            |            |         |          |
| 7:4   | 4        |                                                                                                                                                                                                          | HPTR    |      | RO   |          | 0                                                                                                        | FIFO I            | Head Po     | binter               |          |                                       |            |            |         |          |
|       |          |                                                                                                                                                                                                          |         |      |      |          | This field contains the current "head" pointer index for the FIFO, that is the next entry to be written. |                   |             |                      |          |                                       |            |            |         |          |
| 3:0   | 0        |                                                                                                                                                                                                          | TPTR    |      | RO   |          | 0                                                                                                        | FIFO <sup>-</sup> | Tail Poin   | iter                 |          |                                       |            |            |         |          |
|       |          |                                                                                                                                                                                                          |         |      |      |          |                                                                                                          |                   |             | ains the<br>to be re |          | "tail" poi                            | nter inde  | ex for the | e FIFO, | that is, |

# Register 19: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 1. This register is 16-bits wide and contains information for four possible samples.

#### ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1)

Base 0x4003.8000 Offset 0x060 Type R/W, reset 0x0000.0000

| _             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                       | 23          | 22         | 21      | 20                                    | 19        | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------|---------------------------------------|-----------|----------|---------|---------|
|               |         | 1       | 1        |         |         |         | 1       | rese                                                                                                                                                                                     | rved        |            |         |                                       |           |          | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                  | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0                               | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                        | 7           | 6          | 5       | 4                                     | 3         | 2        | 1       | 0       |
| [             |         | rved    | м        |         | rese    |         | 1       | JX2                                                                                                                                                                                      |             | rved       |         | JX1                                   | rese      |          | <b></b> | JX0     |
| Туре          | RO      | RO      | R/W      | R/W     | RO      | RO      | R/W     | R/W                                                                                                                                                                                      | RO          | RO         | R/W     | R/W                                   | RO        | RO       | R/W     | R/W     |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0                                                                                                                                                                                        | 0           | 0          | 0       | 0                                     | 0         | 0        | 0       | 0       |
| Bit/Fi        | ield    |         | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                                                                                    | iption      |            |         |                                       |           |          |         |         |
| 31:1          | 14      |         | reserved |         | RO      |         | 0       | compa                                                                                                                                                                                    | atibility v | vith futur | e produ | e value o<br>cts, the v<br>fy-write o | alue of a | a reserv | •       |         |
| 13:1          | 12      |         | MUX3     |         | R/W     |         | 0       | 4th Sa                                                                                                                                                                                   | ample In    | put Sele   | ct      |                                       |           |          |         |         |
| 11:1          | 10      |         | reserved |         | RO      |         | 0       | compa                                                                                                                                                                                    | atibility v | vith futur | e produ | e value o<br>cts, the v<br>fy-write o | alue of a | a reserv |         |         |
| 9:8           | 3       |         | MUX2     |         | R/W     |         | 0       | 3rd Sa                                                                                                                                                                                   | ample In    | put Sele   | ect     |                                       |           |          |         |         |
| 7:6           | 6       |         | reserved |         | RO      |         | 0       | compa                                                                                                                                                                                    | atibility v | vith futur | e produ | e value o<br>cts, the v<br>fy-write o | alue of a | a reserv | •       |         |
| 5:4           | 4       |         | MUX1     |         | R/W     |         | 0       | 2nd S                                                                                                                                                                                    | ample Ir    | nput Sele  | ect     |                                       |           |          |         |         |
| 3:2           | 2       |         | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation. |             |            |         |                                       |           |          |         |         |
| 1:0           | )       |         | MUX0     |         | R/W     |         | 0       | 1st Sa                                                                                                                                                                                   | imple In    | put Sele   |         |                                       |           |          |         |         |

# Register 20: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 1. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. This register is 16-bits wide and contains information for four possible samples.

ADC Sample Sequence Control 1 (ADCSSCTL1)

Base 0x4003.8000

Offset 0x064 Type R/W, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       | 23          | 22                     | 21                    | 20         | 19        | 18       | 17                     | 16       |
|-----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|------------------------|-----------------------|------------|-----------|----------|------------------------|----------|
|                                         | 1        |          | 1 1      |          |          |          |          | rese     | rved        |                        |                       |            |           |          | 1 1                    |          |
| Type<br>Reset                           | RO<br>0     | RO<br>0                | RO<br>0               | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0                | RO<br>0  |
| _                                       | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        | 7           | 6                      | 5                     | 4          | 3         | 2        | 1                      | 0        |
|                                         | TS3      | IE3      | END3     | D3       | TS2      | IE2      | END2     | D2       | TS1         | IE1                    | END1                  | D1         | TS0       | IE0      | END0                   | D0       |
| Type<br>Reset                           | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0    | R/W<br>0               | R/W<br>0              | R/W<br>0   | R/W<br>0  | R/W<br>0 | R/W<br>0               | R/W<br>0 |
| Bit/Fi                                  | ield     |          | Name     |          | Туре     | F        | Reset    | Descr    | iption      |                        |                       |            |           |          |                        |          |
| 31:1                                    | 16       | r        | reserved |          | RO       |          | 0        | compa    | atibility v | vith futur             | •                     | cts, the v | alue of   | a reserv | . To prov<br>ed bit sh |          |
| 15                                      | 5        |          | TS3      |          | R/W      |          | 0        |          | •           | •                      | sor Sele<br>7 but us  |            | a the fou | uth sam  | nle                    |          |
| 14                                      | Ļ        |          | IE3      |          | R/W      |          | 0        | 4th Sa   | ample In    | terrupt E              |                       |            |           |          |                        |          |
| 13                                      | 3        |          | END3     |          | R/W      |          | 0        | 4th Sa   | ample is    | End of §               | Sequenc               | e          |           |          |                        |          |
| 12                                      | 2        |          | D3       |          | R/W      |          | 0        | 4th Sa   | ample Di    | iff Input \$           |                       |            | -         |          |                        |          |
| 11                                      |          |          | TS2      |          | R/W      |          | 0        | 3rd Sa   | ample Te    | emp Sen                | sor Sele              | ect        |           |          |                        |          |
| 10                                      | )        |          | IE2      |          | R/W      |          | 0        |          |             | terrupt E              | Enable<br>7 but us    | ed durin   | g the thi | rd samp  | le.                    |          |
| 9                                       |          |          | END2     |          | R/W      |          | 0        |          |             |                        | Sequenc               |            | ng the tl | nird sam | iple.                  |          |
| 8                                       |          |          | D2       |          | R/W      |          | 0        |          |             | iff Input :<br>n as ⊡7 | Select<br>but use     | d during   | the third | d sample | 9.                     |          |
| 7                                       |          |          | TS1      |          | R/W      |          | 0        |          |             |                        | nsor Sele<br>7 but us |            | g the se  | cond sa  | mple.                  |          |

#### LM3S2139 Microcontroller

| Bit/Field | Name | Туре | Reset | Description                                                         |
|-----------|------|------|-------|---------------------------------------------------------------------|
| 6         | IE1  | R/W  | 0     | 2nd Sample Interrupt Enable                                         |
|           |      |      |       | Same definition as IE7 but used during the second sample.           |
| 5         | END1 | R/W  | 0     | 2nd Sample is End of Sequence                                       |
|           |      |      |       | Same definition as END7 but used during the second sample.          |
| 4         | D1   | R/W  | 0     | 2nd Sample Diff Input Select                                        |
|           |      |      |       | Same definition as ${\tt D7}$ but used during the second sample.    |
| 3         | TS0  | R/W  | 0     | 1st Sample Temp Sensor Select                                       |
|           |      |      |       | Same definition as ${\tt TS7}$ but used during the first sample.    |
| 2         | IE0  | R/W  | 0     | 1st Sample Interrupt Enable                                         |
|           |      |      |       | Same definition as $\mathtt{IE7}$ but used during the first sample. |
| 1         | END0 | R/W  | 0     | 1st Sample is End of Sequence                                       |
|           |      |      |       | Same definition as ${\tt END7}$ but used during the first sample.   |
|           |      |      |       | Since this sequencer has only one entry, this bit must be set.      |
| 0         | D0   | R/W  | 0     | 1st Sample Diff Input Select                                        |
|           |      |      |       | Same definition as ${\tt D7}$ but used during the first sample.     |

### Register 21: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 2. This register is 16-bits wide and contains information for four possible samples.

#### ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2)

Base 0x4003.8000 Offset 0x080

| Type R/W, | reset | 0x0000.0000 |  |
|-----------|-------|-------------|--|
|           |       |             |  |

| _      | 31   | 30                                                                                    | 29       | 28      | 27      | 26  | 25    | 24                                                                  | 23       | 22                       | 21      | 20          | 19        | 18       | 17        | 16       |  |
|--------|------|---------------------------------------------------------------------------------------|----------|---------|---------|-----|-------|---------------------------------------------------------------------|----------|--------------------------|---------|-------------|-----------|----------|-----------|----------|--|
|        |      |                                                                                       |          |         |         |     |       | rese                                                                | erved    |                          |         |             |           |          |           |          |  |
| Туре   | RO   | RO                                                                                    | RO       | RO      | RO      | RO  | RO    | RO                                                                  | RO       | RO                       | RO      | RO          | RO        | RO       | RO        | RO       |  |
| Reset  | 0    | 0                                                                                     | 0        | 0       | 0       | 0   | 0     | 0                                                                   | 0        | 0                        | 0       | 0           | 0         | 0        | 0         | 0        |  |
|        | 15   | 14                                                                                    | 13       | 12      | 11      | 10  | 9     | 8                                                                   | 7        | 6                        | 5       | 4           | 3         | 2        | 1         | 0        |  |
|        | rese | erved                                                                                 | МЦ       | I<br>X3 | reser   | ved | м     | UX2                                                                 | rese     | i<br>erved               | MU      | JX1         | rese      | rved     | м         | oxr      |  |
| Туре   | RO   | RO                                                                                    | R/W      | R/W     | RO      | RO  | R/W   | R/W                                                                 | RO       | RO                       | R/W     | R/W         | RO        | RO       | R/W       | R/W      |  |
| Reset  | 0    | 0                                                                                     | 0        | 0       | 0       | 0   | 0     | 0                                                                   | 0        | 0                        | 0       | 0           | 0         | 0        | 0         | 0        |  |
|        |      |                                                                                       |          |         |         |     |       |                                                                     |          |                          |         |             |           |          |           |          |  |
| Bit/Fi | eld  |                                                                                       | Name     |         | Туре    | F   | Reset | Descr                                                               | iption   |                          |         |             |           |          |           |          |  |
| 31:1   | 1.4  |                                                                                       |          |         | RO      |     | 0     | Coffin                                                              | ara ahau | uld not re               | h on th |             | of a raaa | mund hit | To prov   | ido      |  |
| 31.    | 14   |                                                                                       | reserved | 1       | RU      |     | 0     |                                                                     |          | uld not re<br>vith futur |         |             |           |          | •         |          |  |
|        |      |                                                                                       |          |         |         |     |       |                                                                     |          |                          |         |             |           |          |           |          |  |
|        |      | preserved across a read-modify-write operation.<br>MUX3 R/W 0 4th Sample Input Select |          |         |         |     |       |                                                                     |          |                          |         |             |           |          |           |          |  |
| 13:1   | 12   |                                                                                       | MUX3     |         | R/W     |     | 0     | 4th Sa                                                              | ample In | put Sele                 | ect     |             |           |          |           |          |  |
|        |      |                                                                                       |          |         |         |     |       |                                                                     |          |                          |         |             |           |          | _         |          |  |
| 11:1   | 10   |                                                                                       | reserved | 1       | RO      |     | 0     |                                                                     |          | uld not re               |         |             |           |          | •         |          |  |
|        |      |                                                                                       |          |         |         |     |       |                                                                     | ,        | vith futur<br>oss a rea  | •       | ,           |           |          | ed bit sr | ioula be |  |
|        |      |                                                                                       |          |         |         |     |       | prese                                                               |          | 035 0 10                 | au-mou  | ry-write (  | operation |          |           |          |  |
| 9:8    | 3    |                                                                                       | MUX2     |         | R/W     |     | 0     | 3rd Sa                                                              | ample Ir | put Sele                 | ect     |             |           |          |           |          |  |
|        |      |                                                                                       |          |         |         |     |       |                                                                     |          |                          |         |             |           |          |           |          |  |
| 7:6    | 6    |                                                                                       | reserved | 1       | RO      |     | 0     |                                                                     |          | uld not re               |         |             |           |          | •         |          |  |
|        |      |                                                                                       |          |         |         |     |       |                                                                     | ,        | vith futur               | •       | ,           |           |          | ed bit sh | nould be |  |
|        |      |                                                                                       |          |         |         |     |       | prese                                                               | iveu aci | oss a rea                | au-moul | iy-write (  | operation |          |           |          |  |
| 5:4    | 1    |                                                                                       | MUX1     |         | R/W     |     | 0     | 2nd S                                                               | ample li | nput Sele                | ect     |             |           |          |           |          |  |
|        |      |                                                                                       | -        |         |         |     | -     | 2nd Sample Input Select                                             |          |                          |         |             |           |          |           |          |  |
| 3:2    | 2    |                                                                                       | reserved | 1       | RO      |     | 0     | Software should not rely on the value of a reserved bit. To provide |          |                          |         |             |           |          |           |          |  |
|        |      |                                                                                       |          |         |         |     |       |                                                                     |          | vith futur               |         |             |           |          | ed bit sh | nould be |  |
|        |      |                                                                                       |          |         |         |     |       | prese                                                               | rved acr | oss a rea                | ad-modi | Ty-write of | operatio  | n.       |           |          |  |
| 1:0    | )    |                                                                                       | MUX0     |         | R/W     |     | 0     | 1st Sa                                                              | ample In | put Sele                 | ct      |             |           |          |           |          |  |
| 1.0    | ,    |                                                                                       | 101070   |         | 1.7.4.4 |     | 0     | 131.00                                                              |          | put odle                 |         |             |           |          |           |          |  |

# Register 22: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 2. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. This register is 16-bits wide and contains information for four possible samples.

ADC Sample Sequence Control 2 (ADCSSCTL2)

Base 0x4003.8000

Offset 0x084 Type R/W, reset 0x0000.0000

| _             | 31       | 30       | 29                                    | 28       | 27       | 26       | 25                                                                                                                 | 24       | 23          | 22          | 21       | 20         | 19        | 18       | 17                      | 16       |  |  |
|---------------|----------|----------|---------------------------------------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------|----------|-------------|-------------|----------|------------|-----------|----------|-------------------------|----------|--|--|
|               |          |          |                                       |          |          |          |                                                                                                                    | rese     | rved        |             |          |            |           |          |                         |          |  |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0                               | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                                                                                                            | RO<br>0  | RO<br>0     | RO<br>0     | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0                 | RO<br>0  |  |  |
| -             | 15       | 14       | 13                                    | 12       | 11       | 10       | 9                                                                                                                  | 8        | 7           | 6           | 5        | 4          | 3         | 2        | 1                       | 0        |  |  |
|               | TS3      | IE3      | END3                                  | D3       | TS2      | IE2      | END2                                                                                                               | D2       | TS1         | IE1         | END1     | D1         | TS0       | IE0      | END0                    | D0       |  |  |
| Type<br>Reset | R/W<br>0 | R/W<br>0 | R/W<br>0                              | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                           | R/W<br>0 | R/W<br>0    | R/W<br>0    | R/W<br>0 | R/W<br>0   | R/W<br>0  | R/W<br>0 | R/W<br>0                | R/W<br>0 |  |  |
| Bit/Fi        | eld      |          | Name                                  |          | Туре     | F        | Reset                                                                                                              | Descr    | iption      |             |          |            |           |          |                         |          |  |  |
| 31:′          | 16       | I        | reserved                              |          | RO       |          | 0                                                                                                                  | compa    | atibility v |             | e produ  | cts, the v | alue of   | a reserv | . To provi<br>ed bit sh |          |  |  |
| 15            | 5        |          | TS3                                   |          | R/W      |          | 0                                                                                                                  | 4th Sa   | ample Te    | emp Sen     | sor Sele | ect        |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          |                                                                                                                    | Same     | definitio   | n as TS     | 7 but us | ed durin   | g the fou | urth sam | ple.                    |          |  |  |
| 14            | ŀ        |          | IE3 R/W 0 4th Sample Interrupt Enable |          |          |          |                                                                                                                    |          |             |             |          |            |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          | <ul> <li>4th Sample Interrupt Enable</li> <li>Same definition as IE7 but used during the fourth sample.</li> </ul> |          |             |             |          |            |           |          |                         |          |  |  |
| 13            | 3        |          | END3                                  |          | R/W      |          | 0                                                                                                                  | 4th Sa   | ample is    | End of S    | Sequenc  | e          |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          |                                                                                                                    | Same     | definitio   | n as en     | D7 but u | sed duri   | ng the fo | ourth sa | mple.                   |          |  |  |
| 12            | 2        |          | D3                                    |          | R/W      |          | 0                                                                                                                  | 4th Sa   | ample Di    | ff Input S  | Select   |            |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          |                                                                                                                    | Same     | definitic   | on as D7    | but use  | d during   | the four  | th samp  | le.                     |          |  |  |
| 11            |          |          | TS2                                   |          | R/W      |          | 0                                                                                                                  |          | •           | emp Sen     |          |            |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          |                                                                                                                    | Same     | definitic   | n as TS     | 7 but us | ed durin   | g the thi | rd samp  | le.                     |          |  |  |
| 10            | )        |          | IE2                                   |          | R/W      |          | 0                                                                                                                  |          | •           | terrupt E   |          |            |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          |                                                                                                                    |          |             | on as IE    |          |            | g the thi | rd samp  | le.                     |          |  |  |
| 9             |          |          | END2                                  |          | R/W      |          | 0                                                                                                                  |          |             | End of \$   |          |            |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          |                                                                                                                    |          |             | on as en    |          | sed duri   | ng the ti | hird sam | ple.                    |          |  |  |
| 8             |          |          | D2                                    |          | R/W      |          | 0                                                                                                                  |          | •           | iff Input : |          |            |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          |                                                                                                                    | Same     | definitio   | n as D7     | but use  | a during   | the third | a sample | <b>e</b> .              |          |  |  |
| 7             |          |          | TS1                                   |          | R/W      |          | 0                                                                                                                  |          |             | emp Ser     |          |            |           |          |                         |          |  |  |
|               |          |          |                                       |          |          |          |                                                                                                                    | Same     | definitio   | n as TS     | 7 but us | ed durin   | g the se  | cond sa  | mple.                   |          |  |  |

| Bit/Field | Name | Туре | Reset | Description                                                        |
|-----------|------|------|-------|--------------------------------------------------------------------|
| 6         | IE1  | R/W  | 0     | 2nd Sample Interrupt Enable                                        |
|           |      |      |       | Same definition as IE7 but used during the second sample.          |
| 5         | END1 | R/W  | 0     | 2nd Sample is End of Sequence                                      |
|           |      |      |       | Same definition as ${\tt END7}$ but used during the second sample. |
| 4         | D1   | R/W  | 0     | 2nd Sample Diff Input Select                                       |
|           |      |      |       | Same definition as ${\tt D7}$ but used during the second sample.   |
| 3         | TS0  | R/W  | 0     | 1st Sample Temp Sensor Select                                      |
|           |      |      |       | Same definition as ${\tt TS7}$ but used during the first sample.   |
| 2         | IE0  | R/W  | 0     | 1st Sample Interrupt Enable                                        |
|           |      |      |       | Same definition as IE7 but used during the first sample.           |
| 1         | END0 | R/W  | 0     | 1st Sample is End of Sequence                                      |
|           |      |      |       | Same definition as ${\tt END7}$ but used during the first sample.  |
|           |      |      |       | Since this sequencer has only one entry, this bit must be set.     |
| 0         | D0   | R/W  | 0     | 1st Sample Diff Input Select                                       |
|           |      |      |       | Same definition as ${\tt D7}$ but used during the first sample.    |

# Register 23: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 3. This register is 4-bits wide and contains information for one possible sample.

#### ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3)

Base 0x4003.8000 Offset 0x0A0 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22        | 21      | 20         | 19      | 18       | 17       | 16       |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|-----------|---------|------------|---------|----------|----------|----------|
|               |         |         | •        |         |         |         | •       | rese    | erved                                |           |         |            |         | •        |          |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0   | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6         | 5       | 4          | 3       | 2        | 1        | 0        |
|               |         | 1       |          |         |         |         | 1       | erved   |                                      | -         | -       |            | -       | r —      | MU       | IXO      |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0   | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | R/W<br>0 | R/W<br>0 |
|               |         |         |          |         |         |         |         |         |                                      |           |         |            |         |          |          |          |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | ription                              |           |         |            |         |          |          |          |
| 31:           | :2      | r       | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | ith futur | e produ | cts, the v | alue of | a reserv | •        |          |
| 1:            | 0       |         | MUX0     |         | R/W     |         | 0       | 1st Sa  | ample In                             | put Sele  | ct      |            |         |          |          |          |

# Register 24: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 3. The END bit is always set since there is only one sample in this sequencer. This register is 4-bits wide and contains information for one possible sample.

#### ADC Sample Sequence Control 3 (ADCSSCTL3)

| Base 0x4<br>Offset 0x0<br>Type R/W                                                                | DA4     |         |         |                           |         | ,       |         |         |             |           |                     |          |             |          |                          |          |
|---------------------------------------------------------------------------------------------------|---------|---------|---------|---------------------------|---------|---------|---------|---------|-------------|-----------|---------------------|----------|-------------|----------|--------------------------|----------|
|                                                                                                   | 31      | 30      | 29      | 28                        | 27      | 26      | 25      | 24      | 23          | 22        | 21                  | 20       | 19          | 18       | 17                       | 16       |
| [                                                                                                 |         | 1       | ì       | 1                         | г т     |         | 1       | rese    | erved       | Î         | r                   | r        |             | Î        | 1                        |          |
| Type<br>Reset                                                                                     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0   | RO<br>0             | RO<br>0  | RO<br>0     | RO<br>0  | RO<br>0                  | RO<br>0  |
|                                                                                                   | 15      | 14      | 13      | 12                        | 11      | 10      | 9       | 8       | 7           | 6         | 5                   | 4        | 3           | 2        | 1                        | 0        |
| [                                                                                                 |         |         | 1       |                           | · ·     | res     | erved   |         |             | 1         | ,                   |          | TS0         | IE0      | END0                     | D0       |
| Type<br>Reset                                                                                     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0   | RO<br>0             | RO<br>0  | R/W<br>0    | R/W<br>0 | R/W<br>0                 | R/W<br>0 |
| Bit/Fi                                                                                            | ield    |         | Name    | ne Type Reset Description |         |         |         |         |             |           |                     |          |             |          |                          |          |
| 31:                                                                                               | :4      |         | reserve | ed                        | RO      |         | 0       | comp    | atibility v | vith futu |                     | cts, the | value of    | a reserv | t. To prov<br>ved bit sh |          |
| 3                                                                                                 |         |         | TS0     |                           | R/W     |         | 0       |         | •           | •         | sor Sele            |          | a the firs  | st samp  | le.                      |          |
| 2                                                                                                 |         |         | IE0     |                           | R/W     |         | 0       | 1st Sa  | ample In    | terrupt E | Enable              |          | 0           |          |                          |          |
| 1                                                                                                 |         |         | END     | )                         | R/W     |         | 0       |         |             |           | 7 but us<br>Sequenc |          | ig the firs | st samp  | le.                      |          |
|                                                                                                   |         |         |         |                           |         |         |         |         | •           |           | ⊡7 but u            |          | ing the f   | irst sam | ple.                     |          |
|                                                                                                   |         |         |         |                           |         |         |         | Since   | this seq    | luencer   | has only            | one ent  | try, this t | oit must | be set.                  |          |
| 0                                                                                                 |         |         | D0      |                           | R/W     |         | 0       | 1st Sa  | ample Di    | iff Input | Select              |          |             |          |                          |          |
| 0 D0 R/W 0 1st Sample Diff Input Select<br>Same definition as D7 but used during the first sample |         |         |         |                           |         |         |         |         |             |           |                     | sample   | <b>)</b> .  |          |                          |          |

# Register 25: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8

This register contains the conversion results for samples collected with Sample Sequencer 3. Reads of this register return the conversion result data. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

Bit fields and definitions are the same as ADCSSFIFO0 (see page 253) but are for FIFO 3.

# Register 26: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC

This register provides a window into the Sample Sequencer FIFO 3, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO.

This register has the same bit fields and definitions as **ADCSSFSTAT0** (see page 254) but is for FIFO 3.

# Register 27: ADC Test Mode Loopback (ADCTMLB), offset 0x100

This register provides loopback operation within the digital logic of the ADC, which can be useful in debugging software without having to provide actual analog stimulus. This test mode is entered by writing a value of 0x0000.0001 to this register. When data is read from the FIFO in loopback mode, the read-only portion of this register is returned.

#### **Read-Only Register**

#### ADC Test Mode Loopback (ADCTMLB)

Base 0x4003.8000 Offset 0x100 Type RO, reset 0x0000.0000

| _             | 31      | 30                               | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22        | 21         | 20         | 19        | 18       | 17                      | 16      |
|---------------|---------|----------------------------------|----------|---------|---------|---------|---------|---------|-------------|-----------|------------|------------|-----------|----------|-------------------------|---------|
|               |         | 1                                | 1        | r       | · ·     |         | '       | rese    | rved        |           |            |            |           |          |                         |         |
| Type<br>Reset | RO<br>0 | RO<br>0                          | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0                 | RO<br>0 |
| Reser         | 15      | 14                               | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6         | 5          | 4          | 3         | 2        | 1                       | 0       |
| [             | 10      | · · · ·                          | î 👘      | rved    | · · ·   | 10      |         | 1       | NT          |           | CONT       | DIFF       | TS        |          | MUX                     |         |
| Type<br>Reset | RO<br>0 | RO<br>0                          | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0  | RO<br>0                 | RO<br>0 |
| Bit/Fi        | eld     |                                  | Name     |         | Туре    | I       | Reset   | Descr   | iption      |           |            |            |           |          |                         |         |
| 31:1          | 10      | ļ                                | reserved |         | RO      |         | 0       | compa   | atibility w | ith futur | e produ    |            | alue of a | a reserv | . To prov<br>ed bit sh  |         |
| 9:6           | 6       |                                  | CNT      |         | RO      |         | 0       | Contir  | nuous Sa    | ample C   | ounter     |            |           |          |                         |         |
|               |         |                                  |          |         |         |         |         |         | e as it pi  | •         |            |            |           |          | counts ea<br>alue for t |         |
| 5             |         |                                  | CONT     |         | RO      |         | 0       | Contir  | nuation S   | Sample I  | ndicator   |            |           |          |                         |         |
|               |         |                                  |          |         |         |         |         | two se  | equence     | rs were   | to run ba  |            | ack, this | indicate | For exar<br>es that the |         |
| 4             |         |                                  | DIFF     |         | RO      |         | 0       | Differe | ential Sa   | mple Inc  | dicator    |            |           |          |                         |         |
|               |         |                                  |          |         |         |         |         | When    | set, indi   | cates th  | at this is | a differe  | ential sa | mple.    |                         |         |
| 3             |         |                                  | TS       |         | RO      |         | 0       | Temp    | Sensor      | Sample    | Indicato   | r          |           |          |                         |         |
|               |         | When set, indicates that this is |          |         |         |         |         |         |             |           |            | s a tempe  | erature s | sensor s | ample.                  |         |
| 2:0           | )       |                                  | MUX      |         | RO      |         | 0       | Analo   | g Input li  | ndicator  |            |            |           |          |                         |         |
|               |         |                                  |          |         |         |         |         | Indica  | tes whic    | h analog  | g input is | s to be sa | ampled.   |          |                         |         |

#### Write-Only Register

ADC Test Mode Loopback (ADCTMLB)

Base 0x4003.8000 Offset 0x100 Type WO, reset 0x0000.0000

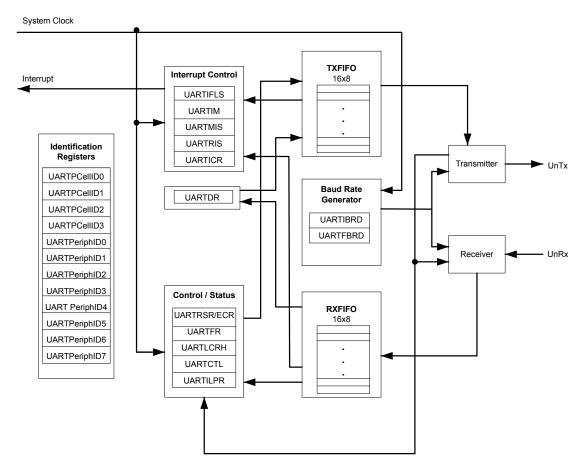
|               | 31      | 30       | 29      | 28      | 27      | 26      | 25      | 24                                               | 23         | 22      | 21         | 20      | 19       | 18         | 17         | 16       |
|---------------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------------------|------------|---------|------------|---------|----------|------------|------------|----------|
|               |         | •        |         |         |         |         | •       | rese                                             | erved      |         |            |         |          | •          | •          |          |
| Type<br>Reset | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                          | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0  |
|               | 15      | 14       | 13      | 12      | 11      | 10      | 9       | 8                                                | 7          | 6       | 5          | 4       | 3        | 2          | 1          | 0        |
|               |         | 1        |         |         | · ·     |         | 1       | reserved                                         | 1          |         |            |         |          | 1          | 1          | LB       |
| Type<br>Reset | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                          | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0    | RO<br>0    | WO<br>0  |
| Bit/F         | ield    |          | Name    |         | Туре    | F       | Reset   | Descr                                            | iption     |         |            |         |          |            |            |          |
| 31            | :1      | reserved |         |         | RO      | 0       | comp    | are shou<br>atibility v<br>rved acr              | vith futur | e produ | cts, the v | alue of | a reserv | •          |            |          |
| 0             | I       |          | LB      |         | WO      |         | 0       | Loopt                                            | oack Moo   | de Enab | le         |         |          |            |            |          |
|               |         |          |         |         |         |         |         | When set, forces a loopback within the digital b |            |         |            |         |          | ock to pro | ovide info | ormation |

above.

on input and unique numbering.

The 10-bit loopback data is defined as shown in the read for bits 9:0

June 26, 2007


# 12 Universal Asynchronous Receivers/Transmitters (UARTs)

The Stellaris<sup>®</sup> Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable, 16C550-type serial interface characteristics. The LM3S2139 controller is equipped with two UART modules.

Each UART has the following features:

- Separate transmit and receive FIFOs
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Programmable baud-rate generator allowing rates up to 460.8 Kbps
- Standard asynchronous communication bits for start, stop, and parity
- False start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics:
  - 5, 6, 7, or 8 data bits
  - Even, odd, stick, or no-parity bit generation/detection
  - 1 or 2 stop bit generation
- IrDA serial-IR (SIR) encoder/decoder providing:
  - Programmable use of IrDA Serial InfraRed (SIR) or UART input/output
  - Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex
  - Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations
  - Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power mode bit duration

# 12.1 Block Diagram



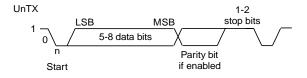
#### Figure 12-1. UART Module Block Diagram

# 12.2 Functional Description

Each Stellaris<sup>®</sup> UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 286). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed using the UARTCTL register.


### 12.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data

bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 12-2 on page 269 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

#### Figure 12-2. UART Character Frame



#### 12.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 282) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 283). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.):

BRD = BRDI + BRDF = SysClk / (16 \* Baud Rate)

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

```
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
```

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 284), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- **UARTIBRD** write, **UARTFBRD** write, and **UARTLCRH** write
- UARTFBRD write, UARTIBRD write, and UARTLCRH write
- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

# 12.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 279) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 268).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is detected and it is ignored. Start bit errors can be viewed in the **UART Receive Status (UARTRSR)** register (see page 277). If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

### 12.2.4 Serial IR (SIR)

The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block provides functionality that converts between an asynchronous UART data stream, and half-duplex serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to provide a digital encoded output, and decoded input to the UART. The UART signal pins can be connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block has two modes of operation:

- In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the selected baud rate bit period on the output pin, while logic one levels are transmitted as a static LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light for each zero. On the reception side, the incoming light pulses energize the photo transistor base of the receiver, pulling its output LOW. This drives the UART input pin LOW.
- In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz frequency) by changing the appropriate bit in the UARTCR register.

Figure 12-3 on page 271 shows the UART transmit and receive signals, with and without IrDA modulation.

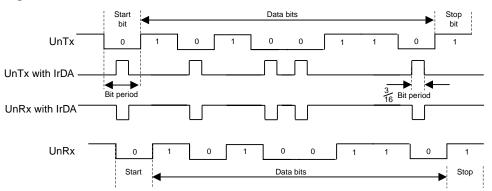



Figure 12-3. IrDA Data Modulation

In both normal and low-power IrDA modes:

- During transmission, the UART data bit is used as the base for encoding
- During reception, the decoded bits are transferred to the UART receive logic

The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay between transmission and reception. This delay must be generated by software because it is not automatically supported by the UART. The delay is required because the infrared receiver electronics might become biased, or even saturated from the optical power coupled from the adjacent transmitter LED. This delay is known as latency, or receiver setup time.

#### 12.2.5 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 275). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 284).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 279) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 288). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8,  $\frac{1}{4}$ ,  $\frac{1}{2}$ ,  $\frac{3}{4}$ , and 7/8. For example, if the  $\frac{1}{4}$  option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the  $\frac{1}{2}$  mark.

#### 12.2.6 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error

- Parity Error
- Framing Error
- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 292).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 289) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 291).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 293).

#### 12.2.7 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 286). In loopback mode, data transmitted on UnTx is received on the UnRx input.

#### 12.2.8 IrDA SIR block

The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR transceiver.

The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same time. Transmission must be stopped before data can be received. The IrDA SIR physical layer specifies a minimum 10-ms delay between transmission and reception.

# 12.3 Initialization and Configuration

To use the UARTs, the peripheral clock must be enabled by setting the UART0 or UART1 bits in the **RCGC1** register.

This section discusses the steps that are required for using a UART module. For this example, the system clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit
- No parity
- FIFOs disabled

No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 269, the BRD can be calculated:

BRD = 20,000,000 / (16 \* 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 282) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 283) is calculated by the equation:

```
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54
```

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the **UARTIBRD** register.
- 3. Write the fractional portion of the BRD to the UARTFBRD register.
- 4. Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the UARTCTL register.

# 12.4 Register Map

Table 12-1 on page 273 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- UART1: 0x4000.D000
- **Note:** The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 286) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

| Table 12 | 2-1. UAR <sup>-</sup> | Γ Register | Мар |
|----------|-----------------------|------------|-----|
|----------|-----------------------|------------|-----|

| Offset | Name            | Туре | Reset       | Description                       | See<br>page |
|--------|-----------------|------|-------------|-----------------------------------|-------------|
| 0x000  | UARTDR          | RO   | 0x0000.0000 | UART Data                         | 275         |
| 0x004  | UARTRSR/UARTECR | R/W  | 0x0000.0000 | UART Receive Status/Error Clear   | 277         |
| 0x018  | UARTFR          | RO   | 0x0000.0090 | UART Flag                         | 279         |
| 0x020  | UARTILPR        | R/W  | 0x0000.0000 | UART IrDA Low-Power Register      | 281         |
| 0x024  | UARTIBRD        | R/W  | 0x0000.0000 | UART Integer Baud-Rate Divisor    | 282         |
| 0x028  | UARTFBRD        | R/W  | 0x0000.0000 | UART Fractional Baud-Rate Divisor | 283         |
| 0x02C  | UARTLCRH        | R/W  | 0x0000.0000 | UART Line Control                 | 284         |
| 0x030  | UARTCTL         | R/W  | 0x0000.0300 | UART Control                      | 286         |

| Offset | Name          | Туре | Reset       | Description                      | See<br>page |
|--------|---------------|------|-------------|----------------------------------|-------------|
| 0x034  | UARTIFLS      | R/W  | 0x0000.0012 | UART Interrupt FIFO Level Select | 288         |
| 0x038  | UARTIM        | R/W  | 0x0000.0000 | UART Interrupt Mask              | 289         |
| 0x03C  | UARTRIS       | RO   | 0x0000.000F | UART Raw Interrupt Status        | 291         |
| 0x040  | UARTMIS       | RO   | 0x0000.0000 | UART Masked Interrupt Status     | 292         |
| 0x044  | UARTICR       | W1C  | 0x0000.0000 | UART Interrupt Clear             | 293         |
| 0xFD0  | UARTPeriphID4 | RO   | 0x0000.0000 | UART Peripheral Identification 4 | 295         |
| 0xFD4  | UARTPeriphID5 | RO   | 0x0000.0000 | UART Peripheral Identification 5 | 296         |
| 0xFD8  | UARTPeriphID6 | RO   | 0x0000.0000 | UART Peripheral Identification 6 | 297         |
| 0xFDC  | UARTPeriphID7 | RO   | 0x0000.0000 | UART Peripheral Identification 7 | 298         |
| 0xFE0  | UARTPeriphID0 | RO   | 0x0000.0011 | UART Peripheral Identification 0 | 299         |
| 0xFE4  | UARTPeriphID1 | RO   | 0x0000.0000 | UART Peripheral Identification 1 | 300         |
| 0xFE8  | UARTPeriphID2 | RO   | 0x0000.0018 | UART Peripheral Identification 2 | 301         |
| 0xFEC  | UARTPeriphID3 | RO   | 0x0000.0001 | UART Peripheral Identification 3 | 302         |
| 0xFF0  | UARTPCellID0  | RO   | 0x0000.000D | UART PrimeCell Identification 0  | 303         |
| 0xFF4  | UARTPCellID1  | RO   | 0x0000.00F0 | UART PrimeCell Identification 1  | 304         |
| 0xFF8  | UARTPCellID2  | RO   | 0x0000.0005 | UART PrimeCell Identification 2  | 305         |
| 0xFFC  | UARTPCellID3  | RO   | 0x0000.00B1 | UART PrimeCell Identification 3  | 306         |

# 12.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

# Register 1: UART Data (UARTDR), offset 0x000

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

#### UART Data (UARTDR)

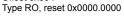
UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x000 Type RO, reset 0x0000.0000

| ,<br>         | 31                                    | 30                                                                                                                                       | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                                          | 23                        | 22                     | 21                     | 20                    | 19                     | 18                                               | 17                   | 16                   |  |  |  |  |
|---------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|------------------------|-----------------------|------------------------|--------------------------------------------------|----------------------|----------------------|--|--|--|--|
|               |                                       | 1                                                                                                                                        |          |         |         |         | 1       | rese                                                                                                                                                                                                        | erved                     |                        | 1                      | 1                     |                        | 1                                                | 1                    |                      |  |  |  |  |
| Type<br>Reset | RO<br>0                               | RO<br>0                                                                                                                                  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                     | RO<br>0                   | RO<br>0                | RO<br>0                | RO<br>0               | RO<br>0                | RO<br>0                                          | RO<br>0              | RO<br>0              |  |  |  |  |
|               | 15                                    | 14                                                                                                                                       | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                                           | 7                         | 6                      | 5                      | 4                     | 3                      | 2                                                | 1                    | 0                    |  |  |  |  |
|               |                                       | rese                                                                                                                                     | rved     |         | OE      | BE      | PE      | FE                                                                                                                                                                                                          |                           |                        | 1                      | D/                    | ATA                    | 1                                                | 1                    |                      |  |  |  |  |
| Type<br>Reset | RO<br>0                               | RO<br>0                                                                                                                                  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                     | R/W<br>0                  | R/W<br>0               | R/W<br>0               | R/W<br>0              | R/W<br>0               | R/W<br>0                                         | R/W<br>0             | R/W<br>0             |  |  |  |  |
| Bit/Fi        | ield                                  |                                                                                                                                          | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                                                                                                       | iption                    |                        |                        |                       |                        |                                                  |                      |                      |  |  |  |  |
| 31:′          | 12                                    | r                                                                                                                                        | reserved |         | RO      |         | 0       | compa                                                                                                                                                                                                       | atibility v               | ith futur              | e produ                | cts, the              |                        | erved bit<br>a reserv<br>n.                      |                      |                      |  |  |  |  |
| 11            |                                       | OE RO 0 UART Overrun Error                                                                                                               |          |         |         |         |         |                                                                                                                                                                                                             |                           |                        |                        |                       |                        |                                                  |                      |                      |  |  |  |  |
|               | 1=New data was received when the FIFC |                                                                                                                                          |          |         |         |         |         |                                                                                                                                                                                                             |                           |                        |                        |                       |                        | O was full, resulting in data loss.              |                      |                      |  |  |  |  |
|               |                                       |                                                                                                                                          |          |         |         |         |         | 0=The                                                                                                                                                                                                       | ere has t                 | been no                | data los               | s due to              | a FIFO                 | overrun                                          |                      |                      |  |  |  |  |
| 10            | )                                     |                                                                                                                                          | BE       |         | RO      |         | 0       | UART                                                                                                                                                                                                        | T Break Error             |                        |                        |                       |                        |                                                  |                      |                      |  |  |  |  |
|               |                                       |                                                                                                                                          |          |         |         |         |         | This bit is set to 1 when a break condition is detected, indicating that the receive data input was held Low for longer than a full-word transmission time (defined as start, data, parity, and stop bits). |                           |                        |                        |                       |                        |                                                  |                      |                      |  |  |  |  |
|               |                                       |                                                                                                                                          |          |         |         |         |         | the FI<br>FIFO.                                                                                                                                                                                             | FO. Whe<br>The ne         | en a brea<br>at charad | ak occur<br>cter is or | s, only c<br>nly enab | one 0 cha<br>led after | charact<br>aracter is<br>the rece<br>start bit i | s loaded<br>eived da | into the<br>ta input |  |  |  |  |
| 9             |                                       |                                                                                                                                          | PE       |         | RO      |         | 0       | UART                                                                                                                                                                                                        | Parity E                  | Error                  |                        |                       |                        |                                                  |                      |                      |  |  |  |  |
|               |                                       | This bit is set to 1 when the parity of the received data charact<br>not match the parity defined by bits 2 and 7 of the <b>UARTLCRH</b> |          |         |         |         |         |                                                                                                                                                                                                             |                           |                        |                        |                       |                        |                                                  |                      |                      |  |  |  |  |
|               |                                       |                                                                                                                                          |          |         |         |         |         | In FIF<br>the FI                                                                                                                                                                                            |                           | , this err             | or is ass              | sociated              | with the               | charact                                          | er at the            | top of               |  |  |  |  |
| 8             |                                       |                                                                                                                                          | FE       |         | RO      |         | 0       | UART                                                                                                                                                                                                        | Framin                    | g Error                |                        |                       |                        |                                                  |                      |                      |  |  |  |  |
|               |                                       |                                                                                                                                          |          |         |         |         |         |                                                                                                                                                                                                             | oit is set<br>oit (a vali |                        |                        | ceived c              | character              | r does n                                         | ot have a            | a valid              |  |  |  |  |

| Bit/Field | Name | Туре | Reset | Description                                                                                                       |
|-----------|------|------|-------|-------------------------------------------------------------------------------------------------------------------|
| 7:0       | DATA | R/W  | 0     | Data Transmitted or Received                                                                                      |
|           |      |      |       | When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART. |

# Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The **UARTRSR/UARTECR** register is the receive status register/error clear register.


In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

#### Read-Only Receive Status (UARTRSR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004



| _             | 31      | 30      | 29       | 28      | 27      | 26      | 25         | 24                                                      | 23                | 22                     | 21                     | 20                                             | 19                   | 18                     | 17                    | 16                  |  |  |  |
|---------------|---------|---------|----------|---------|---------|---------|------------|---------------------------------------------------------|-------------------|------------------------|------------------------|------------------------------------------------|----------------------|------------------------|-----------------------|---------------------|--|--|--|
|               |         |         |          |         | · ·     |         | 1          | rese                                                    | rved              |                        |                        |                                                |                      |                        | 1                     | 1                   |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0                                                 | RO<br>0           | RO<br>0                | RO<br>0                | RO<br>0                                        | RO<br>0              | RO<br>0                | RO<br>0               | RO<br>0             |  |  |  |
| Report        | 15      | 14      | 13       | 12      | 11      | 10      | 9          | 8                                                       | 7                 | 6                      | 5                      | 4                                              | 3                    | 2                      | 1                     | 0                   |  |  |  |
| [             | 10      | 14      |          | 12      | · · ·   |         | r<br>erved |                                                         | ,<br>,            |                        |                        | 1                                              | OE                   | BE                     | PE                    | FE                  |  |  |  |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO         | RO                                                      | RO                | RO                     | RO                     | RO                                             | RO                   | RO                     | RO                    | RO                  |  |  |  |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0          | 0                                                       | 0                 | 0                      | 0                      | 0                                              | 0                    | 0                      | 0                     | 0                   |  |  |  |
|               |         |         |          |         |         |         |            |                                                         |                   |                        |                        |                                                |                      |                        |                       |                     |  |  |  |
| Bit/Fi        | ield    |         | Name     |         | Туре    | I       | Reset      | Description                                             |                   |                        |                        |                                                |                      |                        |                       |                     |  |  |  |
| 31:           | 4       | I       | reserved |         | RO      |         | 0          | compa                                                   | atibility v       | vith futur             | e produ                | e value o<br>cts, the v                        | alue of              | a reserv               | •                     |                     |  |  |  |
|               |         |         |          |         |         |         |            | prese                                                   | rved acr          | oss a rea              | ad-modi                | fy-write o                                     | operatio             | n.                     |                       |                     |  |  |  |
|               |         |         |          |         |         |         |            | The <b>UARTRSR</b> register cannot be written.          |                   |                        |                        |                                                |                      |                        |                       |                     |  |  |  |
| 3             |         |         | OE       |         | RO      |         | 0          | UART                                                    | Overru            | n Error                |                        |                                                |                      |                        |                       |                     |  |  |  |
|               |         |         |          |         |         |         |            |                                                         |                   |                        |                        | s receive<br>ite to <b>UA</b>                  |                      |                        | is alrea              | ıdy full.           |  |  |  |
|               |         |         |          |         |         |         |            |                                                         |                   |                        |                        | id since ints of the                           |                      |                        |                       |                     |  |  |  |
|               |         |         |          |         |         |         |            |                                                         |                   |                        |                        | lata in or                                     |                      | •                      |                       |                     |  |  |  |
| 2             |         |         | BE       |         | RO      |         | 0          | UART                                                    | Break E           | Error                  |                        |                                                |                      |                        |                       |                     |  |  |  |
|               |         |         |          |         |         |         |            | the re-                                                 | ceived d          | ata inpu               | t was he               | ak condit<br>eld Low f<br>start, dat           | or longe             | r than a               | full-wor              | ď                   |  |  |  |
|               |         |         |          |         |         |         |            | This bit is cleared to 0 by a write to <b>UARTECR</b> . |                   |                        |                        |                                                |                      |                        |                       |                     |  |  |  |
|               |         |         |          |         |         |         |            | the FII<br>FIFO.                                        | FO. Whe<br>The ne | en a brea<br>kt charac | ak occur<br>cter is or | sociated<br>s, only o<br>nly enabl<br>d the ne | ne 0 cha<br>ed after | aracter is<br>the rece | s loaded<br>eive data | into the<br>a input |  |  |  |

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                            |
|-----------|------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | PE   | RO   | 0     | UART Parity Error                                                                                                                                      |
|           |      |      |       | This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the <b>UARTLCRH</b> register. |
|           |      |      |       | This bit is cleared to 0 by a write to <b>UARTECR</b> .                                                                                                |
| 0         | FE   | RO   | 0     | UART Framing Error                                                                                                                                     |
|           |      |      |       | This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).                                               |
|           |      |      |       | This bit is cleared to 0 by a write to <b>UARTECR</b> .                                                                                                |
|           |      |      |       | In FIFO mode, this error is associated with the character at the top of the FIFO.                                                                      |

#### Write-Only Error Clear (UARTECR) Register

#### UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type WO, reset 0x0000.0000

|               | 31      | 30       | 29      | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                             | 23        | 22       | 21       | 20        | 19        | 18       | 17         | 16      |
|---------------|---------|----------|---------|---------|---------|---------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|----------|-----------|-----------|----------|------------|---------|
|               |         |          |         |         | · · ·   |         | 1       | rese                                                                                                                                                                                           | erved     |          |          |           |           | 1        |            | '       |
| Type<br>Reset | WO<br>0 | WO<br>0  | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0 | WO<br>0                                                                                                                                                                                        | WO<br>0   | WO<br>0  | WO<br>0  | WO<br>0   | WO<br>0   | WO<br>0  | WO<br>0    | WO<br>0 |
|               | 15      | 14       | 13      | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                              | 7         | 6        | 5        | 4         | 3         | 2        | 1          | 0       |
|               | ľ       |          | · · ·   | rese    | rved    |         | 1       | 1                                                                                                                                                                                              |           |          | 1        | DA        | TA        | 1        |            |         |
| Туре          | WO      | WO       | WO      | WO      | WO      | WO      | WO      | WO                                                                                                                                                                                             | WO        | WO       | WO       | WO        | WO        | WO       | WO         | WO      |
| Reset         | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                                                                                                                                                                              | 0         | 0        | 0        | 0         | 0         | 0        | 0          | 0       |
| Bit/F         | ield    |          | Name    |         | Туре    | F       | Reset   | Descr                                                                                                                                                                                          | iption    |          |          |           |           |          |            |         |
| 31:           | :8      | reserved |         |         | WO 0    |         |         | Software should not rely on the value of a reserved bit. To provide<br>compatibility with future products, the value of a reserved bit shou<br>preserved across a read-modify-write operation. |           |          |          |           |           |          |            |         |
| 7:0           | 0       |          | DATA    |         | WO      |         | 0       | Error                                                                                                                                                                                          | Clear     |          |          |           |           |          |            |         |
|               |         |          |         |         |         |         |         | A write                                                                                                                                                                                        | e to this | register | of any d | ata cleai | s the fra | aming, p | arity, bre | ak, and |

A write to this register of any data clears the framing, parity, break, and overrun flags.

# Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

| UART0 b<br>UART1 b<br>Offset 0x0<br>Type RO, | ase: 0x4<br>018<br>, reset 0x                                                                                                                                                                                | 000.C000<br>000.D000<br>0000.009 | 0       | 20      | 07      | 26      | 25      | 24               | 22                                                                                           | 22        | 24         | 20          | 10         | 40       | 17          | 16      |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------|---------|---------|---------|---------|------------------|----------------------------------------------------------------------------------------------|-----------|------------|-------------|------------|----------|-------------|---------|--|--|--|
|                                              | 31                                                                                                                                                                                                           | 30                               | 29      | 28      | 27      | 26      | 25      | 24<br>rese       | 23<br>rved                                                                                   | 22        | 21         | 20          | 19<br>1    | 18       | 17          | 16      |  |  |  |
| Type<br>Reset                                | RO<br>0                                                                                                                                                                                                      | RO<br>0                          | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>0                                                                                      | RO<br>0   | RO<br>0    | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0     | RO<br>0 |  |  |  |
|                                              | 15                                                                                                                                                                                                           | 14                               | 13      | 12      | 11      | 10      | 9       | 8                | 7                                                                                            | 6         | 5          | 4           | 3          | 2        | 1           | 0       |  |  |  |
|                                              |                                                                                                                                                                                                              | •                                |         | rese    | rved    |         | •       |                  | TXFE                                                                                         | RXFF      | TXFF       | RXFE        | BUSY       |          | reserved    |         |  |  |  |
| Type<br>Reset                                | RO<br>0                                                                                                                                                                                                      | RO<br>0                          | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>1                                                                                      | RO<br>0   | RO<br>0    | RO<br>1     | RO<br>0    | RO<br>0  | RO<br>0     | RO<br>0 |  |  |  |
| Bit/F                                        | ield                                                                                                                                                                                                         |                                  | Name    |         | Туре    |         | Reset   | Descr            | iption                                                                                       |           |            |             |            |          |             |         |  |  |  |
| 31:                                          | 31:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation. |                                  |         |         |         |         |         |                  |                                                                                              |           |            |             |            |          |             |         |  |  |  |
| 7                                            | 7 TXFE RO 1 UART Transmit FIFO Empty                                                                                                                                                                         |                                  |         |         |         |         |         |                  |                                                                                              |           |            |             |            |          |             |         |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         |                  | The meaning of this bit depends on the state of the FEN bit in the <b>UARTLCRH</b> register. |           |            |             |            |          |             |         |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         |                  | FIFO is c<br>er is em                                                                        |           | (fen is C  | )), this bi | t is set w | hen the  | transmit    | holding |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         | If the<br>is emp |                                                                                              | enabled   | (fen is    | 1), this t  | oit is set | when th  | ie transm   | it FIFO |  |  |  |
| 6                                            | 5                                                                                                                                                                                                            |                                  | RXFF    |         | RO      |         | 0       | UART             | Receiv                                                                                       | e FIFO F  | ull        |             |            |          |             |         |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         |                  | neaning<br><b>'LCRH</b> r                                                                    |           | t depend   | ds on the   | e state o  | f the FE | n bit in th | e       |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         | If the is full.  | FIFO is                                                                                      | disabled  | , this bit | is set w    | hen the    | receive  | holding r   | egister |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         | If the           | FIFO is                                                                                      | enabled,  | this bit   | is set wł   | nen the r  | eceive   | FIFO is fu  | ıll.    |  |  |  |
| 5                                            | 5                                                                                                                                                                                                            |                                  | TXFF    |         | RO      |         | 0       | UART             | Transm                                                                                       | it FIFO I | Full       |             |            |          |             |         |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         |                  | neaning<br><b>'LCRH</b> r                                                                    |           | t depend   | ds on the   | e state o  | f the FE | n bit in th | e       |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         | If the is full.  | FIFO is (                                                                                    | disabled  | , this bit | is set w    | hen the t  | transmit | holding r   | egister |  |  |  |
|                                              |                                                                                                                                                                                                              |                                  |         |         |         |         |         | If the           | FIFO is                                                                                      | enabled,  | this bit   | is set wł   | nen the t  | ransmit  | FIFO is f   | ull.    |  |  |  |

UART Flag (UARTFR)

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | RXFE     | RO   | 1     | UART Receive FIFO Empty                                                                                                                                                                       |
|           |          |      |       | The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.                                                                                                         |
|           |          |      |       | If the FIFO is disabled, this bit is set when the receive holding register is empty.                                                                                                          |
|           |          |      |       | If the FIFO is enabled, this bit is set when the receive FIFO is empty.                                                                                                                       |
| 3         | BUSY     | RO   | 0     | UART Busy                                                                                                                                                                                     |
|           |          |      |       | When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.                         |
|           |          |      |       | This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).                                                                                       |
| 2:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

### Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020

The UARTILPR register is an 8-bit read/write register that stores the low-power counter divisor value used to generate the IrLPBaud16 signal by dividing down the system clock (SysClk). All the bits are cleared to 0 when reset.

The IrLPBaud16 internal signal is generated by dividing down the UARTCLK signal according to the low-power divisor value written to **UARTILPR**. The low-power divisor value is calculated as follows:

ILPDVSR = SysClk / F<sub>IrLPBaud16</sub>

where F<sub>IrLPBaud16</sub> is nominally 1.8432 MHz.

IrLPBaud16 is an internal signal used for SIR pulse generation when low-power mode is used. You must choose the divisor so that 1.42 MHz < F  $_{\rm IrLPBaud16}$  < 2.12 MHz, which results in a low-power pulse duration of 1.41–2.11 µs (three times the period of IrLPBaud16). The minimum frequency of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that pulses greater than 1.4 µs are accepted as valid pulses.

Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being Note: generated.

UART IrDA Low-Power Register (UARTILPR) UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x020 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ILPDVSR reserved R/W R/W R/W R/W R/W R/W R/W R/W RO RO RO RO RO RO RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Reset Description Type RO Software should not rely on the value of a reserved bit. To provide 31:8 reserved 0 compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. ILPDVSR 7:0 R/W 0x0000 IrDA Low-Power Divisor This is an 8-bit low-power divisor value.

# Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD=0**), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 269 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x024

Type R/W, reset 0x0000.0000 29 26 25 22 16 31 30 28 27 24 23 21 20 19 18 17 reserved RO RO RO RO RO RO RO RO RO RO RO RO RO Туре RO RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 DIVINT Туре R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 31:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 DIVINT R/W 0x0000 Integer Baud-Rate Divisor

# Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 269 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x028

Type R/W, reset 0x0000.0000

| _     | 31   | 30 | 29       | 28 | 27    | 26  | 25    | 24     | 23                                   | 22         | 21      | 20         | 19        | 18       | 17  | 16  |
|-------|------|----|----------|----|-------|-----|-------|--------|--------------------------------------|------------|---------|------------|-----------|----------|-----|-----|
|       |      | 1  |          |    |       |     | 1     | rese   | erved                                |            |         | 1          | 1         | 1        | 1   |     |
| Туре  | RO   | RO | RO       | RO | RO    | RO  | RO    | RO     | RO                                   | RO         | RO      | RO         | RO        | RO       | RO  | RO  |
| Reset | 0    | 0  | 0        | 0  | 0     | 0   | 0     | 0      | 0                                    | 0          | 0       | 0          | 0         | 0        | 0   | 0   |
|       | 15   | 14 | 13       | 12 | 11    | 10  | 9     | 8      | 7                                    | 6          | 5       | 4          | 3         | 2        | 1   | 0   |
|       |      | 1  |          |    | reser | ved | 1     | •      | , , ,                                |            |         | 1          | I<br>DIVF | RAC      | 1   |     |
| Туре  | RO   | RO | RO       | RO | RO    | RO  | RO    | RO     | RO                                   | RO         | R/W     | R/W        | R/W       | R/W      | R/W | R/W |
| Reset | 0    | 0  | 0        | 0  | 0     | 0   | 0     | 0      | 0                                    | 0          | 0       | 0          | 0         | 0        | 0   | 0   |
| Bit/F | ield |    | Name     |    | Туре  | I   | Reset | Descr  | iption                               |            |         |            |           |          |     |     |
|       | _    |    |          |    |       |     | -     |        |                                      |            |         |            | _         |          | _   |     |
| 31:   | :6   | I  | reserved |    | RO    |     | 0     | compa  | are shou<br>atibility w<br>rved acro | vith futur | e produ | cts, the v | alue of   | a reserv | •   |     |
| 5:0   | 0    | C  | DIVFRAC  | ;  | R/W   |     | 0x00  | Fracti | onal Bau                             | ud-Rate    | Divisor |            |           |          |     |     |

# Register 7: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity, and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

#### UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x02C Type R/W, reset 0x0000.0000

| Type R/W, reset 0x0000.0000 |         |          |         |         |         |            |         |                                                                                                                                                                                               |                          |           |          |                             |           |            |          |         |
|-----------------------------|---------|----------|---------|---------|---------|------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|----------|-----------------------------|-----------|------------|----------|---------|
|                             | 31      | 30       | 29      | 28      | 27      | 26         | 25      | 24                                                                                                                                                                                            | 23                       | 22        | 21       | 20                          | 19        | 18         | 17       | 16      |
|                             |         |          |         |         |         |            |         | rese                                                                                                                                                                                          | rved                     |           |          |                             |           |            |          |         |
| Type<br>Reset               | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0                  | RO<br>0   | RO<br>0  | RO<br>0                     | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0 |
|                             | 15      | 14       | 13      | 12      | - 11    | 10         | 9       | 8                                                                                                                                                                                             | 7                        | 6         | 5        | 4                           | 3         | 2          | 1        | 0       |
| ſ                           | 15      | 14       | 1       | rese    |         | 10         | 1       | •                                                                                                                                                                                             | SPS                      |           | I<br>EN  | FEN                         | STP2      | EPS        | PEN      | BRK     |
| Туре                        | RO      | RO       | RO      | RO      | RO      | RO         | RO      | RO                                                                                                                                                                                            | R/W                      | R/W       | R/W      | R/W                         | R/W       | R/W        | R/W      | R/W     |
| Reset                       | 0       | 0        | 0       | 0       | 0       | 0          | 0       | 0                                                                                                                                                                                             | 0                        | 0         | 0        | 0                           | 0         | 0          | 0        | 0       |
| Bit/Field                   |         | Name     |         |         | Туре    | Type Reset |         | Description                                                                                                                                                                                   |                          |           |          |                             |           |            |          |         |
| 31:8                        |         | reserved |         |         | RO      |            | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                          |           |          |                             |           |            |          |         |
| 7                           |         | SPS      |         |         | R/W     |            | 0       |                                                                                                                                                                                               | UART Stick Parity Select |           |          |                             |           |            |          |         |
|                             |         |          |         |         |         |            |         | and cl                                                                                                                                                                                        | hecked a                 | as a 0. V | Vhen bit | LCRH and s 1 and s ecked as | 7 are set |            |          |         |
| 6:5                         |         |          |         |         |         |            |         | When this bit is cleared, stick parity is disabled.                                                                                                                                           |                          |           |          |                             |           |            |          |         |
|                             |         | WLEN     |         |         | R/W     |            | 0       | UART                                                                                                                                                                                          | Word L                   | ength     |          |                             |           |            |          |         |
|                             |         |          |         |         |         |            |         | The bits indicate the number of data bits transmitted or received in a frame as follows:                                                                                                      |                          |           |          |                             |           |            |          |         |
|                             |         |          |         |         |         |            |         | 0x3: 8                                                                                                                                                                                        | bits                     |           |          |                             |           |            |          |         |
|                             |         |          |         |         |         |            |         | 0x2: 7                                                                                                                                                                                        | ' bits                   |           |          |                             |           |            |          |         |
|                             |         |          |         |         |         |            |         | 0x1:6                                                                                                                                                                                         | bits                     |           |          |                             |           |            |          |         |
|                             |         |          |         |         |         |            |         | 0x0: 5 bits (default)                                                                                                                                                                         |                          |           |          |                             |           |            |          |         |
| 4                           |         | FEN      |         |         | R/W     |            | 0       | UART Enable FIFOs                                                                                                                                                                             |                          |           |          |                             |           |            |          |         |
|                             |         |          |         |         |         |            |         | If this mode                                                                                                                                                                                  |                          | to 1, tra | nsmit an | d receive                   | e FIFO b  | uffers are | e enable | d (FIFO |
|                             |         |          |         |         |         |            |         |                                                                                                                                                                                               |                          |           |          | disableo<br>egisters        | •         | cter moo   | de). The | FIFOs   |
| 3                           |         | STP2     |         |         | R/W     |            | 0       | UART Two Stop Bits Select                                                                                                                                                                     |                          |           |          |                             |           |            |          |         |
|                             |         |          |         |         |         |            |         |                                                                                                                                                                                               |                          |           |          | its are tr<br>eck for tv    |           |            |          |         |

least two frames (character periods). For normal use, this bit must be

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                                                                                                 |
|-----------|------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | EPS  | R/W  | 0     | UART Even Parity Select                                                                                                                                                                                                     |
|           |      |      |       | If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits.                                                 |
|           |      |      |       | When cleared to 0, then odd parity is performed, which checks for an odd number of 1s.                                                                                                                                      |
|           |      |      |       | This bit has no effect when parity is disabled by the $\ensuremath{\mathtt{PEN}}$ bit.                                                                                                                                      |
| 1         | PEN  | R/W  | 0     | UART Parity Enable                                                                                                                                                                                                          |
|           |      |      |       | If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.                                                                             |
| 0         | BRK  | R/W  | 0     | UART Send Break                                                                                                                                                                                                             |
|           |      |      |       | If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at |

cleared to 0.

# Register 8: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

#### UART Control (UARTCTL) UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x030 Type R/W, reset 0x0000.0300 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved Туре RO RO RO RO RO RO RO RO RO RO RO RO RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 RXE TXE LBE reserved SIRLP reserved RO RO RO RO RO R/W R/W R/W RO RO R/W RO RO RO Type 0 0 0 0 Reset 0 0 0 0 0 0 0 0 1 1 **Bit/Field** Name Reset Description Type 31:10 RO 0 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 9 RXE R/W 1 **UART Receive Enable** If this bit is set to 1, the receive section of the UART is enabled. When the UART is disabled in the middle of a receive, it completes the current character before stopping. Note: To enable reception, the UARTEN bit must also be set. 8 TXE R/W 1 **UART Transmit Enable**

If this bit is set to 1, the transmit section of the UART is enabled. When the UART is disabled in the middle of a transmission, it completes the current character before stopping.

Note: To enable transmission, the UARTEN bit must also be set.

UART Loop Back Enable

If this bit is set to 1, the UnTX path is fed through the UnRX path.

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

17

RO

0

1

SIREN

R/W

0

16

RO

0

0

UARTEN

R/W

0

7

6:3

LBE

reserved

R/W

RO

0

0

| Bit/Field | Name   | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|--------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | SIRLP  | R/W  | 0     | UART SIR Low Power Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           |        |      |       | This bit selects the IrDA encoding mode. If this bit is cleared to 0,<br>low-level bits are transmitted as an active High pulse with a width of<br>3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted<br>with a pulse width which is 3 times the period of the IrLPBaud16 input<br>signal, regardless of the selected bit rate. Setting this bit uses less power,<br>but might reduce transmission distances. See page 281 for more<br>information. |
| 1         | SIREN  | R/W  | 0     | UART SIR Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |        |      |       | If this bit is set to 1, the IrDA SIR block is enabled, and the UART will transmit and receive data using SIR protocol.                                                                                                                                                                                                                                                                                                                                                            |
| 0         | UARTEN | R/W  | 0     | UART Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |        |      |       | If this bit is set to 1, the UART is enabled. When the UART is disabled                                                                                                                                                                                                                                                                                                                                                                                                            |

If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current character before stopping. UART Interrupt FIFO Level Select (UARTIFLS)

# Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The **UARTIFLS** register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the **UARTRIS** register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x034 Type R/W, reset 0x0000.0012 31 29 28 16 30 27 26 25 24 23 22 21 20 19 18 17 reserved RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 10 6 2 11 9 8 7 5 4 3 0 RXIFLSEL TXIFLSEL reserved Туре RO RO RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 Bit/Field Description Name Type Reset 31:6 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. RXIFLSEL R/W UART Receive Interrupt FIFO Level Select 5:3 0x2 The trigger points for the receive interrupt are as follows: 000: RX FIFO ≥ 1/8 full 001: RX FIFO ≥ ¼ full 010: RX FIFO ≥ ½ full (default) 011: RX FIFO ≥ ¾ full 100: RX FIFO ≥ 7/8 full 101-111: Reserved TXIFLSEL R/W UART Transmit Interrupt FIFO Level Select 2.0 0x2 The trigger points for the transmit interrupt are as follows: 000: TX FIFO ≤ 1/8 full 001: TX FIFO ≤ ¼ full 010: TX FIFO  $\leq \frac{1}{2}$  full (default) 011: TX FIFO ≤ ¾ full 100: TX FIFO ≤ 7/8 full 101-111: Reserved

### Register 10: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

#### UART Interrupt Mask (UARTIM)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x038 Type R/W, reset 0x0000.0000

|       | 31   | 30 | 29                                                                                                                                                                                                                          | 28 | 27   | 26          | 25          | 24          | 23          | 22          | 21          | 20                       | 19       | 18         | 17        | 16         |
|-------|------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------|----------|------------|-----------|------------|
|       | 51   | 50 | 1 1                                                                                                                                                                                                                         | 20 | 21   | 20          | 2.5         | 1           | rved        |             | 21          | 20                       | 13       | 10         | 1         |            |
| Туре  | RO   | RO | RO                                                                                                                                                                                                                          | RO | RO   | RO          | RO          | RO          | RO          | RO          | RO          | RO                       | RO       | RO         | RO        | RO         |
| Reset | 0    | 0  | 0                                                                                                                                                                                                                           | 0  | 0    | 0           | 0           | 0           | 0           | 0           | 0           | 0                        | 0        | 0          | 0         | 0          |
| I     | 15   | 14 | 13                                                                                                                                                                                                                          | 12 | 11   | 10          | 9           | 8           | 7           | 6           | 5           | 4                        | 3        | 2          | 1         | 0          |
| Туре  | RO   | RO | RO                                                                                                                                                                                                                          | RO | RO   | OEIM<br>R/W | BEIM<br>R/W | PEIM<br>R/W | FEIM<br>R/W | RTIM<br>R/W | TXIM<br>R/W | RXIM<br>R/W              | RO       | RO         | RO        | RO         |
| Reset | 0    | 0  | 0                                                                                                                                                                                                                           | 0  | 0    | 0           | 0           | 0           | 0           | 0           | 0           | 0                        | 0        | 0          | 0         | 0          |
|       |      |    |                                                                                                                                                                                                                             |    | _    |             |             | _           |             |             |             |                          |          |            |           |            |
| Bit/F | ield |    | Name                                                                                                                                                                                                                        |    | Туре | F           | Reset       | Descr       | iption      |             |             |                          |          |            |           |            |
| 31:   | 11   | I  | reserved                                                                                                                                                                                                                    |    | RO   |             | 0           |             |             |             | 2           | e value o                |          |            | •         |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             | •           | •           |             | •           | cts, the v<br>fy-write o |          |            |           |            |
| 1(    | )    |    | OEIM       R/W       0       UART Overrun Error Interrupt Mask         On a read, the current mask for the OEIM interrupt is returned.       Setting this bit to 1 promotes the OEIM interrupt to the interrupt controller. |    |      |             |             |             |             |             |             |                          |          |            |           |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             |             |             |             |             |                          |          |            |           |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             | Settin      | g this bit  | to 1 pror   | notes th    | e OEIM ir                | nterrupt | to the int | errupt co | ontroller. |
| 9     |      |    | BEIM                                                                                                                                                                                                                        |    | R/W  |             | 0           | UART        | Break B     | Error Inte  | errupt M    | ask                      |          |            |           |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             | On a i      | read, the   | e current   | mask fo     | or the BE                | IM inter | rupt is re | eturned.  |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             | Settin      | g this bit  | to 1 pror   | notes th    | евелмir                  | nterrupt | to the int | errupt co | ontroller. |
| 8     |      |    | PEIM                                                                                                                                                                                                                        |    | R/W  |             | 0           | UART        | Parity E    | Error Inte  | errupt Ma   | ask                      |          |            |           |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             |             |             |             | ·           | or the PE                | IM inter | rupt is re | eturned.  |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             | Settin      | g this bit  | to 1 pror   | notes th    | e peimir                 | nterrupt | to the int | errupt co | ontroller. |
| 7     |      |    | FEIM                                                                                                                                                                                                                        |    | R/W  |             | 0           | UART        | Framin      | g Error l   | nterrupt    | Mask                     |          |            |           |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             |             |             | •           | •           | or the FE                | IM inter | rupt is re | eturned.  |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             |             |             |             |             | е FEIM ir                |          |            |           | ontroller. |
| 6     |      |    | RTIM                                                                                                                                                                                                                        |    | R/W  |             | 0           | UART        | Receiv      | e Time-(    | Out Inter   | rupt Mas                 | k        |            |           |            |
| ·     |      |    |                                                                                                                                                                                                                             |    |      |             | Ū           |             |             |             |             | or the RT                |          | rupt is re | eturned.  |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             |             |             |             |             | e RTIM ir                |          |            |           | ontroller. |
| 5     |      |    | ТХІМ                                                                                                                                                                                                                        |    | R/W  |             | 0           | UART        | Transm      | nit Interru | int Mask    | r                        | -        |            | -         |            |
| 0     |      |    | 17 (119)                                                                                                                                                                                                                    |    |      |             | v           |             |             |             |             | оr the тх                | IM inter | rupt is re | eturned   |            |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             |             | -           |             |             | e TXIM ir                |          | ·          |           | ontroller. |
|       |      |    |                                                                                                                                                                                                                             |    |      |             |             | e e tani    | 5 5         |             |             |                          |          |            |           |            |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | RXIM     | R/W  | 0     | UART Receive Interrupt Mask                                                                                                                                                                   |
|           |          |      |       | On a read, the current mask for the RXIM interrupt is returned.                                                                                                                               |
|           |          |      |       | Setting this bit to 1 promotes the $\ensuremath{\mathtt{RXIM}}$ interrupt to the interrupt controller.                                                                                        |
| 3:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

### Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

#### UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x03C Type RO, reset 0x0000.000F

| _             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21         | 20                                    | 19        | 18        | 17        | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|------------|---------------------------------------|-----------|-----------|-----------|---------|
|               |         |         |          |         |         |         |         | rese    | rved        |            |            |                                       |           |           |           |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0    | RO<br>0                               | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5          | 4                                     | 3         | 2         | 1         | 0       |
|               |         |         | reserved |         |         | OERIS   | BERIS   | PERIS   | FERIS       | RTRIS      | TXRIS      | RXRIS                                 |           | rese      | rved      |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0    | RO<br>0                               | RO<br>1   | RO<br>1   | RO<br>1   | RO<br>1 |
| Bit/Fi        | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption      |            |            |                                       |           |           |           |         |
| 31:′          | 11      |         | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | e produ    | e value c<br>cts, the v<br>fy-write c | alue of a | a reserv  |           |         |
| 10            | )       |         | OERIS    |         | RO      |         | 0       | UART    | Overru      | n Error F  | Raw Inte   | rrupt Sta                             | tus       |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p | orior to m                            | nasking)  | of this i | nterrupt. |         |
| 9             |         |         | BERIS    |         | RO      |         | 0       | UART    | Break B     | Error Rav  | w Interru  | ipt Statu                             | S         |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p | orior to m                            | nasking)  | of this i | nterrupt. |         |
| 8             |         |         | PERIS    |         | RO      |         | 0       | UART    | Parity E    | Error Rav  | w Interru  | pt Status                             | 6         |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p | orior to m                            | nasking)  | of this i | nterrupt. |         |
| 7             |         |         | FERIS    |         | RO      |         | 0       | UART    | Framin      | g Error F  | Raw Inte   | rrupt Sta                             | tus       |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p | orior to m                            | nasking)  | of this i | nterrupt. |         |
| 6             |         |         | RTRIS    |         | RO      |         | 0       |         |             |            |            | Interrup                              |           |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p | orior to m                            | nasking)  | of this i | nterrupt. |         |
| 5             |         |         | TXRIS    |         | RO      |         | 0       |         |             | hit Raw I  | •          |                                       |           |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p | orior to m                            | nasking)  | of this i | nterrupt. |         |
| 4             |         |         | RXRIS    |         | RO      |         | 0       | UART    | Receiv      | e Raw Ir   | nterrupt   | Status                                |           |           |           |         |
|               |         |         |          |         |         |         |         | Gives   | the raw     | interrup   | t state (p | orior to m                            | nasking)  | of this i | nterrupt. |         |
| 3:0           | )       |         | reserved |         | RO      |         | 0xF     | compa   | atibility v | vith futur | e produ    | e value c<br>cts, the v<br>fy-write c | alue of a | a reserv  | •         |         |

### Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

#### UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x040 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24            | 23                      | 22                       | 21         | 20                                    | 19                      | 18                    | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------------|-------------------------|--------------------------|------------|---------------------------------------|-------------------------|-----------------------|---------|---------|
|               |         | 1       |          |         |         |         |         | rese          | rved                    |                          |            |                                       |                         |                       |         |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0       | RO<br>0                 | RO<br>0                  | RO<br>0    | RO<br>0                               | RO<br>0                 | RO<br>0               | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8             | 7                       | 6                        | 5          | 4                                     | 3                       | 2                     | 1       | 0       |
| ſ             |         | 1       | reserved |         |         | OEMIS   | BEMIS   | PEMIS         | FEMIS                   | RTMIS                    | TXMIS      | RXMIS                                 |                         |                       | rved    |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0       | RO<br>0                 | RO<br>0                  | RO<br>0    | RO<br>0                               | RO<br>0                 | RO<br>0               | RO<br>0 | RO<br>0 |
| Bit/Fi        | eld     |         | Name     |         | Туре    | F       | Reset   | Descr         | iption                  |                          |            |                                       |                         |                       |         |         |
| 31:1          | 11      | I       | reserved |         | RO      |         | 0       | comp          | atibility v             | vith futur               | e produ    | e value o<br>cts, the v<br>fy-write o | alue of a               | a reserv              | •       |         |
| 10            | )       |         | OEMIS    |         | RO      |         | 0       | UART          | - Overrui               | n Error N                | /lasked I  | nterrupt                              | Status                  |                       |         |         |
|               |         |         |          |         |         |         |         | Gives         | the mas                 | ked inte                 | errupt sta | ate of this                           | s interru               | ot.                   |         |         |
| 9             |         |         | BEMIS    |         | RO      |         | 0       | UART          | Break E                 | Error Ma                 | sked Int   | errupt St                             | atus                    |                       |         |         |
|               |         |         |          |         |         |         |         | Gives         | the mas                 | ked inte                 | errupt sta | ate of this                           | s interru               | ot.                   |         |         |
| 8             |         |         | PEMIS    |         | RO      |         | 0       | UART          | Parity E                | Error Ma                 | sked Inte  | errupt St                             | atus                    |                       |         |         |
|               |         |         |          |         |         |         |         | Gives         | the mas                 | sked inte                | errupt sta | ate of this                           | s interru               | ot.                   |         |         |
| 7             |         |         | FEMIS    |         | RO      |         | 0       | UART          | Framin                  | g Error N                | Aasked I   | nterrupt                              | Status                  |                       |         |         |
|               |         |         |          |         |         |         |         | Gives         | the mas                 | -<br>sked inte           | errupt sta | te of this                            | s interru               | ot.                   |         |         |
| 6             |         |         | RTMIS    |         | RO      |         | 0       | UART          | Receive                 | e Time-C                 | Dut Masl   | ked Inter                             | rupt Sta                | tus                   |         |         |
|               |         |         |          |         |         |         |         |               |                         |                          |            | ate of this                           | •                       |                       |         |         |
| 5             |         |         | TXMIS    |         | RO      |         | 0       | UART          | Transm                  | it Maske                 | ed Interr  | upt Statu                             | IS                      |                       |         |         |
| -             |         |         |          |         |         |         | -       |               |                         |                          |            | ate of this                           |                         | ot.                   |         |         |
| 4             |         |         | RXMIS    |         | RO      |         | 0       |               |                         |                          |            | ıpt Statu                             |                         |                       |         |         |
| -             |         |         |          |         |         |         | č       |               |                         |                          |            | ate of this                           |                         | ot.                   |         |         |
| 3:0           | )       | I       | reserved |         | RO      |         | 0       | Softw<br>comp | are shou<br>atibility v | ıld not re<br>vith futur | ely on the | e value o<br>cts, the v<br>fy-write o | of a rese<br>value of a | rved bit.<br>a reserv | •       |         |

# Register 13: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

#### UART Interrupt Clear (UARTICR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x044 Type W1C, reset 0x0000.0000

|               | 31      | 30      | 29                                                                                                | 28      | 27      | 26       | 25                             | 24       | 23          | 22         | 21        | 20                                    | 19        | 18       | 17      | 16      |  |  |  |  |
|---------------|---------|---------|---------------------------------------------------------------------------------------------------|---------|---------|----------|--------------------------------|----------|-------------|------------|-----------|---------------------------------------|-----------|----------|---------|---------|--|--|--|--|
|               | l       |         |                                                                                                   |         |         |          |                                | rese     | rved        |            |           |                                       |           |          | 1       |         |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                                                                                           | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                        | RO<br>0  | RO<br>0     | RO<br>0    | RO<br>0   | RO<br>0                               | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 |  |  |  |  |
| _             | 15      | 14      | 13                                                                                                | 12      | 11      | 10       | 9                              | 8        | 7           | 6          | 5         | 4                                     | 3         | 2        | 1       | 0       |  |  |  |  |
|               | l       |         | reserved                                                                                          |         |         | OEIC     | BEIC                           | PEIC     | FEIC        | RTIC       | TXIC      | RXIC                                  |           | rese     | erved   | •       |  |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                                                                                           | RO<br>0 | RO<br>0 | W1C<br>0 | W1C<br>0                       | W1C<br>0 | W1C<br>0    | W1C<br>0   | W1C<br>0  | W1C<br>0                              | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 |  |  |  |  |
| Bit/Fi        | eld     |         | Name                                                                                              |         | Туре    | F        | Reset                          | Descr    | iption      |            |           |                                       |           |          |         |         |  |  |  |  |
| 31:'          | 11      |         | reserved                                                                                          |         | RO      |          | 0                              | compa    | atibility v | ith futur  | e produ   | e value o<br>cts, the v<br>fy-write o | alue of a | a reserv |         |         |  |  |  |  |
| 10            | )       |         | OEIC       W1C       0       Overrun Error Interrupt Clear         0: No effect on the interrupt. |         |         |          |                                |          |             |            |           |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                |          |             |            |           |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 1: Cle   | ars inter   | rupt.      |           |                                       |           |          |         |         |  |  |  |  |
| 9             |         |         | BEIC                                                                                              |         | W1C     |          | 0: No effect on the interrupt. |          |             |            |           |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 0: No    | effect or   | n the inte | errupt.   |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 1: Cle   | ars inter   | rupt.      |           |                                       |           |          |         |         |  |  |  |  |
| 8             |         |         | PEIC                                                                                              |         | W1C     |          | 0                              | Parity   | Error In    | terrupt C  | lear      |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 0: No    | effect or   | n the inte | errupt.   |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 1: Cle   | ars inter   | rupt.      |           |                                       |           |          |         |         |  |  |  |  |
| 7             |         |         | FEIC                                                                                              |         | W1C     |          | 0                              | Frami    | ng Error    | Interrup   | t Clear   |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 0: No    | effect or   | the inte   | errupt.   |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 1: Cle   | ars inter   | rupt.      |           |                                       |           |          |         |         |  |  |  |  |
| 6             |         |         | RTIC                                                                                              |         | W1C     |          | 0                              | Recei    | ve Time     | -Out Inte  | errupt Cl | ear                                   |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 0: No    | effect or   | n the inte | errupt.   |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 1: Cle   | ars inter   | rupt.      |           |                                       |           |          |         |         |  |  |  |  |
| 5             |         |         | TXIC                                                                                              |         | W1C     |          | 0                              | Trans    | mit Inter   | rupt Clea  | ar        |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 0: No    | effect or   | the inte   | errupt.   |                                       |           |          |         |         |  |  |  |  |
|               |         |         |                                                                                                   |         |         |          |                                | 1: Cle   | ars inter   | rupt.      |           |                                       |           |          |         |         |  |  |  |  |

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | RXIC     | W1C  | 0     | Receive Interrupt Clear                                                                                                                                                                       |
|           |          |      |       | 0: No effect on the interrupt.                                                                                                                                                                |
|           |          |      |       | 1: Clears interrupt.                                                                                                                                                                          |
| 3:0       | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

### Register 14: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD0 Type RO, reset 0x0000.0000

| -             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22        | 21         | 20         | 19       | 18         | 17       | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|-----------|------------|------------|----------|------------|----------|---------|
|               |         | 1       |          |         |         |         | •       | rese    | rved                                 |           |            |            |          |            |          |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6         | 5          | 4          | 3        | 2          | 1        | 0       |
|               |         | 1       | , ,      | rese    | rved    |         | 1       | 1       |                                      |           |            | PI         | D4       | r          | r        |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
| Reset         | 0       | U       | 0        | U       | U       | 0       | U       | U       | 0                                    | 0         | 0          | 0          | 0        | 0          | 0        | 0       |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |           |            |            |          |            |          |         |
| 31:           | :8      | l       | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | ith futur | e produc   | cts, the v | alue of  | a reserv   |          |         |
| 7:0           | 0       |         | PID4     |         | RO      |         | 0x00    | UART    | Periphe                              | eral ID R | egister[7  | 7:0]       |          |            |          |         |
|               |         |         |          |         |         |         |         | Can b   | e used b                             | by softwa | are to ide | entify the | e preser | ice of thi | s periph | eral.   |

### Register 15: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD4 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24      | 23          | 22         | 21                                | 20         | 19       | 18        | 17        | 16               |
|---------------|---------|---------|----------|---------|----------|---------|---------|---------|-------------|------------|-----------------------------------|------------|----------|-----------|-----------|------------------|
|               |         |         |          |         | , ,<br>, |         | 1       | rese    | rved        |            |                                   |            |          | 1         | 1         |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                           | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0          |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8       | 7           | 6          | 5                                 | 4          | 3        | 2         | 1         | 0                |
|               |         | 1       | 1        | rese    | rved     | -       | T       | r       |             |            | 1                                 | PI         |          | Î         | 1         |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                           | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0          |
| Bit/F         | ield    |         | Name     |         | Туре     | I       | Reset   | Descr   | iption      |            |                                   |            |          |           |           |                  |
| 31            | :8      |         | reserved |         | RO       |         | 0       | compa   | atibility v | vith futur | ely on the<br>e produc<br>ad-modi | cts, the v | alue of  | a reserv  |           | vide<br>nould be |
| 7:            | 0       |         | PID5     |         | RO       |         | 0x00    |         |             |            | egister[*<br>are to ide           | -          | e preser | nce of th | is periph | neral.           |

June 26, 2007

### Register 16: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD8 Type RO, reset 0x0000.0000

| -             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21         | 20         | 19       | 18         | 17        | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|------------|------------|----------|------------|-----------|---------|
|               |         | •       |          |         |         |         | •       | rese    | erved                                |            |            |            | 1        | 1          | 1         |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5          | 4          | 3        | 2          | 1         | 0       |
| [             |         | 1       | 1 1      | rese    | rved    |         | 1       | 1       |                                      |            | r – – – –  | PI         | D6       | r          | I         |         |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO                                   | RO         | RO         | RO         | RO       | RO         | RO        | RO      |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                    | 0          | 0          | 0          | 0        | 0          | 0         | 0       |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |            |            |          |            |           |         |
| 31:           | :8      | ļ       | reserved |         | RO      |         | 0       | comp    | are shou<br>atibility w<br>rved acro | vith futur | e produc   | cts, the v | alue of  | a reserv   |           |         |
| 7:0           | 0       |         | PID6     |         | RO      |         | 0x00    | UART    | Periphe                              | eral ID R  | egister[2  | 23:16]     |          |            |           |         |
|               |         |         |          |         |         |         |         | Can b   | e used b                             | by softwa  | are to ide | entify the | e preser | ice of thi | is periph | eral.   |

### Register 17: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFDC Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24      | 23          | 22         | 21                                  | 20         | 19       | 18         | 17        | 16      |
|---------------|---------|---------|----------|---------|----------|---------|---------|---------|-------------|------------|-------------------------------------|------------|----------|------------|-----------|---------|
|               |         | 1       | 1        |         | , ,<br>, |         | 1       | rese    | rved        |            |                                     |            |          |            | 1         | •       |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                             | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8       | 7           | 6          | 5                                   | 4          | 3        | 2          | 1         | 0       |
| [             |         | 1       | Ì        | rese    | rved     |         | Î       | I       |             | 1          | 1                                   | PI         | D7       |            | I         |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                             | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0 |
| Bit/F         | ield    |         | Name     |         | Туре     | I       | Reset   | Descr   | iption      |            |                                     |            |          |            |           |         |
| 31:           | :8      |         | reserved |         | RO       |         | 0       | compa   | atibility w | /ith futur | ely on the<br>re produc<br>ad-modif | cts, the v | alue of  | a reserv   | •         |         |
| 7:0           | 0       |         | PID7     |         | RO       |         | 0x00    |         |             |            | egister[3<br>are to ide             | -          | e preser | ice of thi | is periph | eral.   |

### Register 18: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE0 Type RO, reset 0x0000.0011

| -                | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21         | 20         | 19       | 18         | 17       | 16      |
|------------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|------------|------------|----------|------------|----------|---------|
|                  |         |         |          |         | · ·     |         | •       | rese    | erved                                |            |            |            |          | •          |          |         |
| Type<br>Reset    | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
|                  | 15      | 14      | 13       | 12      | - 11    | 10      | 9       | 8       | 7                                    | 6          | 5          | 4          | 3        | 2          | 1        | 0       |
| [                | 10      |         | · · · ·  |         | rved    | 10      | 1       | 1       |                                      |            |            | PI         |          | -          | · · ·    |         |
| <b>І</b><br>Туре | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO                                   | RO         | RO         | RO         | RO       | RO         | RO       | RO      |
| Reset            | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                    | 0          | 0          | 1          | 0        | 0          | 0        | 1       |
|                  |         |         |          |         |         |         |         |         |                                      |            |            |            |          |            |          |         |
| Bit/F            | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |            |            |          |            |          |         |
| 31:              | :8      | I       | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acre | vith futur | e produc   | cts, the v | alue of  | a reserv   | •        |         |
| 7:0              | 0       |         | PID0     |         | RO      |         | 0x11    | UART    | Periphe                              | eral ID R  | egister[7  | 7:0]       |          |            |          |         |
|                  |         |         |          |         |         |         |         | Can b   | e used b                             | by softwa  | are to ide | entify the | e preser | ice of thi | s periph | eral.   |

### Register 19: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE4 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24      | 23          | 22         | 21                                  | 20         | 19       | 18         | 17        | 16               |
|---------------|---------|---------|----------|---------|----------|---------|---------|---------|-------------|------------|-------------------------------------|------------|----------|------------|-----------|------------------|
|               |         | 1       | 1        |         | , ,<br>, |         | 1       | rese    | rved        |            |                                     |            |          |            | 1         |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                             | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0          |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8       | 7           | 6          | 5                                   | 4          | 3        | 2          | 1         | 0                |
| [             |         | 1       | 1        | rese    | rved     |         | I       | 1       |             | l .        | I I                                 | PI         | D1       | r          | 1         |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                             | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0          |
| Bit/F         | ield    |         | Name     |         | Туре     | F       | Reset   | Descr   | iption      |            |                                     |            |          |            |           |                  |
| 31:           | :8      |         | reserved |         | RO       |         | 0       | compa   | atibility v | vith futur | ely on the<br>e produc<br>ad-modi   | cts, the v | alue of  | a reserv   | •         | vide<br>nould be |
| 7:0           | 0       |         | PID1     |         | RO       |         | 0x00    |         |             |            | egister[ <sup>*</sup><br>are to ide | -          | e preser | ice of thi | is periph | neral.           |

### Register 20: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE8 Type RO, reset 0x0000.0018

| -             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21         | 20         | 19       | 18         | 17       | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|------------|------------|----------|------------|----------|---------|
|               |         | 1       |          |         |         |         | 1       | rese    | erved                                |            |            |            |          | 1          |          |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5          | 4          | 3        | 2          | 1        | 0       |
| [             |         | 1       | , ,      | rese    | rved    |         | I       | 1       |                                      | <b>i</b> 1 | <b></b> 1  | PI         | D2       | r          | 1        |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>1    | RO<br>1  | RO<br>0    | RO<br>0  | RO<br>0 |
|               |         |         |          |         |         |         |         |         |                                      |            |            |            |          |            |          |         |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |            |            |          |            |          |         |
| 31:           | :8      | I       | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | vith futur | e produc   | cts, the v | alue of  | a reserv   | •        |         |
| 7:0           | 0       |         | PID2     |         | RO      |         | 0x18    | UART    | Periphe                              | eral ID R  | egister[2  | 23:16]     |          |            |          |         |
|               |         |         |          |         |         |         |         | Can b   | e used b                             | by softwa  | are to ide | entify the | e preser | ice of thi | s periph | eral.   |

### Register 21: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFEC Type RO, reset 0x0000.0001

| -                | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21         | 20         | 19       | 18         | 17       | 16      |
|------------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|------------|------------|----------|------------|----------|---------|
|                  |         |         |          |         |         |         |         | rese    | rved                                 |            |            |            |          | •          |          |         |
| Type<br>Reset    | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0 |
|                  | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5          | 4          | 3        | 2          | 1        | 0       |
| [                | 10      |         |          |         | rved    | 10      |         | 1       |                                      |            |            | Pli        |          | -          | · · ·    |         |
| <b>І</b><br>Туре | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO                                   | RO         | RO         | RO         | RO       | RO         | RO       | RO      |
| Reset            | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                    | 0          | 0          | 0          | 0        | 0          | 0        | 1       |
|                  |         |         |          |         |         |         |         |         |                                      |            |            |            |          |            |          |         |
| Bit/F            | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |            |            |          |            |          |         |
| 31:              | :8      | I       | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acre | /ith futur | e produc   | cts, the v | alue of  | a reserv   | •        |         |
| 7:0              | 0       |         | PID3     |         | RO      |         | 0x01    | UART    | Periphe                              | eral ID R  | egister[3  | 31:24]     |          |            |          |         |
|                  |         |         |          |         |         |         |         | Can b   | e used b                             | by softwa  | are to ide | entify the | e preser | ice of thi | s periph | eral.   |

### Register 22: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART PrimeCell Identification 0 (UARTPCelIID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF0 Type RO, reset 0x0000.000D

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24      | 23                                   | 22         | 21         | 20         | 19       | 18        | 17       | 16      |
|---------------|---------|---------|----------|---------|----------|---------|---------|---------|--------------------------------------|------------|------------|------------|----------|-----------|----------|---------|
|               |         | 1       |          |         | 1 I<br>1 |         | 1       | rese    | erved                                |            |            |            | 1        |           |          |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8       | 7                                    | 6          | 5          | 4          | 3        | 2         | 1        | 0       |
|               |         | 1       | 1 I      | rese    | rved     |         | 1       | 1       |                                      |            | <b>I</b> 1 | CI         | D0       | 1         | 1        |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>1  | RO<br>1   | RO<br>0  | RO<br>1 |
|               |         |         |          |         |          |         |         |         |                                      |            |            |            |          |           |          |         |
| Bit/F         | ield    |         | Name     |         | Туре     | F       | Reset   | Descr   | iption                               |            |            |            |          |           |          |         |
| 31:           | :8      |         | reserved |         | RO       |         | 0       | comp    | are shou<br>atibility w<br>rved acro | vith futur | e produ    | cts, the v | alue of  | a reserv  | •        |         |
| 7:0           | 0       |         | CID0     |         | RO       | (       | 0x0D    | UART    | PrimeC                               | ell ID Re  | egister[7  | :0]        |          |           |          |         |
|               |         |         |          |         |          |         |         | Provid  | des softw                            | vare a st  | andard     | cross-pe   | ripheral | identific | ation sy | stem.   |

June 26, 2007

### Register 23: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF4 Type RO, reset 0x0000.00F0

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21                   | 20                                    | 19       | 18        | 17       | 16               |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|----------------------|---------------------------------------|----------|-----------|----------|------------------|
|               |         | 1       | 1        |         |         |         | 1       | rese    | rved        | 1          | 1                    |                                       |          |           |          |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0              | RO<br>0                               | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0          |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5                    | 4                                     | 3        | 2         | 1        | 0                |
|               |         | 1       | 1        |         | rved    | 10      | 1       | 1       |             | , <u> </u> | 1                    | CI                                    |          |           |          |                  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>1     | RO<br>1    | RO<br>1              | RO<br>1                               | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0          |
| Bit/F         | ield    |         | Name     |         | Туре    | I       | Reset   | Descr   | iption      |            |                      |                                       |          |           |          |                  |
| 31:           | :8      |         | reserved |         | RO      |         | 0       | compa   | atibility v | vith futur | e produ              | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv  | •        | vide<br>nould be |
| 7:            | 0       |         | CID1     |         | RO      |         | 0xF0    |         |             |            | egister[1<br>tandard | 5:8]<br>cross-pe                      | ripheral | identific | ation sy | stem.            |

June 26, 2007

### Register 24: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART PrimeCell Identification 2 (UARTPCelIID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF8 Type RO, reset 0x0000.0005

| -             | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21          | 20         | 19       | 18        | 17       | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|-------------|------------|----------|-----------|----------|---------|
|               |         | •       |          |         |         |         | •       | rese    | erved                                |            |             |            |          |           |          |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5           | 4          | 3        | 2         | 1        | 0       |
| [             |         | 1       | r 1      | rese    | rved    |         | 1       | 1       |                                      |            | r – – – – – | CI         | D2       | l .       | r        |         |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO      | RO      | RO                                   | RO         | RO          | RO         | RO       | RO<br>1   | RO       | RO      |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0       | 0                                    | 0          | 0           | 0          | 0        | 1         | 0        | 1       |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |             |            |          |           |          |         |
| 31:           | :8      | I       | reserved |         | RO      |         | 0       | comp    | are shou<br>atibility w<br>rved acro | vith futur | e produc    | cts, the v | alue of  | a reserv  |          |         |
| 7:0           | 0       |         | CID2     |         | RO      |         | 0x05    | UART    | PrimeC                               | ell ID Re  | egister[2   | 3:16]      |          |           |          |         |
|               |         |         |          |         |         |         |         | Provid  | des softw                            | vare a st  | andard o    | cross-pe   | ripheral | identific | ation sy | stem.   |

### Register 25: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

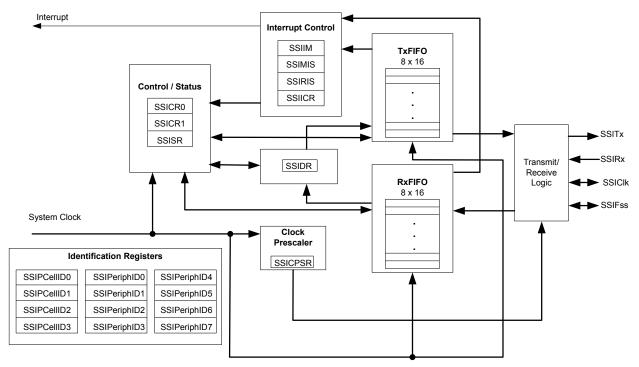
The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

#### UART PrimeCell Identification 3 (UARTPCelIID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFFC Type RO, reset 0x0000.00B1

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21        | 20         | 19       | 18        | 17       | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|-----------|------------|----------|-----------|----------|---------|
|               |         |         |          |         |         |         |         | rese    | erved                                |            |           |            |          | •         |          | 1       |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>0 |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5         | 4          | 3        | 2         | 1        | 0       |
|               |         | 1       | r r      | rese    | rved    |         | 1       | T       |                                      | l .        | l I       | CI         | D3       | I         | ſ        |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>1                              | RO<br>0    | RO<br>1   | RO<br>1    | RO<br>0  | RO<br>0   | RO<br>0  | RO<br>1 |
|               |         |         |          |         |         |         |         |         |                                      |            |           |            |          |           |          |         |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |           |            |          |           |          |         |
| 31            | :8      | I       | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | vith futur | e produ   | cts, the v | alue of  | a reserv  | •        |         |
| 7:            | 0       |         | CID3     |         | RO      |         | 0xB1    | UART    | PrimeC                               | ell ID Re  | egister[3 | 1:24]      |          |           |          |         |
|               |         |         |          |         |         |         |         | Provid  | des softw                            | vare a st  | andard    | cross-pe   | ripheral | identific | ation sy | stem.   |

# **13** Synchronous Serial Interface (SSI)


The Stellaris<sup>®</sup> Synchronous Serial Interface (SSI) is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

The Stellaris<sup>®</sup> SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

# 13.1 Block Diagram

#### Figure 13-1. SSI Module Block Diagram



# 13.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with

internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

#### 13.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the 25-MHz input clock. The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale** (**SSICPSR**) register (see page 324). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0** (SSICR0) register (see page 319).

The frequency of the output clock SSIClk is defined by:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
```

Note that although the SSIClk transmit clock can theoretically be 12.5 MHz, the module may not be able to operate at that speed. For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Synchronous Serial Interface (SSI)" on page 453 to view SSI timing parameters.

#### 13.2.2 FIFO Operation

#### 13.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 322), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

#### 13.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

#### 13.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service
- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask** (**SSIIM**) register (see page 325). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 326 and page 327, respectively).

#### 13.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

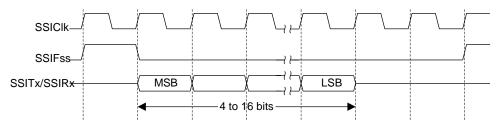
For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

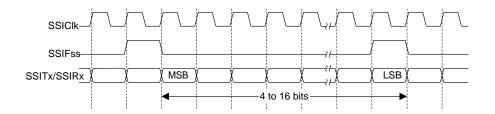
For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

#### 13.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 13-2 on page 310 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.





Figure 13-2. TI Synchronous Serial Frame Format (Single Transfer)

In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIC1k. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIC1k after the LSB has been latched.

Figure 13-3 on page 310 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

#### Figure 13-3. TI Synchronous Serial Frame Format (Continuous Transfer)



#### 13.2.4.2 Freescale SPI Frame Format

The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

#### SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.

#### SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

### 13.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 13-4 on page 311 and Figure 13-5 on page 311.

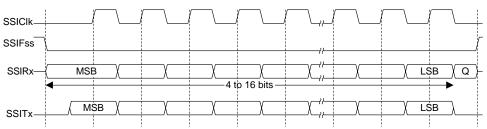
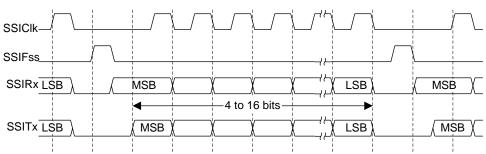




Figure 13-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

Note: Q is undefined.





In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSICIk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFSS signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its

serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFSS pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFSS pin is returned to its idle state one SSICIk period after the last bit has been captured.

#### 13.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 13-6 on page 312, which covers both single and continuous transfers.

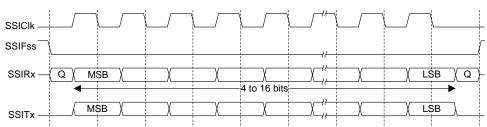


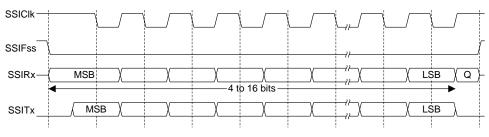

Figure 13-6. Freescale SPI Frame Format with SPO=0 and SPH=1

Note: Q is undefined.

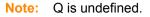
In this configuration, during idle periods:

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

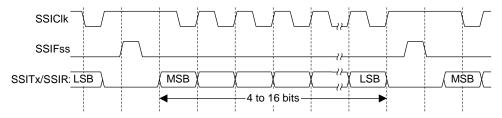
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.


Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.

In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.


For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

#### 13.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0


Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 13-7 on page 313 and Figure 13-8 on page 313.



#### Figure 13-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0



#### Figure 13-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0



In this configuration, during idle periods:

- SSICIK is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSICIk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIC1k master clock pin becomes Low after one further half SSIC1k period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIC1k signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

### 13.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 13-9 on page 314, which covers both single and continuous transfers.

| SSICIk |                |   |   |              |   |   |                   |
|--------|----------------|---|---|--------------|---|---|-------------------|
| SSIFss |                |   |   |              | , |   | ſ                 |
| SSIRx— | (Q) MSB )<br>◀ | X | X | 4 to 16 bits |   | χ | <u>(LSB</u> )(Q)- |
| SSITx  | MSB (          | X | X | X            |   | χ | LSB )             |

Figure 13-9. Freescale SPI Frame Format with SPO=1 and SPH=1

#### Note: Q is undefined.

In this configuration, during idle periods:

- SSICIK is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIC1k pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.

After all bits have been transferred, in the case of a single word transmission, the SSIFSS line is returned to its idle high state one SSIClk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

#### 13.2.4.7 MICROWIRE Frame Format

Figure 13-10 on page 315 shows the MICROWIRE frame format, again for a single frame. Figure 13-11 on page 316 shows the same format when back-to-back frames are transmitted.

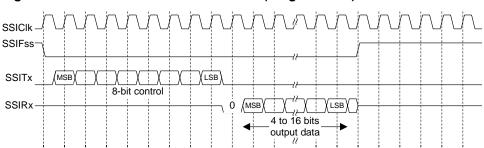
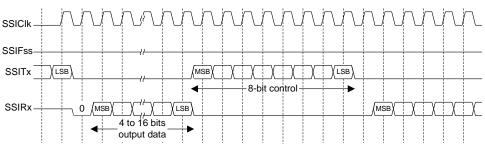



Figure 13-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

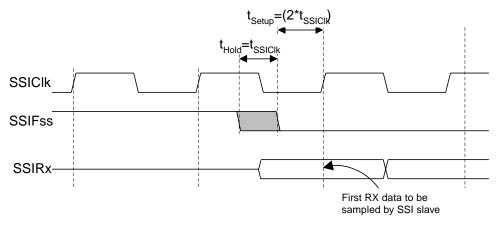

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIC1k after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIC1k, after the LSB of the frame has been latched into the SSI.






In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 13-12 on page 316 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.





# **13.3** Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
  - a. For master operations, set the **SSICR1** register to 0x0000.0000.
  - b. For slave mode (output enabled), set the **SSICR1** register to 0x0000.0004.
  - c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.
- 3. Configure the clock prescale divisor by writing the SSICPSR register.

- 4. Write the **SSICR0** register with the following configuration:
  - Serial clock rate (SCR)
  - Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
  - The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
  - The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled.
- 2. Write the **SSICR1** register with a value of 0x0000.0000.
- 3. Write the **SSICPSR** register with a value of 0x0000.0002.
- 4. Write the **SSICR0** register with a value of 0x0000.09C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

### 13.4 Register Map

Table 13-1 on page 317 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

- SSI0: 0x4000.8000
- Note: The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control registers are reprogrammed.

Table 13-1. SSI Register Map

| Offset | Name   | Туре | Reset       | Description   | See<br>page |
|--------|--------|------|-------------|---------------|-------------|
| 0x000  | SSICR0 | R/W  | 0x0000.0000 | SSI Control 0 | 319         |

| Offset | Name         | Туре | Reset       | Description                     | See<br>page |
|--------|--------------|------|-------------|---------------------------------|-------------|
| 0x004  | SSICR1       | R/W  | 0x0000.0000 | SSI Control 1                   | 321         |
| 0x008  | SSIDR        | R/W  | 0x0000.0000 | SSI Data                        | 322         |
| 0x00C  | SSISR        | RO   | 0x0000.0003 | SSI Status                      | 323         |
| 0x010  | SSICPSR      | R/W  | 0x0000.0000 | SSI Clock Prescale              | 324         |
| 0x014  | SSIIM        | R/W  | 0x0000.0000 | SSI Interrupt Mask              | 325         |
| 0x018  | SSIRIS       | RO   | 0x0000.0008 | SSI Raw Interrupt Status        | 326         |
| 0x01C  | SSIMIS       | RO   | 0x0000.0000 | SSI Masked Interrupt Status     | 327         |
| 0x020  | SSIICR       | W1C  | 0x0000.0000 | SSI Interrupt Clear             | 328         |
| 0xFD0  | SSIPeriphID4 | RO   | 0x0000.0000 | SSI Peripheral Identification 4 | 329         |
| 0xFD4  | SSIPeriphID5 | RO   | 0x0000.0000 | SSI Peripheral Identification 5 | 330         |
| 0xFD8  | SSIPeriphID6 | RO   | 0x0000.0000 | SSI Peripheral Identification 6 | 331         |
| 0xFDC  | SSIPeriphID7 | RO   | 0x0000.0000 | SSI Peripheral Identification 7 | 332         |
| 0xFE0  | SSIPeriphID0 | RO   | 0x0000.0022 | SSI Peripheral Identification 0 | 333         |
| 0xFE4  | SSIPeriphID1 | RO   | 0x0000.0000 | SSI Peripheral Identification 1 | 334         |
| 0xFE8  | SSIPeriphID2 | RO   | 0x0000.0018 | SSI Peripheral Identification 2 | 335         |
| 0xFEC  | SSIPeriphID3 | RO   | 0x0000.0001 | SSI Peripheral Identification 3 | 336         |
| 0xFF0  | SSIPCellID0  | RO   | 0x0000.000D | SSI PrimeCell Identification 0  | 337         |
| 0xFF4  | SSIPCelIID1  | RO   | 0x0000.00F0 | SSI PrimeCell Identification 1  | 338         |
| 0xFF8  | SSIPCellID2  | RO   | 0x0000.0005 | SSI PrimeCell Identification 2  | 339         |
| 0xFFC  | SSIPCellID3  | RO   | 0x0000.00B1 | SSI PrimeCell Identification 3  | 340         |

# 13.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

### Register 1: SSI Control 0 (SSICR0), offset 0x000

**SSICR0** is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

| SSI Co<br>SSI0 bas<br>Offset 0x | e: 0x40<br>000 | 00.80 | 000      |          |          |          |          |    |          |                   |                                              |            |           |                |            |            |           |           |
|---------------------------------|----------------|-------|----------|----------|----------|----------|----------|----|----------|-------------------|----------------------------------------------|------------|-----------|----------------|------------|------------|-----------|-----------|
| Type R/V                        | 31 v, reset    | 0000  | 30       | 29       | 28       | 27       | 26       |    | 25       | 24                | 23                                           | 22         | 21        | 20             | 19         | 18         | 17        | 16        |
|                                 | 51             | 1     | 50       |          | 20       | 1        | 1        | 1  | 25       | 1                 | erved                                        | 1          | 1         | 1              |            | 10         | 1         | 10        |
| Туре                            | RO             |       | RO       | RO       | RO       | RO       | RC       | )  | RO       | RO                | RO                                           | RO         | RO        | RO             | RO         | RO         | RO        | RO        |
| Reset                           | 0              |       | 0        | 0        | 0        | 0        | 0        | •  | 0        | 0                 | 0                                            | 0          | 0         | 0              | 0          | 0          | 0         | 0         |
|                                 | 15             |       | 14       | 13       | 12       | 11       | 10       |    | 9        | 8                 | 7                                            | 6          | 5         | 4              | 3          | 2          | 1         | 0         |
|                                 |                | 1     |          | 1 1      | :        | SCR      | 1        | T  |          | 1                 | SPH                                          | SPO        | F         | <b>I</b><br>RF |            | D          | I<br>SS   | · _ ]     |
| Type<br>Reset                   | R/W<br>0       | I     | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/V<br>0 | V  | R/W<br>0 | R/W<br>0          | R/W<br>0                                     | R/W<br>0   | R/W<br>0  | R/W<br>0       | R/W<br>0   | R/W<br>0   | R/W<br>0  | R/W<br>0  |
| Bit/F                           | ield           |       |          | Name     |          | Тур      | be       | Re | eset     | Desc              | ription                                      |            |           |                |            |            |           |           |
| 31:                             | 16             |       | I        | reserved |          | R        | C        |    | 0        | comp              | vare shou<br>atibility v<br>erved acr        | vith futur | e produ   | cts, the v     | alue of a  | a reserv   |           |           |
| 15                              | :8             |       |          | SCR      |          | R/       | N        |    | 0        | SSI S             | Serial Clo                                   | ck Rate    |           |                |            |            |           |           |
|                                 |                |       |          |          |          |          |          |    |          |                   | alue SCE<br>SI. The b                        |            | -         | erate the      | transmit   | and re     | ceive bit | t rate of |
|                                 |                |       |          |          |          |          |          |    |          | BR=F              | SSIClk                                       | /(CPSD     | VSR *     | (1 + S         | CR))       |            |           |           |
|                                 |                |       |          |          |          |          |          |    |          |                   | e CPSDV:<br><b>PSR reg</b>                   |            |           |                | •          | -          | med in t  | he        |
| 7                               | ,              |       |          | SPH      |          | R/       | N        |    | 0        | SSI S             | Serial Clo                                   | ck Phas    | e         |                |            |            |           |           |
|                                 |                |       |          |          |          |          |          |    |          | This I            | oit is only                                  | applica    | ble to th | ne Freeso      | cale SPI   | Format     |           |           |
|                                 |                |       |          |          |          |          |          |    |          | it to c<br>either | PH contr<br>hange st<br>allowing<br>re edge. | ate. It h  | as the m  | nost impa      | act on the | e first bi | t transm  | nitted by |
|                                 |                |       |          |          |          |          |          |    |          |                   | n the <sub>SPH</sub><br>н is 1, da           |            |           | •              |            |            | -         |           |
| 6                               | 6              |       |          | SPO      |          | R/       | N        |    | 0        | SSI S             | Serial Clo                                   | ck Pola    | ity       |                |            |            |           |           |
|                                 |                |       |          |          |          |          |          |    |          | This I            | oit is only                                  | / applica  | ble to th | ne Freeso      | cale SPI   | Format     |           |           |
|                                 |                |       |          |          |          |          |          |    |          | SSIC              | n the SPC<br>lk pin. h<br>lk pin w           | f SPO is   | 1, a stea | ady state      | e High va  | lue is pl  |           |           |

| Bit/Field | Name | Туре | Reset | Description                                         |
|-----------|------|------|-------|-----------------------------------------------------|
| 5:4       | FRF  | R/W  | 0     | SSI Frame Format Select                             |
|           |      |      |       | The FRF values are defined as follows:              |
|           |      |      |       | FRF Value Frame Format                              |
|           |      |      |       | 00 Freescale SPI Frame Format                       |
|           |      |      |       | 01 Texas Intruments Synchronous Serial Frame Format |
|           |      |      |       | 10 MICROWIRE Frame Format                           |
|           |      |      |       | 11 Reserved                                         |
| 3:0       | DSS  | R/W  | 0     | SSI Data Size Select                                |
|           |      |      |       | The DSS values are defined as follows:              |
|           |      |      |       | DSS Value Data Size                                 |
|           |      |      |       | 0000-0010 Reserved                                  |
|           |      |      |       | 0011 4-bit data                                     |
|           |      |      |       | 0100 5-bit data                                     |
|           |      |      |       | 0101 6-bit data                                     |
|           |      |      |       | 0110 7-bit data                                     |
|           |      |      |       | 0111 8-bit data                                     |
|           |      |      |       | 1000 9-bit data                                     |
|           |      |      |       | 1001 10-bit data                                    |
|           |      |      |       | 1010 11-bit data                                    |
|           |      |      |       | 1011 12-bit data                                    |
|           |      |      |       | 1100 13-bit data                                    |
|           |      |      |       | 1101 14-bit data                                    |
|           |      |      |       | 1110 15-bit data                                    |
|           |      |      |       | 1111 16-bit data                                    |

### Register 2: SSI Control 1 (SSICR1), offset 0x004

**SSICR1** is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

|               | v, reset 0 | ×0000.00 | 00       |         |         |         |         |                                     |                                                   |                                                |                                             |                                              |                                                                           |                                                |                                                 |                           |
|---------------|------------|----------|----------|---------|---------|---------|---------|-------------------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------|
| I             | 31         | 30       | 29       | 28      | 27      | 26      | 25      | 24                                  | 23                                                | 22                                             | 21                                          | 20                                           | 19<br>I                                                                   | 18                                             | 17                                              | 16                        |
| _             |            |          |          |         | L       |         |         | rese                                |                                                   |                                                |                                             |                                              | L                                                                         |                                                |                                                 |                           |
| Type<br>Reset | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                             | RO<br>0                                           | RO<br>0                                        | RO<br>0                                     | RO<br>0                                      | RO<br>0                                                                   | RO<br>0                                        | RO<br>0                                         | RO<br>0                   |
|               | 15         | 14       | 13       | 12      | 11      | 10      | 9       | 8                                   | 7                                                 | 6                                              | 5                                           | 4                                            | 3                                                                         | 2                                              | 1                                               | 0                         |
|               |            |          |          |         | · ·     | rese    | erved   | •                                   | 1                                                 |                                                |                                             | •                                            | SOD                                                                       | MS                                             | SSE                                             | LBN                       |
| Type<br>eset  | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                             | RO<br>0                                           | RO<br>0                                        | RO<br>0                                     | RO<br>0                                      | R/W<br>0                                                                  | R/W<br>0                                       | R/W<br>0                                        | R/W<br>0                  |
| Bit/F         | ield       |          | Name     |         | Туре    | I       | Reset   | Descr                               | iption                                            |                                                |                                             |                                              |                                                                           |                                                |                                                 |                           |
| 31            | :4         | I        | reserved |         | RO      |         | 0       | compa                               | atibility v                                       | vith futur                                     | e produ                                     | cts, the                                     | of a rese<br>value of<br>operatio                                         | a reserv                                       |                                                 |                           |
| 3             | 5          |          | SOD      |         | R/W     |         | 0       | SSI S                               | ave Mo                                            | de Outp                                        | ut Disab                                    | le                                           |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | syster<br>slaves<br>the se<br>could | ns, it is p<br>in the s<br>rial outp<br>be tied t | oossible<br>ystem w<br>ut line. Ir<br>ogether. | for the S<br>hile ens<br>such sy<br>To oper | SSI mas<br>uring tha<br>stems, f<br>ate in s | ode (MS<br>ter to bro<br>at only or<br>he TXD I<br>uch a sys<br>not drive | adcast a<br>ne slave<br>ines from<br>stem, the | a messa<br>drives da<br>n multiple<br>e SOD bit | ge to<br>ata or<br>e slav |
|               |            |          |          |         |         |         |         | 0: SSI                              | can driv                                          | ve ssit                                        | x output                                    | in Slav                                      | e Output                                                                  | mode.                                          |                                                 |                           |
|               |            |          |          |         |         |         |         | 1: SSI                              | must n                                            | ot drive 1                                     | the ssin                                    | רx outpıΩ                                    | ut in Slav                                                                | e mode                                         |                                                 |                           |
| 2             | 2          |          | MS       |         | R/W     |         | 0       | SSI M                               | aster/SI                                          | ave Sele                                       | ect                                         |                                              |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         |                                     |                                                   | s Maste<br>d (SSE=                             |                                             | e mode                                       | and can                                                                   | be mod                                         | lified onl                                      | y whe                     |
|               |            |          |          |         |         |         |         | 0: Dev                              | vice con                                          | figured a                                      | as a mas                                    | ster.                                        |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 1: Dev                              | vice con                                          | figured a                                      | as a slav                                   | e.                                           |                                                                           |                                                |                                                 |                           |
| 1             |            |          | SSE      |         | R/W     |         | 0       | SSI S                               | ynchron                                           | ous Seri                                       | al Port E                                   | Enable                                       |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | Settin                              | g this bit                                        | enable                                         | s SSI op                                    | eration.                                     |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 0: SSI                              | operati                                           | on disab                                       | led.                                        |                                              |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 1: SSI                              | operati                                           | on enab                                        | led.                                        |                                              |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | Note:                               |                                                   | s bit mus<br>ogramm                            |                                             | to 0 bet                                     | ore any                                                                   | control r                                      | egisters                                        | are                       |
| 0             | )          |          | LBM      |         | R/W     |         | 0       | SSI Lo                              | oopback                                           | Mode                                           |                                             |                                              |                                                                           |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | Settin                              | g this bit                                        | t enable:                                      | s Loopba                                    | ack Test                                     | mode.                                                                     |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 0: Nor                              | mal seri                                          | al port o                                      | peratior                                    | enable                                       | d.                                                                        |                                                |                                                 |                           |
|               |            |          |          |         |         |         |         | 1· Out                              | out of th                                         | o traner                                       | nit corial                                  | l shift ro                                   | aistor is                                                                 | connect                                        | ed interr                                       | allv t                    |

### Register 3: SSI Data (SSIDR), offset 0x008

**SSIDR** is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

#### SSI Data (SSIDR)

SSI0 base: 0x4000.8000 Offset 0x008 Type R/W, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO RC RO RO RO RO RO RO RO RC RO RC RC RC RO RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 10 6 2 15 14 13 11 9 8 5 3 0 DATA R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Type 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 **Bit/Field** Reset Description Name Туре 31:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 DATA R/W 0 SSI Receive/Transmit Data A read operation reads the receive FIFO. A write operation writes the

> transmit FIFO. Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the

transmit logic. The receive logic automatically right-justifies the data.

### Register 4: SSI Status (SSISR), offset 0x00C

**SSISR** is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

| SSI Status (SSISR)                                                   |
|----------------------------------------------------------------------|
| SSI0 base: 0x4000.8000<br>Offset 0x00C<br>Type RO, reset 0x0000.0003 |

| <b>,</b>      |         |                           |         |         |         |                |                       |                               |                                                                            |          |         |          |         |          |           |         |  |  |  |
|---------------|---------|---------------------------|---------|---------|---------|----------------|-----------------------|-------------------------------|----------------------------------------------------------------------------|----------|---------|----------|---------|----------|-----------|---------|--|--|--|
| -             | 31      | 30                        | 29      | 28      | 27      | 26             | 25                    | 24                            | 23                                                                         | 22       | 21      | 20       | 19      | 18       | 17        | 16      |  |  |  |
|               |         | reserved                  |         |         |         |                |                       |                               |                                                                            |          |         |          |         |          |           |         |  |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0                   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0        | RO<br>0               | RO<br>0                       | RO<br>0                                                                    | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0   | RO<br>0 |  |  |  |
| Reser         |         |                           |         |         |         |                | 9                     |                               | 7                                                                          |          |         |          | 3       |          |           | 0       |  |  |  |
| ſ             | 15      | 14                        | 13      | 12      | 11      | 10<br>reserved | <b>1</b>              | 8                             | , ,                                                                        | 6        | 5       | 4<br>BSY | RFF     | 2<br>RNE | 1<br>TNF  | TFE     |  |  |  |
| Туре          | RO      | RO                        | RO      | RO      | RO      | RO             | RO                    | RO                            | RO                                                                         | RO       | RO      | RO       | RO      | RO       | RO        | R0      |  |  |  |
| Reset         | 0       | 0                         | 0       | 0       | 0       | 0              | 0                     | 0                             | 0                                                                          | 0        | 0       | 0        | 0       | 0        | 1         | 1       |  |  |  |
|               |         |                           |         |         |         |                |                       |                               |                                                                            |          |         |          |         |          |           |         |  |  |  |
| Bit/Field     |         |                           | Name    |         | Туре    | F              | Reset                 | Descr                         | iption                                                                     |          |         |          |         |          |           |         |  |  |  |
| 31:5          |         | reserved                  |         |         | RO      |                | 0                     |                               | Software should not rely on the value of a reserved bit. To provide        |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       |                               | atibility w                                                                |          |         |          |         |          | ed bit sh | ould be |  |  |  |
|               |         |                           |         |         |         |                |                       |                               | preserved across a read-modify-write operation.                            |          |         |          |         |          |           |         |  |  |  |
| 4             |         | BSY                       |         |         | RO      |                | 0                     |                               | SSI Busy Bit                                                               |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 0: SS                         | 0: SSI is idle.                                                            |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       |                               | 1: SSI is currently transmitting and/or receiving a frame, or the transmit |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 110                           | FIFO is not empty.                                                         |          |         |          |         |          |           |         |  |  |  |
| 3             |         | RFF                       |         |         | RO      | 0              | SSI Receive FIFO Full |                               |                                                                            |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 0: Re                         | 0: Receive FIFO is not full.                                               |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 1: Re                         | 1: Receive FIFO is full.                                                   |          |         |          |         |          |           |         |  |  |  |
| 2             |         | RNE                       |         |         | RO      | RO 0           |                       |                               | SSI Receive FIFO Not Empty                                                 |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 0: Re                         | 0: Receive FIFO is empty.                                                  |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 1: Re                         | 1: Receive FIFO is not empty.                                              |          |         |          |         |          |           |         |  |  |  |
| 1             |         |                           | TNF     |         | RO      |                | 1                     | SSI Transmit FIFO Not Full    |                                                                            |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         | NO      |                | I                     |                               | 0: Transmit FIFO is full.                                                  |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       |                               |                                                                            |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 1: Transmit FIFO is not full. |                                                                            |          |         |          |         |          |           |         |  |  |  |
| 0             |         | TFE R0 1 SSI Transmit FIF |         |         |         |                |                       |                               |                                                                            | FIFO Em  | npty    |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 0: Tra                        | 0: Transmit FIFO is not empty.                                             |          |         |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       | 1: Tra                        | nsmit FII                                                                  | FO is en | npty.   |          |         |          |           |         |  |  |  |
|               |         |                           |         |         |         |                |                       |                               |                                                                            |          |         |          |         |          |           |         |  |  |  |

### Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

**SSICPSR** is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

#### SSI Clock Prescale (SSICPSR) SSI0 base: 0x4000.8000 Offset 0x010 Type R/W, reset 0x0000.0000

|               | 31       | 30       | 29      | 28      | 27                                    | 26      | 25          | 24       | 23                                                                                                                                                                                      | 22       | 21       | 20       | 19       | 18       | 17       | 16       |  |  |
|---------------|----------|----------|---------|---------|---------------------------------------|---------|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--|
|               |          | 1        | 1       |         | , , , , , , , , , , , , , , , , , , , |         |             | reserved |                                                                                                                                                                                         |          |          |          |          |          |          |          |  |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0     | RO<br>0  | RO<br>0                                                                                                                                                                                 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |  |  |
|               | 15       | 14       | 13      | 12      | 11                                    | 10      | 9           | 8        | 7                                                                                                                                                                                       | 6        | 5        | 4        | 3        | 2        | 1        | 0        |  |  |
|               | reserved |          |         |         |                                       |         |             | •        | CPSDVSR                                                                                                                                                                                 |          |          |          |          |          |          |          |  |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                               | RO<br>0 | RO<br>0     | RO<br>0  | R/W<br>0                                                                                                                                                                                | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |  |  |
| Bit/F         | ield     | Name     |         |         | Туре                                  | F       | Reset Descr |          |                                                                                                                                                                                         |          |          |          |          |          |          |          |  |  |
| 31:8          |          | reserved |         |         | RO                                    |         | 0           | compa    | vare should not rely on the value of a reserved bit. To provide<br>atibility with future products, the value of a reserved bit should be<br>erved across a read-modify-write operation. |          |          |          |          |          |          |          |  |  |
| 7:0           |          | CPSDVSR  |         | ۲       | R/W                                   | W 0     |             | SSI C    | SSI Clock Prescale Divisor                                                                                                                                                              |          |          |          |          |          |          |          |  |  |
|               |          |          |         |         |                                       |         |             | This v   | This value must be an even number from 2 to 254, depending on the                                                                                                                       |          |          |          |          |          |          |          |  |  |

This value must be an even number from 2 to 254, depending on the frequency of SSICIK. The LSB always returns 0 on reads.

### Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

SSI Interrupt Mask (SSIIM) SSI0 base: 0x4000.8000 Offset 0x014 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29                                                                                                                        | 28      | 27      | 26      | 25      | 24      | 23       | 22          | 21        | 20         | 19         | 18          | 17       | 16       |
|---------------|---------|---------|---------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|----------|-------------|-----------|------------|------------|-------------|----------|----------|
|               |         | 1       |                                                                                                                           |         |         |         | 1       | rese    | rved     |             |           | 1          |            |             | 1        | '        |
| Туре          | RO      | RO      | RO                                                                                                                        | RO      | RO      | RO      | RO      | RO      | RO       | RO          | RO        | RO         | RO         | RO          | RO       | RO       |
| Reset         | 0       | 0       | 0                                                                                                                         | 0       | 0       | 0       | 0       | 0       | 0        | 0           | 0         | 0          | 0          | 0           | 0        | 0        |
| 1             | 15      | 14      | 13                                                                                                                        | 12      | 11      | 10      | 9       | 8       | 7        | 6           | 5         | 4          | 3          | 2           | 1        | 0        |
|               |         | -       |                                                                                                                           |         |         | res     | erved   |         |          |             |           |            | TXIM       | RXIM        | RTIM     | RORIM    |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0     | RO<br>0   | RO<br>0    | R/W<br>0   | R/W<br>0    | R/W<br>0 | R/W<br>0 |
| Reser         | 0       | 0       | 0                                                                                                                         | U       | 0       | 0       | 0       | 0       | 0        | 0           | 0         | U          | 0          | 0           | 0        | Ū        |
| Bit/F         | iold    |         | Name                                                                                                                      |         | Tuno    |         | Reset   | Descr   | intion   |             |           |            |            |             |          |          |
| DIVE          | leiu    |         | Name                                                                                                                      |         | Туре    |         | Resel   | Desci   | ιριιοπ   |             |           |            |            |             |          |          |
| 31:           | 4       | I       | reserved                                                                                                                  |         | RO      |         | 0       |         |          | uld not re  |           |            |            |             | •        |          |
|               |         |         | compatibility with future products, the value of a reserved bit should<br>preserved across a read-modify-write operation. |         |         |         |         |         |          |             |           |            |            |             |          |          |
|               |         |         |                                                                                                                           |         |         |         |         |         |          |             |           |            |            |             |          |          |
| 3             |         |         | TXIM                                                                                                                      |         | R/W     |         | 0       | SSI TI  | ransmit  | FIFO Inte   | errupt N  | lask       |            |             |          |          |
|               |         |         |                                                                                                                           |         |         |         |         | 0: TX   | FIFO ha  | alf-full or | less cor  | ndition ir | nterrupt i | s maske     | d.       |          |
|               |         |         |                                                                                                                           |         |         |         |         | 1· TX   | FIFO ha  | alf-full or | less cor  | ndition ir | Iterrunt i | s not ma    | sked     |          |
|               |         |         |                                                                                                                           |         |         |         |         | 1. 17   |          |             | 1000 001  |            | iten upt i | 0 1101 1110 | ioneu.   |          |
| 2             |         |         | RXIM                                                                                                                      |         | R/W     |         | 0       | SSI R   | eceive F | FIFO Inte   | errupt M  | ask        |            |             |          |          |
|               |         |         |                                                                                                                           |         |         |         |         | 0: RX   | FIFO ha  | alf-full or | more co   | ondition   | interrupt  | is mask     | ed.      |          |
|               |         |         |                                                                                                                           |         |         |         |         | 1: RX   | FIFO ha  | alf-full or | more co   | ondition   | interrupt  | is not m    | nasked.  |          |
|               |         |         |                                                                                                                           |         |         |         |         |         |          |             |           |            | •          |             |          |          |
| 1             |         |         | RTIM                                                                                                                      |         | R/W     |         | 0       | SSI R   | eceive 7 | Time-Out    | Interru   | pt Mask    |            |             |          |          |
|               |         |         |                                                                                                                           |         |         |         |         | 0: RX   | FIFO tir | ne-out ir   | iterrupt  | is maske   | ed.        |             |          |          |
|               |         |         |                                                                                                                           |         |         |         |         | 1: RX   | FIFO tir | ne-out ir   | terrupt   | is not m   | asked.     |             |          |          |
| ~             |         |         |                                                                                                                           |         |         |         | 0       |         |          | )           |           | Maali      |            |             |          |          |
| 0             |         |         | RORIM                                                                                                                     |         | R/W     |         | 0       |         |          | Overrun     |           |            |            |             |          |          |
|               |         |         |                                                                                                                           |         |         |         |         | 0: RX   | FIFO ov  | errun in    | terrupt i | s maske    | ed.        |             |          |          |
|               |         |         |                                                                                                                           |         |         |         |         | 1: RX   | FIFO ov  | errun in    | terrupt i | s not ma   | isked.     |             |          |          |

SSI Raw Interrupt Status (SSIRIS)

#### Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

| SSI0 bas<br>Offset 0x0<br>Type RO, | 018     |   |    | 3       |         |                                                                                                                                                                                                    |         |         |         |            |          |           |           |              |          |         |         |
|------------------------------------|---------|---|----|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|------------|----------|-----------|-----------|--------------|----------|---------|---------|
|                                    | 31      | 3 | 0  | 29      | 28      | 27                                                                                                                                                                                                 | 26      | 25      | 24      | 23         | 22       | 21        | 20        | 19           | 18       | 17      | 16      |
|                                    |         | 1 | ľ  |         | 1       | r í<br>I                                                                                                                                                                                           |         | 1       | rese    | i<br>erved | Î        | 1         |           | 1            | i        | 1       | 1       |
| Туре                               | RO<br>0 | R |    | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                            | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0      | RO<br>0  | RO<br>0 | RO<br>0 |
| Reset                              |         |   |    | 0       |         |                                                                                                                                                                                                    | -       | 0       | U       | 0          | U        | 0         | 0         | U            | U        | U       | 0       |
|                                    | 15      | 1 | 4  | 13      | 12      | 11                                                                                                                                                                                                 | 10      | 9       | 8       | 7          | 6        | 5         | 4         | 3            | 2        | 1       | 0       |
|                                    |         | 1 |    |         | •       |                                                                                                                                                                                                    | res     | erved   | •       |            |          |           |           | TXRIS        | RXRIS    | RTRIS   | RORRIS  |
| Туре                               | RO<br>0 | R |    | RO      | RO      | RO                                                                                                                                                                                                 | RO      | RO      | RO<br>0 | RO<br>0    | RO       | RO        | RO<br>0   | RO<br>1      | RO<br>0  | RO<br>0 | RO      |
| Reset                              | 0       | ( | )  | 0       | 0       | 0                                                                                                                                                                                                  | 0       | 0       | U       | 0          | 0        | 0         | 0         | 1            | 0        | 0       | 0       |
| Bit/F                              | ield    |   |    | Name    |         | Туре                                                                                                                                                                                               |         | Reset   | Descr   | ription    |          |           |           |              |          |         |         |
| 31:                                | :4      |   | re | eserved | I       | RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |         |         |         |            |          |           |           |              |          |         |         |
| 3                                  | }       |   | -  | TXRIS   |         | RO                                                                                                                                                                                                 |         | 1       | SSI T   | ransmit    | FIFO Ra  | w Interru | upt Stati | us           |          |         |         |
|                                    |         |   |    |         |         |                                                                                                                                                                                                    |         |         |         |            |          |           |           | f full or le | ess, whe | n set.  |         |
| 2                                  | 2       |   | F  | RXRIS   |         | RO                                                                                                                                                                                                 |         | 0       | SSI R   | eceive F   | FIFO Ra  | w Interru | ipt Statu | IS           |          |         |         |
|                                    |         |   |    |         |         |                                                                                                                                                                                                    |         |         | Indica  | tes that   | the rece | ive FIFC  | ) is half | full or m    | ore, whe | en set. |         |
| 1                                  |         |   | F  | RTRIS   |         | RO                                                                                                                                                                                                 |         | 0       | SSI R   | eceive 1   | Time-Ou  | t Raw In  | terrupt S | Status       |          |         |         |
|                                    |         |   |    |         |         |                                                                                                                                                                                                    |         |         | Indica  | tes that   | the rece | ive time  | -out has  | occurre      | d, when  | set.    |         |
| 0                                  | )       |   | R  | ORRIS   | ;       | RO                                                                                                                                                                                                 |         | 0       | SSI R   | eceive (   | Overrun  | Raw Inte  | errupt St | tatus        |          |         |         |
|                                    |         |   |    |         |         |                                                                                                                                                                                                    |         |         | Indica  | tes that   | the rece | ive FIFC  | ) has ov  | rerflowed    | when     | set     |         |
|                                    |         |   |    |         |         |                                                                                                                                                                                                    |         |         | manoe   |            |          |           |           |              | .,       |         |         |

### Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The SSIMIS register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

| SSI Masked Interrupt Status ( | (SSIMIS) |
|-------------------------------|----------|
|-------------------------------|----------|

SSI0 base: 0x4000.8000 Offset 0x01C Type RO, reset 0x0000.0000

|               | 31      | 30      | 29                                                                                                                                                                                                       | 28      | 27      | 26      | 25      | 24      | 23       | 22                   | 21       | 20        | 19        | 18        | 17      | 16      |
|---------------|---------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|----------|----------------------|----------|-----------|-----------|-----------|---------|---------|
|               |         | 1       |                                                                                                                                                                                                          |         |         |         | •       | resei   | rved     |                      |          | •         |           |           |         |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0              | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13                                                                                                                                                                                                       | 12      | 11      | 10      | 9       | 8       | 7        | 6                    | 5        | 4         | 3         | 2         | 1       | 0       |
| [             |         | 1       |                                                                                                                                                                                                          |         | r r     |         | erved   | 1 1     |          | - 1                  | -        | 1         | TXMIS     | RXMIS     | RTMIS   | RORMIS  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0              | RO<br>0  | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0 | RO<br>0 |
| Bit/F         | ield    |         | Name                                                                                                                                                                                                     |         | Туре    |         | Reset   | Descri  | ption    |                      |          |           |           |           |         |         |
| 31:           | :4      |         | reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |         |         |         |         |         |          |                      |          |           |           |           |         |         |
| 3             |         |         | TXMIS                                                                                                                                                                                                    |         | RO      |         | 0       |         |          | FIFO Ma<br>the trans |          | •         |           | ess, whe  | n set.  |         |
| 2             |         |         | RXMIS                                                                                                                                                                                                    |         | RO      |         | 0       |         |          | FIFO Mas<br>the rece |          |           |           | ore, whe  | en set. |         |
| 1             |         |         | RTMIS                                                                                                                                                                                                    |         | RO      |         | 0       | SSI Re  | eceive 7 | īme-Out              | Maske    | d Interru | pt Status | 6         |         |         |
|               |         |         |                                                                                                                                                                                                          |         |         |         |         | Indicat | tes that | the rece             | ive time | -out has  | occurre   | d, when   | set.    |         |
| 0             |         |         | RORMIS                                                                                                                                                                                                   |         | RO      |         | 0       | SSI Re  | eceive ( | Overrun I            | Masked   | Interrup  | t Status  |           |         |         |
|               |         |         |                                                                                                                                                                                                          |         |         |         |         | Indicat | tes that | the rece             | ive FIFC | ) has ov  | erflowed  | l, when s | set.    |         |

### Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

| SSI Inte                          | errupt C | Clear (S | SSIICR)  |         |          |         |            |                   |                                     |            |           |            |         |          |          |          |
|-----------------------------------|----------|----------|----------|---------|----------|---------|------------|-------------------|-------------------------------------|------------|-----------|------------|---------|----------|----------|----------|
| SSI0 bas<br>Offset 0x<br>Type W10 | 020      |          | 000      |         |          |         |            |                   |                                     |            |           |            |         |          |          |          |
|                                   | 31       | 30       | 29       | 28      | 27       | 26      | 25         | 24                | 23                                  | 22         | 21        | 20         | 19      | 18       | 17       | 16       |
|                                   |          |          |          |         |          |         | •          | rese              | erved                               |            |           | •          |         |          | •        |          |
| Туре                              | RO       | RO       | RO       | RO      | RO       | RO      | RO         | RO                | RO                                  | RO         | RO        | RO         | RO      | RO       | RO       | RO       |
| Reset                             | 0        | 0        | 0        | 0       | 0        | 0       | 0          | 0                 | 0                                   | 0          | 0         | 0          | 0       | 0        | 0        | 0        |
|                                   | 15       | 14       | 13       | 12      | 11       | 10      | 9          | 8                 | 7                                   | 6          | 5         | 4          | 3       | 2        | 1        | 0        |
|                                   |          |          |          |         |          |         | rese       | erved             |                                     | •          | •         | •          |         | •        | RTIC     | RORIC    |
| Type<br>Reset                     | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0           | RO<br>0                             | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0 | RO<br>0  | W1C<br>0 | W1C<br>0 |
| Reset                             | 0        | U        | U        | U       | U        | 0       | 0          | U                 | U                                   | 0          | 0         | U          | U       | 0        | U        | 0        |
|                                   | 9 - I -I |          | N        |         | <b>T</b> |         | <b>7</b> t | <b>D</b>          |                                     |            |           |            |         |          |          |          |
| Bit/F                             | ield     |          | Name     |         | Туре     | ł       | Reset      | Descr             | ription                             |            |           |            |         |          |          |          |
| 31                                | :2       |          | reserved |         | RO       |         | 0          | comp              | are shou<br>atibility v<br>rved acr | vith futur | e produ   | cts, the v | alue of | a reserv | •        |          |
| 1                                 |          |          | RTIC     |         | W1C      |         | 0          | SSI R             | eceive T                            | Time-Out   | t Interru | ot Clear   |         |          |          |          |
|                                   |          |          |          |         |          |         |            | 0 <sup>.</sup> No | effect or                           | n interru  | ot        |            |         |          |          |          |
|                                   |          |          |          |         |          |         |            |                   |                                     |            |           |            |         |          |          |          |
|                                   |          |          |          |         |          |         |            | T: Cle            | ars inter                           | rupt.      |           |            |         |          |          |          |
| 0                                 | )        |          | RORIC    |         | W1C      |         | 0          | SSI R             | eceive C                            | Overrun    | Interrupt | Clear      |         |          |          |          |
|                                   |          |          |          |         |          |         |            | 0: No             | effect or                           | n interru  | ot.       |            |         |          |          |          |
|                                   |          |          |          |         |          |         |            |                   | ars inter                           |            |           |            |         |          |          |          |
|                                   |          |          |          |         |          |         |            | 1. 016            |                                     | iupi.      |           |            |         |          |          |          |

# Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 Offset 0xFD0 Type RO, reset 0x0000.0000

|               | 31                              | 30      | 29       | 28      | 27      | 26      | 25                                                            | 24      | 23                                   | 22         | 21      | 20         | 19      | 18       | 17      | 16      |
|---------------|---------------------------------|---------|----------|---------|---------|---------|---------------------------------------------------------------|---------|--------------------------------------|------------|---------|------------|---------|----------|---------|---------|
|               |                                 | •       |          |         | · ·     |         |                                                               | rese    | erved                                | l          | •       | •          |         | •        |         |         |
| Type<br>Reset | RO<br>0                         | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                       | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15                              | 14      | 13       | 12      | 11      | 10      | 9                                                             | 8       | 7                                    | 6          | 5       | 4          | 3       | 2        | 1       | 0       |
|               |                                 | î       | 1 I      | rese    | rved    |         | ı                                                             | 1       |                                      |            | 1       | PI         | D4      | r        | r       |         |
| Type<br>Reset | RO<br>0                         | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                       | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
| Bit/F         | ield                            |         | Name     |         | Туре    | F       | Reset                                                         | Descr   | iption                               |            |         |            |         |          |         |         |
| 31            | :8                              |         | reserved |         | RO      |         | 0                                                             | compa   | are shou<br>atibility w<br>rved acro | ith futur/ | e produ | cts, the v | alue of | a reserv |         |         |
| 7:            | 7:0 PID4 RO 0x00 SSI Peripheral |         |          |         |         |         |                                                               |         |                                      | 0          |         | -          |         |          |         |         |
|               |                                 |         |          |         |         |         | Can be used by software to identify the presence of this peri |         |                                      |            |         |            |         |          |         |         |

### Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 Offset 0xFD4 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                      | 23                      | 22         | 21       | 20         | 19      | 18       | 17      | 16      |  |
|---------------|---------|---------|----------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|----------|------------|---------|----------|---------|---------|--|
|               |         |         |          |         | · ·     |         |         | rese                                                                                                                                                                                    | rved                    |            |          |            |         |          |         | 1       |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                 | RO<br>0                 | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |  |
| riccor        | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                       | 7                       | 6          | 5        | 4          | 3       | 2        | 1       | 0       |  |
|               |         | 1       | 1 1      |         | rved    |         |         | 1                                                                                                                                                                                       |                         |            |          | PI         |         | -        |         |         |  |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                 | RO<br>0                 | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |  |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                                                                                   | iption                  |            |          |            |         |          |         |         |  |
| 31            | :8      |         | reserved |         | RO      |         | 0       | compa                                                                                                                                                                                   | are shou<br>atibility w | ith futur/ | e produc | cts, the v | alue of | a reserv |         |         |  |
| 7:            | 0       |         | PID5     |         | RO      |         | 0x00    | <ul><li>preserved across a read-modify-write operation.</li><li>SSI Peripheral ID Register[15:8]</li><li>Can be used by software to identify the presence of this peripheral.</li></ul> |                         |            |          |            |         |          |         |         |  |

# Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 Offset 0xFD8 Type RO, reset 0x0000.0000

|               | 31                          | 30      | 29       | 28      | 27      | 26      | 25                                                            | 24      | 23                                   | 22         | 21      | 20         | 19      | 18       | 17      | 16      |
|---------------|-----------------------------|---------|----------|---------|---------|---------|---------------------------------------------------------------|---------|--------------------------------------|------------|---------|------------|---------|----------|---------|---------|
|               |                             | •       |          |         |         |         | •                                                             | rese    | rved                                 |            |         |            |         |          |         |         |
| Type<br>Reset | RO<br>0                     | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                       | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15                          | 14      | 13       | 12      | 11      | 10      | 9                                                             | 8       | 7                                    | 6          | 5       | 4          | 3       | 2        | 1       | 0       |
|               |                             | î       | 1 I      | rese    | rved    |         | ì                                                             | 1       |                                      | r          |         | PI         | D6      | r        | r       |         |
| Type<br>Reset | RO<br>0                     | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                       | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
| Bit/F         | ield                        |         | Name     |         | Туре    | F       | Reset                                                         | Descr   | iption                               |            |         |            |         |          |         |         |
| 31            | :8                          |         | reserved |         | RO      |         | 0                                                             | compa   | are shou<br>atibility w<br>rved acro | /ith futur | e produ | cts, the v | alue of | a reserv | •       |         |
| 7:            | 7:0 PID6 RO 0x00 SSI Periph |         |          |         |         |         |                                                               |         | •                                    | 0          | •       | •          |         |          |         |         |
|               |                             |         |          |         |         |         | Can be used by software to identify the presence of this peri |         |                                      |            |         |            |         |          |         |         |

# Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 Offset 0xFDC Type RO, reset 0x0000.0000

| -             | 31      | 30                                | 29      | 28      | 27      | 26      | 25      | 24                                                                                                                                                           | 23          | 22         | 21                                  | 20         | 19      | 18       | 17      | 16      |  |  |
|---------------|---------|-----------------------------------|---------|---------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-------------------------------------|------------|---------|----------|---------|---------|--|--|
|               |         |                                   |         |         |         |         | •       | rese                                                                                                                                                         | rved        |            |                                     |            |         | •        | •       |         |  |  |
| Type<br>Reset | RO<br>0 | RO<br>0                           | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                      | RO<br>0     | RO<br>0    | RO<br>0                             | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |  |  |
| reser         | 15      | 14                                | 13      | 12      | 11      | 10      | 9       | 8                                                                                                                                                            | 7           | 6          | 5                                   | 4          | 3       | 2        | 1       | 0       |  |  |
| [             | 15      | 1                                 | 1 1     |         | rved    | 10      |         | 1                                                                                                                                                            | ,<br>       |            | <b></b>                             | PII        |         | 1        | · ·     |         |  |  |
| Turne         | RO      | RO                                | RO      | RO      | RO      | RO      | RO      | RO                                                                                                                                                           | RO          | RO         | RO                                  | RO         | RO      | RO       | RO      | RO      |  |  |
| Type<br>Reset | 0       | 0                                 | 0       | 0       | 0       | 0       | 0       | 0                                                                                                                                                            | 0           | 0          | 0                                   | 0          | 0       | 0        | 0       | 0       |  |  |
| Bit/F         | ield    |                                   | Name    |         | Туре    | F       | Reset   | Descr                                                                                                                                                        | iption      |            |                                     |            |         |          |         |         |  |  |
| 31:           | :8      | d Name Type Reso<br>reserved RO 0 |         |         |         |         |         |                                                                                                                                                              | atibility w | /ith futur | ely on the<br>re produc<br>ad-modif | cts, the v | alue of | a reserv | •       |         |  |  |
| 7:0           | 0       |                                   | PID7    |         | RO      |         | 0x00    | preserved across a read-modify-write operation.<br>SSI Peripheral ID Register[31:24]<br>Can be used by software to identify the presence of this peripheral. |             |            |                                     |            |         |          |         |         |  |  |

# Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 Offset 0xFE0 Type RO, reset 0x0000.0022

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25                                                                                                                                                                                         | 24      | 23                      | 22         | 21       | 20         | 19      | 18       | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|------------|----------|------------|---------|----------|---------|---------|
|               |         |         |          |         |         |         |                                                                                                                                                                                            | rese    | rved                    |            |          |            |         |          |         |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                    | RO<br>0 | RO<br>0                 | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
| 100001        | 15      | 14      | 13       | 12      | 11      | 10      | 9                                                                                                                                                                                          | 8       | 7                       | 6          | 5        | 4          | 3       | 2        | 1       | 0       |
|               |         | · · · · |          |         | rved    |         | · · ·                                                                                                                                                                                      |         |                         |            |          | PII        |         |          |         |         |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO                                                                                                                                                                                         | RO      | RO                      | RO         | RO       | RO         | RO      | RO       | RO      | RO      |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0                                                                                                                                                                                          | 0       | 0                       | 0          | 1        | 0          | 0       | 0        | 1       | 0       |
|               |         |         |          |         |         |         |                                                                                                                                                                                            |         |                         |            |          |            |         |          |         |         |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset                                                                                                                                                                                      | Descr   | iption                  |            |          |            |         |          |         |         |
| 31            | :8      |         | reserved |         | RO      |         | 0                                                                                                                                                                                          | compa   | are shou<br>atibility w | ith futur/ | e produc | cts, the v | alue of | a reserv |         |         |
| 7:            | 0       |         | PID0     |         | RO      |         | <ul> <li>preserved across a read-modify-write operation.</li> <li>0x22 SSI Peripheral ID Register[7:0]</li> <li>Can be used by acftware to identify the presence of this period</li> </ul> |         |                         |            |          |            |         |          |         |         |
|               |         |         |          |         |         |         | Can be used by software to identify the presence of this peripheral.                                                                                                                       |         |                         |            |          |            |         |          |         |         |

# Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 Offset 0xFE4 Type RO, reset 0x0000.0000

|               | 31                  | 30                                             | 29       | 28      | 27      | 26      | 25                                                                   | 24      | 23          | 22         | 21                                 | 20         | 19      | 18       | 17      | 16      |  |
|---------------|---------------------|------------------------------------------------|----------|---------|---------|---------|----------------------------------------------------------------------|---------|-------------|------------|------------------------------------|------------|---------|----------|---------|---------|--|
|               |                     | •                                              |          |         |         |         |                                                                      | rese    | rved        |            | •                                  |            |         | •        |         |         |  |
| Type<br>Reset | RO<br>0             | RO<br>0                                        | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                              | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                            | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |  |
|               | 15                  | 14                                             | 13       | 12      | 11      | 10      | 9                                                                    | 8       | 7           | 6          | 5                                  | 4          | 3       | 2        | 1       | 0       |  |
|               |                     | 1                                              | 1 1      |         | rved    | 10      | 1                                                                    | 1       |             |            | 1                                  | PI         |         | 1        | r       |         |  |
| Type<br>Reset | RO<br>0             | RO<br>0                                        | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                              | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                            | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |  |
|               |                     |                                                |          |         |         |         |                                                                      |         |             |            |                                    |            |         |          |         |         |  |
| Bit/F         | Bit/Field Name Type |                                                |          |         |         |         |                                                                      | Descr   | iption      |            |                                    |            |         |          |         |         |  |
| 31            | :8                  |                                                | reserved |         | RO      |         | 0                                                                    | compa   | atibility w | vith futur | ely on the<br>re produc<br>ad-modi | cts, the v | alue of | a reserv | •       |         |  |
| 7:            | 0                   | PID1 RO 0x00 SSI Peripheral ID Register [15:8] |          |         |         |         |                                                                      |         |             |            |                                    |            |         |          |         |         |  |
|               |                     |                                                |          |         |         |         | Can be used by software to identify the presence of this peripheral. |         |             |            |                                    |            |         |          |         |         |  |

# Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

#### SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 Offset 0xFE8 Type RO, reset 0x0000.0018

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25                                                                  | 24      | 23                                   | 22        | 21       | 20         | 19      | 18         | 17      | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------------------------------------------------------------------|---------|--------------------------------------|-----------|----------|------------|---------|------------|---------|---------|
|               |         | ·       |          |         | · ·     |         |                                                                     | rese    | rved                                 |           |          |            |         |            |         | 1       |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                             | RO<br>0 | RO<br>0                              | RO<br>0   | RO<br>0  | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 |
| 100001        | 15      | 14      | 13       | 12      | 11      | 10      | 9                                                                   | 8       | 7                                    | 6         | 5        | 4          | 3       | 2          | 1       | 0       |
|               |         | 1       |          |         | rved    |         | 1                                                                   | 1       |                                      | -         | -        | Pli        |         | r <u> </u> | r       |         |
| Туре          | RO      | RO      | RO       | RO      | RO      | RO      | RO                                                                  | RO      | RO                                   | RO        | RO       | RO         | RO      | RO         | RO      | RO      |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0                                                                   | 0       | 0                                    | 0         | 0        | 1          | 1       | 0          | 0       | 0       |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset                                                               | Descr   | iption                               |           |          |            |         |            |         |         |
| 31            | :8      |         | reserved |         | RO      |         | 0                                                                   | compa   | are shou<br>atibility w<br>rved acro | ith futur | e produc | cts, the v | alue of | a reserv   |         |         |
| 7:            | 0       |         |          |         |         |         |                                                                     |         |                                      |           |          |            |         |            |         |         |
|               |         |         |          |         |         |         | Can be used by software to identify the presence of this peripheral |         |                                      |           |          |            |         |            |         |         |

# Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 Offset 0xFEC Type RO, reset 0x0000.0001

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                            | 23       | 22        | 21         | 20         | 19       | 18         | 17         | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------------|------------|----------|------------|------------|---------|
|               |         | 1       |          |         |         |         | 1       | rese                                                                                                                                                                                          | rved     |           |            |            |          |            |            |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0  | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0 |
| 10000         | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                             | 7        | 6         | 5          | 4          | 3        | 2          | 1          | 0       |
|               |         | 1       | 1 1      |         | rved    |         | 1       | 1                                                                                                                                                                                             |          | -         | 1          | 1          | D3       |            | r <u> </u> |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0  | RO<br>0   | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>1 |
|               |         |         |          |         |         |         |         |                                                                                                                                                                                               |          |           |            |            |          |            |            |         |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                                                                                         | iption   |           |            |            |          |            |            |         |
| 31:           | :8      |         | reserved |         | RO      |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |          |           |            |            |          |            |            |         |
| 7:            | 0       |         | PID3     |         | RO      |         | 0x01    | SSI P                                                                                                                                                                                         | eriphera | I ID Reg  | ister [31  | :24]       |          |            |            |         |
|               |         |         |          |         |         |         |         | Can b                                                                                                                                                                                         | e used b | by softwa | are to ide | entify the | e preser | ice of thi | s periph   | eral.   |

# Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

#### SSI PrimeCell Identification 0 (SSIPCelIID0)

SSI0 base: 0x4000.8000 Offset 0xFF0 Type RO, reset 0x0000.000D

|       | 31   | 30 | 29       | 28   | 27    | 26 | 25    | 24                                                                                                                                                                                            | 23        | 22        | 21        | 20       | 19       | 18        | 17        | 16    |
|-------|------|----|----------|------|-------|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|----------|-----------|-----------|-------|
|       |      | 1  |          |      | · · · |    | •     | rese                                                                                                                                                                                          | erved     |           |           |          |          | 1         |           |       |
| Туре  | RO   | RO | RO       | RO   | RO    | RO | RO    | RO                                                                                                                                                                                            | RO        | RO        | RO        | RO       | RO       | RO        | RO        | RO    |
| Reset | 0    | 0  | 0        | 0    | 0     | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0         | 0         | 0        | 0        | 0         | 0         | 0     |
| i     | 15   | 14 | 13       | 12   | 11    | 10 | 9     | 8                                                                                                                                                                                             | 7         | 6         | 5         | 4        | 3        | 2         | 1         | 0     |
|       |      |    |          | rese | rved  |    |       |                                                                                                                                                                                               |           |           |           | CI       | D0       | •         |           |       |
| Туре  | RO   | RO | RO       | RO   | RO    | RO | RO    | RO                                                                                                                                                                                            | RO        | RO        | RO        | RO       | RO       | RO        | RO        | RO    |
| Reset | 0    | 0  | 0        | 0    | 0     | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0         | 0         | 0        | 1        | 1         | 0         | 1     |
| Bit/F | ield |    | Name     |      | Туре  | F  | Reset | Descr                                                                                                                                                                                         | iption    |           |           |          |          |           |           |       |
| 31    | :8   |    | reserved |      | RO    |    | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |           |           |           |          |          |           |           |       |
| 7:    | 0    |    | CID0     |      | RO    | (  | 0x0D  | SSI P                                                                                                                                                                                         | rimeCell  | ID Regi   | ster [7:0 | ]        |          |           |           |       |
|       |      |    |          |      |       |    |       | Provid                                                                                                                                                                                        | des softw | vare a st | andard o  | cross-pe | ripheral | identific | ation sys | stem. |

# Register 19: SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCelIID1)

SSI0 base: 0x4000.8000 Offset 0xFF4 Type RO, reset 0x0000.00F0

|       | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24                                                                                                                                                                                           | 23        | 22        | 21        | 20       | 19       | 18        | 17           | 16    |
|-------|------|----|----------|------|------|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|----------|-----------|--------------|-------|
|       |      | 1  | 1 1      |      |      |    | 1     | rese                                                                                                                                                                                         | rved<br>I | 1         |           |          |          | 1         | 1            | •     |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO                                                                                                                                                                                           | RO        | RO        | RO        | RO       | RO       | RO        | RO           | RO    |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0                                                                                                                                                                                            | 0         | 0         | 0         | 0        | 0        | 0         | 0            | 0     |
|       | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8                                                                                                                                                                                            | 7         | 6         | 5         | 4        | 3        | 2         | 1            | 0     |
|       |      | 1  |          | rese | rved |    | 1     | 1                                                                                                                                                                                            |           | 1         |           |          | 01       | 1         | 1            |       |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO                                                                                                                                                                                           | RO        | RO        | RO        | RO       | RO       | RO        | RO           | RO    |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0                                                                                                                                                                                            | 1         | 1         | 1         | 1        | 0        | 0         | 0            | 0     |
| Bit/F | ield |    | Name     |      | Туре | F  | Reset | Descr                                                                                                                                                                                        | iption    |           |           |          |          |           |              |       |
| 31    | :8   |    | reserved |      | RO   |    | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation. |           |           |           |          |          |           |              |       |
| 7:    | 0    |    | CID1     |      | RO   |    | 0xF0  | SSI P                                                                                                                                                                                        | rimeCel   | I ID Regi | ster [15: | 8]       |          |           |              |       |
|       |      |    |          |      |      |    |       | Provid                                                                                                                                                                                       | des softv | vare a st | andard    | cross-pe | ripheral | identific | ation system | stem. |

# Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

#### SSI PrimeCell Identification 2 (SSIPCelIID2)

SSI0 base: 0x4000.8000 Offset 0xFF8 Type RO, reset 0x0000.0005

| _     | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24                                                                                                                                                                                            | 23        | 22        | 21        | 20       | 19       | 18        | 17       | 16    |
|-------|------|----|----------|------|------|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|----------|-----------|----------|-------|
|       |      | 1  | г т<br>  |      |      |    | I     | rese                                                                                                                                                                                          | rved      |           |           |          |          | 1         | 1        |       |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO                                                                                                                                                                                            | RO        | RO        | RO        | RO       | RO       | RO        | RO       | RO    |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0         | 0         | 0        | 0        | 0         | 0        | 0     |
| _     | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8                                                                                                                                                                                             | 7         | 6         | 5         | 4        | 3        | 2         | 1        | 0     |
|       |      | T  | I I      | rese | rved |    | ſ     | I                                                                                                                                                                                             |           |           | [ ] ]     | CI       | D2       | 1         | I        |       |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO                                                                                                                                                                                            | RO        | RO        | RO        | RO       | RO       | RO        | RO       | RO    |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0         | 0         | 0        | 0        | 1         | 0        | 1     |
| Bit/F | ield |    | Name     |      | Туре | F  | Reset | Descr                                                                                                                                                                                         | iption    |           |           |          |          |           |          |       |
| 31    | :8   |    | reserved |      | RO   |    | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |           |           |           |          |          |           |          |       |
| 7:    | 0    |    | CID2     |      | RO   |    | 0x05  | SSI P                                                                                                                                                                                         | rimeCell  | ID Regi   | ster [23: | 16]      |          |           |          |       |
|       |      |    |          |      |      |    |       | Provid                                                                                                                                                                                        | les softw | vare a st | andard o  | cross-pe | ripheral | identific | ation sy | stem. |

# Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

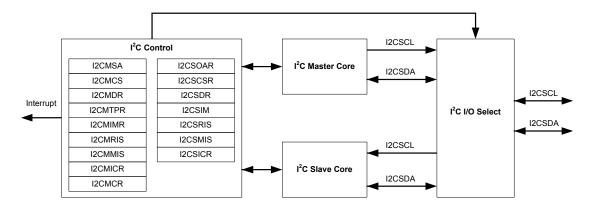
The SSIPCeIIIDn registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 3 (SSIPCelIID3)

SSI0 base: 0x4000.8000 Offset 0xFFC Type RO, reset 0x0000.00B1

|       | 31   | 30 | 29       | 28   | 27   | 26 | 25    | 24                                                                                                                                                                                            | 23        | 22        | 21        | 20       | 19       | 18        | 17       | 16    |
|-------|------|----|----------|------|------|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|----------|----------|-----------|----------|-------|
|       |      | 1  | 1        |      |      |    | I     | rese                                                                                                                                                                                          | rved      |           |           |          |          | 1         |          |       |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO                                                                                                                                                                                            | RO        | RO        | RO        | RO       | RO       | RO        | RO       | RO    |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0                                                                                                                                                                                             | 0         | 0         | 0         | 0        | 0        | 0         | 0        | 0     |
|       | 15   | 14 | 13       | 12   | 11   | 10 | 9     | 8                                                                                                                                                                                             | 7         | 6         | 5         | 4        | 3        | 2         | 1        | 0     |
|       |      | 1  |          | rese | rved |    | •     | 1                                                                                                                                                                                             |           |           |           |          | 03       | I         |          |       |
| Туре  | RO   | RO | RO       | RO   | RO   | RO | RO    | RO                                                                                                                                                                                            | RO        | RO        | RO        | RO       | RO       | RO        | RO       | RO    |
| Reset | 0    | 0  | 0        | 0    | 0    | 0  | 0     | 0                                                                                                                                                                                             | 1         | 0         | 1         | 1        | 0        | 0         | 0        | 1     |
| Bit/F | ield |    | Name     |      | Туре | F  | Reset | Descr                                                                                                                                                                                         | iption    |           |           |          |          |           |          |       |
| 31    | :8   |    | reserved |      | RO   |    | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |           |           |           |          |          |           |          |       |
| 7:    | 0    |    | CID3     |      | RO   | (  | 0xB1  | SSI P                                                                                                                                                                                         | rimeCell  | ID Regi   | ster [31: | 24]      |          |           |          |       |
|       |      |    |          |      |      |    |       | Provid                                                                                                                                                                                        | des softw | vare a st | andard    | cross-pe | ripheral | identific | ation sy | stem. |

# 14 Inter-Integrated Circuit (I<sup>2</sup>C) Interface

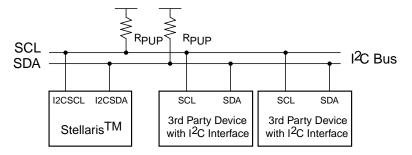

The Inter-Integrated Circuit ( $I^2C$ ) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL), and interfaces to external  $I^2C$  devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The  $I^2C$  bus may also be used for system testing and diagnostic purposes in product development and manufacture. The LM3S2139 microcontroller includes one  $I^2C$  module, providing the ability to interact (both send and receive) with other  $I^2C$  devices on the bus.

Devices on the I<sup>2</sup>C bus can be designated as either a master or a slave. The Stellaris<sup>®</sup> I<sup>2</sup>C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. There are a total of four I<sup>2</sup>C modes: Master Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris<sup>®</sup> I<sup>2</sup>C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the  $I^2C$  master and slave can generate interrupts; the  $I^2C$  master generates interrupts when a transmit or receive operation completes (or aborts due to an error) and the  $I^2C$  slave generates interrupts when data has been sent or requested by a master.

# 14.1 Block Diagram

# Figure 14-1. I<sup>2</sup>C Block Diagram




# 14.2 Functional Description

The I<sup>2</sup>C module is comprised of both master and slave functions which are implemented as separate peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional open-drain pads. A typical I<sup>2</sup>C bus configuration is shown in Figure 14-2 on page 342.

See " $I^2$ C" on page 453 for  $I^2$ C timing diagrams.

#### Figure 14-2. I<sup>2</sup>C Bus Configuration

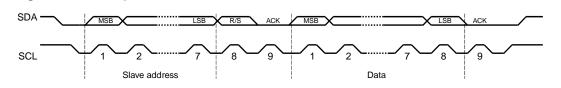


# 14.2.1 I<sup>2</sup>C Bus Functional Overview

The I<sup>2</sup>C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris<sup>®</sup> microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line. The bus is considered idle when both lines are high.

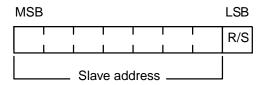
Every transaction on the I<sup>2</sup>C bus is nine bits long, consisting of eight data bits and a single acknowledge bit. The number of bytes per transfer (defined as the time between a valid START and STOP condition, described in "START and STOP Conditions" on page 342) is unrestricted, but each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

### 14.2.1.1 START and STOP Conditions


The protocol of the  $I^2C$  bus defines two states to begin and end a transaction: START and STOP. A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus is considered busy after a START condition and free after a STOP condition. See Figure 14-3 on page 342.



#### Figure 14-3. START and STOP Conditions

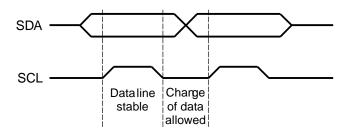

#### 14.2.1.2 Data Format with 7-Bit Address

Data transfers follow the format shown in Figure 14-4 on page 343. After the START condition, a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit ( $\mathbb{R}/S$  bit in the **I2CMSA** register). A zero indicates a transmit operation (send), and a one indicates a request for data (receive). A data transfer is always terminated by a STOP condition generated by the master, however, a master can initiate communications with another device on the bus by generating a repeated START condition and addressing another slave without first generating a STOP condition. Various combinations of receive/send formats are then possible within a single transfer.



The first seven bits of the first byte make up the slave address (see Figure 14-5 on page 343). The eighth bit determines the direction of the message. A zero in the R/S position of the first byte means that the master will write (send) data to the selected slave, and a one in this position means that the master will receive data from the slave.

#### Figure 14-5. R/S Bit in First Byte




#### 14.2.1.3 Data Validity

The data on the SDA line must be stable during the high period of the clock, and the data line can only change when SCL is low (see Figure 14-6 on page 343).

#### Figure 14-6. Data Validity During Bit Transfer on the I<sup>2</sup>C Bus

Figure 14-4. Complete Data Transfer with a 7-Bit Address



#### 14.2.1.4 Acknowledge

All bus transactions have a required acknowledge clock cycle that is generated by the master. During the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line. To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data validity requirements described in "Data Validity" on page 343.

When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave so that the master can generate a STOP condition and abort the current transfer. If the master device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer made by the slave. Since the master controls the number of bytes in the transfer, it signals the end of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave transmitter must then release SDA to allow the master to generate the STOP or a repeated START condition.

#### 14.2.1.5 Arbitration

A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate a START condition within minimum hold time of the START condition. In these situations, an arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low) will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if both masters are trying to address the same device, arbitration continues on to the comparison of data bits.

#### 14.2.2 Available Speed Modes

The I<sup>2</sup>C clock rate is determined by the parameters: CLK\_PRD, TIMER\_PRD, SCL\_LP, and SCL\_HP.

where:

CLK\_PRD is the system clock period

 $\tt SCL\_LP$  is the low phase of SCL (fixed at 6)

SCL\_HP is the high phase of SCL (fixed at 4)

TIMER\_PRD is the programmed value in the I<sup>2</sup>C Master Timer Period (I2CMTPR) register (see page 361).

The I<sup>2</sup>C clock period is calculated as follows:

SCL\_PERIOD = 2\*(1 + TIMER\_PRD)\*(SCL\_LP + SCL\_HP)\*CLK\_PRD

For example:

```
CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4
```

yields a SCL frequency of:

1/T = 333 Khz

Table 14-1 on page 344 gives examples of timer period, system clock, and speed mode (Standard or Fast).

| Table 14-1. I | Examples of  | f I <sup>2</sup> C Master T | imer Period  | versus S  | peed Mode |
|---------------|--------------|-----------------------------|--------------|-----------|-----------|
| System Clock  | Timer Period | Standard Mode               | Timer Period | Fast Mode |           |

| System Clock | Timer Period | Standard Mode | Timer Period | rast mode |
|--------------|--------------|---------------|--------------|-----------|
| 4 Mhz        | 0x01         | 100 Kbps      | -            | -         |
| 6 Mhz        | 0x02         | 100 Kbps      | -            | -         |
| 12.5 Mhz     | 0x06         | 89 Kbps       | 0x01         | 312 Kbps  |
| 16.7 Mhz     | 0x08         | 93 Kbps       | 0x02         | 278 Kbps  |
| 20 Mhz       | 0x09         | 100 Kbps      | 0x02         | 333 Kbps  |
| 25 Mhz       | 0x0C         | 96.2 Kbps     | 0x03         | 312 Kbps  |

#### 14.2.3 Interrupts

The I<sup>2</sup>C can generate interrupts when the following conditions are observed:

- Master transaction completed
- Master transaction error
- Slave transaction received
- Slave transaction requested

There is a separate interrupt signal for the  $I^2C$  master and  $I^2C$  modules. While both modules can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt controller.

# 14.2.3.1 I<sup>2</sup>C Master Interrupts

The  $I^2C$  master module generates an interrupt when a transaction completes (either transmit or receive), or when an error occurs during a transaction. To enable the  $I^2C$  master interrupt, software must write a '1' to the  $I^2C$  Master Interrupt Mask (I2CMIMR) register. When an interrupt condition is met, software must check the ERROR bit in the  $I^2C$  Master Control/Status (I2CMCS) register to verify that an error didn't occur during the last transaction. An error condition is asserted if the last transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of the bus due to a lost arbitration round with another master. If an error is not detected, the application can proceed with the transfer. The interrupt is cleared by writing a '1' to the  $I^2C$  Master Interrupt Clear (I2CMICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the **I<sup>2</sup>C Master Raw Interrupt Status (I2CMRIS)** register.

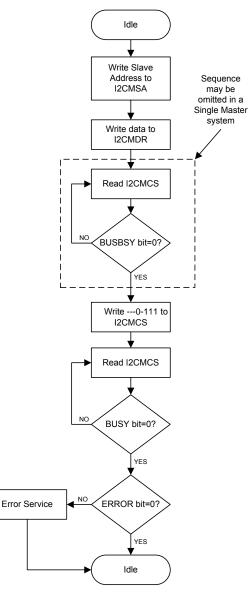
### 14.2.3.2 I<sup>2</sup>C Slave Interrupts

The slave module generates interrupts as it receives requests from an  $I^2C$  master. To enable the  $I^2C$  slave interrupt, write a '1' to the  $I^2C$  Slave Interrupt Mask (I2CSIMR) register. Software determines whether the module should write (transmit) or read (receive) data from the  $I^2C$  Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the  $I^2C$  Slave Control/Status (I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received, the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a '1' to the  $I^2C$  Slave Interrupt Clear (I2CSICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the I<sup>2</sup>C Slave Raw Interrupt Status (I2CSRIS) register.

#### 14.2.4 Loopback Operation

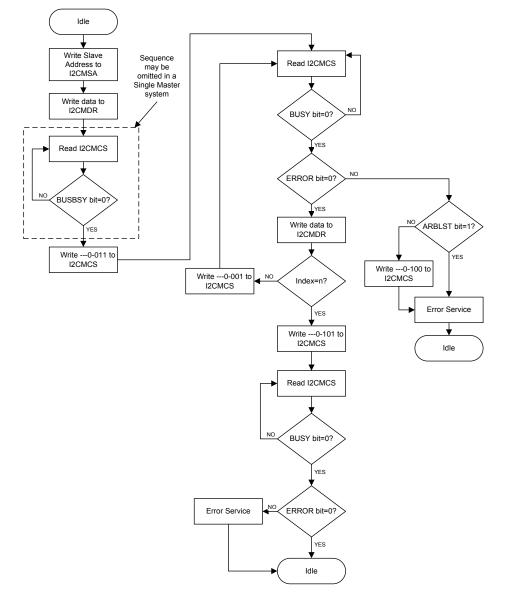
The  $I^2C$  modules can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LPBK bit in the  $I^2C$  Master Configuration (I2CMCR) register. In loopback mode, the SDA and SCL signals from the master and slave modules are tied together.


#### 14.2.5 Command Sequence Flow Charts

This section details the steps required to perform the various I<sup>2</sup>C transfer types in both master and slave mode.

# 14.2.5.1 I<sup>2</sup>C Master Command Sequences

The figures that follow show the command sequences available for the  $\ensuremath{\mathsf{I}}^2\ensuremath{\mathsf{C}}$  master.


#### Figure 14-7. Master Single SEND











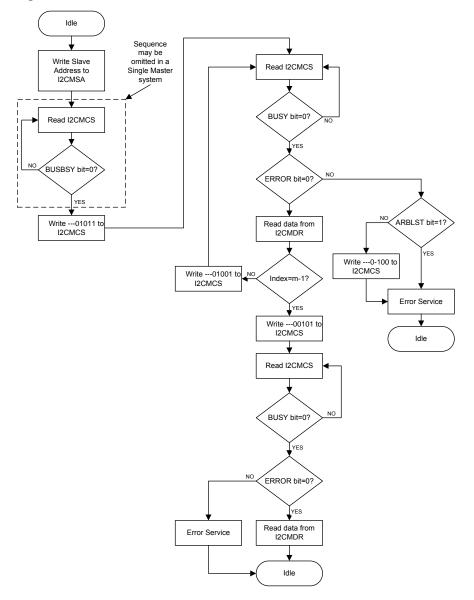



Figure 14-10. Master Burst RECEIVE

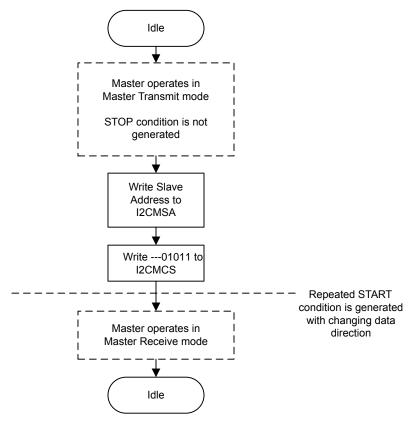



Figure 14-11. Master Burst RECEIVE after Burst SEND

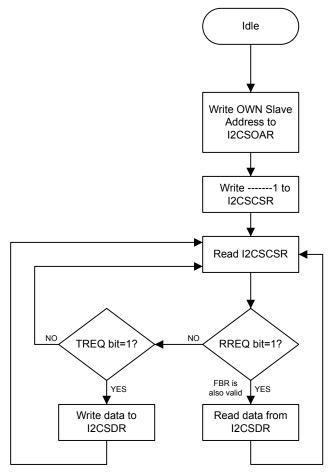




Figure 14-12. Master Burst SEND after Burst RECEIVE

# 14.2.5.2 I<sup>2</sup>C Slave Command Sequences

Figure 14-13 on page 352 presents the command sequence available for the  $I^2C$  slave.





# 14.3 Initialization and Configuration

The following example shows how to configure the  $I^2C$  module to send a single byte as a master. This assumes the system clock is 20 MHz.

- 1. Enable the I<sup>2</sup>C clock by writing a value of 0x0000.1000 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register. Also, be sure to enable the same pins for Open Drain operation.
- 4. Initialize the I<sup>2</sup>C Master by writing the I2CMCR register with a value of 0x0000.0020.
- 5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct value. The value written to the I2CMTPR register represents the number of system clock periods in one SCL clock period. The TPR value is determined by the following equation:

TPR = (System Clock / (2 \* (SCL\_LP + SCL\_HP) \* SCL\_CLK)) - 1; TPR = (20MHz / (2 \* (6 + 4) \* 100000)) - 1; TPR = 9

Write the I2CMTPR register with the value of 0x0000.0009.

- 6. Specify the slave address of the master and that the next operation will be a Send by writing the **I2CMSA** register with a value of 0x0000.0076. This sets the slave address to 0x3B.
- 7. Place data (byte) to be sent in the data register by writing the **I2CMDR** register with the desired data.
- Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with a value of 0x0000.0007 (STOP, START, RUN).
- 9. Wait until the transmission completes by polling the I2CMCS register's BUSBSY bit until it has been cleared.

# 14.4 I<sup>2</sup>C Register Map

Table 14-2 on page 353 lists the  $I^2C$  registers. All addresses given are relative to the  $I^2C$  base addresses for the master and slave:

- I<sup>2</sup>C Master 0: 0x4002.0000
- I<sup>2</sup>C Slave 0: 0x4002.0800
- I<sup>2</sup>C Master 1: 0x4002.1000
- I<sup>2</sup>C Slave 1: 0x4002.1800

#### Table 14-2. Inter-Integrated Circuit (I<sup>2</sup>C) Interface Register Map

| Offset                 | Name    | Туре | Reset       | Description                        | See<br>page |
|------------------------|---------|------|-------------|------------------------------------|-------------|
| I <sup>2</sup> C Maste | r       |      |             | ·                                  |             |
| 0x000                  | I2CMSA  | R/W  | 0x0000.0000 | I2C Master Slave Address           | 355         |
| 0x004                  | I2CMCS  | R/W  | 0x0000.0000 | I2C Master Control/Status          | 356         |
| 0x008                  | I2CMDR  | R/W  | 0x0000.0000 | I2C Master Data                    | 360         |
| 0x00C                  | I2CMTPR | R/W  | 0x0000.0001 | I2C Master Timer Period            | 361         |
| 0x010                  | I2CMIMR | R/W  | 0x0000.0000 | I2C Master Interrupt Mask          | 362         |
| 0x014                  | I2CMRIS | RO   | 0x0000.0000 | I2C Master Raw Interrupt Status    | 363         |
| 0x018                  | I2CMMIS | RO   | 0x0000.0000 | I2C Master Masked Interrupt Status | 364         |
| 0x01C                  | I2CMICR | WO   | 0x0000.0000 | I2C Master Interrupt Clear         | 365         |
| 0x020                  | I2CMCR  | R/W  | 0x0000.0000 | I2C Master Configuration           | 366         |
| I <sup>2</sup> C Slave |         |      |             | ·                                  | l           |
| 0x000                  | I2CSOAR | R/W  | 0x0000.0000 | I2C Slave Own Address              | 368         |

| Offset | Name    | Туре | Reset       | Description                       | See<br>page |
|--------|---------|------|-------------|-----------------------------------|-------------|
| 0x004  | I2CSCSR | RO   | 0x0000.0000 | I2C Slave Control/Status          | 369         |
| 0x008  | I2CSDR  | R/W  | 0x0000.0000 | I2C Slave Data                    | 371         |
| 0x00C  | I2CSIMR | R/W  | 0x0000.0000 | I2C Slave Interrupt Mask          | 372         |
| 0x010  | I2CSRIS | RO   | 0x0000.0000 | I2C Slave Raw Interrupt Status    | 373         |
| 0x014  | I2CSMIS | RO   | 0x0000.0000 | I2C Slave Masked Interrupt Status | 374         |
| 0x018  | I2CSICR | WO   | 0x0000.0000 | I2C Slave Interrupt Clear         | 375         |

# 14.5 Register Descriptions (I<sup>2</sup>C Master)

The remainder of this section lists and describes the I<sup>2</sup>C master registers, in numerical order by address offset. See also "Register Descriptions (I2C Slave)" on page 367.

# Register 1: I<sup>2</sup>C Master Slave Address (I2CMSA), offset 0x000

This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which determines if the next operation is a Receive (High), or Send (Low).

I2C Master Slave Address (I2CMSA)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x000 Type R/W, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 20 17 16 21 19 18 reserved RO RO RO RO RO RO RO RO RO RO RO RO RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 12 10 0 15 14 11 9 8 6 2 7 5 4 3 1 SA R/S reserved Туре RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Name Reset Description Туре 31:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:1 SA R/W 0 I<sup>2</sup>C Slave Address This field specifies bits A6 through A0 of the slave address. 0 R/S R/W 0 Receive/Send The R/S bit specifies if the next operation is a Receive (High) or Send (Low). 0: Send

1: Receive

# Register 2: I<sup>2</sup>C Master Control/Status (I2CMCS), offset 0x004

This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I<sup>2</sup>C bus controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst. To generate a single send cycle, the  $I^2C$  Master Slave Address (I2CMSA) register is written with the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1), STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt pin becomes active and the data may be read from the I2CMDR register. When the  $I^2C$  module operates in Master receiver mode, the ACK bit must be set normally to logic 1. This causes the  $I^2C$  bus controller to send an acknowledge automatically after each byte. This bit must be reset when the  $I^2C$  bus controller requires no further data to be sent from the slave transmitter.

#### **Read-Only Status Register**

#### I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x004 Type RO, reset 0x0000.0000

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |         |         |          |         |            |         |         |                                                                                                                                                                                               |                      |                                   |          |          |            |           |                                                                                                                                                                                                                                                                       |         |  |  |
|-----------------------------------------|---------|---------|----------|---------|------------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|----------|----------|------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
|                                         | 31      | 30      | 29       | 28      | 27         | 26      | 25      | 24                                                                                                                                                                                            | 23                   | 22                                | 21       | 20       | 19         | 18        | 17                                                                                                                                                                                                                                                                    | 16      |  |  |
|                                         |         | 1       | 1 1      |         | <u>г г</u> |         | 1       | rese                                                                                                                                                                                          | rved                 | 1 1                               |          | 1        |            | 1         |                                                                                                                                                                                                                                                                       |         |  |  |
| Type<br>Reset                           | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0              | RO<br>0                           | RO<br>0  | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0                                                                                                                                                                                                                                                               | RO<br>0 |  |  |
|                                         | 15      | 14      | 13       | 12      | 11         | 10      | 9       | 8                                                                                                                                                                                             | 7                    | 6                                 | 5        | 4        | 3          | 2         | 1                                                                                                                                                                                                                                                                     | 0       |  |  |
|                                         |         | 1       | 1 1      |         | reserved   |         | 1       |                                                                                                                                                                                               |                      | BUSBSY                            | IDLE     | ARBLST   | DATACK     | ADRACK    | ERROR                                                                                                                                                                                                                                                                 | BUSY    |  |  |
| Type<br>Reset                           | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0              | RO<br>0                           | RO<br>0  | RO<br>0  | RO<br>0    | RO<br>0   | RO<br>0                                                                                                                                                                                                                                                               | RO<br>0 |  |  |
| Bit/F                                   | ield    |         | Name     |         | Туре       |         | Reset   | Descr                                                                                                                                                                                         | iption               |                                   |          |          |            |           |                                                                                                                                                                                                                                                                       |         |  |  |
| 31                                      | :7      |         | reserved |         | RO         |         | 0       | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                      |                                   |          |          |            |           |                                                                                                                                                                                                                                                                       |         |  |  |
| 6                                       | i       |         | BUSBSY   |         | RO         |         | 0       |                                                                                                                                                                                               | it speci             |                                   |          |          |            |           | •                                                                                                                                                                                                                                                                     |         |  |  |
|                                         |         |         |          |         |            |         |         |                                                                                                                                                                                               | vise, the<br>conditi |                                   | lle. The | bit char | nges bas   | ed on th  | e STAR                                                                                                                                                                                                                                                                | T and   |  |  |
| 5                                       |         |         | IDLE     |         | RO         |         | 0       | I <sup>2</sup> C Idl                                                                                                                                                                          | е                    |                                   |          |          |            |           |                                                                                                                                                                                                                                                                       |         |  |  |
|                                         |         |         |          |         |            |         |         |                                                                                                                                                                                               | •                    | fies the I <sup>2</sup> controlle |          |          | te. If set | , the con | 2       1         RACK       ERROR       B         RO       RO       0         0       0       0         ed bit.       To provide         eserved bit should         he bus is busy;         on the START a         e controller is idle         et, the controller I |         |  |  |
| 4                                       |         |         | ARBLST   |         | RO         |         | 0       | Arbitra                                                                                                                                                                                       | ation Lo             | st                                |          |          |            |           |                                                                                                                                                                                                                                                                       |         |  |  |
|                                         |         |         |          |         |            |         |         |                                                                                                                                                                                               |                      | fies the re<br>herwise, t         |          |          |            |           | controll                                                                                                                                                                                                                                                              | er lost |  |  |

| Bit/Field | Name   | Туре | Reset | Description                                                                                                                                                                                                                                                                                       |
|-----------|--------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3         | DATACK | RO   | 0     | Acknowledge Data                                                                                                                                                                                                                                                                                  |
|           |        |      |       | This bit specifies the result of the last data operation. If set, the transmitted data was not acknowledged; otherwise, the data was acknowledged.                                                                                                                                                |
| 2         | ADRACK | RO   | 0     | Acknowledge Address                                                                                                                                                                                                                                                                               |
|           |        |      |       | This bit specifies the result of the last address operation. If set, the transmitted address was not acknowledged; otherwise, the address was acknowledged.                                                                                                                                       |
| 1         | ERROR  | RO   | 0     | Error                                                                                                                                                                                                                                                                                             |
|           |        |      |       | This bit specifies the result of the last bus operation. If set, an error occurred on the last operation; otherwise, no error was detected. The error can be from the slave address not being acknowledged, the transmit data not being acknowledged, or because the controller lost arbitration. |
| 0         | BUSY   | RO   | 0     | I <sup>2</sup> C Busy                                                                                                                                                                                                                                                                             |
|           |        |      |       | This bit specifies the state of the controller. If set, the controller is busy; otherwise, the controller is idle. When the BUSY bit is set, the other status bits are not valid.                                                                                                                 |

#### Write-Only Control Register

#### I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x004 Type WO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22                    | 21      | 20                                       | 19       | 18       | 17       | 16        |
|---------------|---------|---------|----------|---------|---------|---------|---------|---------|-------------|-----------------------|---------|------------------------------------------|----------|----------|----------|-----------|
|               |         | 1       | 1        |         | · · ·   |         | 1       | rese    | rved        | 1                     | 1       | 1                                        | 1        | 1        | 1        |           |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0               | RO<br>0 | RO<br>0                                  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0   |
|               | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6                     | 5       | 4                                        | 3        | 2        | 1        | 0         |
|               |         | T       | 1        |         | 1       | res     | erved   |         |             | T                     | Ì       | 1                                        | ACK      | STOP     | START    | RUN       |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0               | RO<br>0 | RO<br>0                                  | WO<br>0  | WO<br>0  | WO<br>0  | WO<br>0   |
| Bit/F         | ield    |         | Name     |         | Туре    |         | Reset   | Descr   | iption      |                       |         |                                          |          |          |          |           |
| 31:           | 4       |         | reserved | I       | RO      |         | 0       | compa   | atibility v | with futur            | e produ | ie value o<br>icts, the v<br>ify-write o | value of | a reserv | •        |           |
| 3             |         |         | ACK      |         | WO      |         | 0       | Data A  | Acknow      | ledge Er              | able    |                                          |          |          |          |           |
|               |         |         |          |         |         |         |         |         | -           |                       |         | ta byte to<br>ding in Ta                 |          | 0        |          | natically |
| 2             |         |         | STOP     |         | WO      |         | 0       | Gener   | ate ST      | OP                    |         |                                          |          |          |          |           |
|               |         |         |          |         |         |         |         |         | -           | uses the<br>able 14-: | •       | tion of th<br>ge 358.                    | e STOP   | conditio | n. See f | ield      |

| Bit/Field | Name  | Туре | Reset | Description                                                                                                           |
|-----------|-------|------|-------|-----------------------------------------------------------------------------------------------------------------------|
| 1         | START | WO   | 0     | Generate START                                                                                                        |
|           |       |      |       | When set, causes the generation of a START or repeated START condition. See field decoding in Table 14-3 on page 358. |
| 0         | RUN   | WO   | 0     | I <sup>2</sup> C Master Enable                                                                                        |
|           |       |      |       | When set, allows the master to send or receive data. See field decoding in Table 14-3 on page 358.                    |

Table 14-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)

| Current<br>State   | I2CMSA[0]    |            | I2CMC          | S[3:0]    |            | Description                                                                                                         |  |  |  |  |  |
|--------------------|--------------|------------|----------------|-----------|------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                    | R/S          | ACK        | STOP START RUN |           | RUN        |                                                                                                                     |  |  |  |  |  |
| Idle               | 0            | Xa         | 0              | 1         | 1          | START condition followed by SEND (master goes to the Master Transmit state).                                        |  |  |  |  |  |
|                    | 0            | х          | 1              | 1         | 1          | START condition followed by a SEND and STOP condition (master remains in Idle state).                               |  |  |  |  |  |
|                    | 1            | 0          | 0              | 1         | 1          | START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state).          |  |  |  |  |  |
|                    | 1            | 0          | 1              | 1         | 1          | START condition followed by RECEIVE and STOP condition (master remains in Idle state).                              |  |  |  |  |  |
|                    | 1            | 1          | 0              | 1         | 1          | START condition followed by RECEIVE (master goes to the Master Receive state).                                      |  |  |  |  |  |
|                    | 1            | 1          | 1              | 1         | 1          | Illegal.                                                                                                            |  |  |  |  |  |
|                    | All other co | mbinations | s not listed   | are non-o | perations. | NOP.                                                                                                                |  |  |  |  |  |
| Master<br>Transmit | х            | х          | 0              | 0         | 1          | SEND operation (master remains in Master Transmit state).                                                           |  |  |  |  |  |
|                    | Х            | Х          | 1              | 0         | 0          | STOP condition (master goes to Idle state).                                                                         |  |  |  |  |  |
|                    | Х            | х          | 1              | 0         | 1          | SEND followed by STOP condition (master goes to Idle state).                                                        |  |  |  |  |  |
|                    | 0            | х          | 0              | 1         | 1          | Repeated START condition followed by a SEND (master remains in Master Transmit state).                              |  |  |  |  |  |
|                    | 0            | х          | 1              | 1         | 1          | Repeated START condition followed by SEND and STOP condition (master goes to Idle state).                           |  |  |  |  |  |
|                    | 1            | 0          | 0              | 1         | 1          | Repeated START condition followed by a RECEIVE operation with a negative ACK (master goes to Master Receive state). |  |  |  |  |  |
|                    | 1            | 0          | 1              | 1         | 1          | Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).                         |  |  |  |  |  |
|                    | 1            | 1          | 0              | 1         | 1          | Repeated START condition followed by RECEIVE (master goes to Master Receive state).                                 |  |  |  |  |  |
|                    | 1            | 1          | 1              | 1         | 1          | Illegal.                                                                                                            |  |  |  |  |  |
|                    | All other co | mbinations | s not listed   | are non-o | perations. | NOP.                                                                                                                |  |  |  |  |  |

| Current           | I2CMSA[0]    |           | I2CMC        | S[3:0]     |           | Description                                                                                                          |  |  |  |  |  |
|-------------------|--------------|-----------|--------------|------------|-----------|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| State             | R/S          | ACK       | ACK STOP STA |            | RUN       |                                                                                                                      |  |  |  |  |  |
| Master<br>Receive | Х            | 0         | 0            | 0          | 1         | RECEIVE operation with negative ACK (master remains in Master Receive state).                                        |  |  |  |  |  |
|                   | Х            | Х         | 1            | 0          | 0         | STOP condition (master goes to Idle state). <sup>b</sup>                                                             |  |  |  |  |  |
|                   | Х            | 0         | 1            | 0          | 1         | RECEIVE followed by STOP condition (master goes to Idle state).                                                      |  |  |  |  |  |
|                   | Х            | 1         | 0            | 0          | 1         | RECEIVE operation (master remains in Master Receive state).                                                          |  |  |  |  |  |
|                   | Х            | 1         | 1            | 0          | 1         | Illegal.                                                                                                             |  |  |  |  |  |
|                   | 1            | 0         | 0            | 1          | 1         | Repeated START condition followed by RECEIVE operation with a negative ACK (master remains in Master Receive state). |  |  |  |  |  |
|                   | 1            | 0         | 1            | 1          | 1         | Repeated START condition followed by RECEIVE and STOP condition (master goes to Idle state).                         |  |  |  |  |  |
|                   | 1            | 1         | 0            | 1          | 1         | Repeated START condition followed by RECEIVE (master remains in Master Receive state).                               |  |  |  |  |  |
|                   | 0            | Х         | 0            | 1          | 1         | Repeated START condition followed by SEND (master goes to Master Transmit state).                                    |  |  |  |  |  |
|                   | 0            | Х         | 1            | 1          | 1         | Repeated START condition followed by SEND and STOP condition (master goes to Idle state).                            |  |  |  |  |  |
|                   | All other co | mbination | s not listed | are non-op | erations. | NOP.                                                                                                                 |  |  |  |  |  |

a. An X in a table cell indicates the bit can be 0 or 1.

b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the master or an Address Negative Acknowledge executed by the slave.

# Register 3: I<sup>2</sup>C Master Data (I2CMDR), offset 0x008

This register contains the data to be transmitted when in the Master Transmit state, and the data received when in the Master Receive state.

I2C Master Data (I2CMDR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x008 Type R/W, reset 0x000.0000

|               | ·               |          |         |         |            |         |         |                                                                                                                                                                                            |                                      |          |          |          |          |          |          |          |  |  |
|---------------|-----------------|----------|---------|---------|------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--|
|               | 31              | 30       | 29      | 28      | 27         | 26      | 25      | 24                                                                                                                                                                                         | 23                                   | 22       | 21       | 20       | 19       | 18       | 17       | 16       |  |  |
|               | reserved        |          |         |         |            |         |         |                                                                                                                                                                                            |                                      |          |          |          |          |          |          |          |  |  |
| Type<br>Reset | RO<br>0         | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                    | RO<br>0                              | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |  |  |
|               | 15              | 14       | 13      | 12      | 11         | 10      | 9       | 8                                                                                                                                                                                          | 7                                    | 6        | 5        | 4        | 3        | 2        | 1        | 0        |  |  |
|               |                 | reserved |         |         |            |         |         |                                                                                                                                                                                            |                                      | DATA     |          |          |          |          |          |          |  |  |
| Type<br>Reset | RO<br>0         | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                    | R/W<br>0                             | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |  |  |
| Bit/F         | ield            | Name     |         |         | Type Reset |         |         | Descr                                                                                                                                                                                      | iption                               |          |          |          |          |          |          |          |  |  |
| 31            | 1:8 reserved RO |          |         |         | RO         |         | 0       | Software should not rely on the value of a reserved bit. To prove<br>compatibility with future products, the value of a reserved bit sh<br>preserved across a read-modify-write operation. |                                      |          |          |          |          |          |          |          |  |  |
| 7:            | 0               | DATA     |         |         | R/W        |         | 0x00    | Data <sup>-</sup>                                                                                                                                                                          | Data Transferred                     |          |          |          |          |          |          |          |  |  |
|               |                 |          |         |         |            |         |         |                                                                                                                                                                                            | Data transferred during transaction. |          |          |          |          |          |          |          |  |  |

# Register 4: I<sup>2</sup>C Master Timer Period (I2CMTPR), offset 0x00C

This register specifies the period of the SCL clock.

I2C Master Timer Period (I2CMTPR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x00C Type R/W, reset 0x0000.0001

| Type R/M                                                                                                                                                                                      | , 16561 ( | 5,0000.00 | 001     |         |         |         |         |               |                   |            |          |                         |          |            |          |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|---------|---------|---------|---------|---------------|-------------------|------------|----------|-------------------------|----------|------------|----------|----------|
| _                                                                                                                                                                                             | 31        | 30        | 29      | 28      | 27      | 26      | 25      | 24            | 23                | 22         | 21       | 20                      | 19       | 18         | 17       | 16       |
|                                                                                                                                                                                               |           | 1         | 1 1     |         |         |         | 1       | rese          | rved              | •          |          | •                       |          | 1          |          | •        |
| Type<br>Reset                                                                                                                                                                                 | RO<br>0   | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0       | RO<br>0           | RO<br>0    | RO<br>0  | RO<br>0                 | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  |
|                                                                                                                                                                                               | 15        | 14        | 13      | 12      | 11      | 10      | 9       | 8             | 7                 | 6          | 5        | 4                       | 3        | 2          | 1        | 0        |
|                                                                                                                                                                                               |           |           | 1       | rese    | rved    |         |         | 1             |                   | 1          |          | TF                      | PR       | I          |          |          |
| Type<br>Reset                                                                                                                                                                                 | RO<br>0   | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0       | R/W<br>0          | R/W<br>0   | R/W<br>0 | R/W<br>0                | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>1 |
| Bit/F                                                                                                                                                                                         | ield      |           | Name    |         | Туре    |         | Reset   | Descr         | iption            |            |          |                         |          |            |          |          |
| 31:8 reserved RO 0 Software should not rely on the value of a reserved bit.<br>compatibility with future products, the value of a reserved<br>preserved across a read-modify-write operation. |           |           |         |         |         |         |         |               |                   |            |          |                         | •        |            |          |          |
| 7:                                                                                                                                                                                            | 0         |           | TPR     |         | R/W     |         | 0x1     | SCL C         | Clock Pe          | eriod      |          |                         |          |            |          |          |
|                                                                                                                                                                                               |           |           |         |         |         |         |         | This fi       | eld spec          | cifies the | period   | of the SC               | CL clock |            |          |          |
|                                                                                                                                                                                               |           |           |         |         |         |         |         | SCL_I         | PRD =             | 2*(1 +     | TPR)*    | (SCL_L                  | P + SC   | L_HP)*     | CLK_PR   | D        |
|                                                                                                                                                                                               |           |           |         |         |         |         |         | where         | :                 |            |          |                         |          |            |          |          |
|                                                                                                                                                                                               |           |           |         |         |         |         |         | SCL_I         | PRD i <b>s th</b> | ne SCL li  | ne peric | od (I <sup>2</sup> C cl | ock).    |            |          |          |
|                                                                                                                                                                                               |           |           |         |         |         |         |         | TPR <b>is</b> | s the Tim         | ner Perio  | d regist | er value                | (range o | of 1 to 25 | 55).     |          |
|                                                                                                                                                                                               |           |           |         |         |         |         |         | SCL_I         | LP is the         | SCL Lo     | w perio  | d (fixed a              | at 6).   |            |          |          |
|                                                                                                                                                                                               |           |           |         |         |         |         |         | SCL_H         | HP is the         | SCL Hi     | gh perio | d (fixed                | at 4).   |            |          |          |

## Register 5: I<sup>2</sup>C Master Interrupt Mask (I2CMIMR), offset 0x010

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C Master Interrupt Mask (I2CMIMR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x010 Type R/W, reset 0x0000.0000

|               | 31      | 30      | 29      | 28      | 27      | 26      | 25               | 24       | 23                                   | 22         | 21       | 20         | 19         | 18       | 17       | 16      |
|---------------|---------|---------|---------|---------|---------|---------|------------------|----------|--------------------------------------|------------|----------|------------|------------|----------|----------|---------|
|               |         | 1       |         | l       |         |         | •                | rese     | rved                                 | l          |          |            |            | 1        |          |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0          | RO<br>0  | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0 |
|               | 15      | 14      | 13      | 12      | 11      | 10      | 9                | 8        | 7                                    | 6          | 5        | 4          | 3          | 2        | 1        | 0       |
|               | 10      | 1       | 1       |         | · · ·   | 10      |                  | reserved | · · · ·                              |            |          |            |            | -        |          | IM      |
|               |         |         |         |         |         |         |                  |          | I                                    |            |          |            |            |          |          |         |
| Туре          | RO               | RO       | RO                                   | RO         | RO       | RO         | RO         | RO       | RO       | R/W     |
| Reset         | 0       | 0       | 0       | 0       | 0       | 0       | 0                | 0        | 0                                    | 0          | 0        | 0          | 0          | 0        | 0        | 0       |
| Bit/F         | ield    |         |         |         |         |         | Reset            | Descr    | iption                               |            |          |            |            |          |          |         |
| 31:           | :1      | cc      |         |         |         |         |                  |          | are shou<br>atibility w<br>rved acro | /ith futur | e produ  | cts, the v | alue of    | a reserv | •        |         |
| 0             |         |         | IM      |         | R/W     |         | 0 Interrupt Mask |          |                                      |            |          |            |            |          |          |         |
|               |         |         |         |         |         |         |                  | This h   | it contro                            | ls wheth   | er a raw | / interrur | nt is nror | noted to | a contro | oller   |

This bit controls whether a raw interrupt is promoted to a controller interrupt. If set, the interrupt is not masked and the interrupt is promoted; otherwise, the interrupt is masked.

## Register 6: I<sup>2</sup>C Master Raw Interrupt Status (I2CMRIS), offset 0x014

This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status (I2CMRIS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x014 Type RO, reset 0x0000.0000

|               | 31                                                                     | 30               | 29      | 28      | 27      | 26      | 25      | 24       | 23                                   | 22         | 21         | 20         | 19        | 18                 | 17      | 16      |
|---------------|------------------------------------------------------------------------|------------------|---------|---------|---------|---------|---------|----------|--------------------------------------|------------|------------|------------|-----------|--------------------|---------|---------|
|               |                                                                        | 1                |         |         |         |         | 1       | rese     | rved                                 | l          | •          |            |           | 1                  |         |         |
| Type<br>Reset | RO<br>0                                                                | RO<br>0          | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0            | RO<br>0 | RO<br>0 |
|               | 15                                                                     | 14               | 13      | 12      | 11      | 10      | 9       | 8        | 7                                    | 6          | 5          | 4          | 3         | 2                  | 1       | 0       |
|               |                                                                        | 1                | 1 1     |         | r r     |         | 1       | reserved | r                                    |            | RIS        |            |           |                    |         |         |
| Type<br>Reset | RO<br>0                                                                | RO<br>0          | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0   | RO<br>0            | RO<br>0 | RO<br>0 |
| Bit/F         | ield                                                                   | n Name Type Rese |         |         |         |         | Reset   | Descr    | iption                               |            |            |            |           |                    |         |         |
| 31:           |                                                                        |                  |         |         |         |         | 0       | compa    | are shou<br>atibility w<br>rved acro | ith futur/ | e produ    | cts, the v | alue of   | a reserv           | •       |         |
| 0             | 0 RIS RO 0 Raw Interrupt Status<br>This bit specifies the raw interrup |                  |         |         |         |         |         |          |                                      | rupt state | e (prior t | o maski    | ng) of th | e l <sup>2</sup> C |         |         |

not pending.

master block. If set, an interrupt is pending; otherwise, an interrupt is

June 26, 2007

## Register 7: I<sup>2</sup>C Master Masked Interrupt Status (I2CMMIS), offset 0x018

This register specifies whether an interrupt was signaled.

I2C Master Masked Interrupt Status (I2CMMIS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x018 Type RO, reset 0x0000.0000

|               | 31        | 30            | 29      | 28      | 27       | 26      | 25      | 24                      | 23                                   | 22         | 21      | 20         | 19      | 18       | 17          | 16      |
|---------------|-----------|---------------|---------|---------|----------|---------|---------|-------------------------|--------------------------------------|------------|---------|------------|---------|----------|-------------|---------|
|               |           | 1             |         |         | , ,<br>, |         | 1       | rese                    | erved                                |            |         |            |         | 1        | 1           |         |
| Type<br>Reset | RO<br>0   | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0     | RO<br>0 |
|               | 15        | 14            | 13      | 12      | 11       | 10      | 9       | 8                       | 7                                    | 6          | 5       | 4          | 3       | 2        | 1           | 0       |
|               |           | 1             | , ,     |         | г г      |         | 1       |                         |                                      |            |         |            |         |          |             |         |
| Type<br>Reset | RO<br>0   | RO<br>0       | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0                              | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0     | RO<br>0 |
| Bit/F         | Bit/Field |               |         |         | Туре     | I       | Reset   | Descr                   | iption                               |            |         |            |         |          |             |         |
| 31            | :1        | reserved RO 0 |         |         |          |         |         | compa                   | are shou<br>atibility w<br>rved acro | /ith futur | e produ | cts, the v | alue of | a reserv |             |         |
| 0             |           |               | MIS     |         | RO       |         | 0       | Masked Interrupt Status |                                      |            |         |            |         |          | $f = 1^2 C$ | maatar  |

This bit specifies the raw interrupt state (after masking) of the I<sup>2</sup>C master block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared.

# Register 8: I<sup>2</sup>C Master Interrupt Clear (I2CMICR), offset 0x01C

This register clears the raw interrupt.

| I2C Master Interrupt Clear (I2CMICR) |
|--------------------------------------|
| 100 Master 0 has a 0. 1000 0000      |

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x01C Type WO, reset 0x0000.0000

|               | 31      | 30      | 29             | 28      | 27       | 26      | 25      | 24       | 23          | 22         | 21       | 20                                    | 19        | 18       | 17      | 16      |
|---------------|---------|---------|----------------|---------|----------|---------|---------|----------|-------------|------------|----------|---------------------------------------|-----------|----------|---------|---------|
|               |         | 1       | 1              |         | , ,<br>, |         | 1       | rese     | rved        |            |          |                                       |           | 1        | 1       |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0        | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0   | RO<br>0  | RO<br>0 | RO<br>0 |
|               | 15      | 14      | 13             | 12      | 11       | 10      | 9       | 8        | 7           | 6          | 5        | 4                                     | 3         | 2        | 1       | 0       |
|               |         | ı       | 1 1            |         | , r      |         | T       | reserved |             |            | ſ        |                                       |           | 1        | ı       | IC      |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0        | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0   | RO<br>0  | RO<br>0 | WO<br>0 |
| Bit/F         | ield    |         | Name Type Rese |         |          |         |         | Descr    | iption      |            |          |                                       |           |          |         |         |
| 31:           | :1      |         | reserved       |         | RO       |         | 0       | compa    | atibility v | vith futur | e produ  | e value o<br>cts, the v<br>fy-write o | alue of   | a reserv | •       |         |
| 0             |         |         | IC             |         | WO       |         | 0       |          | upt Clear   |            | interrur | ot A writ                             | e of 1 cl | ears the |         |         |

This bit controls the clearing of the raw interrupt. A write of 1 clears the interrupt; otherwise, a write of 0 has no affect on the interrupt state. A read of this register returns no meaningful data.

## Register 9: I<sup>2</sup>C Master Configuration (I2CMCR), offset 0x020

This register configures the mode (Master or Slave) and sets the interface for test mode loopback.

I2C Master Configuration (I2CMCR) I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x020 Type R/W, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,                                                                                                                                                                                                                                    |    |      |    |       |     |       |                    |          |            |           |            |           |                                      |    |      |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|----|-------|-----|-------|--------------------|----------|------------|-----------|------------|-----------|--------------------------------------|----|------|
|                                         | 31                                                                                                                                                                                                                                   | 30 | 29   | 28 | 27    | 26  | 25    | 24                 | 23       | 22         | 21        | 20         | 19        | 18                                   | 17 | 16   |
|                                         |                                                                                                                                                                                                                                      | 1  | 1 1  |    | · ·   |     | 1     | rese               | erved    |            | 1         |            |           | 1 1                                  |    | '    |
| Туре                                    | RO                                                                                                                                                                                                                                   | RO | RO   | RO | RO    | RO  | RO    | RO                 | RO       | RO         | RO        | RO         | RO        | RO                                   | RO | RO   |
| Reset                                   | 0                                                                                                                                                                                                                                    | 0  | 0    | 0  | 0     | 0   | 0     | 0                  | 0        | 0          | 0         | 0          | 0         | 0                                    | 0  | 0    |
|                                         | 15                                                                                                                                                                                                                                   | 14 | 13   | 12 | 11    | 10  | 9     | 8                  | 7        | 6          | 5         | 4          | 3         | 2                                    | 1  | 0    |
|                                         |                                                                                                                                                                                                                                      | 1  |      |    | reser | ved | I     |                    | 1        |            | SFE       | MFE        |           | reserved                             |    | LPBK |
| Туре                                    | RO                                                                                                                                                                                                                                   | RO | RO   | RO | RO    | RO  | RO    | RO                 | RO       | RO         | R/W       | R/W        | RO        | RO                                   | RO | R/W  |
| Reset                                   | 0                                                                                                                                                                                                                                    | 0  | 0    | 0  | 0     | 0   | 0     | 0                  | 0        | 0          | 0         | 0          | 0         | 0                                    | 0  | 0    |
|                                         |                                                                                                                                                                                                                                      |    |      |    | _     |     |       | _                  |          |            |           |            |           |                                      |    |      |
| Bit/Fi                                  | ield                                                                                                                                                                                                                                 |    | Name |    | Туре  |     | Reset | Desc               | ription  |            |           |            |           |                                      |    |      |
| 31:                                     | 31:6 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.                      |    |      |    |       |     |       |                    |          |            |           |            |           |                                      |    |      |
| 5                                       |                                                                                                                                                                                                                                      |    | SFE  |    | R/W   |     | 0     | I <sup>2</sup> C S | lave Fun | ction En   | able      |            |           |                                      |    |      |
|                                         |                                                                                                                                                                                                                                      |    |      |    |       |     |       |                    | •        |            |           |            |           | perate in S<br>mode is d             |    |      |
| 4                                       |                                                                                                                                                                                                                                      |    | MFE  |    | R/W   |     | 0     | I <sup>2</sup> C M | aster Fu | nction E   | nable     |            |           |                                      |    |      |
|                                         |                                                                                                                                                                                                                                      |    |      |    |       |     |       | set, N             | •        | ode is er  | nabled;   | otherwise  |           | perate in N<br>er mode is            |    |      |
| 3:1                                     | 3:1       reserved       RO       0       Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation. |    |      |    |       |     |       |                    |          |            |           |            |           |                                      |    |      |
| 0                                       |                                                                                                                                                                                                                                      |    | LPBK |    | R/W   |     | 0     | I <sup>2</sup> C L | oopback  |            |           |            |           |                                      |    |      |
|                                         |                                                                                                                                                                                                                                      |    |      |    |       |     |       | Loopl              | back moo | de. If set | t, the de | vice is pu | ut in a t | rating norr<br>est mode<br>normally. |    |      |

### 14.6 Register Descriptions (I2C Slave)

The remainder of this section lists and describes the  $I^2C$  slave registers, in numerical order by address offset. See also "Register Descriptions ( $I^2C$  Master)" on page 354.

## Register 10: I<sup>2</sup>C Slave Own Address (I2CSOAR), offset 0x000

This register consists of seven address bits that identify the Stellaris<sup>®</sup>  $I^2C$  device on the  $I^2C$  bus.

| I2C Slave<br>I2C Slave<br>I2C Slave<br>Offset 0x0<br>Type R/W                   | e 0 bas<br>e 1 bas<br>000 | e: 0×<br>e: 0× | (4002<br>(4002 | .0800<br>.1800 | CSOAF   | R)       |         |         |                     |             |           |          |           |                                   |          |          |                  |
|---------------------------------------------------------------------------------|---------------------------|----------------|----------------|----------------|---------|----------|---------|---------|---------------------|-------------|-----------|----------|-----------|-----------------------------------|----------|----------|------------------|
|                                                                                 | 31                        |                | 30             | 29             | 28      | 27       | 26      | 25      | 24                  | 23          | 22        | 21       | 20        | 19                                | 18       | 17       | 16               |
|                                                                                 |                           | 1              |                | 1              | 1       | · ·      |         | 1       | rese                | erved       |           | 1        | 1         | 1                                 | 1        | 1        | 1                |
| Type<br>Reset                                                                   | RO<br>0                   |                | RO<br>0        | RO<br>0        | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0             | RO<br>0     | RO<br>0   | RO<br>0  | RO<br>0   | RO<br>0                           | RO<br>0  | RO<br>0  | RO<br>0          |
| _                                                                               | 15                        |                | 14             | 13             | 12      | 11       | 10      | 9       | 8                   | 7           | 6         | 5        | 4         | 3                                 | 2        | 1        | 0                |
|                                                                                 |                           | 1              |                | 1              | 1       | reserved |         | 1       | 1                   | 1           |           | I        | 1         | OAR                               | 1        | I        | T                |
| Type<br>Reset                                                                   | RO<br>0                   |                | RO<br>0        | RO<br>0        | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0             | RO<br>0     | R/W<br>0  | R/W<br>0 | R/W<br>0  | R/W<br>0                          | R/W<br>0 | R/W<br>0 | R/W<br>0         |
| Bit/F                                                                           | ield                      |                |                | Name           | •       | Туре     |         | Reset   | Descr               | ription     |           |          |           |                                   |          |          |                  |
| 31:                                                                             | 7                         |                |                | reserve        | ed      | RO       |         | 0       | comp                | atibility v | vith futu | re produ | icts, the | of a rese<br>value of<br>operatio | a reser  | •        | vide<br>hould be |
| 6:0                                                                             | D                         |                |                | OAR            |         | R/W      |         | 0       | I <sup>2</sup> C SI | ave Owr     | n Addre:  | SS       |           |                                   |          |          |                  |
| 6:0 OAR R/W 0 I <sup>2</sup> C Slave Own Address<br>This field specifies bits A |                           |                |                |                |         |          |         |         |                     |             |           | s A6 thr | ough A0   | ) of the sl                       | ave ad   | dress.   |                  |

## Register 11: I<sup>2</sup>C Slave Control/Status (I2CSCSR), offset 0x004

This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First Byte Received (FBR) bit is set only after the Stellaris<sup>®</sup> device detects its own slave address and receives the first data byte from the I<sup>2</sup>C master. The Receive Request (RREQ) bit indicates that the Stellaris<sup>®</sup> I<sup>2</sup>C device has received a data byte from an I<sup>2</sup>C master. Read one data byte from the I<sup>2</sup>C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit indicates that the Stellaris<sup>®</sup> I<sup>2</sup>C device is addressed as a Slave Transmitter. Write one data byte into the I<sup>2</sup>C Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the Stellaris<sup>®</sup>  $I^2C$  slave operation.

#### **Read-Only Status Register**

#### I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x004 Type RO. reset 0x0000.0000

| Type ite,                                                                                                                                                                                                                                                                                                                                                                     | 10301 07 | 0000.000                                                                                                                                                                                                                                                                                                                                                  |      |    |      |    |          |         |            |             |           |                                            |                      |                       |                  |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|------|----|----------|---------|------------|-------------|-----------|--------------------------------------------|----------------------|-----------------------|------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                               | 31       | 30                                                                                                                                                                                                                                                                                                                                                        | 29   | 28 | 27   | 26 | 25       | 24      | 23         | 22          | 21        | 20                                         | 19                   | 18                    | 17               | 16   |
|                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                           | i I  |    |      |    | i i      | rese    | rved       |             |           |                                            |                      |                       | i I              |      |
| Туре                                                                                                                                                                                                                                                                                                                                                                          | RO       | RO                                                                                                                                                                                                                                                                                                                                                        | RO   | RO | RO   | RO | RO       | RO      | RO         | RO          | RO        | RO                                         | RO                   | RO                    | RO               | RO   |
| Reset                                                                                                                                                                                                                                                                                                                                                                         | 0        | 0                                                                                                                                                                                                                                                                                                                                                         | 0    | 0  | 0    | 0  | 0        | 0       | 0          | 0           | 0         | 0                                          | 0                    | 0                     | 0                | 0    |
|                                                                                                                                                                                                                                                                                                                                                                               | 15       | 14                                                                                                                                                                                                                                                                                                                                                        | 13   | 12 | 11   | 10 | 9        | 8       | 7          | 6           | 5         | 4                                          | 3                    | 2                     | 1                | 0    |
|                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                           | •    |    |      |    | reserved |         |            |             |           |                                            |                      | FBR                   | TREQ             | RREQ |
| Туре                                                                                                                                                                                                                                                                                                                                                                          | RO       | RO                                                                                                                                                                                                                                                                                                                                                        | RO   | RO | RO   | RO | RO       | RO      | RO         | RO          | RO        | RO                                         | RO                   | RO                    | RO               | RO   |
| Reset                                                                                                                                                                                                                                                                                                                                                                         | 0        | 0                                                                                                                                                                                                                                                                                                                                                         | 0    | 0  | 0    | 0  | 0        | 0       | 0          | 0           | 0         | 0                                          | 0                    | 0                     | 0                | 0    |
|                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                           |      |    |      |    |          |         |            |             |           |                                            |                      |                       |                  |      |
| Bit/F                                                                                                                                                                                                                                                                                                                                                                         | ield     |                                                                                                                                                                                                                                                                                                                                                           | Name |    | Туре |    | Reset    | Descr   | iption     |             |           |                                            |                      |                       |                  |      |
| 31:                                                                                                                                                                                                                                                                                                                                                                           | :3       | reserved RO 0 Software should not rely on the vice compatibility with future products, preserved across a read-modify-vice FBR RO 0 First Byte Received                                                                                                                                                                                                   |      |    |      |    |          |         |            |             |           |                                            |                      | a reserv              | •                |      |
| 2                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                           | FBR  |    | RO   |    | 0        | First E | Byte Rec   | eived       |           |                                            |                      |                       |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                           |      |    |      |    |          | This bi | it is only | valid whe   | en the RI | wing the<br>REQ bit is<br>n the <b>I2C</b> | set, and             | l is autor            |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                           |      |    |      |    |          | Note:   | This       | s bit is no | t used f  | or slave                                   | transmi              | t operati             | ons.             |      |
| 1                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                           | TREQ |    | RO   |    | 0        | Transi  | mit Requ   | uest        |           |                                            |                      |                       |                  |      |
|                                                                                                                                                                                                                                                                                                                                                                               |          | TREQ RO 0 Transmit Request<br>This bit specifies the state of the I <sup>2</sup> C slave with regards to or<br>transmit requests. If set, the I <sup>2</sup> C unit has been addressed as<br>transmitter and uses clock stretching to delay the master unit<br>been written to the <b>I2CSDR</b> register. Otherwise, there is no or<br>transmit request. |      |    |      |    |          |         |            |             |           |                                            |                      | ed as a<br>er until d | slave<br>ata has |      |
| 0                                                                                                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                                                                                                                           | RREQ |    | RO   |    | 0        | Receiv  | ve Requ    | est         |           |                                            |                      |                       |                  |      |
| 0 RREQ RO 0 Receive Request<br>This bit specifies the status of the I <sup>2</sup> C slave with regards to outst<br>receive requests. If set, the I <sup>2</sup> C unit has outstanding receive dat<br>the I <sup>2</sup> C master and uses clock stretching to delay the master un<br>data has been read from the I2CSDR register. Otherwise, no red<br>data is outstanding. |          |                                                                                                                                                                                                                                                                                                                                                           |      |    |      |    |          |         |            |             |           |                                            | ita from<br>ntil the |                       |                  |      |

#### Write-Only Control Register

#### I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x004 Type WO, reset 0x0000.0000

|                              | 31                            | 30      | 29      | 28      | 27      | 26      | 25      | 24       | 23                    | 22                     | 21                                 | 20         | 19      | 18       | 17      | 16      |
|------------------------------|-------------------------------|---------|---------|---------|---------|---------|---------|----------|-----------------------|------------------------|------------------------------------|------------|---------|----------|---------|---------|
|                              |                               | •       |         |         |         |         | •       | rese     | erved                 |                        |                                    |            |         |          |         |         |
| Type<br>Reset                | RO<br>0                       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0               | RO<br>0                | RO<br>0                            | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|                              | 15                            | 14      | 13      | 12      | 11      | 10      | 9       | 8        | 7                     | 6                      | 5                                  | 4          | 3       | 2        | 1       | 0       |
|                              |                               | 1       |         |         |         |         | •       | reserved | 1                     |                        |                                    | DA         |         |          |         |         |
| Type<br>Reset                | RO<br>0                       | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0               | RO<br>0                | RO<br>0                            | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | WO<br>0 |
| Resei                        | 0                             | U       | 0       | 0       | 0       | U       | 0       | 0        | 0                     | 0                      | 0                                  | 0          | 0       | 0        | 0       | 0       |
| Bit/F                        | Bit/Field Name Type Reset Des |         |         |         |         |         |         |          | iption                |                        |                                    |            |         |          |         |         |
| 31:                          | comp                          |         |         |         |         |         |         |          |                       | ith futur/             | ely on the<br>e produc<br>ad-modif | cts, the v | alue of | a reserv |         |         |
| 0 DA WO 0 Device /<br>1=Enab |                               |         |         |         |         |         |         |          | e Active<br>ables the | e I <sup>2</sup> C sla | ve opera                           | ition.     |         |          |         |         |

0=Disables the  $I^2C$  slave operation.

# Register 12: I<sup>2</sup>C Slave Data (I2CSDR), offset 0x008

This register contains the data to be transmitted when in the Slave Transmit state, and the data received when in the Slave Receive state.

#### I2C Slave Data (I2CSDR) I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x008 Type R/W, reset 0x0000.0000

|               | 31               | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23                                   | 22         | 21         | 20         | 19       | 18       | 17       | 16               |
|---------------|------------------|---------|----------|---------|---------|---------|---------|---------|--------------------------------------|------------|------------|------------|----------|----------|----------|------------------|
|               |                  | 1       |          |         | · ·     |         | •       | rese    | rved                                 |            |            |            |          |          |          | •                |
| Type<br>Reset | RO<br>0          | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                              | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0          |
|               | 15               | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7                                    | 6          | 5          | 4          | 3        | 2        | 1        | 0                |
|               |                  | 1       | 1 1      |         | rved    |         | 1       | 1       |                                      |            | -<br>-     |            | TA       | r        | 1        |                  |
| Type<br>Reset | RO<br>0          | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | R/W<br>0                             | R/W<br>0   | R/W<br>0   | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0         |
| Bit/F         | ield             |         | Name     |         | Туре    | F       | Reset   | Descr   | iption                               |            |            |            |          |          |          |                  |
| 31            | :8               |         | reserved |         | RO      |         | 0       | compa   | are shou<br>atibility w<br>rved acro | /ith futur | e produo   | cts, the v | alue of  | a reserv | •        | vide<br>nould be |
| 7:            | 7:0 DATA R/W 0x0 |         |          |         |         |         |         |         | or Trans                             | fer        |            |            |          |          |          |                  |
|               |                  |         |          |         |         |         |         |         | eld conta<br>tion.                   | ains the o | data for t | ransfer    | during a | slave re | ceive or | transmit         |

# Register 13: I<sup>2</sup>C Slave Interrupt Mask (I2CSIMR), offset 0x00C

This register controls whether a raw interrupt is promoted to a controller interrupt.

| I2C Slave<br>I2C Slave<br>I2C Slave<br>Offset 0x<br>Type R/W                                                                                                                              | e 0 bas<br>e 1 bas<br>00C | e: 0×<br>e: 0× | (4002<br>(4002 | .0800<br>.1800 | 2CS | SIMF | R) |     |    |       |            |             |          |          |         |      |         |           |        |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|----------------|----------------|-----|------|----|-----|----|-------|------------|-------------|----------|----------|---------|------|---------|-----------|--------|-----|
|                                                                                                                                                                                           | 31                        |                | 30             | 29             |     | 28   | 2  | 7   | 26 | 25    | 24         | 23          | 22       | 21       | 20      | 1    | 9       | 18        | 17     | 16  |
|                                                                                                                                                                                           |                           | 1              |                | 1              | 1   |      | 1  | 1   |    | 1     | 1          | 1<br>Introd | 1        | 1        | 1       | 1    | 1       |           | 1      |     |
|                                                                                                                                                                                           |                           |                |                |                |     |      |    |     |    |       | rese       | erved       |          |          |         |      |         |           |        |     |
| Туре                                                                                                                                                                                      | RO                        |                | RO             | RO             |     | RO   | R  | 0   | RO | RO    | RO         | RO          | RO       | RO       | RO      | R    | 0       | RO        | RO     | RO  |
| Reset                                                                                                                                                                                     | 0                         |                | 0              | 0              |     | 0    | (  | )   | 0  | 0     | 0          | 0           | 0        | 0        | 0       | C    | )       | 0         | 0      | 0   |
|                                                                                                                                                                                           | 15                        |                | 14             | 13             |     | 12   | 1  | 1   | 10 | 9     | 8          | 7           | 6        | 5        | 4       | 3    | 5       | 2         | 1      | 0   |
|                                                                                                                                                                                           |                           |                |                |                | 1   |      | 1  |     |    |       | reserved   | 1           | 1        | •        |         |      | 1       |           | 1      | IM  |
| Туре                                                                                                                                                                                      | RO                        |                | RO             | RO             |     | RO   | R  | 0   | RO | RO    | RO         | RO          | RO       | RO       | RO      | R    | 0       | RO        | RO     | R/W |
| Reset                                                                                                                                                                                     | 0                         |                | 0              | 0              |     | 0    | (  | )   | 0  | 0     | 0          | 0           | 0        | 0        | 0       | C    | )       | 0         | 0      | 0   |
| Bit/F                                                                                                                                                                                     | ield                      |                |                | Nam            | е   |      | Т  | уре |    | Reset | Descr      | iption      |          |          |         |      |         |           |        |     |
| 31:1 reserved RO 0 Software should not rely on the value of a reserved bit. T compatibility with future products, the value of a reserved preserved across a read-modify-write operation. |                           |                |                |                |     |      |    |     |    |       |            | •           |          |          |         |      |         |           |        |     |
| 0                                                                                                                                                                                         | )                         |                |                | IM             |     |      | F  | R/W |    | 0     | Interru    | upt Masl    | ĸ        |          |         |      |         |           |        |     |
| This bit cont                                                                                                                                                                             |                           |                |                |                |     |      |    |     |    |       | oit contro | ols whe     | ther a r | aw inter | rupt is | pron | noted t | to a cont | roller |     |

interrupt. If set, the interrupt is not masked and the interrupt is promoted;

otherwise, the interrupt is masked.

June 26, 2007

## Register 14: I<sup>2</sup>C Slave Raw Interrupt Status (I2CSRIS), offset 0x010

This register specifies whether an interrupt is pending.

I2C Slave Raw Interrupt Status (I2CSRIS)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x010 Type RO, reset 0x0000.0000

|               | 31      | 30       | 29      | 28      | 27         | 26      | 25                                                        | 24                     | 23          | 22         | 21       | 20                                    | 19      | 18       | 17        | 16                 |
|---------------|---------|----------|---------|---------|------------|---------|-----------------------------------------------------------|------------------------|-------------|------------|----------|---------------------------------------|---------|----------|-----------|--------------------|
|               |         | •        |         |         | · ·        |         | •                                                         | rese                   | rved        |            |          |                                       |         |          | •         |                    |
| Type<br>Reset | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                                                   | RO<br>0                | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0 | RO<br>0  | RO<br>0   | RO<br>0            |
|               | 15      | 14       | 13      | 12      | 11         | 10      | 9                                                         | 8                      | 7           | 6          | 5        | 4                                     | 3       | 2        | 1         | 0                  |
|               |         | 1        |         |         | · · ·      |         |                                                           | reserved               |             |            |          |                                       |         |          | 1         | RIS                |
| Type<br>Reset | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0                                                   | RO<br>0                | RO<br>0     | RO<br>0    | RO<br>0  | RO<br>0                               | RO<br>0 | RO<br>0  | RO<br>0   | RO<br>0            |
|               | -       | -        | -       | -       | -          | -       | -                                                         | -                      | -           |            | -        | -                                     | -       | -        | -         | -                  |
| Bit/F         | ield    | Name     |         |         | Type Reset |         | Descr                                                     | iption                 |             |            |          |                                       |         |          |           |                    |
| 31            | :1      | reserved |         |         | RO 0       |         |                                                           | compa                  | atibility w | ith futur/ | e produo | e value o<br>cts, the v<br>fy-write o | alue of | a reserv |           |                    |
| 0             |         |          | RIS     |         | RO         |         | 0                                                         | 0 Raw Interrupt Status |             |            |          |                                       |         |          |           |                    |
|               |         |          |         |         |            |         | This bit specifies the raw interrupt state (prior to mash |                        |             |            |          |                                       |         | o maski  | ng) of th | e l <sup>2</sup> C |

pending.

slave block. If set, an interrupt is pending; otherwise, an interrupt is not

## Register 15: I<sup>2</sup>C Slave Masked Interrupt Status (I2CSMIS), offset 0x014

This register specifies whether an interrupt was signaled.

I2C Slave Masked Interrupt Status (I2CSMIS)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x014 Type RO, reset 0x0000.0000

|       | 31   | 30 | 29       | 28 | 27   | 26 | 25    | 24          | 23         | 22        | 21                                    | 20       | 19       | 18       | 17 | 16      |
|-------|------|----|----------|----|------|----|-------|-------------|------------|-----------|---------------------------------------|----------|----------|----------|----|---------|
|       |      | 1  | 1 1      |    |      |    | 1     | rese        | rved       |           |                                       | 1        |          | 1        | 1  | 1       |
| Туре  | RO   | RO | RO       | RO | RO   | RO | RO    | RO          | RO         | RO        | RO                                    | RO       | RO       | RO       | RO | RO      |
| Reset | 0    | 0  | 0        | 0  | 0    | 0  | 0     | 0           | 0          | 0         | 0                                     | 0        | 0        | 0        | 0  | 0       |
|       | 15   | 14 | 13       | 12 | 11   | 10 | 9     | 8           | 7          | 6         | 5                                     | 4        | 3        | 2        | 1  | 0       |
|       |      | 1  | 1        |    |      |    | 1     | reserved    |            |           |                                       | 1        |          | 1        | 1  | MIS     |
| Туре  | RO   | RO | RO       | RO | RO   | RO | RO    | RO          | RO         | RO        | RO                                    | RO       | RO       | RO       | RO | RO      |
| Reset | 0    | 0  | 0        | 0  | 0    | 0  | 0     | 0           | 0          | 0         | 0                                     | 0        | 0        | 0        | 0  | 0       |
| Bit/F | ield |    | Name     |    | Туре |    | Reset | Descr       | iption     |           |                                       |          |          |          |    |         |
| 31    | 31:1 |    | reserved |    | RO 0 |    | compa | atibility v | vith futur | e produ   | e value o<br>cts, the v<br>fy-write o | alue of  | a reserv | •        |    |         |
| 0     |      |    | MIS      |    | RO   |    | 0     | Maske       | ed Interr  | upt State | JS                                    |          |          |          |    |         |
|       |      |    |          |    |      |    |       | Thio h      | it onooif  | on the r  | ow intor                              | unt otat | (ofter n | nonkina) |    | C alava |

This bit specifies the raw interrupt state (after masking) of the I<sup>2</sup>C slave block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared.

# Register 16: I<sup>2</sup>C Slave Interrupt Clear (I2CSICR), offset 0x018

This register clears the raw interrupt.

I2C Slave Interrupt Clear (I2CSICR)

| I2C Slave<br>I2C Slave<br>Offset 0x0<br>Type WO | e 1 base<br>018 | : 0x4002 | 1800     |    |          |     |       |          |             |            |          |            |                                    |            |           |          |
|-------------------------------------------------|-----------------|----------|----------|----|----------|-----|-------|----------|-------------|------------|----------|------------|------------------------------------|------------|-----------|----------|
|                                                 | 31              | 30       | 29       | 28 | 27       | 26  | 25    | 24       | 23          | 22         | 21       | 20         | 19                                 | 18         | 17        | 16       |
|                                                 |                 | 1        | 1        | Ì  | 1 1<br>1 |     | 1     | reser    |             | î          | Î        | 1          | 1                                  |            | Î         | 1        |
| Туре                                            | RO              | RO       | RO       | RO | RO       | RO  | RO    | RO       | RO          | RO         | RO       | RO         | RO                                 | RO         | RO        | RO       |
| Reset                                           | 0               | 0        | 0        | 0  | 0        | 0   | 0     | 0        | 0           | 0          | 0        | 0          | 0                                  | 0          | 0         | 0        |
|                                                 | 15              | 14       | 13       | 12 | 11       | 10  | 9     | 8        | 7           | 6          | 5        | 4          | 3                                  | 2          | 1         | 0        |
|                                                 |                 | 1        | 1        | Î  | 1 1<br>1 |     | 1     | reserved |             | Î          | i        | 1          | 1                                  |            | 1         | IC       |
| Туре                                            | RO              | RO       | RO       | RO | RO       | RO  | RO    | RO       | RO          | RO         | RO       | RO         | RO                                 | RO         | RO        | WO       |
| Reset                                           | 0               | 0        | 0        | 0  | 0        | 0   | 0     | 0        | 0           | 0          | 0        | 0          | 0                                  | 0          | 0         | 0        |
| Bit/F                                           | ield            |          | Name     |    | Туре     |     | Reset | Descri   | ption       |            |          |            |                                    |            |           |          |
| 31:1                                            |                 |          | reserved |    | RO       | 0   |       | compa    | atibility v | vith futur | e produ  | icts, the  | of a rese<br>value of<br>operation | a reserv   | •         |          |
| 0                                               | 1               | IC       |          |    | WO       | 0 0 |       | Clear    | Interrup    | t          |          |            |                                    |            |           |          |
|                                                 |                 |          |          |    |          |     |       | This b   | it contro   | Is the cl  | earing o | of the rav | v interrup                         | ot. A writ | e of 1 cl | ears the |

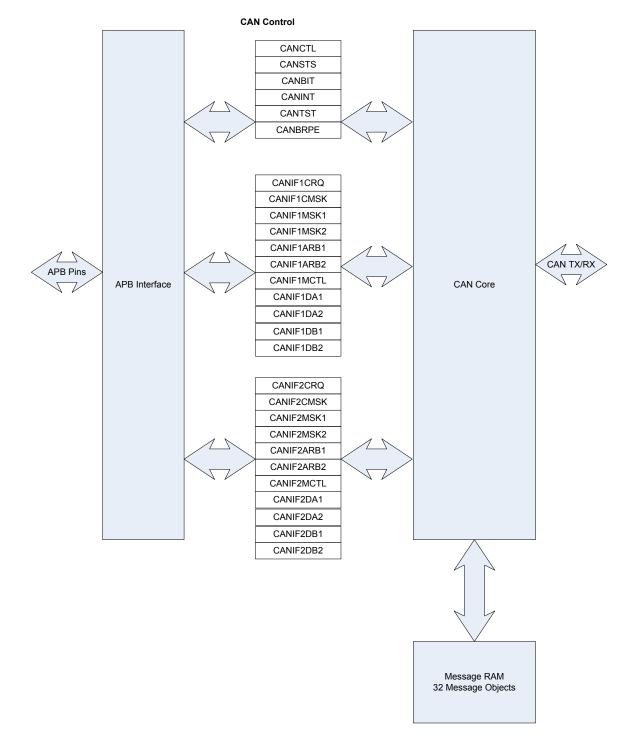
interrupt; otherwise a write of 0 has no affect on the interrupt state. A

read of this register returns no meaningful data.

# 15 Controller Area Network (CAN) Module

### **15.1** Controller Area Network Overview

Controller Area Network (CAN) is a multicast shared serial bus standard for connecting electronic control units (ECUs). CAN was specifically designed to be robust in electromagnetically noisy environments and can utilize a differential balanced line like RS-485 or a more robust twisted-pair wire. Originally created for automotive purposes, it is also used in many embedded control applications (such as industrial and medical). Bit rates up to 1 Mbps are possible at network lengths below 40 meters. Decreased bit rates allow longer network distances (for example, 125 Kbps at 500 m).


### 15.2 Controller Area Network Features

The Stellaris<sup>®</sup> CAN module supports the following features:

- CAN protocol version 2.0 part A/B.
- Bit rates up to 1 Mbps.
- 32 message objects.
- Each message object has its own identifier mask.
- Maskable interrupt.
- Disable Automatic Retransmission mode for Time Triggered CAN (TTCAN) applications.
- Programmable Loopback mode for self-test operation.
- Programmable FIFO mode.
- Gluelessly attach to an external CAN PHY through the CANOTx and CANORx pins.

### 15.3 Controller Area Network Block Diagram

### Figure 15-1. CAN Module Block Diagram



### **15.4** Controller Area Network Functional Description

The CAN module conforms to the CAN protocol version 2.0 (parts A and B). Message transfers that include data, remote, error, and overload frames with an 11-bit identifier (standard) or a 29-bit identifier (extended) are supported. Transfer rates can be programmed up to 1 Mbps.

The CAN module consists of three major parts:

- CAN protocol controller and message handler
- Message memory
- CAN register interface

The protocol controller transfers and receives the serial data from the CAN bus and passes the data on to the message handler. The message handler then loads this information into the appropriate message object based on the current filtering and identifiers in the message object memory. The message handler is also responsible for generating interrupts based on events on the CAN bus.

The message object memory is a set of 32 identical memory blocks that hold the current configuration, status, and actual data for each message object. These are accessed via the CAN message object register interface. The message memory is not directly accessable in the Stellaris memory map, so the Stellaris<sup>®</sup> CAN controller provides an interface to communicate with the message memory.

The CAN message object register interface provides two register sets for communicating with the message objects. Since there is no direct access to the message object memory, these two interfaces must be used to read or write to each message object. The two message object interfaces allow parallel access to the CAN controller message objects when multiple objects may have new information that needs to be processed.

#### 15.4.1 Initialization

The software initialization is started by setting the INIT bit in the **CAN Control (CANCTL)** register, with software or by a hardware reset, or by going bus-off, which occurs when the transmitter's error counter exceeds a count of 255. While INIT is set, all message transfers to and from the CAN bus are stopped and the status of the CAN transmit output is recessive (High). Entering the initialization state does not change the configuration of the CAN controller, the message objects or the error counters. However, some configuration registers are only accessible when in the initialization state.

To initialize the CAN controller, set the **CAN Bit Timing (CANBIT)** register and configure each message object. If a message object is not needed, it is sufficient to set it as not valid by clearing the MsgVal bit in the **CANIFnARB2** register. Otherwise, the whole message object has to be initialized, as the fields of the message object may not have valid information causing unexpected results. Access to the **CAN Bit Timing (CANBIT)** register and to the **CAN Baud Rate Prescalar Extension (CANBRPE)** register to configure the bit timing are enabled when both the INIT and CCE bits in the **CANCTL** register are set. To leave the initialization state, the INIT bit must be cleared. Afterwards, the internal Bit Stream Processor (BSP) synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus Idle) before it takes part in bus activities and starts message transfers. The initialization of the message objects should all be configured to particular identifiers or set to not valid before the BSP starts the message transfer. To change the configuration of a message object during normal operation, set the MsgVal bit in the **CANIFnARB2** register to 0 (not valid). When the configuration is completed, MsgVal is set to 1 again (valid).

#### 15.4.2 Operation

Once the CAN module is initialized and the INIT bit in the **CANCTL** register is reset to 0, the CAN module synchronizes itself to the CAN bus and starts the message transfer. As messages are received, they are stored in their appropriate message objects if they pass the message handler's filtering. The whole message (including all arbitration bits, data-length code, and eight data bytes) is stored in the message object. If the Identifier Mask (the Msk bits in the **CANIFnMSKn** registers) is used, the arbitration bits which are masked to "don't care" may be overwritten in the message object.

The CPU may read or write each message any time via the CAN Interface Registers (CANIFnCRQ, CANIFnCMSK, CANIFnMSKn, CANIFnARBn, CANIFnMCTL, CANIFnDAn, and CANIFnDBn). The message handler guarantees data consistency in case of concurrent accesses.

The transmission of message objects are under the control of the software that is managing the CAN hardware. These can be message objects used for one-time data transfers, or permanent message objects used to respond in a more periodic manner. Permanent message objects have all arbitration and control set up and only the data bytes are updated. To start the transmission, the TxRqst bit in the **CANTXRQn** register and the NewDat bit in the **CANNWDAn** register are set. If several transmit messages are assigned to the same message object (when the number of message objects is not sufficient), the whole message object has to be configured before the transmission of this message is requested.

The transmission of any number of message objects may be requested at the same time; they are transmitted according to their internal priority, which is based on the message identifier for the message object. Messages may be updated or set to not valid any time, even when their requested transmission is still pending. The old data is discarded when a message is updated before its pending transmission has started. Depending on the configuration of the message object, the transmission of a message may be requested autonomously by the reception of a remote frame with a matching identifier.

There are two sets of CAN Interface Registers (**CANIF1x** and **CANIF2x**) which are used to access the Message Objects in the Message RAM. The CAN controller coordinates transfers to and from the Message RAM to and from the registers. The function of the two sets are independent and identical and can be used to queue transactions.

#### 15.4.3 Transmitting Message Objects

If the internal transmit shift register of the CAN module is ready for loading, and if there is no data transfer between the CAN Interface Registers and message RAM, the valid message object with the highest priority and which has a pending transmission request is loaded into the transmit shift register by the message handler and the transmission is started. The message object's NewDat bit is reset and can be viewed in the **CANNWDAn** register. After a successful transmission, and if no new data was written to the message object since the start of the transmission, the TxRqst bit in the **CANIFnCMSK** register is reset. If the TxIE bit in the **CANIFnMCTL** register is set, the IntPnd bit in the **CANIFnMCTL** register is set after a successful transmission. If the CAN module has lost the arbitration or if an error occurred during the transmission, the message is re-transmitted as soon as the CAN bus is free again. If, meanwhile, the transmission of a message with higher priority has been requested, the messages are transmitted in the order of their priority.

#### 15.4.4 Configuring a Transmit Message Object

Table 15-1 on page 380 specifies the bit settings for a transmit message object.

| Register | CANIFnARB2 | CANIFnCMSK    |      |      | CANIFnMCTL | CANIFnARB2 | CANIFnMCTL |      |      |        |       |        |   |
|----------|------------|---------------|------|------|------------|------------|------------|------|------|--------|-------|--------|---|
| Bit      | MsgVal     | Arb Data Mask |      | Mask | EoB        | Dir        | NewDat     | RxIE | TxIE | IntPnd | RmtEn | TxRqst |   |
| Value    | 1          | appl          | appl | appl | 1          | 1          | 0          | 0    | 0    | appl   | 0     | appl   | 0 |

The Xtd and ID bit fields in the **CANIFnARBn** registers are set by an application. They define the identifier and type of the outgoing message. If an 11-bit Identifier (Standard Frame) is used, it is programmed to bits [28:18] of **CANIFnARB1**, as bits 17:0 of **CANIFnARBn** are not used by the CAN controller for 11-bit identifiers.

If the TxIE bit is set, the IntPnd bit is set after a successful transmission of the message object.

If the RmtEn bit is set, a matching received Remote Frame causes the TxRqst bit to be set and the Remote Frame is autonomously answered by a Data Frame with the data from the message object.

The DLC bit in the **CANIFnMCTL** register is set by an application. TxRqst and RmtEn may not be set before the data is valid.

The CAN mask registers (Msk bits in CANIFnMSKn, UMask bit in CANIFnMCTL register, and MXtd and MDir bits in CANIFnMSK2 register) may be used (UMask=1) to allow groups of Remote Frames with similar identifiers to set the TxRqst bit. The Dir bit should not be masked.

#### 15.4.5 Updating a Transmit Message Object

The CPU may update the data bytes of a Transmit Message Object any time via the CAN Interface Registers and neither the MsgVal nor the TxRqst bits have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding **CANIFnDAn** or **CANIFnDBn** register have to be valid before the content of that register is transferred to the message object. Either the CPU has to write all four bytes into the **CANIFnDAn** or **CANIFnDBn** register or the message object is transferred to the **CANIFnDAn** or **CANIFnDBn** register before the CPU writes the new data bytes.

In order to just update the data in a message object, the WR, NewDat, DataA, and DataB bits are written to the CAN IFn Command Mask (CANIFnMSKn) register, followed by writing the CAN IFn Data registers, and then the number of the message object is written to the CAN IFn Command Request (CANIFnCRQ) register, to update the data bytes and the TxRqst bit at the same time.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress while the data is updated, NewDat has to be set together with TxRqst. When NewDat is set together with TxRqst, NewDat is reset as soon as the new transmission has started.

#### 15.4.6 Accepting Received Message Objects

When the arbitration and control field (ID + Xtd + RmtEn + DLC) of an incoming message is completely shifted into the CAN module, the message handling capability of the module starts scanning the message RAM for a matching valid message object. To scan the message RAM for a matching message object, the Acceptance Filtering unit is loaded with the arbitration bits from the core. Then the arbitration and mask fields (including MsgVal, UMask, NewDat, and EoB) of message object 1 are loaded into the Acceptance Filtering unit and compared with the arbitration field from the shift register. This is repeated with each following message object until a matching message object is found or until the end of the message RAM is reached. If a match occurs, the scanning is stopped and the message handler proceeds depending on the type of frame received.

### 15.4.7 Receiving a Data Frame

The message handler stores the message from the CAN module receive shift register into the respective message object in the message RAM. It stores the data bytes, all arbitration bits, and the Data Length Code into the corresponding message object. This is implemented to keep the data bytes connected with the identifier even if arbitration mask registers are used. The CANIFnMCTL.NewDat bit is set to indicate that new data has been received. The CPU should reset CANIFnMCTL.NewDat when it reads the message object to indicate to the controller that the message has been received and the buffer is free to receive more messages. If the CAN controller receives a message and the CANIFnMCTL.NewDat bit was already set, the MsgLst bit is set to indicate that the previous data was lost. If the CANIFnMCTL.RxIE bit is set, the CANIFnMCTL.IntPnd bit is set, causing the CANIFnMCTL.TxRqst bit of this message object is reset to prevent the transmission of a Remote Frame, while the requested Data Frame has just been received.

#### 15.4.8 Receiving a Remote Frame

When a Remote Frame is received, three different configurations of the matching message object have to be considered:

Dir = 1 (direction = transmit), RmtEn = 1, UMask = 1 or 0

At the reception of a matching Remote Frame, the TxRqst bit of this message object is set. The rest of the message object remains unchanged.

Dir = 1 (direction = transmit), RmtEn = 0, UMask = 0

At the reception of a matching Remote Frame, the TxRqst bit of this message object remains unchanged; the Remote Frame is ignored. This remote frame is disabled and will not automatically respond or indicate that the remote frame ever happened.

Dir = 1 (direction = transmit), RmtEn = 0, UMask = 1

At the reception of a matching Remote Frame, the TxRqst bit of this message object is reset. The arbitration and control field (ID + Xtd + RmtEn + DLC) from the shift register is stored into the message object in the message RAM and the NewDat bit of this message object is set. The data field of the message object remains unchanged; the Remote Frame is treated similar to a received Data Frame. This is useful for a remote data request from another CAN device for which the Stellaris<sup>®</sup> controller does not have readily available data The software must fill the data and answer the frame manually.

#### 15.4.9 Receive/Transmit Priority

The receive/transmit priority for the message objects is controlled by the message number. Message object 1 has the highest priority, while message object 32 has the lowest priority. If more than one transmission request is pending, the message objects are transmitted in order based on the message object with the lowest message number. This should not be confused with the message identifier as that priority is enforced by the CAN bus. This means that if message object 1 and message object 2 both have valid messages that need to be transmitted, message object 1 will always be transmitted first regardless of the message identifier in the message object itself.

#### 15.4.10 Configuring a Receive Message Object

Table 15-2 on page 382 specifies the bit settings for a transmit message object.

| Register | CANIFnARB2 | CANIFnCMSK |               |      | CANIFnMCTL | CANIFnARB2 | CANIFnMCTL |        |      |      |        |       |        |
|----------|------------|------------|---------------|------|------------|------------|------------|--------|------|------|--------|-------|--------|
| Bit      | MsgVal     | Arb        | Arb Data Mask |      | EoB        | Dir        | NewDat     | MsgLst | RxIE | TxIE | IntPnd | RmtEn | TxRqst |
| Value    | 1          | appl       | appl          | appl | 1          | 0          | 0          | 0      | appl | 0    | 0      | 0     | 0      |

The CAN arbitration registers (ID[28:0] and Xtd bit) are set by an application. They define the identifier and type of accepted received messages. If an 11-bit Identifier (Standard Frame) is used, it is programmed to ID[28:18] and ID[17:0] are ignored by the CAN controller. When a Data Frame with an 11-bit Identifier is received, the ID[17:0] field is set to 0.

If the RxIE bit is set, the IntPnd bit is set when a received Data Frame is accepted and stored in the message object.

When the message handler stores a Data Frame in the message object, it stores the received Data Length Code and eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the message object are overwritten by nonspecified values.

The CAN mask registers (Msk bits in CANIFnMSKn, UMask bit in CANIFnMCTL register, and MXtd and MDir bits in CANIFnMSK2 register) may be used (UMask=1) to allow groups of Data Frames with similar identifiers to be accepted. The Dir bit should not be masked in typical applications.

### 15.4.11 Handling of Received Message Objects

The CPU may read a received message any time via the CAN Interface registers because the data consistency is guaranteed by the message handler state machine.

Typically, the CPU first writes 0x007F to the **CAN IFn Command Mask (CANIFnCMSK)** register and then writes the number of the message object to the **CAN IFn Command Request** (**CANIFnCRQ**) register. That combination transfers the whole received message from the message RAM into the Message Buffer registers (**CANIFnMSKn**, **CANIFnARBn**, and **CANIFnMCTL**). Additionally, the NewDat and IntPnd bits are cleared in the message RAM, acknowledging that the message has been read and clearing the pending interrupt being generated by this message object.

If the message object uses masks for acceptance filtering, the arbitration bits show which of the matching messages has been received.

The actual value of MewDat shows whether a new message has been received since the last time this message object was read. The actual value of MsgLst shows whether more than one message has been received since the last time this message object was read. MsgLst is not automatically reset.

Using a Remote Frame, the CPU may request new data from another CAN node on the CAN bus. Setting the TxRqst bit of a receive object causes the transmission of a Remote Frame with the receive object's identifier. This Remote Frame triggers the other CAN node to start the transmission of the matching Data Frame. If the matching Data Frame is received before the Remote Frame could be transmitted, the TxRqst bit is automatically reset. This prevents the possible loss of data when the other device on the CAN bus has already transmitted the data, slightly earlier than expected.

#### 15.4.12 Handling of Interrupts

If several interrupts are pending, the **CAN Interrupt (CANINT)** register points to the pending interrupt with the highest priority, disregarding their chronological order. An interrupt remains pending until the CPU has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, the message object's interrupt priority decreases with increasing message number. A message interrupt is cleared by clearing the message object's IntPnd bit. The Status Interrupt is cleared by reading the **CAN Status** (CANSTS) register.

The interrupt identifier IntId in the CANINT register indicates the cause of the interrupt. When no interrupt is pending, the register holds the value to 0. If the value of CANINT is different from 0, then there is an interrupt pending. If the IE bit is set in the CANCTL register, the interrupt line to the CPU is active. The interrupt line remains active until **CANINT** is 0, all interrupt sources have been cleared, (the cause of the interrupt is reset), or until IE is reset, which disables interrupts from the CAN controller.

The value 0x8000 in the **CANINT** register indicates that an interrupt is pending because the CAN module has updated, but not necessarily changed the **CANSTS** register (Error Interrupt or Status Interrupt). This indicates that there is either a new Error Interrupt or a new Status Interrupt. A write access can clear the RxOK, TxOK, and LEC flags in the **CANSTS** register, however, only a read access to the **CANSTS** register will clear the source of the status interrupt.

IntId points to the pending message interrupt with the highest interrupt priority. The SIE bit in the **CANCTL** register controls whether a change of the status register may cause an interrupt. The EIE bit in the **CANCTL** register controls whether any interrupt from the CAN controller actually generates an interrupt to the microcontroller's interrupt controller. The **CANINT** interrupt register is updated even when the IE bit is set to zero.

There are two possibilities when handling the source of a message interrupt. The first is to read the IntId bit in the **CANINT** interrupt register to determine the highest priority interrupt that is pending, and the second is to read the **CAN Message Interrupt Pending (CANMSGnINT)** register to see all of the message objects that have pending interrupts.

An interrupt service routine reading the message that is the source of the interrupt may read the message and reset the message object's IntPnd at the same time by setting the ClrIntPnd bit in the CAN IFn Command Mask (CANIFnCMSK) register. When the IntPnd bit is cleared, the CANINT register will contain the message number for the next message object with a pending interrupt.

#### 15.4.13 Bit Timing Configuration Error Considerations

Even if minor errors in the configuration of the CAN bit timing do not result in immediate failure, the performance of a CAN network can be reduced significantly. In many cases, the CAN bit synchronization amends a faulty configuration of the CAN bit timing to such a degree that only occasionally an error frame is generated. In the case of arbitration, however, when two or more CAN nodes simultaneously try to transmit a frame, a misplaced sample point may cause one of the transmitters to become error passive. The analysis of such sporadic errors requires a detailed knowledge of the CAN bit synchronization inside a CAN node and of the CAN nodes' interaction on the CAN bus.

#### 15.4.14 Bit Time and Bit Rate

The CAN system supports bit rates in the range of lower than 1 Kbps up to 1000 Kbps. Each member of the CAN network has its own clock generator. The timing parameter of the bit time can be configured individually for each CAN node, creating a common bit rate even though the CAN nodes' oscillator periods may be different.

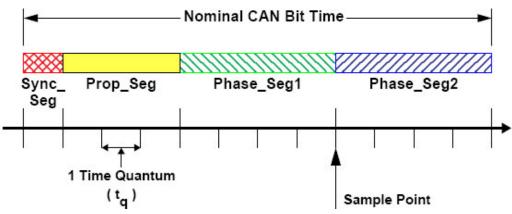
Because of small variations in frequency caused by changes in temperature or voltage and by deteriorating components, these oscillators are not absolutely stable. As long as the variations

remain inside a specific oscillator's tolerance range, the CAN nodes are able to compensate for the different bit rates by periodically resynchronizing to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see Figure 15-2 on page 384): the Synchronization Segment, the Propagation Time Segment, the Phase Buffer Segment 1, and the Phase Buffer Segment 2. Each segment consists of a specific, programmable number of time quanta (see Table 15-3 on page 384). The length of the time quantum (tq), which is the basic time unit of the bit time, is defined by the CAN controller's system clock (fsys) and the Baud Rate Prescaler (BRP):

tq = BRP / fsys

The CAN module's system clock fsys is the frequency of its CAN module clock (CAN\_CLK) input.


The Synchronization Segment Sync\_Seg is that part of the bit time where edges of the CAN bus level are expected to occur; the distance between an edge that occurs outside of Sync\_Seg and the Sync\_Seg is called the *phase error* of that edge.

The Propagation Time Segment Prop\_Seg is intended to compensate for the physical delay times within the CAN network.

The Phase Buffer Segments Phase\_Seg1 and Phase\_Seg2 surround the Sample Point.

The (Re-)Synchronization Jump Width (SJW) defines how far a resynchronization may move the Sample Point inside the limits defined by the Phase Buffer Segments to compensate for edge phase errors.

A given bit rate may be met by different bit-time configurations, but for the proper function of the CAN network, the physical delay times and the oscillator's tolerance range have to be considered.







| Parameter  | Range                | Remark                                                     |
|------------|----------------------|------------------------------------------------------------|
| BRP        | [1 32]               | Defines the length of the time quantum t <sub>q</sub>      |
| Sync_Seg   | 1 t <sub>q</sub>     | Fixed length, synchronization of bus input to system clock |
| Prop_Seg   | [1 8] t <sub>q</sub> | Compensates for the physical delay times                   |
| Phase_Seg1 | [1 8] t <sub>q</sub> | May be lengthened temporarily by synchronization           |
| Phase_Seg2 | [1 8] t <sub>q</sub> | May be shortened temporarily by synchronization            |

| Parameter | Range                | Remark                                             |
|-----------|----------------------|----------------------------------------------------|
| SJW       | [1 4] t <sub>q</sub> | May not be longer than either Phase Buffer Segment |

a. This table describes the minimum programmable ranges reqired by the CAN protocol.

The bit timing configuration is programmed in two register bytes in the **CANBIT** register. The sum of Prop\_Seg and Phase\_Seg1 (as TSEG1) is combined with Phase\_Seg2 (as TSEG2) in one byte, and SJW and BRP are combined in the other byte.

In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to be programmed to a numerical value that is one less than its functional value; so instead of values in the range of [1..n], values in the range of [0..n-1] are programmed. That way, for example, SJW (functional range of [1..4]) is represented by only two bits. Therefore, the length of the bit time is (programmed values):

[TSEG1 + TSEG2 + 3] tq

or (functional values):

[Sync\_Seg + Prop\_Seg + Phase\_Seg1 + Phase\_Seg2] tq

The data in the bit timing registers are the configuration input of the CAN protocol controller. The Baud Rate Prescalar (configured by BRP) defines the length of the time quantum, the basic time unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2, and SJW) defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and occasional synchronizations are controlled by the CAN controller and are evaluated once per time quantum.

The CAN controller translates messages to and from frames. It generates and discards the enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC code, performs the error management, and decides which type of synchronization is to be used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time after the Sample Point that is needed to calculate the next bit to be sent (that is, the data bit, CRC bit, stuff bit, error flag, or idle) is called the Information Processing Time (IPT).

The IPT is application-specific but may not be longer than 2 tq; the CAN's IPT is 0 tq. Its length is the lower limit of the programmed length of Phase\_Seg2. In case of synchronization, Phase\_Seg2 may be shortened to a value less than IPT, which does not affect bus timing.

#### 15.4.15 Calculating the Bit Timing Parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. The resulting bit time (1/bit rate) must be an integer multiple of the system clock period.

The bit time may consist of 4 to 25 time quanta. Several combinations may lead to the desired bit time, allowing iterations of the following steps.

The first part of the bit time to be defined is the  $Prop\_Seg$ . Its length depends on the delay times measured in the system. A maximum bus length as well as a maximum node delay has to be defined for expandable CAN bus systems. The resulting time for  $Prop\_Seg$  is converted into time quanta (rounded up to the nearest integer multiple of tq).

The Sync\_Seg is 1 tq long (fixed), which leaves (bit time - Prop\_Seg - 1) tq for the two Phase Buffer Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same length, that is, Phase\_Seg2 = Phase\_Seg1, else Phase\_Seg2 = Phase\_Seg1 + 1.

The minimum nominal length of Phase\_Seg2 has to be regarded as well. Phase\_Seg2 may not be shorter than the CAN controller's Information Processing Time, which is, depending on the actual implementation, in the range of [0..2] tq.

The length of the Synchronization Jump Width is set to its maximum value, which is the minimum of 4 and Phase\_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the formula given below:

(1 - df) x fnom <= fosc <= (1 + df) x fnom

where:

- df = maximum tolerance of oscillator frequency
- fosc = actual oscillator frequency
- fnom = nominal oscillator frequency

Maximum frequency tolerance must take into account the following formulas:

```
df <= (Phase_Seg1,Phase_Seg2)min/ 2 x (13 x tbit - Phase_Seg2)
dfmax = 2 x df x fnom</pre>
```

where:

- Phase\_Seg1 and Phase\_Seg2 are from Table 15-3 on page 384
- tbit = Bit Time
- dfmax = maximum difference between two oscillators

If more than one configuration is possible, that configuration allowing the highest oscillator tolerance range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same bit rate. The calculation of the propagation time in the CAN network, based on the nodes with the longest delay times, is done once for the whole network.

The CAN system's oscillator tolerance range is limited by the node with the lowest tolerance range.

The calculation may show that bus length or bit rate have to be decreased or that the oscillator frequencies' stability has to be increased in order to find a protocol-compliant configuration of the CAN bit timing.

The resulting configuration is written into the CAN Bit Timing (CANBIT) register :

(Phase\_Seg2-1)&(Phase\_Seg1+Prop\_Seg-1)&(SynchronizationJumpWidth-1)&(Prescaler-1)

#### 15.4.15.1 Example for Bit Timing at High Baud Rate

In this example, the frequency of CAN\_CLK is 10 MHz, BRP is 0, and the bit rate is 1 Mbps.

```
tq 100 ns = tCAN_CLK
delay of bus driver 50 ns
delay of receiver circuit 30 ns
delay of bus line (40m) 220 ns
```

```
tProp 600 ns = 6 × tq
tSJW 100 ns = 1 × tq
tTSeg1 700 ns = tProp + tSJW
tTSeg2 200 ns = Information Processing Time + 1 × tq
tSync-Seg 100 ns = 1 × tq
bit time 1000 ns = tSync-Seg + tTSeg1 + tTSeg2
tolerance for CAN_CLK 0.39 % =
min(PB1,PB2)/ 2 × (13 x bit time - PB2) =
0.lus/ 2 x (13x lus - 2us)
```

In the above example, the concatenated bit time parameters are (2-1)3&(7-1)4&(1-1)2&(1-1)6, and **CANBIT** is programmed to 0x1600.

#### 15.4.15.2 Example for Bit Timing at Low Baud Rate

In this example, the frequency of CAN\_CLK is 2 MHz, BRP is 1, and the bit rate is 100 Kbps.

```
tq 1 ms = 2 × tCAN_CLK
delay of bus driver 200 ns
delay of receiver circuit 80 ns
delay of bus line (40m) 220 ns
tProp 1 ms = 1 × tq
tSJW 4 ms = 4 × tq
tTSeg1 5 ms = tProp + tSJW
tTSeg2 4 ms = Information Processing Time + 3 × tq
tSync-Seg 1 ms = 1 × tq
bit time 10 ms = tSync-Seg + tTSeg1 + tTSeg2
tolerance for CAN_CLK 1.58 % =
min(PB1,PB2)/ 2 x (13 x bit time - PB2) =
4us/ 2 x (13 x 10us - 4us)
```

In this example, the concatenated bit time parameters are (4-1)3&(5-1)4&(4-1)2&(2-1)6, and **CANBIT** is programmed to 0x34C1.

### 15.5 Controller Area Network Register Map

Table 15-4 on page 387 lists the registers. All addresses given are relative to the CAN base address of:

CAN0: 0x4004.0000

All accesses are on word (32-bit) boundaries.

| Offset | Name   | Туре | Reset       | Description       | See<br>page |
|--------|--------|------|-------------|-------------------|-------------|
| 0x000  | CANCTL | R/W  | 0x0000.0001 | CAN Control       | 390         |
| 0x004  | CANSTS | R/W  | 0x0000.0000 | CAN Status        | 392         |
| 0x008  | CANERR | RO   | 0x0000.0000 | CAN Error Counter | 395         |
| 0x00C  | CANBIT | R/W  | 0x0000.2301 | CAN Bit Timing    | 396         |
| 0x010  | CANINT | RO   | 0x0000.0000 | CAN Interrupt     | 398         |

Table 15-4. CAN Register Map

| Offset | Name       | Туре | Reset       | Description                       | See<br>page |
|--------|------------|------|-------------|-----------------------------------|-------------|
| 0x014  | CANTST     | R/W  | 0x0000.0000 | CAN Test                          | 399         |
| 0x018  | CANBRPE    | R/W  | 0x0000.0000 | CAN Baud Rate Prescalar Extension | 401         |
| 0x020  | CANIF1CRQ  | R/W  | 0x0000.0001 | CAN IF1 Command Request           | 402         |
| 0x024  | CANIF1CMSK | R/W  | 0x0000.0000 | CAN IF1 Command Mask              | 403         |
| 0x028  | CANIF1MSK1 | R/W  | 0x0000.FFFF | CAN IF1 Mask 1                    | 406         |
| 0x02C  | CANIF1MSK2 | R/W  | 0x0000.FFFF | CAN IF1 Mask 2                    | 407         |
| 0x030  | CANIF1ARB1 | R/W  | 0x0000.0000 | CAN IF1 Arbitration 1             | 408         |
| 0x034  | CANIF1ARB2 | R/W  | 0x0000.0000 | CAN IF1 Arbitration 2             | 409         |
| 0x038  | CANIF1MCTL | R/W  | 0x0000.0000 | CAN IF1 Message Control           | 410         |
| 0x03C  | CANIF1DA1  | R/W  | 0x0000.0000 | CAN IF1 Data A1                   | 412         |
| 0x040  | CANIF1DA2  | R/W  | 0x0000.0000 | CAN IF1 Data A2                   | 413         |
| 0x044  | CANIF1DB1  | R/W  | 0x0000.0000 | CAN IF1 Data B1                   | 414         |
| 0x048  | CANIF1DB2  | R/W  | 0x0000.0000 | CAN IF1 Data B2                   | 415         |
| 0x080  | CANIF2CRQ  | R/W  | 0x0000.0001 | CAN IF2 Command Request           | 402         |
| 0x084  | CANIF2CMSK | R/W  | 0x0000.0000 | CAN IF2 Command Mask              | 403         |
| 0x088  | CANIF2MSK1 | R/W  | 0x0000.FFFF | CAN IF2 Mask 1                    | 406         |
| 0x08C  | CANIF2MSK2 | R/W  | 0x0000.FFFF | CAN IF2 Mask 2                    | 407         |
| 0x090  | CANIF2ARB1 | R/W  | 0x0000.0000 | CAN IF2 Arbitration 1             | 408         |
| 0x094  | CANIF2ARB2 | R/W  | 0x0000.0000 | CAN IF2 Arbitration 2             | 409         |
| 0x098  | CANIF2MCTL | R/W  | 0x0000.0000 | CAN IF2 Message Control           | 410         |
| 0x09C  | CANIF2DA1  | R/W  | 0x0000.0000 | CAN IF2 Data A1                   | 412         |
| 0x0A0  | CANIF2DA2  | R/W  | 0x0000.0000 | CAN IF2 Data A2                   | 413         |
| 0x0A4  | CANIF2DB1  | R/W  | 0x0000.0000 | CAN IF2 Data B1                   | 414         |
| 0x0A8  | CANIF2DB2  | R/W  | 0x0000.0000 | CAN IF2 Data B2                   | 415         |
| 0x100  | CANTXRQ1   | RO   | 0x0000.0000 | CAN Transmission Request 1        | 416         |
| 0x104  | CANTXRQ2   | RO   | 0x0000.0000 | CAN Transmission Request 2        | 416         |
| 0x120  | CANNWDA1   | RO   | 0x0000.0000 | CAN New Data 1                    | 417         |
| 0x124  | CANNWDA2   | RO   | 0x0000.0000 | CAN New Data 2                    | 417         |
| 0x140  | CANMSG1INT | RO   | 0x0000.0000 | CAN Message 1 Interrupt Pending   | 418         |
| 0x144  | CANMSG2INT | RO   | 0x0000.0000 | CAN Message 2 Interrupt Pending   | 418         |
| 0x160  | CANMSG1VAL | RO   | 0x0000.0000 | CAN Message 1 Valid               | 419         |
| 0x164  | CANMSG2VAL | RO   | 0x0000.0000 | CAN Message 2 Valid               | 419         |

### 15.6 Register Descriptions

The remainder of this section lists and describes the CAN registers, in numerical order by address offset. There are two sets of Interface Registers which are used to access the Message Objects in the Message RAM: **CANIF1x** and **CANIF2x**. The function of the two sets are identical and are used to queue transactions.

CAN Control (CANCTL)

### Register 1: CAN Control (CANCTL), offset 0x000

This control register initializes the module and enables test mode and interrupts.

The bus-off recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by setting or resetting Init. If the device goes bus-off, it sets Init, stopping all bus activities. Once Init has been cleared by the CPU, the device then waits for 129 occurrences of Bus Idle (129 \* 11 consecutive High bits) before resuming normal operations. At the end of the bus-off recovery sequence, the Error Management Counters are reset.

During the waiting time after Init is reset, each time a sequence of 11 High bits has been monitored, a BitOError code is written to the **CANSTS** status register, enabling the CPU to readily check whether the CAN bus is stuck at dominant or continuously disturbed and to monitor the proceeding of the bus-off recovery sequence.

| Offset 0x0                                                                                                                                                                                      | CAN0 base: 0x4004.0000<br>Offset 0x000<br>Type R/W, reset 0x0000.0001 |         |          |         |         |         |                                                             |         |                         |           |           |                                       |            |                 |          |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|----------|---------|---------|---------|-------------------------------------------------------------|---------|-------------------------|-----------|-----------|---------------------------------------|------------|-----------------|----------|----------|
|                                                                                                                                                                                                 | 31                                                                    | 30      | 29       | 28      | 27      | 26      | 25                                                          | 24      | 23                      | 22        | 21        | 20                                    | 19         | 18              | 17       | 16       |
|                                                                                                                                                                                                 |                                                                       | '       |          |         |         |         | •                                                           | rese    | rved                    |           |           |                                       |            | •               | •        |          |
| Туре                                                                                                                                                                                            | RO                                                                    | RO      | RO       | RO      | RO      | RO      | RO                                                          | RO      | RO                      | RO        | RO        | RO                                    | RO         | RO              | RO       | RO       |
| Reset                                                                                                                                                                                           | 0                                                                     | 0       | 0        | 0       | 0       | 0       | 0                                                           | 0       | 0                       | 0         | 0         | 0                                     | 0          | 0               | 0        | 0        |
| r                                                                                                                                                                                               | 15                                                                    | 14      | 13       | 12      | 11      | 10      | 9                                                           | 8       | 7                       | 6         | 5         | 4                                     | 3          | 2               | 1        | 0        |
|                                                                                                                                                                                                 |                                                                       |         |          | rese    | rved    |         |                                                             |         | Test                    | CCE       | DAR       | reserved                              | EIE        | SIE             | IE       | INIT     |
| Type<br>Reset                                                                                                                                                                                   | RO<br>0                                                               | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                     | RO<br>0 | R/W<br>0                | R/W<br>0  | R/W<br>0  | RO<br>0                               | R/W<br>0   | R/W<br>0        | R/W<br>0 | R/W<br>1 |
| Bit/Fi                                                                                                                                                                                          | ield                                                                  |         | Name     |         | Туре    | F       | Reset                                                       | Descr   | iption                  |           |           |                                       |            |                 |          |          |
| 31:8 reserved RO 0x0000 Software should not rely on the value of a reserved bit.<br>compatibility with future products, the value of a reserved preserved across a read-modify-write operation. |                                                                       |         |          |         |         |         |                                                             |         |                         |           | •         |                                       |            |                 |          |          |
| 7                                                                                                                                                                                               |                                                                       |         | Test     |         | R/W     |         | 0                                                           | Test M  | lode En                 | able      |           |                                       |            |                 |          |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         |                                                             | 0: Nor  | mal Ope                 | eration   |           |                                       |            |                 |          |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         |                                                             | 1. Tes  | t Mode                  |           |           |                                       |            |                 |          |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         |                                                             |         |                         |           |           |                                       |            |                 |          |          |
| 6                                                                                                                                                                                               |                                                                       |         | CCE      |         | R/W     |         | 0                                                           | Config  | guration                | Change    | Enable    |                                       |            |                 |          |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         | 0: Do not allow write access to the <b>CANBIT</b> register. |         |                         |           |           |                                       |            |                 |          |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         |                                                             | 1: Allo | w write                 | access t  | o the C   | ANBIT re                              | egister if | the Ini         | t bit is | 1.       |
| 5                                                                                                                                                                                               |                                                                       |         | DAR      |         | R/W     |         | 0                                                           | Disabl  | le Autom                | natic Ret | ransmis   | sion                                  |            |                 |          |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         |                                                             | 0: Aut  | o retrans               | smission  | of distu  | irbed me                              | ssages     | is enabl        | ed.      |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         |                                                             | 1: Aut  | o retrans               | smission  | is disal  | oled.                                 |            |                 |          |          |
| 4                                                                                                                                                                                               |                                                                       | I       | reserved |         |         |         | 0                                                           | compa   | atibility w             | ith futur | e produ   | e value o<br>cts, the v<br>fy-write o | alue of    | a reserv        |          |          |
| 3                                                                                                                                                                                               |                                                                       |         | EIE      |         | R/W     |         | 0                                                           | Error I | Interrupt               | Enable    |           |                                       |            |                 |          |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         |                                                             | 0: Dis  | abled. N                | o Error S | Status ir | nterrupt is                           | s genera   | ated.           |          |          |
|                                                                                                                                                                                                 |                                                                       |         |          |         |         |         |                                                             |         | abled. A o<br>ates an i | •         |           | ff <b>or</b> EW                       | arn bits   | in the <b>C</b> | ANSTS    | register |

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                                                                                                           |
|-----------|------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2         | SIE  | R/W  | 0     | Status Change Interrupt Enable                                                                                                                                                                                                        |
|           |      |      |       | 0: Disabled. No Status Change interrupt is generated.                                                                                                                                                                                 |
|           |      |      |       | 1: Enabled. An interrupt is generated when a message has successfully been transmitted or received, or a CAN bus error has been detected. A change in the $TxOk$ or $RxOk$ bits in the <b>CANSTS</b> register generates an interrupt. |
| 1         | IE   | R/W  | 0     | CAN Interrupt Enable                                                                                                                                                                                                                  |
|           |      |      |       | 0: Interrupt disabled.                                                                                                                                                                                                                |
|           |      |      |       | 1: Interrupt enabled.                                                                                                                                                                                                                 |
| 0         | INIT | R/W  | 1     | Initialization                                                                                                                                                                                                                        |
|           |      |      |       | 0: Normal operation.                                                                                                                                                                                                                  |
|           |      |      |       | 1: Initialization started.                                                                                                                                                                                                            |

CAN Status (CANSTS)

### Register 2: CAN Status (CANSTS), offset 0x004

The status register contains information for interrupt servicing such as Bus-Off, error count threshold, and error types.

The **LEC** field holds the code that indicates the type of the last error to occur on the CAN bus. This field is cleared to 0 when a message has been transferred (reception or transmission) without error. The unused error code 7 may be written by the CPU to check for updates.

An Error Interrupt is generated by the BOff and EWarn bits and a Status Change Interrupt is generated by the RxOk, TxOk, and LEC bits, assuming that the corresponding enable bits in the **CAN Control (CANCTL)** register are set. A change of the EPass bit or a write to the RxOk, TxOk, or LEC bits does not generate an interrupt.

Reading the CAN Status (CANSTS) register clears the CAN Interrupt (CANINT) register, if it is pending.

| CAN0 ba<br>Offset 0x0<br>Type R/W | 004     |                             | 00          |         |         |         |         |                                                                                                                            |                                                                                                                                                                                               |         |         |          |          |          |          |          |  |  |
|-----------------------------------|---------|-----------------------------|-------------|---------|---------|---------|---------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|----------|----------|----------|----------|----------|--|--|
| _                                 | 31      | 30                          | 29          | 28      | 27      | 26      | 25      | 24                                                                                                                         | 23                                                                                                                                                                                            | 22      | 21      | 20       | 19       | 18       | 17       | 16       |  |  |
|                                   |         | 1                           |             |         |         |         | 1       | rese                                                                                                                       | rved                                                                                                                                                                                          | 1       |         |          |          |          | 1        |          |  |  |
| Type<br>Reset                     | RO<br>0 | RO<br>0                     | RO<br>0     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                    | RO<br>0                                                                                                                                                                                       | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |  |  |
|                                   | 15      | 14                          | 13          | 12      | 11      | 10      | 9       | 8                                                                                                                          | 7                                                                                                                                                                                             | 6       | 5       | 4        | 3        | 2        | 1        | 0        |  |  |
|                                   |         | 1                           | 1 1         | rese    | rved    |         | 1       | 1                                                                                                                          | BOff                                                                                                                                                                                          | EWarn   | EPass   | RxOK     | TxOK     |          | LEC      |          |  |  |
| Type<br>Reset                     | RO<br>0 | RO<br>0                     | RO<br>0     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                    | RO<br>0                                                                                                                                                                                       | RO<br>0 | RO<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |  |  |
| Bit/F                             | ield    | Name Type Reset Description |             |         |         |         |         |                                                                                                                            |                                                                                                                                                                                               |         |         |          |          |          |          |          |  |  |
| 31:8                              |         |                             | reserved RO |         |         | 0       | x0000   | compa                                                                                                                      | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |         |         |          |          |          |          |          |  |  |
| 7                                 | ,       |                             | BOff RO     |         |         |         | 0       |                                                                                                                            | Bus-Off Status<br>: Module is not in bus-off state.                                                                                                                                           |         |         |          |          |          |          |          |  |  |
|                                   |         |                             |             |         |         |         |         |                                                                                                                            | 1: Module is in bus-off state.                                                                                                                                                                |         |         |          |          |          |          |          |  |  |
| 6                                 | i       |                             | EWarn       |         |         |         | 0       | Warning Status                                                                                                             |                                                                                                                                                                                               |         |         |          |          |          |          |          |  |  |
|                                   |         |                             |             |         |         | 0: Bo   |         |                                                                                                                            | Both error counters are below the error warning limit of 96.                                                                                                                                  |         |         |          |          |          |          |          |  |  |
|                                   |         |                             |             |         |         |         |         | 1: At least one of the error counters has reached the error warning line of 96.                                            |                                                                                                                                                                                               |         |         |          |          |          |          |          |  |  |
| 5                                 | 5       |                             | EPass RO    |         | RO      |         | 0       | Error I                                                                                                                    | Passive                                                                                                                                                                                       |         |         |          |          |          |          |          |  |  |
|                                   |         |                             |             |         |         |         |         | 0: The CAN module is in the Error Active state, that is, the receive or transmit error count is less than or equal to 127. |                                                                                                                                                                                               |         |         |          |          |          |          |          |  |  |
|                                   |         |                             |             |         |         |         |         |                                                                                                                            | 1: The CAN module is in the Error Passive state, that is, the receive or transmit error count is greater than 127.                                                                            |         |         |          |          |          |          |          |  |  |

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                |
|-----------|------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 4         | RxOK | R/W  | 0     | Received a Message Successfully                                                                                                            |
|           |      |      |       | 0: Since this bit was last reset to 0, no message has been successfully received.                                                          |
|           |      |      |       | 1: Since this bit was last reset to 0, a message has been successfully received, independent of the result of the acceptance filtering.    |
|           |      |      |       | This bit is never reset by the CAN module.                                                                                                 |
| 3         | TxOK | R/W  | 0     | Transmitted a Message Successfully                                                                                                         |
|           |      |      |       | 0: Since this bit was last reset to 0, no message has been successfully transmitted.                                                       |
|           |      |      |       | 1: Since this bit was last reset to 0, a message has been successfully transmitted error-free and acknowledged by at least one other node. |

This bit is never reset by the CAN module.

| Bit/Field | Name | Туре | Reset | Descri                                                      | ption                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|-----------|------|------|-------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 2:0       | LEC  | R/W  | 0x0   | Last Er                                                     | rror Code                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|           |      |      |       | This is the type of the last error to occur on the CAN bus. |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|           |      |      |       | Value                                                       | Definition                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           |      |      |       | 000                                                         | No Error                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|           |      |      |       | 001                                                         | Stuff Error                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |      |      |       |                                                             | More than 5 equal bits in a sequence have occurred in a part of a received message where this is not allowed.                                                                                                                                                                                   |  |  |  |  |  |  |
|           |      |      |       | 010                                                         | Form Error                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|           |      |      |       |                                                             | A fixed format part of the received frame has the wrong format.                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|           |      |      |       | 011                                                         | ACK Error                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|           |      |      |       |                                                             | The message transmitted was not acknowledged by another node.                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|           |      |      |       | 100                                                         | Bit 1 Error                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |      |      |       |                                                             | When a message is transmitted, the CAN controller monitors<br>the data lines to detect any conflicts. When the arbitration field<br>is transmitted, data conflicts are a part of the arbitration protocol.<br>When other frame fields are transmitted, data conflicts are<br>considered errors. |  |  |  |  |  |  |
|           |      |      |       |                                                             | A Bit 1 Error indicates that the device wanted to send a High level (logical 1) but the monitored bus value was Low (logical 0).                                                                                                                                                                |  |  |  |  |  |  |
|           |      |      |       | 101                                                         | Bit 0 Error                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|           |      |      |       |                                                             | A Bit 0 Error indicates that the device wanted to send a Low level (logical 0) but the monitored bus value was High (logical 1).                                                                                                                                                                |  |  |  |  |  |  |
|           |      |      |       |                                                             | During bus-off recovery, this status is set each time a sequence<br>of 11 High bits has been monitored. This enables the CPU to<br>monitor the proceeding of the bus-off recovery sequence without<br>any disturbances to the bus.                                                              |  |  |  |  |  |  |
|           |      |      |       | 110                                                         | CRC Error                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|           |      |      |       |                                                             | The CRC checksum was incorrect in the received message indicate that the calculated value received did not match the calculated CRC of the data.                                                                                                                                                |  |  |  |  |  |  |
|           |      |      |       | 111                                                         | Unused                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|           |      |      |       |                                                             | When the LEC bit shows this value, no CAN bus event was detected since the CPU wrote this value to LEC.                                                                                                                                                                                         |  |  |  |  |  |  |

### Register 3: CAN Error Counter (CANERR), offset 0x008

This register contains the error counter values, which can be used to analyze the cause of an error.

| CAN0 ba<br>Offset 0x<br>Type RO | :008      | 04.0000<br>:0000.000 | 0        | ,       |         |         |         |                                                                                                                                                                                               |                                                                                    |          |         |          |         |         |         |         |  |
|---------------------------------|-----------|----------------------|----------|---------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------|---------|----------|---------|---------|---------|---------|--|
|                                 | 31        | 30                   | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                            | 23                                                                                 | 22       | 21      | 20       | 19      | 18      | 17      | 16      |  |
|                                 |           | 1                    |          |         | · ·     |         | 1       | rese                                                                                                                                                                                          | rved                                                                               | 1        |         |          | 1       |         |         | 1       |  |
| Туре                            | RO        | RO                   | RO       | RO      | RO      | RO      | RO      | RO                                                                                                                                                                                            | RO                                                                                 | RO       | RO      | RO       | RO      | RO      | RO      | RO      |  |
| Reset                           | 0         | 0                    | 0        | 0       | 0       | 0       | 0       | 0                                                                                                                                                                                             | 0                                                                                  | 0        | 0       | 0        | 0       | 0       | 0       | 0       |  |
|                                 | 15        | 14                   | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                             | 7                                                                                  | 6        | 5       | 4        | 3       | 2       | 1       | 0       |  |
|                                 | RP        | '                    |          |         | REC     |         | •       | •                                                                                                                                                                                             |                                                                                    | •        | •       | <b>т</b> | EC      |         | •       | '       |  |
| Type<br>Reset                   | RO<br>0   | RO<br>0              | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                       | RO<br>0                                                                            | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 |  |
| Reset                           | 0         | U                    | 0        | 0       | U       | U       | U       | 0                                                                                                                                                                                             | U                                                                                  | 0        | 0       | 0        | 0       | 0       | 0       | U       |  |
| Bit/F                           | Bit/Field |                      | Name     |         |         |         | Reset   | Description                                                                                                                                                                                   |                                                                                    |          |         |          |         |         |         |         |  |
| 31:16                           |           | r                    | reserved |         | RO      | C       | x0000   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                                                                    |          |         |          |         |         |         |         |  |
| 1                               | 5         | RP                   |          |         | RO      |         | 0       | Received Error Passive                                                                                                                                                                        |                                                                                    |          |         |          |         |         |         |         |  |
|                                 | 10        |                      |          |         |         |         |         | 0: The Receive Error counter is below the Error Passive level (127 or less).                                                                                                                  |                                                                                    |          |         |          |         |         |         |         |  |
|                                 |           |                      |          |         |         |         |         |                                                                                                                                                                                               | 1: The Receive Error counter has reached the Error Passive level (128 or greater). |          |         |          |         |         |         |         |  |
| 14                              | :8        |                      | REC      |         | RO      |         | 0x0     | 0x0 Receive Error Counter                                                                                                                                                                     |                                                                                    |          |         |          |         |         |         |         |  |
|                                 |           |                      |          |         |         |         |         | State of the receiver error counter (0 to 127).                                                                                                                                               |                                                                                    |          |         |          |         |         |         |         |  |
| 7:                              | :0        |                      | TEC      |         | RO      |         | 0x0     | Trans                                                                                                                                                                                         | mit Erro                                                                           | r Counte | r       |          |         |         |         |         |  |
|                                 |           |                      |          |         |         |         |         |                                                                                                                                                                                               | State of the transmit error counter (0 to 255).                                    |          |         |          |         |         |         |         |  |

CAN Error Counter (CANERR)

### Register 4: CAN Bit Timing (CANBIT), offset 0x00C

This register is used to program the bit width and bit quantum. Values are to be programmed to an 8-MHz reference clock. This register is write-enabled by the CCE and Init bits in the **CANCTL** register.

With a CAN module clock (CAN\_CLK) of 8 MHz, the register reset value of 0x230 configures the CAN for a bit rate of 500 Kbps.

#### CAN Bit Timing (CANBIT)

| CAN0 base: 0x4004.0000      |  |
|-----------------------------|--|
| Offset 0x00C                |  |
| Type R/W, reset 0x0000.2301 |  |

|               | 31       | 30       | 29                                            | 28       | 27         | 26       | 25                                                                                                                               | 24                                                                                                                                                                                            | 23                             | 22         | 21        | 20         | 19       | 18                                 | 17       | 16       |  |  |  |
|---------------|----------|----------|-----------------------------------------------|----------|------------|----------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|-----------|------------|----------|------------------------------------|----------|----------|--|--|--|
|               |          |          | 1 1                                           |          | г г        |          | 1                                                                                                                                | rese                                                                                                                                                                                          | rved                           |            |           | 1          | 1        | 1                                  | 1        | 1        |  |  |  |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0                                       | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0                                                                                                                          | RO<br>0                                                                                                                                                                                       | RO<br>0                        | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0                            | RO<br>0  | RO<br>0  |  |  |  |
|               | 15       | 14       | 13                                            | 12       | 11         | 10       | 9                                                                                                                                | 8                                                                                                                                                                                             | 7                              | 6          | 5         | 4          | 3        | 2                                  | 1        | 0        |  |  |  |
|               | reserved |          | TSeg2                                         |          | , i        | TS       | l<br>eg1                                                                                                                         | 1                                                                                                                                                                                             | SJ                             | w          |           | 1          | BI       | I<br>RP                            | 1        |          |  |  |  |
| Type<br>Reset | RO<br>0  | R/W<br>0 | R/W<br>1                                      | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>1                                                                                                                         | R/W<br>1                                                                                                                                                                                      | R/W<br>0                       | R/W<br>0   | R/W<br>0  | R/W<br>0   | R/W<br>0 | R/W<br>0                           | R/W<br>0 | R/W<br>1 |  |  |  |
| Bit/F         | ield     | Name     |                                               |          | Type Reset |          |                                                                                                                                  | Descr                                                                                                                                                                                         | Description                    |            |           |            |          |                                    |          |          |  |  |  |
| 31:           | 15       |          | reserved                                      |          | RO         | 0        | x0000                                                                                                                            | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |                                |            |           |            |          |                                    |          |          |  |  |  |
| 14:12         |          |          | TSeg2 R/W 0x2 Time Segment after Sample Point |          |            |          |                                                                                                                                  |                                                                                                                                                                                               |                                |            |           |            |          |                                    |          |          |  |  |  |
|               |          |          |                                               |          |            |          | 0x00-0x07: The actual interpretation by the hardware of this value is such that one more than the value programmed here is used. |                                                                                                                                                                                               |                                |            |           |            |          |                                    |          |          |  |  |  |
|               |          |          |                                               |          |            |          |                                                                                                                                  | So, for example, a reset value of 0x2 defines that there is 3(2+1) bit time quanta defined for Phase_Seg2 (see Figure 15-2 on page 384). The bit time quanta is defined by BRP.               |                                |            |           |            |          |                                    |          |          |  |  |  |
| 11            | :8       |          | TSeg1                                         |          | R/W        |          | 0x3                                                                                                                              | Time                                                                                                                                                                                          | Segmen                         | t Before   | Sample    | Point      |          |                                    |          |          |  |  |  |
|               |          |          |                                               |          |            |          |                                                                                                                                  | 0x00-0x0F: The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.                                                              |                                |            |           |            |          |                                    |          |          |  |  |  |
|               |          |          |                                               |          |            |          |                                                                                                                                  | So, for example, the reset value of 0x3 defines that there is 4(3+1) bit time quanta defined for Phase_Seg1 (see Figure 15-2 on page 384). The bit time quanta is define by BRP.              |                                |            |           |            |          |                                    |          |          |  |  |  |
| 7:            | 6        |          | SJW                                           |          | R/W        |          | 0x0                                                                                                                              | (Re)S                                                                                                                                                                                         | (Re)Synchronization Jump Width |            |           |            |          |                                    |          |          |  |  |  |
|               |          |          |                                               |          |            |          |                                                                                                                                  | 0x00-0x03: The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.                                                              |                                |            |           |            |          |                                    |          |          |  |  |  |
|               |          |          |                                               |          |            |          |                                                                                                                                  | error (                                                                                                                                                                                       | misaligr<br>in sjw. 3          | iment), it | t can adj | just the I | ength of | ntroller d<br>TSeg2 (<br>ne length | or TSeg  | 1 by the |  |  |  |

| Bit/Field | Name | Туре | Reset | Description                                                                                                                                                                                                                                                                            |
|-----------|------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5:0       | BRP  | R/W  | 0x1   | Baud Rate Prescalar                                                                                                                                                                                                                                                                    |
|           |      |      |       | 0x00-0x03F: The value by which the oscillator frequency is divided for generating the bit time quanta. The bit time is built up from a multiple of this quantum. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used. |
|           |      |      |       | BRP defines the number of CAN clock periods that make up 1 bit time quanta, so the reset value is 2 bit time quanta (1+1).                                                                                                                                                             |

The **BRPRE** register can be used to further divide the bit time.

### Register 5: CAN Interrupt (CANINT), offset 0x010

This register indicates the source of the interrupt.

If several interrupts are pending, the **CAN Interrupt (CANINT)** register points to the pending interrupt with the highest priority, disregarding their chronological order. An interrupt remains pending until the CPU has cleared it. If the IntId bit is not 0x0000 (the default) and the IE bit in the **CANCTL** register is set, the interrupt is active. The interrupt line remains active until the IntId bit is set back to 0x0000 when the cause of all interrupts are reset or until IE is reset.

#### CAN Interrupt (CANINT)

| CAN0 | base: | 0x4004.0000 |  |
|------|-------|-------------|--|

Offset 0x010 Type RO, reset 0x0000.0000

|               | 31      | 30      | 29       | 28      | 27       | 26      | 25      | 24      | 23                      | 22             | 21        | 20        | 19        | 18          | 17        | 16       |
|---------------|---------|---------|----------|---------|----------|---------|---------|---------|-------------------------|----------------|-----------|-----------|-----------|-------------|-----------|----------|
|               |         | ı       | · · ·    |         | т т      |         | 1       | reser   | rved                    |                | 1         | I         | 1         | 1           | T         | 1        |
| _             |         |         |          |         | 1        |         |         | l       |                         |                |           |           | L         |             |           |          |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                 | RO<br>0        | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0     | RO<br>0   | RO<br>0  |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0       | 0       | 0       | 0                       | 0              | 0         | 0         | U         | 0           | 0         | 0        |
| _             | 15      | 14      | 13       | 12      | 11       | 10      | 9       | 8       | 7                       | 6              | 5         | 4         | 3         | 2           | 1         | 0        |
|               |         | 1       | 1 1      |         | т т<br>т |         | T       | Int     | ld                      |                | I         | I         | 1         | 1           | T         |          |
| Туре          | RO      | RO      | RO       | RO      | RO       | RO      | RO      | RO      | RO                      | RO             | RO        | RO        | RO        | RO          | RO        | RO       |
| Reset         | 0       | 0       | 0        | 0       | 0        | 0       | 0       | 0       | 0                       | 0              | 0         | 0         | 0         | 0           | 0         | 0        |
|               |         |         |          |         |          |         |         |         |                         |                |           |           |           |             |           |          |
| Bit/F         | ield    |         | Name     |         | Туре     |         | Reset   | Descri  | ption                   |                |           |           |           |             |           |          |
| 31:           | 16      |         | reserved |         | RO       | C       | )x0000  | Softwa  | are shoul               | d not re       | ely on th | e value ( | of a rese | erved bit   | . To pro  | vide     |
|               |         |         |          |         |          |         |         |         | atibility w<br>ved acro |                |           |           |           |             | ed bit sl | hould be |
| 15            | :0      |         | Intld    |         | RO       | C       | )x0000  | Interru | ıpt Identi              | fier           |           |           |           |             |           |          |
|               |         |         |          |         |          |         |         | The nu  | umber in                | this fiel      | ld indica | tes the s | source o  | of the inte | errupt.   |          |
|               |         |         |          |         |          |         |         | Value   |                         | Defi           | nition    |           |           |             |           |          |
|               |         |         |          |         |          |         |         | 0x00C   | 00                      | No i           | nterrupt  | pending   |           |             |           |          |
|               |         |         |          |         |          |         |         | 0x000   | )1-0x002                | 0 Num<br>inter |           | he mess   | age obje  | ect that o  | caused    | the      |
|               |         |         |          |         |          |         |         | 0x002   | 21-0x7FF                | F Unu          | sed       |           |           |             |           |          |
|               |         |         |          |         |          |         |         | 0x800   | 00                      | Stat           | us Interr | upt       |           |             |           |          |
|               |         |         |          |         |          |         |         | 0x800   | 1-0xFFF                 | F Unu          | sed       |           |           |             |           |          |
|               |         |         |          |         |          |         |         |         |                         |                |           |           |           |             |           |          |

## Register 6: CAN Test (CANTST), offset 0x014

This is the test mode register for self-test and external pin access. It is write-enabled by the Test bit in the **CANCTL** register. Different test functions may be combined but when the TX bit is not equal to 0x0, it disturbs message transmits.

| CAN0 ba                                                                                                                            | se: 0x40 |           |         |         |         |             |         |         |                      |            |           |           |           |                |         |          |
|------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|---------|---------|---------|-------------|---------|---------|----------------------|------------|-----------|-----------|-----------|----------------|---------|----------|
| Offset 0x<br>Type R/W                                                                                                              |          | )x0000.00 | 00      |         |         |             |         |         |                      |            |           |           |           |                |         |          |
|                                                                                                                                    | 31       | 30        | 29      | 28      | 27      | 26          | 25      | 24      | 23                   | 22         | 21        | 20        | 19        | 18             | 17      | 16       |
|                                                                                                                                    |          | •         |         |         | · · · · |             | •       | rese    | erved                |            |           | •         |           |                |         |          |
| Type<br>Reset                                                                                                                      | RO<br>0  | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0 | RO<br>0 | RO<br>0              | RO<br>0    | RO<br>0   | RO<br>0   | RO<br>0   | RO<br>0        | RO<br>0 | RO<br>0  |
|                                                                                                                                    | 15       | 14        | 13      | 12      | 11      | 10          | 9       | 8       | 7                    | 6          | 5         | 4         | 3         | 2              | 1       | 0        |
|                                                                                                                                    |          | 1         | 1 1     | reser   | ved I   |             | 1       | T       | Rx                   | Т          | x         | LBack     | Silent    | Basic          | rese    | erved    |
| Type<br>Reset                                                                                                                      | RO<br>0  | RO<br>0   | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0 | RO<br>0 | RO<br>0              | R/W<br>0   | R/W<br>0  | R/W<br>0  | R/W<br>0  | R/W<br>0       | RO<br>0 | RO<br>0  |
| Bit/F                                                                                                                              | ield     |           | Name    |         | Туре    |             | Reset   | Descr   | ription              |            |           |           |           |                |         |          |
| 31:8 reserved RO 0x0000 Software should not rely on the v<br>compatibility with future products<br>preserved across a read-modify- |          |           |         |         |         |             |         |         |                      |            |           | icts, the | value of  | a reserv       |         |          |
| 7 Rx RO 0 Receive Observation                                                                                                      |          |           |         |         |         |             |         |         |                      |            |           |           |           |                |         |          |
| Displays the value on the CANNRX pin.                                                                                              |          |           |         |         |         |             |         |         |                      |            |           |           |           |                |         |          |
| 6:                                                                                                                                 | 5        |           | Тx      |         | R/W     |             | 0x0     | Trans   | mit Cont             | rol        |           |           |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | Overr   | ides con             | trol of Ca | ANnTx     | oin.      |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | Value   | e Descri             | ption      |           |           |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | 00      | CAN_1                | TX is cor  | ntrolled  | by the C  | AN mod    | ule (defa      | ault)   |          |
|                                                                                                                                    |          |           |         |         |         |             |         | 01      | Sample               | e Point s  | ignal d   | riven on  | the CAN   | I_TX pin       |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | 10      |                      | TX drive   |           |           |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | 11      | CAN_1                | TX drive   | s a Higł  | n value   |           |                |         |          |
| 4                                                                                                                                  | Ļ        |           | LBack   |         | R/W     |             | 0       | Loopt   | back Mod             | de         |           |           |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | 0: Dis  | abled.               |            |           |           |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | 1: Ena  | abled.               |            |           |           |           |                |         |          |
| 3                                                                                                                                  | 5        |           | Silent  |         | R/W     |             | 0       | Silent  | Mode                 |            |           |           |           |                |         |          |
| Do not transmit data; monitor the bus. Also known as Bus Monitor mo                                                                |          |           |         |         |         |             |         |         |                      |            |           | or mode.  |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | 0: Dis  | abled.               |            |           |           |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         | 1: Enabled. |         |         |                      |            |           |           |           |                |         |          |
| 2                                                                                                                                  | 2        |           | Basic   |         | R/W     |             | 0       | Basic   | Mode                 |            |           |           |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         | 0: Dis  | abled.               |            |           |           |           |                |         |          |
|                                                                                                                                    |          |           |         |         |         |             |         |         | e CANIF<br>ceive buf | -          | ers as tr | ansmit b  | uffer, an | d use <b>C</b> | ANIF2 r | egisters |

CAN Test (CANTST)

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                   |
|-----------|----------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:0       | reserved | RO   | 0x0   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |

### Register 7: CAN Baud Rate Prescalar Extension (CANBRPE), offset 0x018

This register is used to further divide the bit time set with the BRP bit in the CANBIT register. It is write-enabled with the CCE bit in the CANCTL register.

#### CAN Baud Rate Prescalar Extension (CANBRPE)

CAN0 base: 0x4004.0000 Offset 0x018 Type R/W, reset 0x0000.0000

|       | 31   | 30 | 29      | 28      | 27      | 26      | 25      | 24      | 23                                                                                                                                                            | 22        | 21       | 20          | 19       | 18      | 17      | 16      |
|-------|------|----|---------|---------|---------|---------|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|-------------|----------|---------|---------|---------|
|       |      | 1  | 1       | 1       | · · ·   |         |         | rese    | rved                                                                                                                                                          | 1         |          | , , ,       |          | 1       | 1       | ,       |
| Туре  | RO   | RO | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                       | RO<br>0   | RO<br>0  | RO          | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 |
| Reset | 0    | 0  | U       | U       | 0       | 0       | 0       | U       | 0                                                                                                                                                             | 0         | 0        | 0           | 0        | 0       | 0       | U       |
|       | 15   | 14 | 13      | 12      | 11      | 10      | 9       | 8       | 7                                                                                                                                                             | 6         | 5        | 4           | 3        | 2       | 1       | 0       |
|       |      | 1  | 1       | 1       |         | rese    | erved   |         |                                                                                                                                                               |           |          | •           |          | B       | RPE     | '       |
| Туре  | RO   | RO | RO      | RO      | RO      | RO      | RO      | RO      | RO                                                                                                                                                            | RO        | RO       | RO          | R/W      | R/W     | R/W     | R/W     |
| Reset | 0    | 0  | 0       | 0       | 0       | 0       | 0       | 0       | 0                                                                                                                                                             | 0         | 0        | 0           | 0        | 0       | 0       | 0       |
| Bit/F | ield |    | Name    |         | Туре    | F       | Reset   | Descri  | iption                                                                                                                                                        |           |          |             |          |         |         |         |
| 31    | :4   |    | reserve | t       | RO      | 0       | x0000   | compa   | Software should not rely on the value of a reserve<br>compatibility with future products, the value of a r<br>preserved across a read-modify-write operation. |           |          |             |          |         |         |         |
| 3:    | 0    |    | BRPE    |         | R/W     |         | 0x0     | Baud    | Rate Pr                                                                                                                                                       | escalar I | Extensio | on.         |          |         |         |         |
|       |      |    |         |         |         |         |         | 0x00-0  | 0x0F: E                                                                                                                                                       | ktend the | BRP b    | it to value | es up to | 1023. T | he actu | al      |

interpretation by the hardware is one more than the value programmed by BRPE (MSBs) and BRP (LSBs) are used.

## Register 8: CAN IF1 Command Request (CANIF1CRQ), offset 0x020 Register 9: CAN IF2 Command Request (CANIF2CRQ), offset 0x080

This register is used to start a transfer when its MNUM bit field is updated. Its Busy bit indicates that the information is transferring from the CAN Interface Registers to the internal message RAM.

A message transfer is started as soon as there is a write of the message object number with the MNUM bit. With this write operation, the Busy bit is automatically set to 1 to indicate that a transfer is in progress. After a wait time of 3 to 6 CAN\_CLK periods, the transfer between the interface register and the message RAM completes, which then sets the Busy bit back to 0.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31   | 30 | 29               | 28 | 27   | 26       | 25          | 24                                                                                                     | 23                                                                                                                                                                          | 22                                                                                                                                 | 21                                                                                                        | 20                                                                                               | 19                                                                                | 18                                                                            | 17                                                      | 16                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|------------------|----|------|----------|-------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1    |    | i i              |    | 1 1  | r r      |             | rese                                                                                                   | rved                                                                                                                                                                        | i i                                                                                                                                |                                                                                                           |                                                                                                  | l I                                                                               | Í                                                                             | 1                                                       | 1                          |
| Туре L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RO   | RO | RO               | RO | RO   | RO       | RO          | RO                                                                                                     | RO                                                                                                                                                                          | RO                                                                                                                                 | RO                                                                                                        | RO                                                                                               | RO                                                                                | RO                                                                            | RO                                                      | RO                         |
| leset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0    | 0  | 0                | 0  | 0    | 0        | 0           | 0                                                                                                      | 0                                                                                                                                                                           | 0                                                                                                                                  | 0                                                                                                         | 0                                                                                                | 0                                                                                 | 0                                                                             | 0                                                       | 0                          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15   | 14 | 13               | 12 | 11   | 10       | 9           | 8                                                                                                      | 7                                                                                                                                                                           | 6                                                                                                                                  | 5                                                                                                         | 4                                                                                                | 3                                                                                 | 2                                                                             | 1                                                       | 0                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Busy |    |                  |    |      | reserved |             |                                                                                                        |                                                                                                                                                                             |                                                                                                                                    |                                                                                                           |                                                                                                  | MN                                                                                | IUM                                                                           | •                                                       | •                          |
| Гуре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RO   | RO | RO               | RO | RO   | RO       | RO<br>0     | RO<br>0                                                                                                | RO<br>0                                                                                                                                                                     | RO                                                                                                                                 | R/W<br>0                                                                                                  | R/W                                                                                              | R/W                                                                               | R/W                                                                           | R/W                                                     | R/W                        |
| eset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0    | 0  | 0                | 0  | 0    | 0        | 0           | 0                                                                                                      | 0                                                                                                                                                                           | 0                                                                                                                                  | 0                                                                                                         | 0                                                                                                | 0                                                                                 | 0                                                                             | 0                                                       | 1                          |
| Bit/Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eld  |    | Name             |    | Туре | R        | leset       | Descr                                                                                                  | iption                                                                                                                                                                      |                                                                                                                                    |                                                                                                           |                                                                                                  |                                                                                   |                                                                               |                                                         |                            |
| Bit/Field         Name         Type         Reset         Description           31:16         reserved         RO         0x0000         Software should not rely on the value of a reserved bit. To province on partibility with future products, the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should not rely on the value of a reserved bit should no |      |    |                  |    |      |          |             |                                                                                                        |                                                                                                                                                                             |                                                                                                                                    |                                                                                                           |                                                                                                  |                                                                                   |                                                                               |                                                         |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |    |                  |    |      |          |             | prese                                                                                                  | rved acr                                                                                                                                                                    | oss a re                                                                                                                           | au-moui                                                                                                   | ly-write o                                                                                       | operatio                                                                          |                                                                               |                                                         |                            |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5    |    | Busy             |    | RO   | (        | 0x0         | presei<br>Busy I                                                                                       |                                                                                                                                                                             | 055 a 16                                                                                                                           | au-moui                                                                                                   | ly-write (                                                                                       | operation                                                                         |                                                                               |                                                         |                            |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5    |    | Busy             |    | RO   | (        | 0x0         | Busy I                                                                                                 | Flag                                                                                                                                                                        | n read/w                                                                                                                           |                                                                                                           |                                                                                                  |                                                                                   |                                                                               |                                                         |                            |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5    |    | Busy             |    | RO   | (        | 0x0         | Busy I<br>0: Res                                                                                       | Flag<br>set wher                                                                                                                                                            | n read/w                                                                                                                           | rite actic                                                                                                | n has fir                                                                                        |                                                                                   |                                                                               | this regis                                              | ster.                      |
| 15<br>14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    | Busy<br>reserved |    | RO   |          | 0x0<br>)x00 | Busy I<br>0: Res<br>1: Set<br>Softwa<br>compa                                                          | Flag<br>set wher<br>when a<br>are shou<br>atibility v                                                                                                                       | n read/w<br>write oc<br>uld not re<br>vith futur                                                                                   | rite actic<br>curs to t<br>ely on the<br>e produc                                                         | n has fir<br>he mess<br>e value o<br>cts, the v                                                  | nished.                                                                           | mber in t<br>erved bit<br>a reserv                                            | . To prov                                               | /ide                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6    |    | -                |    |      | C        |             | Busy I<br>0: Res<br>1: Set<br>Softwa<br>compa<br>preser                                                | Flag<br>set wher<br>when a<br>are shou<br>atibility v                                                                                                                       | n read/w<br>write oc<br>uld not re<br>vith futur<br>oss a re                                                                       | rite actic<br>curs to t<br>ely on the<br>e produc                                                         | n has fir<br>he mess<br>e value o<br>cts, the v                                                  | hished.<br>sage nur<br>of a rese<br>value of a                                    | mber in t<br>erved bit<br>a reserv                                            | . To prov                                               | ∕ide                       |
| 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6    |    | reserved         |    | RO   | C        | )x00        | Busy I<br>O: Res<br>1: Set<br>Softwa<br>compa<br>presen<br>Messa<br>Select                             | Flag<br>set wher<br>when a<br>are shou<br>atibility v<br>rved acr<br>age Nun<br>ts one o                                                                                    | n read/w<br>write oc<br>uld not re<br>vith futur<br>oss a re<br>nber<br>f the 32                                                   | rite actic<br>curs to t<br>ely on the<br>e produc<br>ad-modi<br>message                                   | n has fir<br>he mess<br>e value o<br>cts, the v<br>fy-write o<br>e objects                       | hished.<br>sage nur<br>of a rese<br>value of a                                    | mber in f<br>erved bit<br>a reserv<br>n.<br>message                           | . To proved bit sh                                      | vide<br>nould b            |
| 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6    |    | reserved         |    | RO   | C        | )x00        | Busy I<br>O: Res<br>1: Set<br>Softwa<br>compa<br>presen<br>Messa<br>Select                             | Flag<br>set when<br>when a<br>are shou<br>atibility v<br>rved acr<br>age Nun<br>ts one o<br>er. The r                                                                       | n read/w<br>write oc<br>uld not re<br>vith futur<br>oss a re<br>nber<br>f the 32                                                   | rite actic<br>curs to t<br>ely on the<br>e produc<br>ad-modi<br>message<br>e objects                      | n has fir<br>he mess<br>e value o<br>cts, the v<br>fy-write o<br>e objects                       | hished.<br>sage nur<br>of a rese<br>value of<br>operation                         | mber in f<br>erved bit<br>a reserv<br>n.<br>message                           | . To proved bit sh                                      | vide<br>nould b            |
| 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6    |    | reserved         |    | RO   | C        | )x00        | Busy I<br>O: Res<br>1: Set<br>Softwa<br>compa<br>preser<br>Messa<br>Select<br>transfe                  | Flag<br>set wher<br>when a<br>are shou<br>atibility v<br>rved acr<br>age Nun<br>ts one o<br>er. The r<br>D<br>0                                                             | n read/w<br>write oc<br>uld not re<br>vith futur<br>oss a re<br>nber<br>f the 32<br>message<br>escriptic                           | rite actic<br>curs to t<br>ely on the<br>produc<br>ad-modi<br>message<br>e objects<br>on<br>valid me      | n has fir<br>he mess<br>e value o<br>cts, the v<br>fy-write o<br>fy-write o<br>are nun           | hished.<br>sage nur<br>of a rese<br>value of<br>operation                         | mber in f<br>erved bit<br>a reserv<br>n.<br>message<br>from 1 to              | . To prov<br>ed bit sh<br>e RAM fo<br>9 32.             | vide<br>hould b            |
| 14:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6    |    | reserved         |    | RO   | C        | )x00        | Busy I<br>0: Res<br>1: Set<br>Softwa<br>compa<br>presen<br>Messa<br>Select<br>transfe<br>Value<br>0x00 | Flag<br>set when<br>when a<br>are shou<br>atibility v<br>rved acr<br>age Nun<br>ts one o<br>age Nun<br>ts one o<br>age Nun<br>ts one o<br>a<br>c<br>ts one o<br>o<br>o<br>o | n read/w<br>write oc<br>uld not re<br>vith futur<br>oss a re<br>hber<br>f the 32<br>message<br>escriptic<br>is not a<br>r object 3 | rite actic<br>curs to t<br>ely on the<br>produc<br>ad-modi<br>message<br>objects<br>on<br>valid me<br>32. | n has fir<br>he mess<br>e value o<br>cts, the v<br>fy-write o<br>e objects<br>are nun<br>ssage n | nished.<br>sage nur<br>of a resevalue of a<br>operation<br>s in the r<br>nbered f | mber in t<br>erved bit<br>a reserv<br>n.<br>message<br>rom 1 to<br>t is inter | . To prov<br>ed bit sh<br>e RAM fo<br>o 32.<br>preted a | vide<br>nould l<br>or data |

CAN IF1 Command Request (CANIF1CRQ)

CAN0 base: 0x4004.0000

## Register 10: CAN IF1 Command Mask (CANIF1CMSK), offset 0x024 Register 11: CAN IF2 Command Mask (CANIF2CMSK), offset 0x084

The Command Mask registers specify the transfer direction and select which buffer registers are the source or target of the data transfer.

CAN IF1 Command Mask (CANIF1CMSK)

CAN0 base: 0x4004.0000

Offset 0x024 Type RO, reset 0x0000.0000

| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 31      | 30      | 29                          | 28      | 27      | 26      | 25                                                                                                                                                                                                                                                                                                                                      | 24                                                     | 23                                   | 22         | 21       | 20              | 19       | 18            | 17        | 16       |  |  |
|-----------------------------------------|---------|---------|-----------------------------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------|------------|----------|-----------------|----------|---------------|-----------|----------|--|--|
|                                         |         | 1       |                             |         |         |         | 1                                                                                                                                                                                                                                                                                                                                       | rese                                                   | erved                                |            |          |                 |          |               |           |          |  |  |
| Type<br>Reset                           | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                                                                                                                                                 | RO<br>0                                                | RO<br>0                              | RO<br>0    | RO<br>0  | RO<br>0         | RO<br>0  | RO<br>0       | RO<br>0   | RO<br>0  |  |  |
|                                         | 15      | 14      | 13                          | 12      | 11      | 10      | 9                                                                                                                                                                                                                                                                                                                                       | 8                                                      | 7                                    | 6          | 5        | 4               | 3        | 2             | 1         | 0        |  |  |
|                                         |         |         |                             | rese    |         |         | •                                                                                                                                                                                                                                                                                                                                       |                                                        | WRNRD                                | Mask       | Arb      | Control         |          | TxRcpstNewDat | DataA     | DataB    |  |  |
| Type<br>Reset                           | RO<br>0 | RO<br>0 | RO<br>0                     | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                                                                                                                                                                 | RO<br>0                                                | R/W<br>0                             | R/W<br>0   | R/W<br>0 | R/W<br>0        | R/W<br>0 | R/W<br>0      | R/W<br>0  | R/W<br>0 |  |  |
| Bit/F                                   | ield    |         | Name                        |         | Туре    | F       | Reset                                                                                                                                                                                                                                                                                                                                   | Descr                                                  | iption                               |            |          |                 |          |               |           |          |  |  |
| 31                                      | 8       | r       | eserved                     |         | RO      | 0       | x0000                                                                                                                                                                                                                                                                                                                                   | comp                                                   | are shou<br>atibility w<br>rved acro | ith futur  | e produ  | cts, the v      | value of | a reserve     |           |          |  |  |
| 7                                       |         | N       | WRNRD R/W 0 Write, Not Read |         |         |         |                                                                                                                                                                                                                                                                                                                                         |                                                        |                                      |            |          |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         | <ul> <li>Write, Not Read</li> <li>0: Read. Transfer the message object address specified by the CAN</li> <li>Command Request (CANIFnCRQ) register to the CAN message buffer</li> <li>registers (CANIFnMSK1, CANIFnMSK2, CANIFnARB1, CANIFnARB2</li> <li>CANIFnCTL, CANIFnDA1, CANIFnDA2, CANIFnDB1, and</li> <li>CANIFnDB2).</li> </ul> |                                                        |                                      |            |          |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         |                                                        | te. Trans<br>t address               |            |          |                 |          |               | to the m  | lessage  |  |  |
| 6                                       |         |         | Mask                        |         | R/W     |         | 0x0                                                                                                                                                                                                                                                                                                                                     | Acces                                                  | s Mask                               | Bits       |          |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         | When                                                   | WRNRD=                               | 1 (write   | s):      |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         | 0: Ma                                                  | sk bits u                            | nchange    | ed.      |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         |                                                        | nsfer ID                             |            |          | xtd <b>to r</b> | nessage  | object.       |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         |                                                        | WRNRD=                               |            |          |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         |                                                        | sk bits u                            | •          |          | we do ft        | ho mooo  | aga ahir      | at into t | ha       |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         |                                                        | nsfer ID<br>ace Regi                 |            | Dir + M  | χτα <b>ΟΙ Ι</b> | ne mess  | age obje      |           | ne       |  |  |
| 5                                       |         |         | Arb                         |         | R/W     |         | 0x0                                                                                                                                                                                                                                                                                                                                     | Acces                                                  | s Arbitra                            | ition Bits | ;        |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         | When wRNRD=1 (writes):                                 |                                      |            |          |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         | 0: Arbitration bits unchanged.                         |                                      |            |          |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         | 1: Transfer ID + Dir + Xtd + MsgVal to message object. |                                      |            |          |                 |          |               |           |          |  |  |
|                                         |         |         | When wRNRD=0 (reads):       |         |         |         |                                                                                                                                                                                                                                                                                                                                         |                                                        |                                      |            |          |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         | 0: Arb                                                 | itration b                           | oits unch  | anged.   |                 |          |               |           |          |  |  |
|                                         |         |         |                             |         |         |         |                                                                                                                                                                                                                                                                                                                                         | 1: Tra                                                 | nsfer ID                             | + Dir +    | Xtd +    | MsgVal          | to Mess  | sage Buf      | fer Regi  | ster.    |  |  |

| Bit/Field | Name          | Туре | Reset | Descriptio                                                                                                                            | n                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|-----------|---------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 4         | Control       | R/W  | 0x0   | Access Control Bits<br>When wRNRD=1 (writes):                                                                                         |                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           |               |      |       | When wr                                                                                                                               | NRD=1 (writes):                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           |               |      |       | 0: Contro                                                                                                                             | l bits unchanged.                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|           |               |      |       | 1: Transfe                                                                                                                            | er control bits to message object.                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|           |               |      |       | When wr                                                                                                                               | NRD=0 (reads):                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|           |               |      |       | 0: Contro                                                                                                                             | l bits unchanged.                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|           |               |      |       | 1: Transfe                                                                                                                            | er control bits to Message Buffer Register.                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| 3         | ClrIntPnd     | R/W  | 0x0   | Clear Inte                                                                                                                            | errupt Pending Bit                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|           |               |      |       | Note:                                                                                                                                 | This bit is not used when in write (WRNRD=1).                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|           |               |      |       | 0: IntPn                                                                                                                              | d bit in CANIFnMCTL register remains unchanged.                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           |               |      |       | 1: Clear I                                                                                                                            | IntPnd bit in the CANIFnMCTL register in the message object.                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
| 2         | TxRqst/NewDat | R/W  | 0x0   | Access T                                                                                                                              | ransmission Request or New Data                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           |               |      |       | When WR                                                                                                                               | NRD=1 (writes):                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           |               |      |       | Access T                                                                                                                              | ransmission Request Bit                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|           |               |      |       | 0: TxRqs                                                                                                                              | t bit unchanged.                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|           |               |      |       | 1: Set Tx                                                                                                                             | Rqst bit                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|           |               |      |       | Note:                                                                                                                                 | If a transmission is requested by programming this $TxRqst$ bit, the parallel $TxRqst$ in the <b>CANIFnMCTL</b> register is ignored.                                                                                                           |  |  |  |  |  |  |  |  |
|           |               |      |       | When wr                                                                                                                               | NRD=0 (reads):                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
|           |               |      |       | Access N                                                                                                                              | lew Data Bit                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|           |               |      |       | <b>0</b> : NewDa                                                                                                                      | t bit unchanged.                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|           |               |      |       | 1: Clear M                                                                                                                            | NewDat bit in the message object.                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|           |               |      |       | Note:                                                                                                                                 | A read access to a message object can be combined with the reset of the control bits IntPdn and NewDat. The values of these bits that are transferred to the <b>CANIFnMCTL</b> register always reflect the status before resetting these bits. |  |  |  |  |  |  |  |  |
| 1         | DataA         | R/W  | 0x0   | Access D                                                                                                                              | Pata Byte 0 to 3                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
|           |               |      |       | When wR                                                                                                                               | NRD=1 (writes):                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           |               |      |       | 0: Data b                                                                                                                             | ytes 0-3 are unchanged.                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|           |               |      |       | 1: Transfer data bytes 0-3 (CANIFnDA1 and CANIFnDA2) to message object.                                                               |                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           |               |      |       | When wRNRD=0 (reads):                                                                                                                 |                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|           |               |      |       | 0: Data b                                                                                                                             | ytes 0-3 are unchanged.                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
|           |               |      |       | <ul> <li>0: Data bytes 0-3 are unchanged.</li> <li>1: Transfer data bytes 0-3 in message object to CANIFnDA1 at CANIFnDA2.</li> </ul> |                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |

| Bit/Field | Name  | Туре | Reset | Description                                                                             |
|-----------|-------|------|-------|-----------------------------------------------------------------------------------------|
| 0         | DataB | R/W  | 0x0   | Access Data Byte 4 to 7                                                                 |
|           |       |      |       | When wRNRD=1 (writes):                                                                  |
|           |       |      |       | 0: Data bytes 4-7 unchanged.                                                            |
|           |       |      |       | 1: Transfer data bytes 4-7 (CANIFnDB1 and CANIFnDB2) to message object.                 |
|           |       |      |       | When wRNRD=0 (reads):                                                                   |
|           |       |      |       | 0: Data bytes 4-7 unchanged.                                                            |
|           |       |      |       | 1: Transfer data bytes 4-7 in message object to <b>CANIFnDB1</b> and <b>CANIFnDB2</b> . |

## Register 12: CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028

### Register 13: CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088

The mask information provided in this register accompanies the data (CANIFnDAn), arbitration information (CANIFnARBn), and control information (CANIFnMCTL) to the message object in the message RAM. The mask is used with the ID bit in the CANIFnARBn register for acceptance filtering. Additional mask information is contained in the CANIFnMSK2 register.

#### CAN IF1 Mask 1 (CANIF1MSK1)

CAN0 base: 0x4004.0000 Offset 0x028 Type RO, reset 0x0000.FFFF

|               | 31      | 30      | 29       | 28      | 27      | 26      | 25      | 24                                                                                                                                                                                        | 23        | 22      | 21         | 20         | 19         | 18      | 17       | 16      |
|---------------|---------|---------|----------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|------------|------------|------------|---------|----------|---------|
|               |         | •       | 1        |         |         |         |         | rese                                                                                                                                                                                      | erved     |         |            |            |            | •       |          |         |
| Type<br>Reset | RO<br>0 | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                                                                                                                                                                                   | RO<br>0   | RO<br>0 | RO<br>0    | RO<br>0    | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 |
| 100001        | 15      | 14      | 13       | 12      | 11      | 10      | 9       | 8                                                                                                                                                                                         | 7         | 6       | 5          | 4          | 3          | 2       | 1        | 0       |
|               |         | 1       |          |         | · · ·   |         | ·       | 1                                                                                                                                                                                         | ı<br>İsk  | ·       | . <u> </u> | 1          | , <u> </u> | 1       | r        | ر<br>آ  |
|               |         |         |          |         |         |         |         |                                                                                                                                                                                           |           |         |            |            | I          |         |          |         |
| Туре          | R/W     | R/W     | R/W      | R/W     | R/W     | R/W     | R/W     | R/W                                                                                                                                                                                       | R/W       | R/W     | R/W        | R/W        | R/W        | R/W     | R/W      | R/W     |
| Reset         | 0       | 0       | 0        | 0       | 0       | 0       | 0       | 0                                                                                                                                                                                         | 1         | 1       | 1          | 1          | 1          | 1       | 1        | 1       |
|               |         |         |          |         |         |         |         |                                                                                                                                                                                           |           |         |            |            |            |         |          |         |
| Bit/F         | ield    |         | Name     |         | Туре    | F       | Reset   | Descr                                                                                                                                                                                     | iption    |         |            |            |            |         |          |         |
| 31:           | 16      | I       | reserved |         | RO      | 0:      | x0000   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation. |           |         |            |            |            |         |          |         |
| 15            | :0      |         | Msk      |         | R/W     | (       | DxFF    | Identi                                                                                                                                                                                    | fier Masl | k       |            |            |            |         |          |         |
|               |         |         |          |         |         |         |         | 0 <sup>.</sup> The                                                                                                                                                                        | e corresr | ondina  | identifie  | r bit (ID) | in the m   | lessage | obiect c | annot   |

0: The corresponding identifier bit (ID) in the message object cannot inhibit the match in acceptance filtering.

1: The corresponding identifier bit (ID) is used for acceptance filtering.

## Register 14: CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C Register 15: CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C

This register holds extended mask information that accompanies the **CANIFnMSK1** register.

### CAN IF1 Mask 2 (CANIF1MSK2)

CAN0 base: 0x4004.0000 Offset 0x02C Type RO, reset 0x0000.FFFF

| _             | 31       | 30       | 29       | 28       | 27                                                                            | 26       | 25       | 24                                                                                                                  | 23                       | 22        | 21         | 20              | 19       | 18       | 17            | 16       |  |  |  |
|---------------|----------|----------|----------|----------|-------------------------------------------------------------------------------|----------|----------|---------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|------------|-----------------|----------|----------|---------------|----------|--|--|--|
|               | 1        |          |          |          |                                                                               |          | 1        | rese                                                                                                                | rved                     |           |            |                 |          | 1        |               |          |  |  |  |
| Type          | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                                                                       | RO<br>0  | RO       | RO<br>0                                                                                                             | RO<br>0                  | RO<br>0   | RO<br>0    | RO<br>0         | RO       | RO<br>0  | RO<br>0       | RO<br>0  |  |  |  |
| Reset         | 0        | 0        | 0        | 0        | 0                                                                             | 0        | 0        |                                                                                                                     | U                        |           | U          | 0               | 0        | 0        | 0             | U        |  |  |  |
| г             | 15       | 14       | 13       | 12       | 11                                                                            | 10       | 9        | 8                                                                                                                   | 7                        | 6         | 5          | 4               | 3        | 2        | 1             | 0        |  |  |  |
|               | MXtd     | MDir     | reserved |          | 1                                                                             |          |          |                                                                                                                     | 1                        | Msk       |            |                 |          |          |               |          |  |  |  |
| Type<br>Reset | R/W<br>1 | R/W<br>1 | RO<br>1  | R/W<br>0 | R/W<br>0                                                                      | R/W<br>0 | R/W<br>0 | R/W<br>0                                                                                                            | R/W<br>1                 | R/W<br>1  | R/W<br>1   | R/W<br>1        | R/W<br>1 | R/W<br>1 | R/W<br>1      | R/W<br>1 |  |  |  |
| Reset         | I        | I        | I        | U        | U                                                                             | 0        | U        | U                                                                                                                   | I                        | I         | I          | I               | I        | I        | I             | I        |  |  |  |
| Bit/Fi        | iald     |          | Name     |          | Turne                                                                         | r        | Deast    | Description                                                                                                         |                          |           |            |                 |          |          |               |          |  |  |  |
| DIVE          | leiu     |          | Name     |          | Туре                                                                          | r        | Resel    |                                                                                                                     |                          |           |            |                 |          |          |               |          |  |  |  |
| 31:           | 16       | I        | reserved |          | RO 0x0000 Software should not rely on the value of a reserved bit. To provide |          |          |                                                                                                                     |                          |           |            |                 |          |          |               |          |  |  |  |
|               |          |          |          |          |                                                                               |          |          | •                                                                                                                   | atibility w<br>rved acre |           | •          | -               |          |          | ed bit sh     | ould be  |  |  |  |
|               |          |          |          |          |                                                                               |          |          | piese                                                                                                               |                          | JSS a 100 | au-moui    | Iy-wille        | operatio |          |               |          |  |  |  |
| 15            | 5        |          | MXtd     |          | R/W                                                                           |          | 0x1      | Mask                                                                                                                | Extende                  | d Identif | ier        |                 |          |          |               |          |  |  |  |
|               |          |          |          |          |                                                                               |          |          | 0: The                                                                                                              | extend                   | ed identi | fier bit ( | xtd in th       | ne CANI  | FnARB    | 2 registe     | r) has   |  |  |  |
|               |          |          |          |          |                                                                               |          |          | no effe                                                                                                             | ect on th                | e accep   | tance fil  | tering.         |          |          |               |          |  |  |  |
|               |          |          |          |          |                                                                               |          |          | 1: The                                                                                                              | extend                   | ed identi | fier bit x | td <b>is us</b> | ed for a | cceptan  | ce filterir   | ng.      |  |  |  |
| 14            | 1        |          | MDir     |          | R/W                                                                           |          | 0x1      | Mook                                                                                                                | Maaaaa                   | o Dirocti | <b>o</b> n |                 |          |          |               |          |  |  |  |
| 14            | ŧ        |          | IVIDII   |          | R/W                                                                           |          | UXI      |                                                                                                                     | Messag                   |           |            |                 |          |          |               |          |  |  |  |
|               |          |          |          |          |                                                                               |          |          |                                                                                                                     | e messag<br>ect for a    |           | •          |                 | ne CANI  | FnARB    | 2 registe     | r) has   |  |  |  |
|               |          |          |          |          |                                                                               |          |          |                                                                                                                     |                          | •         |            | 0               |          |          | <b>6</b> 10 · |          |  |  |  |
|               |          |          |          |          |                                                                               |          |          | 1: The message direction bit $\mathtt{Dir}$ is used for acceptance filtering.                                       |                          |           |            |                 |          |          |               |          |  |  |  |
| 13            | 3        | I        | reserved |          | RO                                                                            |          | 0x1      | Software should not rely on the value of a reserved bit. To provide                                                 |                          |           |            |                 |          |          |               |          |  |  |  |
|               |          |          |          |          |                                                                               |          |          | compatibility with future products, the value of a reserved bit should be                                           |                          |           |            |                 |          |          |               |          |  |  |  |
|               |          |          |          |          |                                                                               |          |          | preserved across a read-modify-write operation.                                                                     |                          |           |            |                 |          |          |               |          |  |  |  |
| 12:           | 0        |          | Msk      |          | R/W                                                                           |          | 0xFF     | E Identifier Mask                                                                                                   |                          |           |            |                 |          |          |               |          |  |  |  |
|               |          |          |          |          |                                                                               |          |          | 0: The                                                                                                              | e corresp                | onding    | identifie  | r bit (ID)      | in the m | nessage  | object c      | annot    |  |  |  |
|               |          |          |          |          |                                                                               |          |          | 0: The corresponding identifier bit (ID) in the message object cannot<br>inhibit the match in acceptance filtering. |                          |           |            |                 |          |          |               |          |  |  |  |

1: The corresponding identifier bit (ID) is used for acceptance filtering.

## Register 16: CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030 Register 17: CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090

This register, along with CANIFnARB2, holds the identifiers for acceptance filtering.

### CAN IF1 Arbitration 1 (CANIF1ARB1)

CAN0 base: 0x4004.0000 Offset 0x030 Type RO, reset 0x0000.0000

|               | 31       | 30               | 29       | 28       | 27         | 26       | 25       | 24       | 23                                  | 22         | 21        | 20         | 19       | 18       | 17       | 16       |
|---------------|----------|------------------|----------|----------|------------|----------|----------|----------|-------------------------------------|------------|-----------|------------|----------|----------|----------|----------|
|               |          | 1                |          |          |            |          | 1        | rese     | rved                                |            |           |            |          | 1        | 1        |          |
| Type<br>Reset | RO<br>0  | RO<br>0          | RO<br>0  | RO<br>0  | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                             | RO<br>0    | RO<br>0   | RO<br>0    | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  |
|               | 15       | 14               | 13       | 12       | 11         | 10       | 9        | 8        | 7                                   | 6          | 5         | 4          | 3        | 2        | 1        | 0        |
|               |          | 1                | <u> </u> |          | г <u>г</u> |          | 1        | <b>1</b> | l<br>D                              | r          | r         |            |          | 1        | 1        |          |
| Type<br>Reset | R/W<br>0 | R/W<br>0         | R/W<br>0 | R/W<br>0 | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                            | R/W<br>0   | R/W<br>0  | R/W<br>0   | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 |
|               | -        | -                | -        | -        | -          | -        | -        | -        | -                                   | -          | -         | -          | -        | -        | -        | -        |
| Bit/F         | ield     |                  | Name     |          | Туре       | F        | Reset    | Descr    | iption                              |            |           |            |          |          |          |          |
| 31:           | 16       | Name<br>reserved |          |          | RO         | 0:       | x0000    | comp     | are shou<br>atibility v<br>rved acr | vith futur | e produ   | cts, the v | alue of  | a reserv | •        |          |
| 15            | :0       |                  | ID       |          | R/W        |          | 0x00     | Mess     | age Iden                            | tifier     |           |            |          |          |          |          |
|               |          |                  |          |          |            |          |          | This b   | oit field is                        | used w     | ith the I | ⊃ field ir | the CA   | NIFnAR   | B2 regis | ster to  |

create the message identifier. ID[28:0] is the Extended Frame and ID[28:18] is the Standard Frame.

## Register 18: CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034 Register 19: CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094

This register, along with **CANIFnARB1**, holds information for acceptance filtering.

### CAN IF1 Arbitration 2 (CANIF1ARB2)

CAN0 base: 0x4004.0000 Offset 0x034 Type RO, reset 0x0000.0000

| <u> </u>      | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24                                 | 23                                            | 22                                            | 21                                                | 20                                               | 19                                            | 18                                                  | 17                                                                       | 16                                    |
|---------------|----------|----------|----------|----------|----------|----------|----------|------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------|
|               |          |          | 1        |          |          |          | 1        | rese                               | erved                                         | r                                             | 1                                                 | 1                                                | 1                                             | ı                                                   | 1                                                                        | 1                                     |
| Type<br>Reset | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0                            | RO<br>0                                       | RO<br>0                                       | RO<br>0                                           | RO<br>0                                          | RO<br>0                                       | RO<br>0                                             | RO<br>0                                                                  | RO<br>0                               |
|               | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8                                  | 7                                             | 6                                             | 5                                                 | 4                                                | 3                                             | 2                                                   | 1                                                                        | 0                                     |
|               | MsgVal   | Xtd      | Dir      |          | · ·      |          | •        | •                                  |                                               | ID                                            | •                                                 | •                                                | ,<br>1                                        | •                                                   | •                                                                        | ·                                     |
| Type<br>Reset | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0                           | R/W<br>0                                      | R/W<br>0                                      | R/W<br>0                                          | R/W<br>0                                         | R/W<br>0                                      | R/W<br>0                                            | R/W<br>0                                                                 | R/W<br>0                              |
| Bit/F         | ield     |          | Name     |          | Туре     | I        | Reset    | Descr                              | ription                                       |                                               |                                                   |                                                  |                                               |                                                     |                                                                          |                                       |
| 31:           | 16       |          | reserved |          | RO       | 0        | x0000    | comp                               |                                               | vith futur                                    | e produ                                           | cts, the                                         | value of                                      | a reserv                                            | . To prov<br>ed bit sh                                                   |                                       |
| 1             | 5        |          | MsgVal   |          | R/W      |          | 0x0      | Mess                               | age Valio                                     | b                                             |                                                   |                                                  |                                               |                                                     |                                                                          |                                       |
|               |          |          |          |          |          |          |          | 0: The                             | e messa                                       | ge objec                                      | t is igno                                         | red by th                                        | ne mess                                       | age han                                             | dler.                                                                    |                                       |
|               |          |          |          |          |          |          |          |                                    | e messa<br>age han                            |                                               |                                                   | 0                                                |                                               | e consid                                            | dered by                                                                 | the                                   |
|               |          |          |          |          |          |          |          | initiali<br>The<br>are m<br>fields | zation a<br>lsgVal I<br>odified c<br>in the C | nd befor<br>bit must<br>or if the r<br>ANIFnA | e clearir<br>also be<br>nessage<br><b>RBn</b> reg | ng the Ir<br>cleared<br>e object i<br>gisters, t | nit bit i<br>before a<br>s no lon<br>he Xtd a | n the <b>CA</b><br>ny of the<br>ger requ<br>and Dir | ed during<br>NCTL re<br>followir<br>uired: the<br>bits in the<br>MCTL re | egister.<br>ng bits<br>e ID bit<br>he |
| 1.            | 4        |          | Xtd      |          | R/W      |          | 0x0      | Exten                              | ded Ider                                      | ntifier                                       |                                                   |                                                  |                                               |                                                     |                                                                          |                                       |
|               |          |          |          |          |          |          |          | 0: The                             | e 11-bit \$                                   | Standard                                      | l Identifi                                        | er will be                                       | e used fo                                     | or this m                                           | essage                                                                   | object.                               |
|               |          |          |          |          |          |          |          | 1: The                             | e 29-bit I                                    | Extende                                       | d Identif                                         | ier will b                                       | e used f                                      | or this m                                           | nessage                                                                  | object.                               |
| 1             | 3        |          | Dir      |          | R/W      |          | 0x0      | Mess                               | age Dire                                      | ction                                         |                                                   |                                                  |                                               |                                                     |                                                                          |                                       |
|               |          |          |          |          |          |          |          | messa                              | age obje                                      | ct is trar                                    | nsmitted                                          | . On rec                                         | eption o                                      | f a Data                                            | ntifier of<br>Frame v<br>sage obj                                        | with                                  |
|               |          |          |          |          |          |          |          | as a D                             | Data Fra                                      | me. On                                        | receptio                                          | n of a Re                                        | emote F                                       | rame wit                                            | ct is trar<br>th match<br>mtEn=1                                         | ing                                   |
| 12            | :0       |          | ID       |          | R/W      |          | 0x0      | Mess                               | age Ider                                      | itifier                                       |                                                   |                                                  |                                               |                                                     |                                                                          |                                       |
|               |          |          |          |          |          |          |          |                                    | fier. ID[2                                    |                                               |                                                   |                                                  | -                                             |                                                     | ate the n<br>] is the S                                                  | -                                     |

## Register 20: CAN IF1 Message Control (CANIF1MCTL), offset 0x038 Register 21: CAN IF2 Message Control (CANIF2MCTL), offset 0x098

This register holds the control information associated with the message object to be sent to the Message RAM.

CAN IF1 Message Control (CANIF1MCTL)

CAN0 base: 0x4004.0000

Offset 0x038 Type RO, reset 0x0000.0000

| .)poo,                                                                                                                                                                                                     |          |          | •        |          |          |          |          |                |             |           |                           |           |              |            |            |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------------|-------------|-----------|---------------------------|-----------|--------------|------------|------------|----------|
| 1                                                                                                                                                                                                          | 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24             | 23          | 22        | 21                        | 20        | 19           | 18         | 17         | 16       |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          | rese           | rved        |           |                           |           |              |            |            |          |
| Type<br>Reset                                                                                                                                                                                              | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0  | RO<br>0        | RO<br>0     | RO<br>0   | RO<br>0                   | RO<br>0   | RO<br>0      | RO<br>0    | RO<br>0    | RO<br>0  |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          |                |             |           |                           |           |              |            |            |          |
|                                                                                                                                                                                                            | 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8              | 7           | 6         | 5                         | 4         | 3            | 2          | 1          | 0        |
| -                                                                                                                                                                                                          | NewDat   | MsgLst   | IntPnd   | UMask    | TxIE     | RxIE     | RmtEn    | TxRqst         | EoB         |           | reserved                  |           | <b>D</b> 444 | DL         |            |          |
| Type<br>Reset                                                                                                                                                                                              | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0 | R/W<br>0       | R/W<br>0    | RO<br>0   | RO<br>0                   | RO<br>0   | R/W<br>0     | R/W<br>0   | R/W<br>0   | R/W<br>0 |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          |                |             |           |                           |           |              |            |            |          |
| Bit/F                                                                                                                                                                                                      | ield     |          | Name     |          | Туре     | F        | Reset    | Descr          | iption      |           |                           |           |              |            |            |          |
| 31:                                                                                                                                                                                                        | 16       | r        | eserved  | 1        | RO       | 0        | x0000    | Softwa         | are shou    | ıld not r | ely on the                | value o   | of a rese    | erved bit  | To prov    | ide      |
| •                                                                                                                                                                                                          |          |          |          |          |          | 0.       |          | compa          | atibility v | /ith futu | re produc<br>ad-modify    | ts, the v | alue of a    | a reserve  | •          |          |
| 1                                                                                                                                                                                                          | 5        |          | NewDat   |          | R/W      |          | 0x0      | New E          | Data        |           |                           |           |              |            |            |          |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          |                |             | a hae h   | een writte                | n into th | u cteb or    | nortion o  | f this m   | 255200   |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          |                | by the r    |           | e handler                 |           |              |            |            | -        |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          |                |             |           | ller or the<br>ge object. | CPU ha    | as writte    | n new da   | ata into t | he data  |
| 14                                                                                                                                                                                                         | 4        |          | MsgLst   |          | R/W      |          | 0x0      | Messa          | age Lost    |           |                           |           |              |            |            |          |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          | 0 : No<br>CPU. | messag      | je was l  | ost since                 | the last  | time thi     | s bit was  | s reset b  | y the    |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          |                |             | -         | ller stored<br>CPU has    |           | -            |            | is object  | when     |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          |                |             |           | or messag<br>er set to 0  |           |              | he Dir H   | oit in the |          |
| 1:                                                                                                                                                                                                         | 3        |          | IntPnd   |          | R/W      |          | 0x0      | Interru        | ipt Pend    | ling      |                           |           |              |            |            |          |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          | 0: This        | s messa     | ge obje   | ct is not tl              | ne soure  | ce of an     | interrup   | t.         |          |
| 0: This message object is not the source o<br>1: This message object is the source of an<br>identifier in the <b>CAN Interrupt (CANINT)</b> r<br>message object if there is not another inter<br>priority. |          |          |          |          |          |          |          |                |             |           |                           | T) regis  | ter will p   | oint to th | nis        |          |
| 12                                                                                                                                                                                                         | 2        |          | UMask    |          | R/W      |          | 0x0      | Use A          | cceptan     | ce Mas    | k                         |           |              |            |            |          |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          | 0: Ma          | sk ignore   | ed.       |                           |           |              |            |            |          |
|                                                                                                                                                                                                            |          |          |          |          |          |          |          | 1: Use         | e mask (    | Msk, M>   | td, and M                 | MDir)fo   | or accep     | tance filt | ering.     |          |

#### LM3S2139 Microcontroller

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                                     |
|-----------|----------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11        | TxIE     | R/W  | 0x0   | Transmit Interrupt Enable                                                                                                                                                                                                                                                       |
|           |          |      |       | 0: The IntPnd bit in the CANIFnMCTL register is unchanged after a successful transmission of a frame.                                                                                                                                                                           |
|           |          |      |       | 1: The IntPnd bit in the <b>CANIFnMCTL</b> register is set after a successful transmission of a frame.                                                                                                                                                                          |
| 10        | RxIE     | R/W  | 0x0   | Receive Interrupt Enable                                                                                                                                                                                                                                                        |
|           |          |      |       | 0: The IntPnd bit in the CANIFnMCTL register is unchanged after a successful reception of a frame.                                                                                                                                                                              |
|           |          |      |       | 1: The IntPnd bit in the <b>CANIFnMCTL</b> register is set after a successful reception of a frame.                                                                                                                                                                             |
| 9         | RmtEn    | R/W  | 0x0   | Remote Enable                                                                                                                                                                                                                                                                   |
|           |          |      |       | 0: At the reception of a Remote Frame, the TxRqst bit in the <b>CANIFnMCTL</b> register is left unchanged.                                                                                                                                                                      |
|           |          |      |       | 1: At the reception of a Remote Frame, the TxRqst bit in the CANIFnMCTL register is set.                                                                                                                                                                                        |
| 8         | TxRqst   | R/W  | 0x0   | Transmit Request                                                                                                                                                                                                                                                                |
|           |          |      |       | 0: This message object is not waiting for transmission.                                                                                                                                                                                                                         |
|           |          |      |       | 1: The transmission of this message object is requested and is not yet done.                                                                                                                                                                                                    |
| 7         | EoB      | R/W  | 0x0   | End of Buffer                                                                                                                                                                                                                                                                   |
|           |          |      |       | 0: Message object belongs to a FIFO Buffer and is not the last message object of that FIFO Buffer.                                                                                                                                                                              |
|           |          |      |       | 1: Single message object or last message object of a FIFO Buffer.                                                                                                                                                                                                               |
|           |          |      |       | This bit is used to concatenate two or more message objects (up to 32) to build a FIFO buffer. For a single message object (thus not belonging to a FIFO buffer), this bit must be set to 1.                                                                                    |
| 6:4       | reserved | RO   | 0x0   | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                                                   |
| 3:0       | DLC      | R/W  | 0x0   | Data Length Code                                                                                                                                                                                                                                                                |
|           |          |      |       | Value Description                                                                                                                                                                                                                                                               |
|           |          |      |       | 0x0-0x8 Specifies the number of bytes in the Data Frame.                                                                                                                                                                                                                        |
|           |          |      |       | 0x9-0xF Defaults to a Data Frame with 8 bytes.                                                                                                                                                                                                                                  |
|           |          |      |       | The DLC bit in the <b>CANIFnMCTL</b> register of a message object must be defined the same as in all the corresponding objects with the same identifier at other nodes. When the message handler stores a data frame, it writes DLC to the value given by the received message. |

## Register 22: CAN IF1 Data A1 (CANIF1DA1), offset 0x03C

## Register 23: CAN IF2 Data A1 (CANIF2DA1), offset 0x09C

This register (along with **CANIFnDA2**, **CANIFnDB1**, and **CANIFnDB2**) contains the data to be sent or that has been received. In a CAN Data Frame, data byte 0 is the first byte to be transmitted or received and data byte 7 is the last byte to be transmitted or received. In CAN's serial bit stream, the MSB of each byte is transmitted first.

#### CAN IF1 Data A1 (CANIF1DA1)

CAN0 base: 0x4004.0000 Offset 0x03C Type RO, reset 0x0000.0000

|       | 31             | 30  | 29   | 28  | 27   | 26  | 25    | 24     | 23            | 22                                    | 21      | 20         | 19      | 18       | 17  | 16  |
|-------|----------------|-----|------|-----|------|-----|-------|--------|---------------|---------------------------------------|---------|------------|---------|----------|-----|-----|
|       |                | 1   | 1    |     | · ·  |     |       | rese   | erved         |                                       |         |            |         |          |     |     |
| Туре  | RO             | RO  | RO   | RO  | RO   | RO  | RO    | RO     | RO            | RO                                    | RO      | RO         | RO      | RO       | RO  | RO  |
| Reset | 0              | 0   | 0    | 0   | 0    | 0   | 0     | 0      | 0             | 0                                     | 0       | 0          | 0       | 0        | 0   | 0   |
|       | 15             | 14  | 13   | 12  | 11   | 10  | 9     | 8      | 7             | 6                                     | 5       | 4          | 3       | 2        | 1   | 0   |
|       |                |     | 1    |     | , ,  |     |       | Da     | I<br>ata<br>I |                                       |         |            | 1       | I        | I   |     |
| Туре  | R/W            | R/W | R/W  | R/W | R/W  | R/W | R/W   | R/W    | R/W           | R/W                                   | R/W     | R/W        | R/W     | R/W      | R/W | R/W |
| Reset | 0              | 0   | 0    | 0   | 0    | 0   | 0     | 0      | 0             | 0                                     | 0       | 0          | 0       | 0        | 0   | 0   |
| Bit/F | ield           |     | Name |     | Туре | F   | Reset | Descr  | iption        |                                       |         |            |         |          |     |     |
| 31:   | 31:16 reserved |     |      |     | RO   | 0:  | <0000 | compa  | atibility v   | uld not re<br>vith futur<br>oss a rea | e produ | cts, the v | alue of | a reserv |     |     |
| 15    | 15:0           |     | Data |     | R/W  | (   | 00x00 | Data I | Bytes 1 a     | and 0                                 |         |            |         |          |     |     |

## Register 24: CAN IF1 Data A2 (CANIF1DA2), offset 0x040

### Register 25: CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0

This register (along with **CANIFnDA1**, **CANIFnDB1**, and **CANIFnDB2**) contains the data to be sent or that has been received. In a CAN Data Frame, data byte 0 is the first byte to be transmitted or received and data byte 7 is the last byte to be transmitted or received. In CAN's serial bit stream, the MSB of each byte is transmitted first.

### CAN IF1 Data A2 (CANIF1DA2)

CAN0 base: 0x4004.0000 Offset 0x040 Type RO, reset 0x0000.0000

|       | 31             | 30  | 29   | 28  | 27   | 26  | 25    | 24      | 23                                  | 22         | 21      | 20         | 19      | 18       | 17  | 16  |
|-------|----------------|-----|------|-----|------|-----|-------|---------|-------------------------------------|------------|---------|------------|---------|----------|-----|-----|
|       |                | 1   | 1    |     | · ·  |     |       | rese    | rved                                |            |         |            |         |          |     |     |
| Туре  | RO             | RO  | RO   | RO  | RO   | RO  | RO    | RO      | RO                                  | RO         | RO      | RO         | RO      | RO       | RO  | RO  |
| Reset | 0              | 0   | 0    | 0   | 0    | 0   | 0     | 0       | 0                                   | 0          | 0       | 0          | 0       | 0        | 0   | 0   |
|       | 15             | 14  | 13   | 12  | 11   | 10  | 9     | 8       | 7                                   | 6          | 5       | 4          | 3       | 2        | 1   | 0   |
|       |                | I   | 1    |     | , ,  |     |       | l<br>Da | l<br>ata<br>I                       |            |         |            | 1       | I        | I   |     |
| Туре  | R/W            | R/W | R/W  | R/W | R/W  | R/W | R/W   | R/W     | R/W                                 | R/W        | R/W     | R/W        | R/W     | R/W      | R/W | R/W |
| Reset | 0              | 0   | 0    | 0   | 0    | 0   | 0     | 0       | 0                                   | 0          | 0       | 0          | 0       | 0        | 0   | 0   |
| Bit/F | ield           |     | Name |     | Туре | F   | Reset | Descr   | iption                              |            |         |            |         |          |     |     |
| 31:   | 31:16 reserved |     |      |     | RO   | 0:  | <0000 | compa   | are shou<br>atibility v<br>rved acr | vith futur | e produ | cts, the v | alue of | a reserv | •   |     |
| 15    | :0             |     | Data |     | R/W  | (   | 00x0  | Data I  | Bytes 3 a                           | and 2      |         |            |         |          |     |     |

## Register 26: CAN IF1 Data B1 (CANIF1DB1), offset 0x044

## Register 27: CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4

This register (along with **CANIFnDA1**, **CANIFnDA2**, and **CANIFnDB2**) contains the data to be sent or that has been received. In a CAN Data Frame, data byte 0 is the first byte to be transmitted or received and data byte 7 is the last byte to be transmitted or received. In CAN's serial bit stream, the MSB of each byte is transmitted first.

### CAN IF1 Data B1 (CANIF1DB1)

CAN0 base: 0x4004.0000 Offset 0x044 Type RO, reset 0x0000.0000

|       | 31             | 30  | 29   | 28      | 27  | 26    | 25      | 24     | 23                                  | 22         | 21      | 20         | 19      | 18       | 17      | 16  |
|-------|----------------|-----|------|---------|-----|-------|---------|--------|-------------------------------------|------------|---------|------------|---------|----------|---------|-----|
|       |                |     | •    |         | . I |       |         | rese   | rved                                | '          |         | •          |         | '        | '       |     |
| Type  | RO<br>0        | RO  | RO   | RO<br>0 | RO  | RO    | RO<br>0 | RO     | RO                                  | RO         | RO<br>0 | RO         | RO      | RO<br>0  | RO<br>0 | RO  |
| Reset | 0              | 0   | 0    | 0       | 0   | 0     | 0       | 0      | 0                                   | 0          | 0       | 0          | 0       | U        | U       | 0   |
|       | 15             | 14  | 13   | 12      | 11  | 10    | 9       | 8      | 7                                   | 6          | 5       | 4          | 3       | 2        | 1       | 0   |
|       |                | •   | •    |         | · · |       |         | Da     | ata<br>I                            | 1          |         |            | ,<br>,  | 1        | 1       | '   |
| Туре  | R/W            | R/W | R/W  | R/W     | R/W | R/W   | R/W     | R/W    | R/W                                 | R/W        | R/W     | R/W        | R/W     | R/W      | R/W     | R/W |
| Reset | 0              | 0   | 0    | 0       | 0   | 0     | 0       | 0      | 0                                   | 0          | 0       | 0          | 0       | 0        | 0       | 0   |
| Bit/F | Bit/Field Name |     |      | Туре    | F   | Reset | Descr   | iption |                                     |            |         |            |         |          |         |     |
|       |                |     |      |         |     |       |         |        |                                     |            |         |            |         |          |         |     |
| 31:   | 31:16 reserved |     |      |         | RO  | 0:    | ×0000   | compa  | are shou<br>atibility v<br>rved acr | vith futur | e produ | cts, the v | alue of | a reserv | •       |     |
| 15:0  |                |     | Data |         | R/W | (     | 00x0    | Data I | Bytes 5 a                           | and 4      |         |            |         |          |         |     |

## Register 28: CAN IF1 Data B2 (CANIF1DB2), offset 0x048

### Register 29: CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8

This register (along with **CANIF1DA1**, **CANIF1DA2**, and **CANIF1DB1**) contains the data to be sent or that has been received. In a CAN Data Frame, data byte 0 is the first byte to be transmitted or received and data byte 7 is the last byte to be transmitted or received. In CAN's serial bit stream, the MSB of each byte is transmitted first.

#### CAN IF1 Data B2 (CANIF1DB2)

CAN0 base: 0x4004.0000 Offset 0x048 Type RO, reset 0x0000.0000

|               | 31             | 30      | 29      | 28      | 27      | 26      | 25      | 24      | 23                                  | 22         | 21      | 20         | 19      | 18       | 17      | 16      |
|---------------|----------------|---------|---------|---------|---------|---------|---------|---------|-------------------------------------|------------|---------|------------|---------|----------|---------|---------|
|               |                |         | •       |         |         |         |         | rese    | rved                                | •          |         |            |         | '        | '       | •       |
| Type<br>Reset | RO<br>0        | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0                             | RO<br>0    | RO<br>0 | RO<br>0    | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
| Reset         |                |         |         |         |         |         |         |         |                                     |            |         |            |         |          | U       |         |
|               | 15             | 14      | 13      | 12      | 11      | 10      | 9       | 8       | 7                                   | 6          | 5       | 4          | 3       | 2        | 1       | 0       |
|               |                | 1       |         |         |         |         | I       | Da      | i<br>ata<br>I                       | 1          |         |            |         | I        | 1       | '       |
| Туре          | R/W            | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W                                 | R/W        | R/W     | R/W        | R/W     | R/W      | R/W     | R/W     |
| Reset         | 0              | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0                                   | 0          | 0       | 0          | 0       | 0        | 0       | 0       |
| Bit/F         | ield           |         | Name    |         | Туре    | F       | Reset   | Descr   | iption                              |            |         |            |         |          |         |         |
| 31:           | 31:16 reserved |         |         |         | RO      | 0:      | ×0000   | compa   | are shou<br>atibility v<br>rved acr | vith futur | e produ | cts, the v | alue of | a reserv |         |         |
| 15            | 15:0           |         | Data    |         | R/W     | (       | 00x0    | Data I  | Bytes 7 a                           | and 6      |         |            |         |          |         |         |

# Register 30: CAN Transmission Request 1 (CANTXRQ1), offset 0x100

### Register 31: CAN Transmission Request 2 (CANTXRQ2), offset 0x104

The **CANTXRQ1** and **CANTXRQ2** registers hold the TxRqst bits of the 32 message objects. By reading out these bits, the CPU can check which message object has a transmission request pending. The TxRqst bit of a specific message object can be changed by three sources: (1) the CPU via the **CAN IFn Message Control (CANIFnMCTL)** register, (2) the message handler state machine after the reception of a Remote Frame, or (3) the message handler state machine after a successful transmission.

The **CANTXRQ1** register contains the TxRqst bit of the first 16 message objects in the message RAM; the **CANTXRQ2** register contains the TxRqst bit of the second 16 message objects.

| CAN0 ba<br>Offset 0x<br>Type RO | 100  |   |    |      |       | -  |        |      | - |    |       |    |         |                                   |     |         |         |       |        |       |       |     |       |       |      |                |   |
|---------------------------------|------|---|----|------|-------|----|--------|------|---|----|-------|----|---------|-----------------------------------|-----|---------|---------|-------|--------|-------|-------|-----|-------|-------|------|----------------|---|
|                                 | 31   |   | 30 |      | 29    | 28 |        | 27   |   | 26 | 2     | 5  | 24      | 23                                |     | 22      | 21      |       | 20     |       | 19    |     | 18    | 1     | 7    | 16             |   |
|                                 |      | 1 |    | 1    | 1     |    | 1      |      | 1 |    | 1     |    | rese    | l<br>erved                        | 1   | Ĩ       |         | 1     |        | 1     |       | 1   |       | 1     |      |                |   |
| Туре                            | RO   |   | RO | I    | RO    | RO |        | RO   | I | 20 |       | 0  | RO      | RO                                |     | RO      | RO      |       | RO     |       | RO    |     | RO    | R     |      | RO             |   |
| Reset                           | 0    |   | 0  |      | 0     | 0  |        | 0    |   | 0  |       | C  | 0       | 0                                 |     | 0       | 0       |       | 0      |       | 0     |     | 0     | (     | )    | 0              |   |
|                                 | 15   |   | 14 |      | 13    | 12 |        | 11   |   | 10 | 9     | 9  | 8       | 7                                 |     | 6       | 5       |       | 4      |       | 3     |     | 2     | 1     |      | 0              |   |
|                                 |      | T |    | Ì    | r     |    | -<br>- |      | T |    | T     | 1  | Tx      | 1<br>Rqst                         | 1   | Î       |         | T     |        |       |       | T   |       | T     |      |                | ] |
| Туре                            | RO   |   | RO | I    | RO    | RO |        | RO   | I | RO |       | 0  | RO      | RO                                |     | RO      | RO      |       | RO     |       | RO    |     | RO    | R     |      | RO             | • |
| Reset                           | 0    |   | 0  |      | 0     | 0  |        | 0    |   | 0  |       | C  | 0       | 0                                 |     | 0       | 0       |       | 0      |       | 0     |     | 0     | 0     | )    | 0              |   |
| Bit/F                           | ield |   |    | Na   | ame   |    |        | Туре | е |    | Rese  | et | Desc    | ription                           |     |         |         |       |        |       |       |     |       |       |      |                |   |
| 31:                             | 16   |   |    | rese | erved |    |        | RO   |   |    | 0x000 | 00 | comp    | vare sho<br>atibility<br>erved ac | wit | h futur | e pro   | duct  | s, the | valı  | ue of | far |       |       |      | ide<br>ould be |   |
| 15                              | :0   |   |    | Txl  | Rqst  |    |        | RO   |   |    | 0x00  | )  | Trans   | missio                            | ۱R  | equest  | Bits    |       |        |       |       |     |       |       |      |                |   |
|                                 |      |   |    |      |       |    |        |      |   |    |       |    | (of all | messa                             | ge  | objects | s)      |       |        |       |       |     |       |       |      |                |   |
|                                 |      |   |    |      |       |    |        |      |   |    |       |    | 0: Th   | e mess                            | age | e objec | t is no | ot wa | aiting | for t | rans  | mis | sion. |       |      |                |   |
|                                 |      |   |    |      |       |    |        |      |   |    |       |    | 1: Th   | e transi                          | nis | sion of | the r   | ness  | sage c | obje  | ct is | req | ueste | ed an | d is | not yet        |   |

done.

CAN Transmission Request 1 (CANTXRQ1)

### Register 32: CAN New Data 1 (CANNWDA1), offset 0x120

### Register 33: CAN New Data 2 (CANNWDA2), offset 0x124

The **CANNWDA1** and **CANNWDA2** registers hold the NewDat bits of the 32 message objects. By reading these bits, the CPU can check which message object has its data portion updated. The NewDat bit of a specific message object can be changed by three sources: (1) the CPU via the **CAN IFn Message Control (CANIFnMCTL)** register, (2) the message handler state machine after the reception of a Data Frame, or (3) the message handler state machine after a successful transmission.

The **CANNWDA1** register contains the NewDat bit of the first 16 message objects in the message RAM; the **CANNWDA2** register contains the NewDat bit of the second 16 message objects.

| CAN Ne<br>CAN0 bas<br>Offset 0x7<br>Type RO, | se: 0x40<br>120 | 04.0000 |          | A1)     |          |         |         |                 |             |            |         |                                        |         |          |         |         |
|----------------------------------------------|-----------------|---------|----------|---------|----------|---------|---------|-----------------|-------------|------------|---------|----------------------------------------|---------|----------|---------|---------|
|                                              | 31              | 30      | 29       | 28      | 27       | 26      | 25      | 24              | 23          | 22         | 21      | 20                                     | 19      | 18       | 17      | 16      |
|                                              |                 | r       | r        | I       | r r<br>I |         | ı       | rese            | rved        | r i        |         | •                                      |         |          | ı       | r I     |
| Type<br>Reset                                | RO<br>0         | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0         | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0                                | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
|                                              | 15              | 14      | 13       | 12      | 11       | 10      | 9       | 8               | 7           | 6          | 5       | 4                                      | 3       | 2        | 1       | 0       |
|                                              |                 | r       | r        | I       | r r      |         | r       | <b>I</b><br>Nev | r<br>vDat   | r i        | ſ       | 1                                      |         | r        | ï       |         |
| Type<br>Reset                                | RO<br>0         | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0         | RO<br>0     | RO<br>0    | RO<br>0 | RO<br>0                                | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 |
| Bit/F                                        | ield            |         | Name     |         | Туре     | I       | Reset   | Descr           | iption      |            |         |                                        |         |          |         |         |
| 31:'                                         | 16              |         | reserved | I       | RO       | 0       | x0000   | compa           | atibility v | vith futur | e produ | e value o<br>cts, the v<br>ify-write o | alue of | a reserv | •       |         |
| 15:                                          | 0               |         | NewDat   |         | RO       |         | 0x00    | New [           | Data Bits   | 6          |         |                                        |         |          |         |         |
|                                              |                 |         |          |         |          |         |         | (of all         | messag      | e object   | s)      |                                        |         |          |         |         |
|                                              |                 |         |          |         |          |         |         | object          |             |            |         | en into tl<br>r since th               |         |          |         | •       |

1: The message handler or the CPU has written new data into the data portion of this message object.

## Register 34: CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140 Register 35: CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144

The **CANMSG1INT** and **CANMSG2INT** registers hold the IntPnd bits of the 32 message objects. By reading these bits, the CPU can check which message object has an interrupt pending. The IntPnd bit of a specific message object can be changed through two sources: (1) the CPU via the CAN IFn Message Control (CANIFnMCTL) register, or (2) the message handler state machine after the reception or transmission of a frame.

This field is also encoded in the CAN Interrupt (CANINT) register.

The **CANMSG1INT** register contains the IntPnd bit of the first 16 message objects in the message RAM; the **CANMSG2INT** register contains the IntPnd bit of the second 16 message objects.

| Type RO | reset 0   | ×0000.000 | 00       |    |       |    |       |           |                                      |            |           |            |           |          |    |                  |
|---------|-----------|-----------|----------|----|-------|----|-------|-----------|--------------------------------------|------------|-----------|------------|-----------|----------|----|------------------|
|         | 31        | 30        | 29       | 28 | 27    | 26 | 25    | 24        | 23                                   | 22         | 21        | 20         | 19        | 18       | 17 | 16               |
|         |           | 1         | T        | 1  | r<br> |    | T     | rese      | erved                                |            | 1         |            |           |          | 1  | 1                |
| Туре    | RO        | RO        | RO       | RO | RO    | RO | RO    | RO        | RO                                   | RO         | RO        | RO         | RO        | RO       | RO | RO               |
| Reset   | 0         | 0         | 0        | 0  | 0     | 0  | 0     | 0         | 0                                    | 0          | 0         | 0          | 0         | 0        | 0  | 0                |
|         | 15        | 14        | 13       | 12 | 11    | 10 | 9     | 8         | 7                                    | 6          | 5         | 4          | 3         | 2        | 1  | 0                |
|         |           | 1         | T        | 1  | r<br> |    | T     | I<br>Inti | I<br>Pnd<br>I                        |            | 1         | I I        |           |          | 1  | 1                |
| Туре    | RO        | RO        | RO       | RO | RO    | RO | RO    | RO        | RO                                   | RO         | RO        | RO         | RO        | RO       | RO | RO               |
| Reset   | 0         | 0         | 0        | 0  | 0     | 0  | 0     | 0         | 0                                    | 0          | 0         | 0          | 0         | 0        | 0  | 0                |
| Bit/F   | Bit/Field |           | Name     |    | Туре  | I  | Reset | Descr     | iption                               |            |           |            |           |          |    |                  |
| 31:     | 16        |           | reserved | l  | RO    | 0  | x0000 | compa     | are shou<br>atibility w<br>rved acro | ith futur/ | e produ   | cts, the v | alue of a | a reserv | •  | vide<br>nould be |
| 15      | :0        |           | IntPnd   |    | RO    |    | 0x00  | Interru   | upt Pend                             | ing Bits   |           |            |           |          |    |                  |
|         |           |           |          |    |       |    |       | (of all   | messag                               | e object   | s)        |            |           |          |    |                  |
|         |           |           |          |    |       |    |       | 0: Thi    | s messa                              | ge obje    | ct is not | the sour   | ce of an  | interrup | t. |                  |

CAN Message 1 Interrupt Pending (CANMSG1INT)

CAN0 base: 0x4004.0000 Offset 0x140

1: This message object is the source of an interrupt.

### Register 36: CAN Message 1 Valid (CANMSG1VAL), offset 0x160

### Register 37: CAN Message 2 Valid (CANMSG2VAL), offset 0x164

The **CANMSG1VAL** and **CANMSG2VAL** registers hold the MsgVal bits of the 32 message objects. By reading these bits, the CPU can check which message object is valid. The message value of a specific message object can be changed with the **CAN IFn Message Control (CANIFnMCTL)** register.

The **CANMSG1VAL** register contains the MsgVal bit of the first 16 message objects in the message RAM; the **CANMSG2VAL** register contains the MsgVal bit of the second 16 message objects in the message RAM

CAN Message 1 Valid (CANMSG1VAL) CAN0 base: 0x4004.0000 Offset 0x160 Type RO, reset 0x0000.0000

| 11            | ,         |         |          |         |         |         |         |         |             |            |                                     |            |            |          |            |         |
|---------------|-----------|---------|----------|---------|---------|---------|---------|---------|-------------|------------|-------------------------------------|------------|------------|----------|------------|---------|
|               | 31        | 30      | 29       | 28      | 27      | 26      | 25      | 24      | 23          | 22         | 21                                  | 20         | 19         | 18       | 17         | 16      |
|               |           | 1       | 1        |         |         |         | 1       | rese    | rved        |            | 1                                   |            |            | 1        |            |         |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                             | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0 |
|               | 15        | 14      | 13       | 12      | 11      | 10      | 9       | 8       | 7           | 6          | 5                                   | 4          | 3          | 2        | 1          | 0       |
|               |           | 1       | 1        | 1       | r r     |         | 1       | I<br>Ms | l<br>gVal   |            | 1                                   |            |            | 1        | r          |         |
| Type<br>Reset | RO<br>0   | RO<br>0 | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0 | RO<br>0     | RO<br>0    | RO<br>0                             | RO<br>0    | RO<br>0    | RO<br>0  | RO<br>0    | RO<br>0 |
| Bit/F         | Bit/Field |         | Name     |         | Туре    | F       | Reset   | Descr   | iption      |            |                                     |            |            |          |            |         |
| 31:           | 16        |         | reserved |         | RO      | 0       | x0000   | comp    | atibility w | vith futur | ely on the<br>re produce<br>ad-modi | cts, the v | alue of    | a reserv | •          |         |
| 15            | :0        |         | MsgVal   |         | RO      |         | 0x00    | Mess    | age Valio   | d Bits     |                                     |            |            |          |            |         |
|               |           |         |          |         |         |         |         | (of all | messag      | e object   | s)                                  |            |            |          |            |         |
|               |           |         |          |         |         |         |         | 0. Th:  |             | na abiaa   |                                     |            | ما مصما ام |          | مر مال رما |         |

0: This message object is not configured and is ignored by the message handler.

1: This message object is configured and should be considered by the message handler.

# **16** Analog Comparators

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S2139 controller provides three independent integrated analog comparators that can be configured to drive an output or generate an interrupt or ADC event.

**Note:** Not all comparators have the option to drive an output pin. See the Comparator Operating Mode tables for more information.

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

## 16.1 Block Diagram

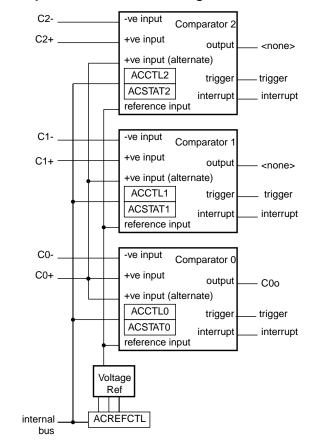



Figure 16-1. Analog Comparator Module Block Diagram

## 16.2 Functional Description

Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 16-2 on page 422, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.



Figure 16-2. Structure of Comparator Unit

A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in the Comparator Operating Mode tables.

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin or generate an analog-to-digital converter (ADC) trigger.

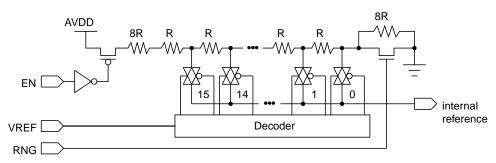
Important: Certain register bit values must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in the Comparator Operating Mode tables.

| ACCNTL0 | Com  | Comparator 0 |         |           |             |  |  |  |  |  |  |  |  |  |
|---------|------|--------------|---------|-----------|-------------|--|--|--|--|--|--|--|--|--|
| ASRCP   | VIN- | VIN+         | Output  | Interrupt | ADC Trigger |  |  |  |  |  |  |  |  |  |
| 00      | C0-  | C0+          | C0o/C1+ | yes       | yes         |  |  |  |  |  |  |  |  |  |
| 01      | C0-  | C0+          | C0o/C1+ | yes       | yes         |  |  |  |  |  |  |  |  |  |
| 10      | C0-  | Vref         | C0o/C1+ | yes       | yes         |  |  |  |  |  |  |  |  |  |
| 11      | C0-  | reserved     | C0o/C1+ | yes       | yes         |  |  |  |  |  |  |  |  |  |

#### Table 16-1. Comparator 0 Operating Modes

#### Table 16-2. Comparator 1 Operating Modes

| ACCNTL1 | Com  | Comparator 1         |        |           |             |  |  |  |  |  |  |  |  |  |
|---------|------|----------------------|--------|-----------|-------------|--|--|--|--|--|--|--|--|--|
| ASRCP   | VIN- | VIN+                 | Output | Interrupt | ADC Trigger |  |  |  |  |  |  |  |  |  |
| 00      | C1-  | C0o/C1+ <sup>a</sup> | n/a    | yes       | yes         |  |  |  |  |  |  |  |  |  |
| 01      | C1-  | C0+                  | n/a    | yes       | yes         |  |  |  |  |  |  |  |  |  |
| 10      | C1-  | Vref                 | n/a    | yes       | yes         |  |  |  |  |  |  |  |  |  |
| 11      | C1-  | reserved             | n/a    | yes       | yes         |  |  |  |  |  |  |  |  |  |


a. C0o and C1+ signals share a single pin and may only be used as one or the other.

| ACCNTL2 | Com  | Comparator 2                          |     |     |     |  |  |  |  |  |  |  |  |  |
|---------|------|---------------------------------------|-----|-----|-----|--|--|--|--|--|--|--|--|--|
| ASRCP   | VIN- | /IN- VIN+ Output Interrupt ADC Trigge |     |     |     |  |  |  |  |  |  |  |  |  |
| 00      | C2-  | C2+                                   | n/a | yes | yes |  |  |  |  |  |  |  |  |  |
| 01      | C2-  | C0+                                   | n/a | yes | yes |  |  |  |  |  |  |  |  |  |
| 10      | C2-  | Vref                                  | n/a | yes | yes |  |  |  |  |  |  |  |  |  |
| 11      | C2-  | reserved                              | n/a | yes | yes |  |  |  |  |  |  |  |  |  |

### Table 16-3. Comparator 2 Operating Modes

### 16.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 16-3 on page 423. This is controlled by a single configuration register (**ACREFCTL**). Table 16-4 on page 423 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.



#### Figure 16-3. Comparator Internal Reference Structure

### Table 16-4. Internal Reference Voltage and ACREFCTL Field Values

| ACREFCTL F   | Register      | Output Reference Voltage Based on VREF Field Value                                                                      |
|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------|
| EN Bit Value | RNG Bit Value |                                                                                                                         |
| EN=0         |               | 0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference. |

| ACREFCTL R   | egister       | Output Reference Voltage Based on VREF Field Value             |
|--------------|---------------|----------------------------------------------------------------|
| EN Bit Value | RNG Bit Value |                                                                |
| EN=1         | RNG=0         | Total resistance in ladder is 32 R.                            |
|              |               | $V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_{T}}$              |
|              |               | $V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{32}$               |
|              |               | V <sub>REF</sub> = 0.825+0.103 VREF                            |
|              |               | The range of internal reference in this mode is 0.825-2.37 V.  |
|              | RNG=1         | Total resistance in ladder is 24 R.                            |
|              |               | $V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_{T}}$              |
|              |               | $V_{REF} = AV_{DD} \times \frac{(VREF)}{24}$                   |
|              |               | $V_{REF}$ = 0.1375 x $V_{REF}$                                 |
|              |               | The range of internal reference for this mode is 0.0-2.0625 V. |

## 16.3 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with co- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.
- 4. Configure comparator 0 to use the internal voltage reference and to *not* invert the output on the C0o pin by writing the **ACCTL0** register with the value of 0x0000.040C.
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

## 16.4 Register Map

Table 16-5 on page 425 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

| Offset | Name     | Туре  | Reset       | Description                                 | See<br>page |
|--------|----------|-------|-------------|---------------------------------------------|-------------|
| 0x00   | ACMIS    | R/W1C | 0x0000.0000 | Analog Comparator Masked Interrupt Status   | 426         |
| 0x04   | ACRIS    | RO    | 0x0000.0000 | Analog Comparator Raw Interrupt Status      | 427         |
| 0x08   | ACINTEN  | R/W   | 0x0000.0000 | Analog Comparator Interrupt Enable          | 428         |
| 0x10   | ACREFCTL | R/W   | 0x0000.0000 | Analog Comparator Reference Voltage Control | 429         |
| 0x20   | ACSTAT0  | RO    | 0x0000.0000 | Analog Comparator Status 0                  | 430         |
| 0x24   | ACCTL0   | R/W   | 0x0000.0000 | Analog Comparator Control 0                 | 431         |
| 0x40   | ACSTAT1  | RO    | 0x0000.0000 | Analog Comparator Status 1                  | 430         |
| 0x44   | ACCTL1   | R/W   | 0x0000.0000 | Analog Comparator Control 1                 | 431         |
| 0x60   | ACSTAT2  | RO    | 0x0000.0000 | Analog Comparator Status 2                  | 430         |
| 0x64   | ACCTL2   | R/W   | 0x0000.0000 | Analog Comparator Control 2                 | 431         |

Table 16-5. Analog Comparators Register Map

# 16.5 Register Descriptions

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

### Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00

This register provides a summary of the interrupt status (masked) of the comparator.

Analog Comparator Masked Interrupt Status (ACMIS)

Base 0x4003.C000 Offset 0x00 Type R/W1C, reset 0x0000.0000

|               | 31   | 30      | 29       | 28 | 27                       | 26 | 25       | 24                                                                                                                                                                            | 23       | 22                      | 21        | 20         | 19        | 18         | 17          | 16       |
|---------------|------|---------|----------|----|--------------------------|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|-----------|------------|-----------|------------|-------------|----------|
|               |      | 1       | 1 1      |    | 1 1                      |    | 1 1      | rese                                                                                                                                                                          | rved     | 1                       |           | I          | I         | 1          | ſ           |          |
| Turne         | RO   | RO      | RO       | RO | RO                       | RO | RO       | RO                                                                                                                                                                            | RO       | RO                      | RO        | RO         | RO        | RO         | RO          | RO       |
| Type<br>Reset | 0    | КU<br>0 | 0        | 0  | 0                        | 0  | к0<br>0  | 0                                                                                                                                                                             | 0        | кО<br>0                 | 0         | 0 RU       | 0         | 0          | 0 RU        | 0        |
| Reser         | 0    | 0       | 0        | 0  | 0                        | 0  | 0        | 0                                                                                                                                                                             | 0        | 0                       | 0         | 0          | 0         | 0          | 0           | 0        |
| _             | 15   | 14      | 13       | 12 | 11                       | 10 | 9        | 8                                                                                                                                                                             | 7        | 6                       | 5         | 4          | 3         | 2          | 1           | 0        |
|               |      | 1       | 1 1      |    | т г<br>1                 |    | reserved |                                                                                                                                                                               |          | 1                       |           | I          | 1         | IN2        | IN1         | IN0      |
| Туре          | RO   | RO      | RO       | RO | RO                       | RO | RO       | RO                                                                                                                                                                            | RO       | RO                      | RO        | RO         | RO        | R/W1C      | R/W1C       | R/W1C    |
| Reset         | 0    | 0       | 0        | 0  | 0                        | 0  | 0        | 0                                                                                                                                                                             | 0        | 0                       | 0         | 0          | 0         | 0          | 0           | 0        |
| Bit/F         | ield |         | Name     |    | Туре                     |    | Reset    | Descri                                                                                                                                                                        | iption   |                         |           |            |           |            |             |          |
|               |      |         |          |    | <b>71</b> <sup>2</sup> - |    |          |                                                                                                                                                                               |          |                         |           |            |           |            |             |          |
| 31:           | 3    |         | reserved |    | RO                       |    | 0        | Software should not rely on the value of a reserved bit. To<br>compatibility with future products, the value of a reserved<br>preserved across a read-modify-write operation. |          |                         |           |            |           |            |             |          |
| 2             |      |         | IN2      |    | R/W1C                    |    | 0        | Comp                                                                                                                                                                          | arator 2 | Masked                  | I Interru | ot Status  | 6         |            |             |          |
|               |      |         |          |    |                          |    |          |                                                                                                                                                                               |          | sked inte<br>ding inter | •         | ate of thi | s interru | ıpt. Write | e 1 to this | s bit to |
| 1             |      |         | IN1      |    | R/W1C                    |    | 0        | Comparator 1 Masked Interrupt Status                                                                                                                                          |          |                         |           |            |           |            |             |          |
|               |      |         |          |    |                          |    |          | Gives the masked interrupt state of this interrupt. Write 1 clear the pending interrupt.                                                                                      |          |                         |           |            |           |            | e 1 to this | s bit to |
| 0             |      |         | IN0      |    | R/W1C                    |    | 0        | Comparator 0 Masked Interrupt Status                                                                                                                                          |          |                         |           |            |           |            |             |          |
|               |      |         |          |    |                          |    |          | Gives the masked interrupt state of this interrupt. Wr<br>clear the pending interrupt.                                                                                        |          |                         |           |            |           | ıpt. Write | e 1 to this | s bit to |

## Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04

This register provides a summary of the interrupt status (raw) of the comparator.

Analog Comparator Raw Interrupt Status (ACRIS)

Base 0x4003.C000 Offset 0x04 Type RO, reset 0x0000.0000

|       | 31   | 30 | 29       | 28 | 27   | 26 | 25                                                              | 24         | 23        | 22        | 21                   | 20        | 19        | 18      | 17       | 16       |
|-------|------|----|----------|----|------|----|-----------------------------------------------------------------|------------|-----------|-----------|----------------------|-----------|-----------|---------|----------|----------|
|       |      | 1  |          |    |      |    | 1                                                               | rese       | rved      | 1 1       |                      |           |           |         |          | •        |
| Туре  | RO   | RO | RO       | RO | RO   | RO | RO                                                              | RO         | RO        | RO        | RO                   | RO        | RO        | RO      | RO       | RO       |
| Reset | 0    | 0  | 0        | 0  | 0    | 0  | 0                                                               | 0          | 0         | 0         | 0                    | 0         | 0         | 0       | 0        | 0        |
|       | 15   | 14 | 13       | 12 | 11   | 10 | 9                                                               | 8          | 7         | 6         | 5                    | 4         | 3         | 2       | 1        | 0        |
|       |      | 1  |          |    |      |    | reserved                                                        |            |           |           |                      | l         |           | IN2     | IN1      | INO      |
| Туре  | RO   | RO | RO       | RO | RO   | RO | RO                                                              | RO         | RO        | RO        | RO                   | RO        | RO        | RO      | RO       | RO       |
| Reset | 0    | 0  | 0        | 0  | 0    | 0  | 0                                                               | 0          | 0         | 0         | 0                    | 0         | 0         | 0       | 0        | 0        |
| D://E |      |    |          |    | -    |    | -                                                               | -          |           |           |                      |           |           |         |          |          |
| Bit/F | ield |    | Name     |    | Туре |    | Reset                                                           | Descr      | iption    |           |                      |           |           |         |          |          |
| 31:   | 3    | 1  | reserved |    | RO   |    | 0 Software should not rely on the value of a reserved bit. To p |            |           |           |                      |           |           | To prov | vide     |          |
|       |      |    |          |    |      |    | compatibility with future products, the value of a reserved b   |            |           |           |                      |           | ed bit sh | ould be |          |          |
|       |      |    |          |    |      |    |                                                                 | preser     | ved acr   | oss a rea | ad-modi <sup>-</sup> | y-write   | operatio  | n.      |          |          |
| 2     |      |    | IN2      |    | RO   |    | 0                                                               | Comp       | arator 2  | Interrup  | t Status             |           |           |         |          |          |
|       |      |    |          |    |      |    |                                                                 | When       | set. indi | cates tha | at an inte           | errupt ha | is been g | enerate | d by con | nparator |
|       |      |    |          |    |      |    |                                                                 | 2.         | ,         |           |                      |           |           |         | ,        |          |
| 1     |      |    | IN1      |    | RO   |    | 0                                                               | Comp       | arator 1  | Interrup  | t Statue             |           |           |         |          |          |
| 1     |      |    |          |    | κυ   |    | 0                                                               |            |           |           |                      |           |           |         |          |          |
|       |      |    |          |    |      |    |                                                                 | When<br>1. | set, indi | cates tha | at an inte           | errupt ha | is been g | enerate | d by con | nparator |
|       |      |    |          |    |      |    |                                                                 | 1.         |           |           |                      |           |           |         |          |          |
| 0     |      |    | IN0      |    | RO   |    | 0                                                               | Comp       | arator 0  | Interrup  | t Status             |           |           |         |          |          |
|       |      |    |          |    |      |    |                                                                 | When       | set, indi | cates tha | at an inte           | errupt ha | is been g | enerate | d by con | nparator |
|       |      |    |          |    |      |    |                                                                 | 0.         |           |           |                      |           | -         |         | -        |          |

## Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08

This register provides the interrupt enable for the comparator.

| Analog Comparator | Interrupt Enable | (ACINTEN) |
|-------------------|------------------|-----------|
|-------------------|------------------|-----------|

Base 0x4003.C000 Offset 0x08 Type R/W, reset 0x0000.0000

|       | 31   | 30 | 29       | 28 | 27       | 26                              | 25       | 24                            | 23          | 22         | 21       | 20         | 19                                     | 18       | 17        | 16        |  |
|-------|------|----|----------|----|----------|---------------------------------|----------|-------------------------------|-------------|------------|----------|------------|----------------------------------------|----------|-----------|-----------|--|
|       |      | 1  | 1 1      |    | г т<br>1 |                                 | 1        | rese                          | rved        | i i        |          | I          | 1 I                                    |          | 1         | 1         |  |
| Туре  | RO   | RO | RO       | RO | RO       | RO                              | RO       | RO                            | RO          | RO         | RO       | RO         | RO                                     | RO       | RO        | RO        |  |
| Reset | 0    | 0  | 0        | 0  | 0        | 0                               | 0        | 0                             | 0           | 0          | 0        | 0          | 0                                      | 0        | 0         | 0         |  |
|       | 15   | 14 | 13       | 12 | 11       | 10                              | 9        | 8                             | 7           | 6          | 5        | 4          | 3                                      | 2        | 1         | 0         |  |
|       |      | 1  |          |    | · · ·    |                                 | reserved |                               |             | 1          |          | 1          | 1                                      | IN2      | IN1       | IN0       |  |
| Туре  | RO   | RO | RO       | RO | RO       | RO                              | RO       | RO                            | RO          | RO         | RO       | RO         | RO                                     | R/W      | R/W       | R/W       |  |
| Reset | 0    | 0  | 0        | 0  | 0        | 0                               | 0        | 0                             | 0           | 0          | 0        | 0          | 0                                      | 0        | 0         | 0         |  |
|       |      |    |          |    |          |                                 |          |                               |             |            |          |            |                                        |          |           |           |  |
| Bit/F | ield |    | Name     |    | Туре     |                                 | Reset    | eset Description              |             |            |          |            |                                        |          |           |           |  |
| 31:   | :3   | I  | reserved |    | RO 0     |                                 |          | compa                         | atibility v | vith futur | e produ  | cts, the   | of a rese<br>value of a<br>operation   | a reserv | •         |           |  |
| 2     |      |    | IN2      |    | R/W      |                                 | 0        | Comp                          | arator 2    | Interrup   | t Enable | е          |                                        |          |           |           |  |
|       |      |    |          |    |          |                                 |          | •                             |             | •          |          |            | r interrupt from the comparator 2 outp |          |           |           |  |
| 1     |      |    | IN1      |    | R/W      | 0 Comparator 1 Interrupt Enable |          |                               |             |            |          |            |                                        |          |           |           |  |
|       |      |    |          |    |          |                                 | -        | •                             |             |            |          |            | unt from t                             | he com   | norotor 1 | outout    |  |
|       |      |    |          |    |          |                                 |          | vvnen                         | sei, ena    | ibles the  | CONTROL  | erinterrt  | upt from t                             | ne com   | parator   | output.   |  |
| 0     |      |    | IN0      |    | R/W      |                                 | 0        | Comparator 0 Interrupt Enable |             |            |          |            |                                        |          |           |           |  |
|       |      |    |          |    |          |                                 |          | When                          | set, ena    | bles the   | controll | er interru | upt from t                             | he com   | parator ( | ) output. |  |

### Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10

This register specifies whether the resistor ladder is powered on as well as the range and tap.

### Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000 Offset 0x10 Type R/W, reset 0x0000.0000

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,       |    |          |       |      |         |                                                                                                                                                                                       |                                                                                                                                                                          |              |                          |           |         |           |           |           |          |  |
|-----------------------------------------|---------|----|----------|-------|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|-----------|---------|-----------|-----------|-----------|----------|--|
|                                         | 31      | 30 | 29       | 28    | 27   | 26      | 25                                                                                                                                                                                    | 24                                                                                                                                                                       | 23           | 22                       | 21        | 20      | 19        | 18        | 17        | 16       |  |
|                                         |         |    | 1        | 1     |      |         | 1                                                                                                                                                                                     | rese                                                                                                                                                                     | rved         | I                        |           | 1       |           | 1         | 1         | I        |  |
| Туре                                    | RO      | RO | RO       | RO    | RO   | RO      | RO                                                                                                                                                                                    | RO                                                                                                                                                                       | RO           | RO                       | RO        | RO      | RO        | RO        | RO        | RO       |  |
| Reset                                   | 0       | 0  | 0        | 0     | 0    | 0       | 0                                                                                                                                                                                     | 0                                                                                                                                                                        | 0            | 0                        | 0         | 0       | 0         | 0         | 0         | 0        |  |
|                                         | 15      | 14 | 13       | 12    | 11   | 10      | 9                                                                                                                                                                                     | 8                                                                                                                                                                        | 7            | 6                        | 5         | 4       | 3         | 2         | 1         | 0        |  |
|                                         |         |    | rese     | erved |      |         | EN                                                                                                                                                                                    | RNG                                                                                                                                                                      | RNG reserved |                          |           | VREF    |           |           |           |          |  |
| Туре                                    | RO<br>0 | RO | RO<br>0  | RO    | RO   | RO<br>0 | R/W                                                                                                                                                                                   | R/W                                                                                                                                                                      | RO<br>0      | RO                       | RO<br>0   | RO<br>0 | R/W       | R/W<br>0  | R/W<br>0  | R/W      |  |
| Reset                                   | 0       | 0  | U        | 0     | 0    | U       | 0                                                                                                                                                                                     | U                                                                                                                                                                        | U            | 0                        | 0         | U       | 0         | U         | U         | 0        |  |
| Bit/Fi                                  | ield    |    | Name     |       | Туре | I       | Reset                                                                                                                                                                                 | et Description                                                                                                                                                           |              |                          |           |         |           |           |           |          |  |
| 31:'                                    | 10      |    | reserved | ł     | RO   |         | 0                                                                                                                                                                                     | Softwa                                                                                                                                                                   | are shou     | uld not re               | ely on th | e value | of a rese | erved bit | . To prov | ride     |  |
|                                         |         |    |          |       |      |         |                                                                                                                                                                                       | compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.                                                   |              |                          |           |         |           |           |           | iould be |  |
| 9                                       |         |    | EN       |       | R/W  |         | 0                                                                                                                                                                                     | Resis                                                                                                                                                                    | tor Ladd     | er Enabl                 | е         |         |           |           |           |          |  |
|                                         |         |    |          |       |      |         |                                                                                                                                                                                       | The EN bit specifies whether the resistor ladder is power resistor ladder is unpowered. If 1, the resistor ladder is a the analog $V_{DD}$ .                             |              |                          |           |         |           |           |           |          |  |
|                                         |         |    |          |       |      |         |                                                                                                                                                                                       |                                                                                                                                                                          |              | et to 0 so<br>ver if not |           |         |           | nce cons  | umes th   | e least  |  |
| 8                                       |         |    | RNG      |       | R/W  |         | 0                                                                                                                                                                                     | Resis                                                                                                                                                                    | tor Ladd     | er Rang                  | е         |         |           |           |           |          |  |
|                                         |         |    |          |       |      |         |                                                                                                                                                                                       | The RNG bit specifies the range of the resistor ladder. If 0, the ladder has a total resistance of 32 R. If 1, the resistor ladder resistance of 24 R.                   |              |                          |           |         |           |           |           |          |  |
| 7:4                                     | 1       |    | reserved | 1     | RO   |         | 0                                                                                                                                                                                     | 0 Software should not rely on the value of a reserved bit. T compatibility with future products, the value of a reserved preserved across a read-modify-write operation. |              |                          |           |         |           |           |           |          |  |
| 3:0                                     | )       |    | VREF     |       | R/W  |         | 0                                                                                                                                                                                     | Resis                                                                                                                                                                    | tor Ladd     | er Voltag                | ge Ref    |         |           |           |           |          |  |
|                                         |         |    |          |       |      |         | Resistor Ladder Voltage Ref<br>The VREF bit field specifies the resistor ladder tap that is passed through<br>an analog multiplexer. The voltage corresponding to the tap position is |                                                                                                                                                                          |              |                          |           |         |           |           |           |          |  |

an analog multiplexer. The voltage corresponding to the tap position is the internal reference voltage available for comparison. See Table 16-4 on page 423 for some output reference voltage examples.

# Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20 Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x40 Register 7: Analog Comparator Status 2 (ACSTAT2), offset 0x60

These registers specify the current output value of the comparator.

| Analog Comparator Status 0 (ACS | TAT0) |
|---------------------------------|-------|
|---------------------------------|-------|

Base 0x4003.C000 Offset 0x20

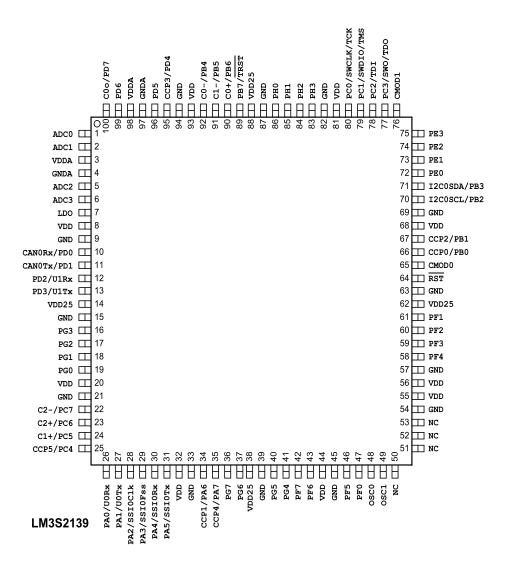
Type RO, reset 0x0000.0000

| 21 · · |           |          |      |    |          |    |       |       |                                                                                                                                                                                               |    |    |    |    |    |      |          |  |
|--------|-----------|----------|------|----|----------|----|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|----|----|----|------|----------|--|
| _      | 31        | 30       | 29   | 28 | 27       | 26 | 25    | 24    | 23                                                                                                                                                                                            | 22 | 21 | 20 | 19 | 18 | 17   | 16       |  |
|        | reserved  |          |      |    |          |    |       |       | 1                                                                                                                                                                                             | 1  | 1  | 1  | 1  |    |      |          |  |
| Туре   | RO        | RO       | RO   | RO | RO       | RO | RO    | RO    | RO                                                                                                                                                                                            | RO | RO | RO | RO | RO | RO   | RO       |  |
| Reset  | 0         | 0        | 0    | 0  | 0        | 0  | 0     | 0     | 0                                                                                                                                                                                             | 0  | 0  | 0  | 0  | 0  | 0    | 0        |  |
| _      | 15        | 14       | 13   | 12 | 11       | 10 | 9     | 8     | 7                                                                                                                                                                                             | 6  | 5  | 4  | 3  | 2  | 1    | 0        |  |
|        |           | I        |      |    | г г<br>1 |    | rese  | erved | 1                                                                                                                                                                                             | 1  |    | I  | 1  | I  | OVAL | reserved |  |
| Туре   | RO        | RO       | RO   | RO | RO       | RO | RO    | RO    | RO                                                                                                                                                                                            | RO | RO | RO | RO | RO | RO   | RO       |  |
| Reset  | 0         | 0        | 0    | 0  | 0        | 0  | 0     | 0     | 0                                                                                                                                                                                             | 0  | 0  | 0  | 0  | 0  | 0    | 0        |  |
| Bit/F  | Bit/Field |          | Name |    |          | I  | Reset | Descr | Description                                                                                                                                                                                   |    |    |    |    |    |      |          |  |
| 31:2   |           | reserved |      |    | RO       |    | 0     | compa | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |    |    |    |    |    |      |          |  |
| 1      |           | OVAL     |      |    | RO 0     |    |       | Comp  | Comparator Output Value                                                                                                                                                                       |    |    |    |    |    |      |          |  |
|        |           |          |      |    |          |    |       | The O | The OVAL bit specifies the current output value of the comparator.                                                                                                                            |    |    |    |    |    |      |          |  |
| 0      |           | reserved |      |    | RO       |    | 0     | compa | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |    |    |    |    |    |      |          |  |

# Register 8: Analog Comparator Control 0 (ACCTL0), offset 0x24 Register 9: Analog Comparator Control 1 (ACCTL1), offset 0x44 Register 10: Analog Comparator Control 2 (ACCTL2), offset 0x64

These registers configure the comparator's input and output.

|               | /, reset 0)<br>31 | 30       | 29      | 28      | 27                           | 26          | 25                                                                                                                                          | 24                                                                                                                                                                                            | 23       | 22                                                                                                                            | 21                    | 20                                      | 19         | 18       | 17        | 16      |  |  |
|---------------|-------------------|----------|---------|---------|------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|------------|----------|-----------|---------|--|--|
|               |                   |          | 1       |         | · · ·                        | -           | 1                                                                                                                                           | rese                                                                                                                                                                                          | 1        |                                                                                                                               | 1                     | 1                                       |            |          | 1         | 1       |  |  |
| Type<br>Reset | RO<br>0           | RO<br>0  | RO<br>0 | RO<br>0 | RO<br>0                      | RO<br>0     | RO<br>0                                                                                                                                     | RO<br>0                                                                                                                                                                                       | RO<br>0  | RO<br>0                                                                                                                       | RO<br>0               | RO<br>0                                 | RO<br>0    | RO<br>0  | RO<br>0   | RO<br>0 |  |  |
|               | 15                | 14       | 13      | 12      | 11                           | 10          | 9                                                                                                                                           | 8                                                                                                                                                                                             | 7        | 6                                                                                                                             | 5                     | 4                                       | 3          | 2        | 1         | 0       |  |  |
|               |                   | rese     | erved   |         | TOEN                         | AS          | I<br>RCP                                                                                                                                    | reserved                                                                                                                                                                                      | TSLVAL   | TS                                                                                                                            | EN                    | ISLVAL                                  | ISI        | EN       | CINV      | reserve |  |  |
| Type<br>Reset | RO<br>0           | RO<br>0  | RO<br>0 | RO<br>0 | R/W<br>0                     | R/W<br>0    | R/W<br>0                                                                                                                                    | RO<br>0                                                                                                                                                                                       | R/W<br>0 | R/W<br>0                                                                                                                      | R/W<br>0              | R/W<br>0                                | R/W<br>0   | R/W<br>0 | R/W<br>0  | RO<br>0 |  |  |
| Bit/Field     |                   | Name     |         |         | Туре                         | I           | Reset                                                                                                                                       | Description                                                                                                                                                                                   |          |                                                                                                                               |                       |                                         |            |          |           |         |  |  |
| 31:12         |                   | reserved |         |         | RO                           |             | 0                                                                                                                                           | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. |          |                                                                                                                               |                       |                                         |            |          |           |         |  |  |
| 11            |                   | TOEN     |         |         | R/W                          | R/W 0 Trigg |                                                                                                                                             |                                                                                                                                                                                               |          | Trigger Output Enable                                                                                                         |                       |                                         |            |          |           |         |  |  |
|               |                   |          |         |         |                              |             | The TOEN bit enables the ADC event transmission to the event is suppressed and not sent to the ADC. If 1, the event transmitted to the ADC. |                                                                                                                                                                                               |          |                                                                                                                               |                       |                                         |            |          |           |         |  |  |
| 10:9          |                   |          | ASRCP   |         | R/W 0 Analog Source Positive |             |                                                                                                                                             |                                                                                                                                                                                               |          |                                                                                                                               |                       |                                         |            |          |           |         |  |  |
|               |                   |          |         |         |                              |             |                                                                                                                                             |                                                                                                                                                                                               |          | SRCP field specifies the source of input voltage to the VIN+ termina comparator. The encodings for this field are as follows: |                       |                                         |            |          |           |         |  |  |
|               |                   |          |         |         |                              |             |                                                                                                                                             | ASRO                                                                                                                                                                                          | P Fund   | tion                                                                                                                          |                       |                                         |            |          |           |         |  |  |
|               |                   |          |         |         |                              |             |                                                                                                                                             | 00                                                                                                                                                                                            | Pin v    | alue                                                                                                                          |                       |                                         |            |          |           |         |  |  |
|               |                   |          |         |         |                              |             | 01 Pin value of C0+                                                                                                                         |                                                                                                                                                                                               |          |                                                                                                                               |                       |                                         |            |          |           |         |  |  |
|               |                   |          |         |         |                              |             | 10 Internal voltage reference                                                                                                               |                                                                                                                                                                                               |          |                                                                                                                               |                       |                                         |            |          |           |         |  |  |
|               |                   |          |         |         |                              |             |                                                                                                                                             | 11                                                                                                                                                                                            | Rese     | erved                                                                                                                         |                       |                                         |            |          |           |         |  |  |
| 8             |                   | reserved |         |         | RO                           |             | 0                                                                                                                                           | Software should not rely on the value of a reserved be<br>compatibility with future products, the value of a reser<br>preserved across a read-modify-write operation.                         |          |                                                                                                                               |                       | a reserv                                |            |          |           |         |  |  |
| 7             |                   | TSLVAL   |         |         | R/W 0                        |             |                                                                                                                                             | Trigger Sense Level Value                                                                                                                                                                     |          |                                                                                                                               |                       |                                         |            |          |           |         |  |  |
|               |                   |          |         |         |                              |             |                                                                                                                                             | an AD<br>if the c                                                                                                                                                                             | C event  | if in Lev<br>tor outp                                                                                                         | /el Sens<br>ut is Lov | sense va<br>e mode.<br>v. Otherv<br>ih. | lf 0, an J | ADC ev   | ent is ge | enerate |  |  |


Analog Comparator Control 0 (ACCTL0)

| Bit/Field | Name     | Туре | Reset | Description                                                                                                                                                                                                                                                |  |  |  |  |
|-----------|----------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 6:5       | TSEN     | R/W  | 0     | Trigger Sense                                                                                                                                                                                                                                              |  |  |  |  |
|           |          |      |       | The TSEN field specifies the sense of the comparator output that generates an ADC event. The sense conditioning is as follows:                                                                                                                             |  |  |  |  |
|           |          |      |       | TSEN Function                                                                                                                                                                                                                                              |  |  |  |  |
|           |          |      |       | 00 Level sense, see TSLVAL                                                                                                                                                                                                                                 |  |  |  |  |
|           |          |      |       | 01 Falling edge                                                                                                                                                                                                                                            |  |  |  |  |
|           |          |      |       | 10 Rising edge                                                                                                                                                                                                                                             |  |  |  |  |
|           |          |      |       | 11 Either edge                                                                                                                                                                                                                                             |  |  |  |  |
| 4         | ISLVAL   | R/W  | 0     | Interrupt Sense Level Value                                                                                                                                                                                                                                |  |  |  |  |
|           |          |      |       | The ISLVAL bit specifies the sense value of the input that generates<br>an interrupt if in Level Sense mode. If 0, an interrupt is generated if the<br>comparator output is Low. Otherwise, an interrupt is generated if the<br>comparator output is High. |  |  |  |  |
| 3:2       | ISEN     | R/W  | 0     | Interrupt Sense                                                                                                                                                                                                                                            |  |  |  |  |
|           |          |      |       | The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:                                                                                                                             |  |  |  |  |
|           |          |      |       | ISEN Function                                                                                                                                                                                                                                              |  |  |  |  |
|           |          |      |       | 00 Level sense, see ISLVAL                                                                                                                                                                                                                                 |  |  |  |  |
|           |          |      |       | 01 Falling edge                                                                                                                                                                                                                                            |  |  |  |  |
|           |          |      |       | 10 Rising edge                                                                                                                                                                                                                                             |  |  |  |  |
|           |          |      |       | 11 Either edge                                                                                                                                                                                                                                             |  |  |  |  |
| 1         | CINV     | R/W  | 0     | Comparator Output Invert                                                                                                                                                                                                                                   |  |  |  |  |
|           |          |      |       | The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.                                                     |  |  |  |  |
| 0         | reserved | RO   | 0     | Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.                                                              |  |  |  |  |

# 17 Pin Diagram

Figure 17-1 on page 433 shows the pin diagram and pin-to-signal-name mapping.

Figure 17-1. Pin Connection Diagram



# 18 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the GPIOAFSEL register.

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 18-1 on page 434 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 18-2 on page 438 lists the signals in alphabetical order by signal name.

Table 18-3 on page 442 groups the signals by functionality, except for GPIOs. Table 18-4 on page 444 lists the GPIO pins and their alternate functionality.

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                                                                                                                                                                                                                                                       |
|------------|----------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | ADC0     | I        | Analog      | Analog-to-digital converter input 0.                                                                                                                                                                                                                                                                                              |
| 2          | ADC1     | I        | Analog      | Analog-to-digital converter input 1.                                                                                                                                                                                                                                                                                              |
| 3          | VDDA     | -        | Power       | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.                                                                                                                          |
| 4          | GNDA     | -        | Power       | The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.                                                                                                                                 |
| 5          | ADC2     | I        | Analog      | Analog-to-digital converter input 2.                                                                                                                                                                                                                                                                                              |
| 6          | ADC3     | I        | Analog      | Analog-to-digital converter input 3.                                                                                                                                                                                                                                                                                              |
| 7          | LDO      | -        | Power       | Low drop-out regulator output voltage. This<br>pin requires an external capacitor between<br>the pin and GND of 1 $\mu$ F or greater. When the<br>on-chip LDO is used to provide power to the<br>logic, the LDO pin must also be connected to<br>the VDD25 pins at the board level in addition<br>to the decoupling capacitor(s). |
| 8          | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                                           |
| 9          | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                                          |
| 10         | CANORx   | I        | TTL         | CAN module 0 receive                                                                                                                                                                                                                                                                                                              |
|            | PD0      | I/O      | TTL         | GPIO port D bit 0                                                                                                                                                                                                                                                                                                                 |
| 11         | CANOTx   | 0        | TTL         | CAN module 0 transmit                                                                                                                                                                                                                                                                                                             |
|            | PD1      | I/O      | TTL         | GPIO port D bit 1                                                                                                                                                                                                                                                                                                                 |
| 12         | PD2      | I/O      | TTL         | GPIO port D bit 2                                                                                                                                                                                                                                                                                                                 |
|            | UlRx     | I        | TTL         | UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.                                                                                                                                                                                                                                                        |
| 13         | PD3      | I/O      | TTL         | GPIO port D bit 3                                                                                                                                                                                                                                                                                                                 |
|            | UlTx     | 0        | TTL         | UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.                                                                                                                                                                                                                                                       |

Table 18-1. Signals by Pin Number

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                        |
|------------|----------|----------|-------------|----------------------------------------------------------------------------------------------------|
| 14         | VDD25    | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals. |
| 15         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 16         | PG3      | I/O      | TTL         | GPIO port G bit 3                                                                                  |
| 17         | PG2      | I/O      | TTL         | GPIO port G bit 2                                                                                  |
| 18         | PG1      | I/O      | TTL         | GPIO port G bit 1                                                                                  |
| 19         | PG0      | I/O      | TTL         | GPIO port G bit 0                                                                                  |
| 20         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                            |
| 21         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 22         | C2-      | I        | Analog      | Analog comparator 2 negative input                                                                 |
|            | PC7      | I/O      | TTL         | GPIO port C bit 7                                                                                  |
| 23         | C2+      | I        | Analog      | Analog comparator positive input                                                                   |
|            | PC6      | I/O      | TTL         | GPIO port C bit 6                                                                                  |
| 24         | C1+      | I        | Analog      | Analog comparator positive input                                                                   |
| -          | PC5      | I/O      | TTL         | GPIO port C bit 5                                                                                  |
| 25         | CCP5     | I/O      | TTL         | Capture/Compare/PWM 5                                                                              |
| -          | PC4      | I/O      | TTL         | GPIO port C bit 4                                                                                  |
| 26         | PAO      | I/O      | TTL         | GPIO port A bit 0                                                                                  |
| -          | UORx     | I        | TTL         | UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.                         |
| 27         | PA1      | I/O      | TTL         | GPIO port A bit 1                                                                                  |
| -          | UOTx     | 0        | TTL         | UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.                        |
| 28         | PA2      | I/O      | TTL         | GPIO port A bit 2                                                                                  |
| -          | SSIOClk  | I/O      | TTL         | SSI module 0 clock                                                                                 |
| 29         | PA3      | I/O      | TTL         | GPIO port A bit 3                                                                                  |
| -          | SSIOFss  | I/O      | TTL         | SSI module 0 frame                                                                                 |
| 30         | PA4      | I/O      | TTL         | GPIO port A bit 4                                                                                  |
| -          | SSIORx   | I        | TTL         | SSI module 0 receive                                                                               |
| 31         | PA5      | I/O      | TTL         | GPIO port A bit 5                                                                                  |
| -          | SSI0Tx   | 0        | TTL         | SSI module 0 transmit                                                                              |
| 32         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                            |
| 33         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |
| 34         | CCP1     | I/O      | TTL         | Capture/Compare/PWM 1                                                                              |
|            | PA6      | I/O      | TTL         | GPIO port A bit 6                                                                                  |
| 35         | CCP4     | I/O      | TTL         | Capture/Compare/PWM 1                                                                              |
|            | PA7      | I/O      | TTL         | GPIO port A bit 7                                                                                  |
| 36         | PG7      | I/O      | TTL         | GPIO port G bit 7                                                                                  |
| 37         | PG6      | I/O      | TTL         | GPIO port G bit 6                                                                                  |
| 38         | VDD25    | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals. |
| 39         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                           |

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                       |
|------------|----------|----------|-------------|---------------------------------------------------------------------------------------------------|
| 40         | PG5      | I/O      | TTL         | GPIO port G bit 5                                                                                 |
| 41         | PG4      | I/O      | TTL         | GPIO port G bit 4                                                                                 |
| 42         | PF7      | I/O      | TTL         | GPIO port F bit 7                                                                                 |
| 43         | PF6      | I/O      | TTL         | GPIO port F bit 6                                                                                 |
| 44         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                           |
| 45         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                          |
| 46         | PF5      | I/O      | TTL         | GPIO port F bit 5                                                                                 |
| 47         | PF0      | I/O      | TTL         | GPIO port F bit 0                                                                                 |
| 48         | OSC0     | I        | Analog      | Main oscillator crystal input or an external clock reference input.                               |
| 49         | OSC1     | 0        | Analog      | Main oscillator crystal output.                                                                   |
| 50         | NC       | -        | -           | No connect                                                                                        |
| 51         | NC       | -        | -           | No connect                                                                                        |
| 52         | NC       | -        | -           | No connect                                                                                        |
| 53         | NC       | -        | -           | No connect                                                                                        |
| 54         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                          |
| 55         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                           |
| 56         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                           |
| 57         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                          |
| 58         | PF4      | I/O      | TTL         | GPIO port F bit 4                                                                                 |
| 59         | PF3      | I/O      | TTL         | GPIO port F bit 3                                                                                 |
| 60         | PF2      | I/O      | TTL         | GPIO port F bit 2                                                                                 |
| 61         | PF1      | I/O      | TTL         | GPIO port F bit 1                                                                                 |
| 62         | VDD25    | -        | Power       | Positive supply for most of the logic function including the processor core and most peripherals. |
| 63         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                          |
| 64         | RST      | I        | TTL         | System reset input.                                                                               |
| 65         | CMOD0    | I/O      | TTL         | CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.                |
| 66         | CCP0     | I/O      | TTL         | Capture/Compare/PWM 0                                                                             |
|            | PB0      | I/O      | TTL         | GPIO port B bit 0                                                                                 |
| 67         | CCP2     | I/O      | TTL         | Capture/Compare/PWM 2                                                                             |
|            | PB1      | I/O      | TTL         | GPIO port B bit 1                                                                                 |
| 68         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                           |
| 69         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                          |
| 70         | I2C0SCL  | I/O      | OD          | I2C module 0 clock                                                                                |
|            | PB2      | I/O      | TTL         | GPIO port B bit 2                                                                                 |
| 71         | I2C0SDA  | I/O      | OD          | I2C module 0 data                                                                                 |
|            | PB3      | I/O      | TTL         | GPIO port B bit 3                                                                                 |
| 72         | PE0      | I/O      | TTL         | GPIO port E bit 0                                                                                 |
| 73         | PE1      | I/O      | TTL         | GPIO port E bit 1                                                                                 |
| 74         | PE2      | I/O      | TTL         | GPIO port E bit 2                                                                                 |
| 75         | PE3      | I/O      | TTL         | GPIO port E bit 3                                                                                 |

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                                                                                                                                                                                                 |
|------------|----------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 76         | CMOD1    | I/O      | TTL         | CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.                                                                                                                          |
| 77         | PC3      | I/O      | TTL         | GPIO port C bit 3                                                                                                                                                                                           |
|            | SWO      | 0        | TTL         | JTAG TDO and SWO                                                                                                                                                                                            |
|            | TDO      | 0        | TTL         | JTAG TDO and SWO                                                                                                                                                                                            |
| 78         | PC2      | I/O      | TTL         | GPIO port C bit 2                                                                                                                                                                                           |
|            | TDI      | 1        | TTL         | JTAG TDI                                                                                                                                                                                                    |
| 79         | PC1      | I/O      | TTL         | GPIO port C bit 1                                                                                                                                                                                           |
|            | SWDIO    | I/O      | TTL         | JTAG TMS and SWDIO                                                                                                                                                                                          |
|            | TMS      | I/O      | TTL         | JTAG TMS and SWDIO                                                                                                                                                                                          |
| 80         | PC0      | I/O      | TTL         | GPIO port C bit 0                                                                                                                                                                                           |
|            | SWCLK    | 1        | TTL         | JTAG/SWD CLK                                                                                                                                                                                                |
|            | TCK      | 1        | TTL         | JTAG/SWD CLK                                                                                                                                                                                                |
| 81         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                     |
| 82         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                    |
| 83         | PH3      | I/O      | TTL         | GPIO port H bit 3                                                                                                                                                                                           |
| 84         | PH2      | I/O      | TTL         | GPIO port H bit 2                                                                                                                                                                                           |
| 85         | PH1      | I/O      | TTL         | GPIO port H bit 1                                                                                                                                                                                           |
| 86         | PH0      | I/O      | TTL         | GPIO port H bit 0                                                                                                                                                                                           |
| 87         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                    |
| 88         | VDD25    | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                          |
| 89         | PB7      | I/O      | TTL         | GPIO port B bit 7                                                                                                                                                                                           |
|            | TRST     | I        | TTL         | JTAG TRSTn                                                                                                                                                                                                  |
| 90         | C0+      | 1        | Analog      | Analog comparator 0 positive input                                                                                                                                                                          |
|            | PB6      | I/O      | TTL         | GPIO port B bit 6                                                                                                                                                                                           |
| 91         | C1-      | 1        | Analog      | Analog comparator 1 negative input                                                                                                                                                                          |
|            | PB5      | I/O      | TTL         | GPIO port B bit 5                                                                                                                                                                                           |
| 92         | C0-      | 1        | Analog      | Analog comparator 0 negative input                                                                                                                                                                          |
|            | PB4      | I/O      | TTL         | GPIO port B bit 4                                                                                                                                                                                           |
| 93         | VDD      | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                     |
| 94         | GND      | -        | Power       | Ground reference for logic and I/O pins.                                                                                                                                                                    |
| 95         | CCP3     | I/O      | TTL         | Capture/Compare/PWM 3                                                                                                                                                                                       |
|            | PD4      | I/O      | TTL         | GPIO port D bit 4                                                                                                                                                                                           |
| 96         | PD5      | I/O      | TTL         | GPIO port D bit 5                                                                                                                                                                                           |
| 97         | GNDA     | -        | Power       | The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.           |
| 98         | VDDA     | -        | Power       | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.).<br>These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. |

| Pin Number | Pin Name | Pin Type | Buffer Type | Description                |
|------------|----------|----------|-------------|----------------------------|
| 99         | PD6      | I/O      | TTL         | GPIO port D bit 6          |
| 100        | C00      | O TTL An |             | Analog comparator 0 output |
|            | PD7      | I/O      | TTL         | GPIO port D bit 7          |

## Table 18-2. Signals by Signal Name

| Pin Name | Pin Number | Pin Type | Buffer Type | Description                                                                        |
|----------|------------|----------|-------------|------------------------------------------------------------------------------------|
| ADC0     | 1          | I        | Analog      | Analog-to-digital converter input 0.                                               |
| ADC1     | 2          | I        | Analog      | Analog-to-digital converter input 1.                                               |
| ADC2     | 5          | I        | Analog      | Analog-to-digital converter input 2.                                               |
| ADC3     | 6          | I        | Analog      | Analog-to-digital converter input 3.                                               |
| C0+      | 90         | I        | Analog      | Analog comparator 0 positive input                                                 |
| C0-      | 92         | I        | Analog      | Analog comparator 0 negative input                                                 |
| COo      | 100        | 0        | TTL         | Analog comparator 0 output                                                         |
| C1+      | 24         | I        | Analog      | Analog comparator positive input                                                   |
| C1-      | 91         | I        | Analog      | Analog comparator 1 negative input                                                 |
| C2+      | 23         | I        | Analog      | Analog comparator positive input                                                   |
| C2-      | 22         | I        | Analog      | Analog comparator 2 negative input                                                 |
| CANORx   | 10         | I        | TTL         | CAN module 0 receive                                                               |
| CANOTx   | 11         | 0        | TTL         | CAN module 0 transmit                                                              |
| CCP0     | 66         | I/O      | TTL         | Capture/Compare/PWM 0                                                              |
| CCP1     | 34         | I/O      | TTL         | Capture/Compare/PWM 1                                                              |
| CCP2     | 67         | I/O      | TTL         | Capture/Compare/PWM 2                                                              |
| CCP3     | 95         | I/O      | TTL         | Capture/Compare/PWM 3                                                              |
| CCP4     | 35         | I/O      | TTL         | Capture/Compare/PWM 1                                                              |
| CCP5     | 25         | I/O      | TTL         | Capture/Compare/PWM 5                                                              |
| CMOD0    | 65         | I/O      | TTL         | CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved. |
| CMOD1    | 76         | I/O      | TTL         | CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved. |
| GND      | 9          | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 15         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 21         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 33         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 39         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 45         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 54         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 57         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 63         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 69         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 82         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 87         | -        | Power       | Ground reference for logic and I/O pins.                                           |
| GND      | 94         | -        | Power       | Ground reference for logic and I/O pins.                                           |

| Pin Name | Pin Number | Pin Type | Buffer Type | Description                                                                                                                                                                                                                                                                                                                       |
|----------|------------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GNDA     | 4          | -        | Power       | The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.                                                                                                                                 |
| GNDA     | 97         | -        | Power       | The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.                                                                                                                                 |
| I2C0SCL  | 70         | I/O      | OD          | I2C module 0 clock                                                                                                                                                                                                                                                                                                                |
| I2C0SDA  | 71         | I/O      | OD          | I2C module 0 data                                                                                                                                                                                                                                                                                                                 |
| LDO      | 7          | -        | Power       | Low drop-out regulator output voltage. This<br>pin requires an external capacitor between<br>the pin and GND of 1 $\mu$ F or greater. When the<br>on-chip LDO is used to provide power to the<br>logic, the LDO pin must also be connected to<br>the VDD25 pins at the board level in addition<br>to the decoupling capacitor(s). |
| NC       | 50         | -        | -           | No connect                                                                                                                                                                                                                                                                                                                        |
| NC       | 51         | -        | -           | No connect                                                                                                                                                                                                                                                                                                                        |
| NC       | 52         | -        | -           | No connect                                                                                                                                                                                                                                                                                                                        |
| NC       | 53         | -        | -           | No connect                                                                                                                                                                                                                                                                                                                        |
| OSC0     | 48         | I        | Analog      | Main oscillator crystal input or an external<br>clock reference input.                                                                                                                                                                                                                                                            |
| OSC1     | 49         | 0        | Analog      | Main oscillator crystal output.                                                                                                                                                                                                                                                                                                   |
| PAO      | 26         | I/O      | TTL         | GPIO port A bit 0                                                                                                                                                                                                                                                                                                                 |
| PA1      | 27         | I/O      | TTL         | GPIO port A bit 1                                                                                                                                                                                                                                                                                                                 |
| PA2      | 28         | I/O      | TTL         | GPIO port A bit 2                                                                                                                                                                                                                                                                                                                 |
| PA3      | 29         | I/O      | TTL         | GPIO port A bit 3                                                                                                                                                                                                                                                                                                                 |
| PA4      | 30         | I/O      | TTL         | GPIO port A bit 4                                                                                                                                                                                                                                                                                                                 |
| PA5      | 31         | I/O      | TTL         | GPIO port A bit 5                                                                                                                                                                                                                                                                                                                 |
| PA6      | 34         | I/O      | TTL         | GPIO port A bit 6                                                                                                                                                                                                                                                                                                                 |
| PA7      | 35         | I/O      | TTL         | GPIO port A bit 7                                                                                                                                                                                                                                                                                                                 |
| PBO      | 66         | I/O      | TTL         | GPIO port B bit 0                                                                                                                                                                                                                                                                                                                 |
| PB1      | 67         | I/O      | TTL         | GPIO port B bit 1                                                                                                                                                                                                                                                                                                                 |
| PB2      | 70         | I/O      | TTL         | GPIO port B bit 2                                                                                                                                                                                                                                                                                                                 |
| PB3      | 71         | I/O      | TTL         | GPIO port B bit 3                                                                                                                                                                                                                                                                                                                 |
| PB4      | 92         | I/O      | TTL         | GPIO port B bit 4                                                                                                                                                                                                                                                                                                                 |
| PB5      | 91         | I/O      | TTL         | GPIO port B bit 5                                                                                                                                                                                                                                                                                                                 |
| PB6      | 90         | I/O      | TTL         | GPIO port B bit 6                                                                                                                                                                                                                                                                                                                 |
| PB7      | 89         | I/O      | TTL         | GPIO port B bit 7                                                                                                                                                                                                                                                                                                                 |
| PC0      | 80         | I/O      | TTL         | GPIO port C bit 0                                                                                                                                                                                                                                                                                                                 |
| PC1      | 79         | I/O      | TTL         | GPIO port C bit 1                                                                                                                                                                                                                                                                                                                 |
| PC2      | 78         | I/O      | TTL         | GPIO port C bit 2                                                                                                                                                                                                                                                                                                                 |
| PC3      | 77         | I/O      | TTL         | GPIO port C bit 3                                                                                                                                                                                                                                                                                                                 |
| PC4      | 25         | I/O      | TTL         | GPIO port C bit 4                                                                                                                                                                                                                                                                                                                 |

| Pin Name | Pin Number | Pin Type | Buffer Type | Description           |
|----------|------------|----------|-------------|-----------------------|
| PC5      | 24         | I/O      | TTL         | GPIO port C bit 5     |
| PC6      | 23         | I/O      | TTL         | GPIO port C bit 6     |
| PC7      | 22         | I/O      | TTL         | GPIO port C bit 7     |
| PDO      | 10         | I/O      | TTL         | GPIO port D bit 0     |
| PD1      | 11         | I/O      | TTL         | GPIO port D bit 1     |
| PD2      | 12         | I/O      | TTL         | GPIO port D bit 2     |
| PD3      | 13         | I/O      | TTL         | GPIO port D bit 3     |
| PD4      | 95         | I/O      | TTL         | GPIO port D bit 4     |
| PD5      | 96         | I/O      | TTL         | GPIO port D bit 5     |
| PD6      | 99         | I/O      | TTL         | GPIO port D bit 6     |
| PD7      | 100        | I/O      | TTL         | GPIO port D bit 7     |
| PEO      | 72         | I/O      | TTL         | GPIO port E bit 0     |
| PE1      | 73         | I/O      | TTL         | GPIO port E bit 1     |
| PE2      | 74         | I/O      | TTL         | GPIO port E bit 2     |
| PE3      | 75         | I/O      | TTL         | GPIO port E bit 3     |
| PFO      | 47         | I/O      | TTL         | GPIO port F bit 0     |
| PF1      | 61         | I/O      | TTL         | GPIO port F bit 1     |
| PF2      | 60         | I/O      | TTL         | GPIO port F bit 2     |
| PF3      | 59         | I/O      | TTL         | GPIO port F bit 3     |
| PF4      | 58         | I/O      | TTL         | GPIO port F bit 4     |
| PF5      | 46         | I/O      | TTL         | GPIO port F bit 5     |
| PF6      | 43         | I/O      | TTL         | GPIO port F bit 6     |
| PF7      | 42         | I/O      | TTL         | GPIO port F bit 7     |
| PGO      | 19         | I/O      | TTL         | GPIO port G bit 0     |
| PG1      | 18         | I/O      | TTL         | GPIO port G bit 1     |
| PG2      | 17         | I/O      | TTL         | GPIO port G bit 2     |
| PG3      | 16         | I/O      | TTL         | GPIO port G bit 3     |
| PG4      | 41         | I/O      | TTL         | GPIO port G bit 4     |
| PG5      | 40         | I/O      | TTL         | GPIO port G bit 5     |
| PG6      | 37         | I/O      | TTL         | GPIO port G bit 6     |
| PG7      | 36         | I/O      | TTL         | GPIO port G bit 7     |
| PHO      | 86         | I/O      | TTL         | GPIO port H bit 0     |
| PH1      | 85         | I/O      | TTL         | GPIO port H bit 1     |
| PH2      | 84         | I/O      | TTL         | GPIO port H bit 2     |
| PH3      | 83         | I/O      | TTL         | GPIO port H bit 3     |
| RST      | 64         | l        | TTL         | System reset input.   |
| SSIOClk  | 28         | I/O      | TTL         | SSI module 0 clock    |
| SSIOFss  | 29         | I/O      | TTL         | SSI module 0 frame    |
| SSIORx   | 30         | I        | TTL         | SSI module 0 receive  |
| SSIOTx   | 31         | 0        | TTL         | SSI module 0 transmit |
| SWCLK    | 80         | I        | TTL         | JTAG/SWD CLK          |
| SWDIO    | 79         | I/O      | TTL         | JTAG TMS and SWDIO    |

| Pin Name | Pin Number | Pin Type | Buffer Type | Description                                                                                                                                                                                              |
|----------|------------|----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWO      | 77         | 0        | TTL         | JTAG TDO and SWO                                                                                                                                                                                         |
| TCK      | 80         | I        | TTL         | JTAG/SWD CLK                                                                                                                                                                                             |
| TDI      | 78         | I        | TTL         | JTAG TDI                                                                                                                                                                                                 |
| TDO      | 77         | 0        | TTL         | JTAG TDO and SWO                                                                                                                                                                                         |
| TMS      | 79         | I/O      | TTL         | JTAG TMS and SWDIO                                                                                                                                                                                       |
| TRST     | 89         | I        | TTL         | JTAG TRSTn                                                                                                                                                                                               |
| UORx     | 26         | I        | TTL         | UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.                                                                                                                               |
| U0Tx     | 27         | 0        | TTL         | UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.                                                                                                                              |
| UlRx     | 12         | I        | TTL         | UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.                                                                                                                               |
| UlTx     | 13         | 0        | TTL         | UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.                                                                                                                              |
| VDD      | 8          | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD      | 20         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD      | 32         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD      | 44         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD      | 55         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD      | 56         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD      | 68         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD      | 81         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD      | 93         | -        | Power       | Positive supply for I/O and some logic.                                                                                                                                                                  |
| VDD25    | 14         | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                       |
| VDD25    | 38         | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                       |
| VDD25    | 62         | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                       |
| VDD25    | 88         | -        | Power       | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                       |
| VDDA     | 3          | -        | Power       | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. |
| VDDA     | 98         | -        | Power       | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. |

| Function        | Pin Name | Pin<br>Number | Pin Type | Buffer<br>Type | Description                          |
|-----------------|----------|---------------|----------|----------------|--------------------------------------|
| ADC             | ADC0     | 1             | I        | Analog         | Analog-to-digital converter input 0. |
|                 | ADC1     | 2             | I        | Analog         | Analog-to-digital converter input 1. |
|                 | ADC2     | 5             | I        | Analog         | Analog-to-digital converter input 2. |
|                 | ADC3     | 6             | I        | Analog         | Analog-to-digital converter input 3. |
| Analog          | C0+      | 90            | I        | Analog         | Analog comparator 0 positive input   |
| Comparators     | C0-      | 92            | I        | Analog         | Analog comparator 0 negative input   |
|                 | C0o      | 100           | 0        | TTL            | Analog comparator 0 output           |
|                 | C1+      | 24            | I        | Analog         | Analog comparator positive input     |
|                 | C1-      | 91            | I        | Analog         | Analog comparator 1 negative input   |
|                 | C2+      | 23            | I        | Analog         | Analog comparator positive input     |
|                 | C2-      | 22            | I        | Analog         | Analog comparator 2 negative input   |
| Controller Area | CANORx   | 10            | I        | TTL            | CAN module 0 receive                 |
| Network         | CANOTx   | 11            | 0        | TTL            | CAN module 0 transmit                |
| General-Purpose | CCP0     | 66            | I/O      | TTL            | Capture/Compare/PWM 0                |
| Timers          | CCP1     | 34            | I/O      | TTL            | Capture/Compare/PWM 1                |
|                 | CCP2     | 67            | I/O      | TTL            | Capture/Compare/PWM 2                |
|                 | CCP3     | 95            | I/O      | TTL            | Capture/Compare/PWM 3                |
|                 | CCP4     | 35            | I/O      | TTL            | Capture/Compare/PWM 1                |
|                 | CCP5     | 25            | I/O      | TTL            | Capture/Compare/PWM 5                |
| 12C             | I2C0SCL  | 70            | I/O      | OD             | I2C module 0 clock                   |
|                 | I2C0SDA  | 71            | I/O      | OD             | I2C module 0 data                    |
| JTAG/SWD/SWO    | SWCLK    | 80            | I        | TTL            | JTAG/SWD CLK                         |
|                 | SWDIO    | 79            | I/O      | TTL            | JTAG TMS and SWDIO                   |
|                 | SWO      | 77            | 0        | TTL            | JTAG TDO and SWO                     |
|                 | TCK      | 80            | I        | TTL            | JTAG/SWD CLK                         |
|                 | TDI      | 78            | I        | TTL            | JTAG TDI                             |
|                 | TDO      | 77            | 0        | TTL            | JTAG TDO and SWO                     |
|                 | TMS      | 79            | I/O      | TTL            | JTAG TMS and SWDIO                   |

#### Table 18-3. Signals by Function, Except for GPIO

| Function | Pin Name | Pin<br>Number | Pin Type | Buffer<br>Type | Description                                                                                                                                                                                                                                                                                                     |
|----------|----------|---------------|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power    | GND      | 9             | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 15            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 21            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 33            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 39            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 45            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 54            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 57            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 63            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 69            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 82            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 87            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GND      | 94            | -        | Power          | Ground reference for logic and I/O pins.                                                                                                                                                                                                                                                                        |
|          | GNDA     | 4             | -        | Power          | The ground reference for the analog circuits (ADC,<br>Analog Comparators, etc.). These are separated<br>from GND to minimize the electrical noise contained<br>on VDD from affecting the analog functions.                                                                                                      |
|          | GNDA     | 97            | -        | Power          | The ground reference for the analog circuits (ADC,<br>Analog Comparators, etc.). These are separated<br>from GND to minimize the electrical noise contained<br>on VDD from affecting the analog functions.                                                                                                      |
|          | LDO      | 7             | -        | Power          | Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 $\mu$ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s). |
|          | VDD      | 8             | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 20            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 32            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 44            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 55            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 56            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 68            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 81            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD      | 93            | -        | Power          | Positive supply for I/O and some logic.                                                                                                                                                                                                                                                                         |
|          | VDD25    | 14            | -        | Power          | Positive supply for most of the logic function,                                                                                                                                                                                                                                                                 |
|          |          |               |          |                | including the processor core and most peripherals.                                                                                                                                                                                                                                                              |
|          | VDD25    | 38            | -        | Power          | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                                                                              |
|          | VDD25    | 62            | -        | Power          | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                                                                              |
|          | VDD25    | 88            | -        | Power          | Positive supply for most of the logic function, including the processor core and most peripherals.                                                                                                                                                                                                              |
|          | VDDA     | 3             | -        | Power          |                                                                                                                                                                                                                                                                                                                 |

| Function                   | Pin Name | Pin<br>Number | Pin Type | Buffer<br>Type | Description                                                                                                                                                                                              |
|----------------------------|----------|---------------|----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |          |               |          |                | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. |
|                            | VDDA     | 98            | -        | Power          | The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. |
| SSI                        | SSIOClk  | 28            | I/O      | TTL            | SSI module 0 clock                                                                                                                                                                                       |
|                            | SSIOFss  | 29            | I/O      | TTL            | SSI module 0 frame                                                                                                                                                                                       |
|                            | SSIORx   | 30            | I        | TTL            | SSI module 0 receive                                                                                                                                                                                     |
|                            | SSIOTx   | 31            | 0        | TTL            | SSI module 0 transmit                                                                                                                                                                                    |
| System Control &<br>Clocks | CMOD0    | 65            | I/O      | TTL            | CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.                                                                                                                       |
|                            | CMOD1    | 76            | I/O      | TTL            | CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.                                                                                                                       |
|                            | OSC0     | 48            | I        | Analog         | Main oscillator crystal input or an external clock reference input.                                                                                                                                      |
|                            | OSC1     | 49            | 0        | Analog         | Main oscillator crystal output.                                                                                                                                                                          |
|                            | RST      | 64            | I        | TTL            | System reset input.                                                                                                                                                                                      |
|                            | TRST     | 89            | I        | TTL            | JTAG TRSTn                                                                                                                                                                                               |
| UART                       | UORx     | 26            | I        | TTL            | UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.                                                                                                                               |
|                            | UOTx     | 27            | 0        | TTL            | UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.                                                                                                                              |
|                            | UlRx     | 12            | I        | TTL            | UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.                                                                                                                               |
|                            | UlTx     | 13            | 0        | TTL            | UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.                                                                                                                              |

#### Table 18-4. GPIO Pins and Alternate Functions

| GPIO Pin | Pin Number | Multiplexed Function | Multiplexed Function |
|----------|------------|----------------------|----------------------|
| PAO      | 26         | UORx                 |                      |
| PA1      | 27         | UOTx                 |                      |
| PA2      | 28         | SSIOClk              |                      |
| PA3      | 29         | SSIOFss              |                      |
| PA4      | 30         | SSIORx               |                      |
| PA5      | 31         | SSIOTx               |                      |
| PA6      | 34         | CCP1                 |                      |
| PA7      | 35         | CCP4                 |                      |
| PBO      | 66         | CCPO                 |                      |
| PB1      | 67         | CCP2                 |                      |
| PB2      | 70         | I2C0SCL              |                      |
| PB3      | 71         | I2C0SDA              |                      |

| GPIO Pin | Pin Number | Multiplexed Function | Multiplexed Function |
|----------|------------|----------------------|----------------------|
| PB4      | 92         | C0-                  |                      |
| PB5      | 91         | C1-                  |                      |
| PB6      | 90         | C0+                  |                      |
| PB7      | 89         | TRST                 |                      |
| PC0      | 80         | TCK                  | SWCLK                |
| PC1      | 79         | TMS                  | SWDIO                |
| PC2      | 78         | TDI                  |                      |
| PC3      | 77         | TDO                  | SWO                  |
| PC4      | 25         | CCP5                 |                      |
| PC5      | 24         | C1+                  |                      |
| PC6      | 23         | C2+                  |                      |
| PC7      | 22         | C2-                  |                      |
| PDO      | 10         | CANORx               |                      |
| PD1      | 11         | CANOTx               |                      |
| PD2      | 12         | UlRx                 |                      |
| PD3      | 13         | UlTx                 |                      |
| PD4      | 95         | CCP3                 |                      |
| PD5      | 96         |                      |                      |
| PD6      | 99         |                      |                      |
| PD7      | 100        | COo                  |                      |
| PEO      | 72         |                      |                      |
| PE1      | 73         |                      |                      |
| PE2      | 74         |                      |                      |
| PE3      | 75         |                      |                      |
| PF0      | 47         |                      |                      |
| PF1      | 61         |                      |                      |
| PF2      | 60         |                      |                      |
| PF3      | 59         |                      |                      |
| PF4      | 58         |                      |                      |
| PF5      | 46         |                      |                      |
| PF6      | 43         |                      |                      |
| PF7      | 42         |                      |                      |
| PG0      | 19         |                      |                      |
| PG1      | 18         |                      |                      |
| PG2      | 17         |                      |                      |
| PG3      | 16         |                      |                      |
| PG4      | 41         |                      |                      |
| PG5      | 40         |                      |                      |
| PG6      | 37         |                      |                      |
| PG7      | 36         |                      |                      |
| PH0      | 86         |                      |                      |
| PH1      | 85         |                      |                      |

| GPIO Pin | Pin Number | Multiplexed Function | Multiplexed Function |
|----------|------------|----------------------|----------------------|
| PH2      | 84         |                      |                      |
| PH3      | 83         |                      |                      |

# **19 Operating Characteristics**

#### **Table 19-1. Temperature Characteristics**

| Characteristic                           | Symbol         | Value      | Unit |  |  |  |  |
|------------------------------------------|----------------|------------|------|--|--|--|--|
| Operating temperature range <sup>a</sup> | T <sub>A</sub> | -40 to +85 | °C   |  |  |  |  |
| - Maufanung atoma atoma antina in 15080  |                |            |      |  |  |  |  |

a. Maximum storage temperature is 150°C.

#### **Table 19-2. Thermal Characteristics**

| Characteristic                                        | Symbol        | Value                                 | Unit |  |
|-------------------------------------------------------|---------------|---------------------------------------|------|--|
| Thermal resistance (junction to ambient) <sup>a</sup> | $\Theta_{JA}$ | 55.3                                  | °C/W |  |
| Average junction temperature <sup>b</sup>             | TJ            | $T_A + (P_{AVG} \bullet \Theta_{JA})$ | °C   |  |

a. Junction to ambient thermal resistance  $\theta_{JA}$  numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

# 20 Electrical Characteristics

## 20.1 DC Characteristics

## 20.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

| Table 20-1 | Maximum | Ratings |
|------------|---------|---------|
|------------|---------|---------|

| Characteristic                            | Symbol            |      |     | Unit |
|-------------------------------------------|-------------------|------|-----|------|
| ŭ                                         |                   | Min  | Max |      |
| I/O supply voltage (V <sub>DD</sub> )     | V <sub>DD</sub>   | 0    | 4   | V    |
| Core supply voltage (V <sub>DD25</sub> )  | V <sub>DD25</sub> | 0    | 4   | V    |
| Analog supply voltage (V <sub>DDA</sub> ) | V <sub>DDA</sub>  | 0    | 4   | V    |
| Input voltage                             | V <sub>IN</sub>   | -0.3 | 5.5 | V    |
| Maximum current per output pins           | I                 | -    | 25  | mA   |

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V<sub>DD</sub>).

## 20.1.2 Recommended DC Operating Conditions

#### Table 20-2. Recommended DC Operating Conditions

| Parameter         | Parameter Name                                      | Min                   | Nom | Max                   | Unit |
|-------------------|-----------------------------------------------------|-----------------------|-----|-----------------------|------|
| V <sub>DD</sub>   | I/O supply voltage                                  | 3.0                   | 3.3 | 3.6                   | V    |
| V <sub>DD25</sub> | Core supply voltage                                 | 2.25                  | 2.5 | 2.75                  | V    |
| V <sub>DDA</sub>  | Analog supply voltage                               | 3.0                   | 3.3 | 3.6                   | V    |
| V <sub>IH</sub>   | High-level input voltage                            | 2.0                   | -   | 5.0                   | V    |
| V <sub>IL</sub>   | Low-level input voltage                             | -0.3                  | -   | 1.3                   | V    |
| V <sub>SIH</sub>  | High-level input voltage for Schmitt trigger inputs | 0.8 * V <sub>DD</sub> | -   | V <sub>DD</sub>       | V    |
| V <sub>SIL</sub>  | Low-level input voltage for Schmitt trigger inputs  | 0                     | -   | 0.2 * V <sub>DD</sub> | V    |
| V <sub>OH</sub>   | High-level output voltage                           | 2.4                   | -   | -                     | V    |
| V <sub>OL</sub>   | Low-level output voltage                            | -                     | -   | 0.4                   | V    |
| I <sub>OH</sub>   | High-level source current, V <sub>OH</sub> =2.4 V   |                       |     |                       |      |
|                   | 2-mA Drive                                          | 2.0                   | -   | -                     | mA   |
|                   | 4-mA Drive                                          | 4.0                   | -   | -                     | mA   |
|                   | 8-mA Drive                                          | 8.0                   | -   | -                     | mA   |

| Parameter       | Parameter Name                          |            | Min | Nom | Мах | Unit |
|-----------------|-----------------------------------------|------------|-----|-----|-----|------|
| I <sub>OL</sub> | Low-level sink current, $V_{OL}$ =0.4 V |            |     |     |     |      |
|                 |                                         | 2-mA Drive | 2.0 | -   | -   | mA   |
|                 |                                         | 4-mA Drive | 4.0 | -   | -   | mA   |
|                 |                                         | 8-mA Drive | 8.0 | -   | -   | mA   |

### 20.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

#### Table 20-3. LDO Regulator Characteristics

| Parameter           | Parameter Name                                           | Min  | Nom | Мах  | Unit |
|---------------------|----------------------------------------------------------|------|-----|------|------|
| V <sub>LDOOUT</sub> | Programmable internal (logic) power supply output value  | 2.25 | 2.5 | 2.75 | V    |
|                     | Output voltage accuracy                                  | -    | 2%  | -    | %    |
| t <sub>PON</sub>    | Power-on time                                            | -    | -   | 100  | μs   |
| t <sub>ON</sub>     | Time on                                                  | -    | -   | 200  | μs   |
| t <sub>OFF</sub>    | Time off                                                 | -    | -   | 100  | μs   |
| V <sub>STEP</sub>   | Step programming incremental voltage                     | -    | 50  | -    | mV   |
| C <sub>LDO</sub>    | External filter capacitor size for internal power supply | -    | 1   | -    | μF   |

#### 20.1.4 **Power Specifications**

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V<sub>DD</sub> = 3.3 V
- V<sub>DD25</sub> = 2.50 V
- V<sub>DDA</sub> = 3.3 V
- Temperature = 25°C
- Clock Source (MOSC) =3.579545 MHz Crystal Oscillator
- Main oscillator (MOSC) = enabled
- Internal oscillator (IOSC) = disabled

| Parameter             | Parameter Name    | Conditions                         | 3.3 V V <sub>DD</sub> , V <sub>DDA</sub> ,<br>V <sub>DDPHY</sub> |                      | 2.5  | V V <sub>DD25</sub>  | Unit |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------|-------------------|------------------------------------|------------------------------------------------------------------|----------------------|------|----------------------|------|--|--|--|--|--|--|--|--|--|--|--|--|--|
|                       |                   |                                    | Nom                                                              | Max                  | Nom  | Max                  | 1    |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I <sub>DD_RUN</sub>   | Run mode 1 (Flash | V <sub>DD25</sub> = 2.50 V         | 3                                                                | pending <sup>a</sup> | 64   | pending <sup>a</sup> | mA   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       | loop)             | Code= while(1){} executed in Flash |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | Peripherals = All ON               |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | System Clock = 25 MHz (with PLL)   |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       | Run mode 2 (Flash | V <sub>DD25</sub> = 2.50 V         | 0                                                                | pending <sup>a</sup> | 33   | pending <sup>a</sup> | mA   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       | loop)             | Code= while(1){} executed in Flash |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | Peripherals = All OFF              |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | System Clock = 25 MHz (with PLL)   |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       | Run mode 1 (SRAM  | V <sub>DD25</sub> = 2.50 V         | 3                                                                | pending <sup>a</sup> | 57   | pending <sup>a</sup> | mA   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       | loop)             | Code= while(1){} executed in SRAM  |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | Peripherals = All ON               |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | System Clock = 25 MHz (with PLL)   |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       | Run mode 2 (SRAM  | V <sub>DD25</sub> = 2.50 V         | 0                                                                | pending <sup>a</sup> | 27   | pending <sup>a</sup> | mA   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       | loop)             | Code= while(1){} executed in SRAM  |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | Peripherals = All OFF              |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | System Clock = 25 MHz (with PLL)   |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I <sub>DD_SLEEP</sub> | Sleep mode        | V <sub>DD25</sub> = 2.50 V         | 0                                                                | pending <sup>a</sup> | 12   | pending <sup>a</sup> | mA   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | Peripherals = All OFF              |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | System Clock = 25 MHz (with PLL)   |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| IDD_DEEPSLEEP         | Deep-Sleep mode   | LDO = 2.25 V                       | 0.14                                                             | pending <sup>a</sup> | 0.18 | pending <sup>a</sup> | mA   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | Peripherals = All OFF              |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |                   | System Clock = IOSC30KHZ/64        |                                                                  |                      |      |                      |      |  |  |  |  |  |  |  |  |  |  |  |  |  |

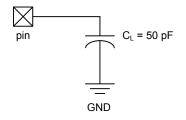
#### Table 20-4. Detailed Power Specifications

a. Pending characterization completion.

## 20.1.5 Flash Memory Characteristics

## Table 20-5. Flash Memory Characteristics

| Parameter          | Parameter Name                                                        | Min    | Nom     | Мах | Unit   |
|--------------------|-----------------------------------------------------------------------|--------|---------|-----|--------|
| PE <sub>CYC</sub>  | Number of guaranteed program/erase cycles before failure <sup>a</sup> | 10,000 | 100,000 | -   | cycles |
| T <sub>RET</sub>   | Data retention at average operating temperature of 85°C               | 10     | -       | -   | years  |
| T <sub>PROG</sub>  | Word program time                                                     | 20     | -       | -   | μs     |
| T <sub>ERASE</sub> | Page erase time                                                       | 20     | -       | -   | ms     |
| T <sub>ME</sub>    | Mass erase time                                                       | 200    | -       | -   | ms     |


a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

# 20.2 AC Characteristics

### 20.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

#### Figure 20-1. Load Conditions



### 20.2.2 Clocks

| Table 20-6. Phase Locked Loop (PLL) Characteristics | Table 20-6. | Phase L | _ocked | Loop | (PLL) | <b>Characteristics</b> |
|-----------------------------------------------------|-------------|---------|--------|------|-------|------------------------|
|-----------------------------------------------------|-------------|---------|--------|------|-------|------------------------|

| Parameter                | Parameter Name                        | Min      | Nom | Max   | Unit |
|--------------------------|---------------------------------------|----------|-----|-------|------|
| f <sub>ref_crystal</sub> | Crystal reference <sup>a</sup>        | 3.579545 | -   | 8.192 | MHz  |
| f <sub>ref_ext</sub>     | External clock reference <sup>a</sup> | 3.579545 | -   | 8.192 | MHz  |
| f <sub>pll</sub>         | PLL frequency <sup>b</sup>            | -        | 400 | -     | MHz  |
| T <sub>READY</sub>       | PLL lock time                         | -        | -   | 0.5   | ms   |

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

#### Table 20-7. Clock Characteristics

| Parameter                       | Parameter Name                                                   | Min | Nom | Max  | Unit |
|---------------------------------|------------------------------------------------------------------|-----|-----|------|------|
| f <sub>IOSC</sub>               | Internal 12 MHz oscillator frequency                             | 8.4 | 12  | 15.6 | MHz  |
| f <sub>IOSC30KHZ</sub>          | Internal 30 KHz oscillator frequency                             | 21  | 30  | 39   | KHz  |
| f <sub>MOSC</sub>               | Main oscillator frequency                                        | 1   | -   | 8    | MHz  |
| t <sub>MOSC_per</sub>           | Main oscillator period                                           | 125 | -   | 1000 | ns   |
| f <sub>ref_crystal_bypass</sub> | Crystal reference using the main oscillator (PLL in BYPASS mode) | 1   | -   | 8    | MHz  |
| f <sub>ref_ext_bypass</sub>     | External clock reference (PLL in BYPASS mode) <sup>a</sup>       | 0   | -   | 25   | MHz  |
| f <sub>system_clock</sub>       | System clock                                                     | 0   | -   | 25   | MHz  |

a. The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly.

#### Table 20-8. Crystal Characteristics

| Parameter Name      | Value    |          |          |          |        |  |
|---------------------|----------|----------|----------|----------|--------|--|
| Frequency           | 8        | 6        | 4        | 3.5      | MHz    |  |
| Frequency tolerance | ±50      | ±50      | ±50      | ±50      | ppm    |  |
| Aging               | ±5       | ±5       | ±5       | ±5       | ppm/yr |  |
| Oscillation mode    | Parallel | Parallel | Parallel | Parallel |        |  |

| Parameter Name                     |      | Units |      |      |     |
|------------------------------------|------|-------|------|------|-----|
| Temperature stability (0 - 85 °C)  | ±25  | ±25   | ±25  | ±25  | ppm |
| Motional capacitance (typ)         | 27.8 | 37.0  | 55.6 | 63.5 | pF  |
| Motional inductance (typ)          | 14.3 | 19.1  | 28.6 | 32.7 | mH  |
| Equivalent series resistance (max) | 120  | 160   | 200  | 220  | Ω   |
| Shunt capacitance (max)            | 10   | 10    | 10   | 10   | pF  |
| Load capacitance (typ)             | 16   | 16    | 16   | 16   | pF  |
| Drive level (typ)                  | 100  | 100   | 100  | 100  | μW  |

## 20.2.3 Temperature Sensor

## Table 20-9. Temperature Sensor Characteristics

| Parameter          | Parameter Name                      |     | Nom | Max  | Unit |
|--------------------|-------------------------------------|-----|-----|------|------|
| V <sub>TSO</sub>   | Output voltage                      | 0.3 | -   | 2.7  | V    |
| t <sub>TSERR</sub> | Output voltage temperature accuracy | -   | -   | ±3.5 | °C   |
| t <sub>TSNL</sub>  | Output temperature nonlinearity     | -   | -   | ±1   | °C   |

## 20.2.4 Analog-to-Digital Converter

#### Table 20-10. ADC Characteristics

| Parameter            | Parameter Name                                        | Min | Nom | Max  | Unit                                 |
|----------------------|-------------------------------------------------------|-----|-----|------|--------------------------------------|
| V <sub>ADCIN</sub>   | Maximum single-ended, full-scale analog input voltage | -   | -   | 3.0  | V                                    |
|                      | Minimum single-ended, full-scale analog input voltage | -   | -   | 0    | V                                    |
|                      | Maximum differential, full-scale analog input voltage | -   | -   | 1.5  | V                                    |
|                      | Minimum differential, full-scale analog input voltage | -   | -   | -1.5 | V                                    |
| C <sub>ADCIN</sub>   | Equivalent input capacitance                          | -   | 1   | -    | pF                                   |
| N                    | Resolution                                            | -   | 10  | -    | bits                                 |
| f <sub>ADC</sub>     | ADC internal clock frequency                          | 3.5 | 4   | 4.5  | MHz                                  |
| t <sub>ADCCONV</sub> | Conversion time                                       | -   | -   | 16   | t <sub>ADC</sub> cycles <sup>a</sup> |
| f ADCCONV            | Conversion rate                                       | 219 | 250 | 281  | k samples/s                          |
| INL                  | Integral nonlinearity                                 | -   | -   | ±1   | LSB                                  |
| DNL                  | Differential nonlinearity                             | -   | -   | ±1   | LSB                                  |
| OFF                  | Offset                                                | -   | -   | ±1   | LSB                                  |
| GAIN                 | Gain                                                  | -   | -   | ±1   | LSB                                  |

a. t<sub>ADC</sub>= 1/f<sub>ADC clock</sub>

## 20.2.5 Analog Comparator

## Table 20-11. Analog Comparator Characteristics

| Parameter        | Parameter Name                  | Min | Nom | Мах                  | Unit |
|------------------|---------------------------------|-----|-----|----------------------|------|
| V <sub>OS</sub>  | Input offset voltage            | -   | ±10 | ±25                  | mV   |
| V <sub>CM</sub>  | Input common mode voltage range | 0   | -   | V <sub>DD</sub> -1.5 | V    |
| C <sub>MRR</sub> | Common mode rejection ratio     | 50  | -   | -                    | dB   |
| T <sub>RT</sub>  | Response time                   | -   | -   | 1                    | μs   |

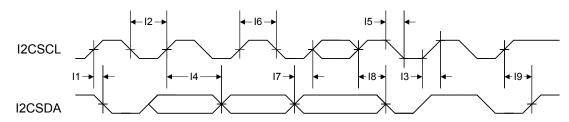
| Parameter       | Parameter Name                         | Min | Nom | Мах | Unit |
|-----------------|----------------------------------------|-----|-----|-----|------|
| T <sub>MC</sub> | Comparator mode change to Output Valid | -   | -   | 10  | μs   |

#### Table 20-12. Analog Comparator Voltage Reference Characteristics

| Parameter       | Parameter Name               | Min | Nom                 | Max  | Unit |
|-----------------|------------------------------|-----|---------------------|------|------|
| R <sub>HR</sub> | Resolution high range        | -   | V <sub>DD</sub> /32 | -    | LSB  |
| R <sub>LR</sub> | Resolution low range         | -   | V <sub>DD</sub> /24 | -    | LSB  |
| A <sub>HR</sub> | Absolute accuracy high range | -   | -                   | ±1/2 | LSB  |
| A <sub>LR</sub> | Absolute accuracy low range  | -   | -                   | ±1/4 | LSB  |

## 20.2.6 I<sup>2</sup>C

## Table 20-13. I<sup>2</sup>C Characteristics


| Parameter No.   | Parameter         | Parameter Name                                                             | Min | Nom | Max          | Unit          |
|-----------------|-------------------|----------------------------------------------------------------------------|-----|-----|--------------|---------------|
| l1 <sup>a</sup> | t <sub>SCH</sub>  | Start condition hold time                                                  | 36  | -   | -            | system clocks |
| l2 <sup>a</sup> | t <sub>LP</sub>   | Clock Low period                                                           | 36  | -   | -            | system clocks |
| I3 <sup>b</sup> | t <sub>SRT</sub>  | I2CSCL/I2CSDA rise time (V <sub>IL</sub> =0.5 V to V <sub>IH</sub> =2.4 V) | -   | -   | (see note b) | ns            |
| l4 <sup>a</sup> | t <sub>DH</sub>   | Data hold time                                                             | 2   | -   | -            | system clocks |
| I5 <sup>c</sup> | t <sub>SFT</sub>  | I2CSCL/I2CSDA fall time (V <sub>IH</sub> =2.4 V to V <sub>IL</sub> =0.5 V) | -   | 9   | 10           | ns            |
| l6 <sup>a</sup> | t <sub>HT</sub>   | Clock High time                                                            | 24  | -   | -            | system clocks |
| I7 <sup>a</sup> | t <sub>DS</sub>   | Data setup time                                                            | 18  | -   | -            | system clocks |
| I8 <sup>a</sup> | t <sub>SCSR</sub> | Start condition setup time (for repeated start condition only)             | 36  | -   | -            | system clocks |
| l9 <sup>a</sup> | t <sub>SCS</sub>  | Stop condition setup time                                                  | 24  | -   | -            | system clocks |

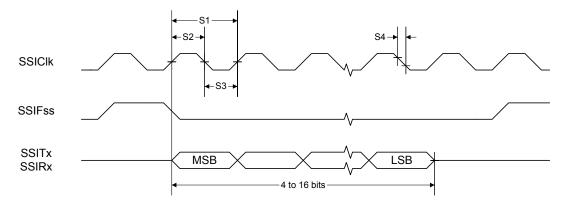
a. Values depend on the value programmed into the TPR bit in the I<sup>2</sup>C Master Timer Period (I2CMTPR) register; a TPR programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table above. The I<sup>2</sup>C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are minimum values.

b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

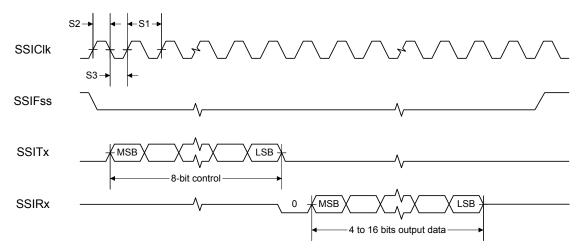
c. Specified at a nominal 50 pF load.

## Figure 20-2. I<sup>2</sup>C Timing




## 20.2.7 Synchronous Serial Interface (SSI)

#### Table 20-14. SSI Characteristics


| Parameter No. | Parameter            | Parameter Name    | Min | Nom | Max   | Unit          |
|---------------|----------------------|-------------------|-----|-----|-------|---------------|
| S1            | t <sub>clk_per</sub> | SSIClk cycle time | 2   | -   | 65024 | system clocks |

| Parameter No. | Parameter             | Parameter Name                    | Min | Nom | Max | Unit      |
|---------------|-----------------------|-----------------------------------|-----|-----|-----|-----------|
| S2            | t <sub>clk_high</sub> | SSIClk high time                  | -   | 1/2 | -   | t clk_per |
| S3            | t <sub>clk_low</sub>  | SSIC1k low time                   | -   | 1/2 | -   | t clk_per |
| S4            | t <sub>clkrf</sub>    | SSIClk rise/fall time             | -   | 7.4 | 26  | ns        |
| S5            | t <sub>DMd</sub>      | Data from master valid delay time | 0   | -   | 20  | ns        |
| S6            | t <sub>DMs</sub>      | Data from master setup time       | 20  | -   | -   | ns        |
| S7            | t <sub>DMh</sub>      | Data from master hold time        | 40  | -   | -   | ns        |
| S8            | t <sub>DSs</sub>      | Data from slave setup time        | 20  | -   | -   | ns        |
| S9            | t <sub>DSh</sub>      | Data from slave hold time         | 40  | -   | -   | ns        |

## Figure 20-3. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement



## Figure 20-4. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer



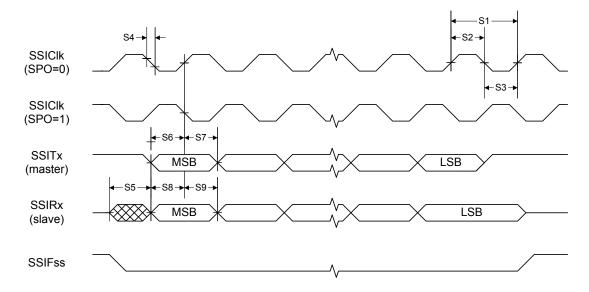
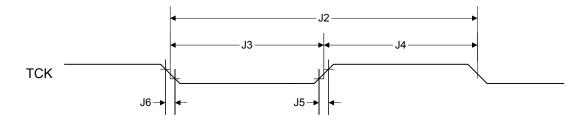
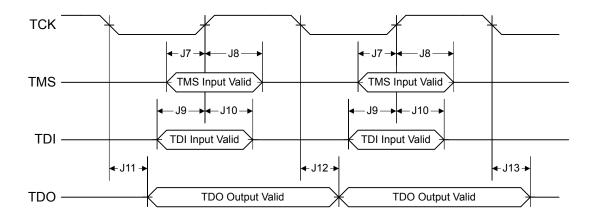


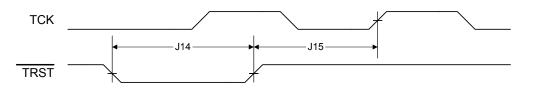

Figure 20-5. SSI Timing for SPI Frame Format (FRF=00), with SPH=1


# 20.2.8 JTAG and Boundary Scan

#### Table 20-15. JTAG Characteristics


| Parameter No.        | Parameter                              | Parameter Name                    | Min | Nom              | Мах | Unit |
|----------------------|----------------------------------------|-----------------------------------|-----|------------------|-----|------|
| J1                   | f <sub>TCK</sub>                       | TCK operational clock frequency   | 0   | -                | 10  | MHz  |
| J2                   | t <sub>TCK</sub>                       | TCK operational clock period      | 100 | -                | -   | ns   |
| J3                   | t <sub>TCK_LOW</sub>                   | TCK clock Low time                | -   | t <sub>TCK</sub> | -   | ns   |
| J4                   | <sup>t</sup> тск_нідн                  | TCK clock High time               | -   | t <sub>TCK</sub> | -   | ns   |
| J5                   | t <sub>TCK_R</sub>                     | TCK rise time                     | 0   | -                | 10  | ns   |
| J6                   | t <sub>TCK_F</sub>                     | TCK fall time                     | 0   | -                | 10  | ns   |
| J7                   | t <sub>TMS_SU</sub>                    | TMS setup time to TCK rise        | 20  | -                | -   | ns   |
| J8                   | t <sub>TMS_HLD</sub>                   | TMS hold time from TCK rise       | 20  | -                | -   | ns   |
| J9                   | t <sub>TDI_SU</sub>                    | TDI setup time to TCK rise        | 25  | -                | -   | ns   |
| J10                  | t <sub>TDI_HLD</sub>                   | TDI hold time from TCK rise       | 25  | -                | -   | ns   |
| J11                  | TCK fall to Data Valid from High-Z     | 2-mA drive                        | -   | 23               | 35  | ns   |
| t <sub>TDO_ZDV</sub> |                                        | 4-mA drive                        |     | 15               | 26  | ns   |
|                      |                                        | 8-mA drive                        |     | 14               | 25  | ns   |
|                      |                                        | 8-mA drive with slew rate control |     | 18               | 29  | ns   |
| J12                  | TCK fall to Data Valid from Data Valid | 2-mA drive                        | -   | 21               | 35  | ns   |
| t <sub>TDO_DV</sub>  |                                        | 4-mA drive                        |     | 14               | 25  | ns   |
|                      |                                        | 8-mA drive                        |     | 13               | 24  | ns   |
|                      |                                        | 8-mA drive with slew rate control |     | 18               | 28  | ns   |

| Parameter No.        | Parameter                          | Parameter Name                    | Min | Nom | Max | Unit |
|----------------------|------------------------------------|-----------------------------------|-----|-----|-----|------|
| J13                  | TCK fall to High-Z from Data Valid | 2-mA drive                        | -   | 9   | 11  | ns   |
| t <sub>TDO DVZ</sub> |                                    | 4-mA drive                        |     | 7   | 9   | ns   |
| _                    |                                    | 8-mA drive                        |     | 6   | 8   | ns   |
|                      |                                    | 8-mA drive with slew rate control |     | 7   | 9   | ns   |
| J14                  | t <sub>TRST</sub>                  | TRST assertion time               | 100 | -   | -   | ns   |
| J15                  | t <sub>TRST_SU</sub>               | TRST setup time to TCK rise       | 10  | -   | -   | ns   |


#### Figure 20-6. JTAG Test Clock Input Timing



#### Figure 20-7. JTAG Test Access Port (TAP) Timing



#### Figure 20-8. JTAG TRST Timing

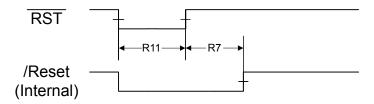


## 20.2.9 General-Purpose I/O

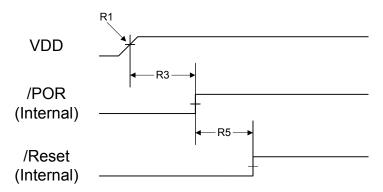
**Note:** All GPIOs are 5 V-tolerant.

| Parameter          | Parameter Name                                               | Condition                         | Min | Nom | Max | Unit |
|--------------------|--------------------------------------------------------------|-----------------------------------|-----|-----|-----|------|
| t <sub>GPIOR</sub> | GPIO Rise Time (from 20% to 80% of $\mathrm{V}_\mathrm{DD})$ | 2-mA drive                        | -   | 17  | 26  | ns   |
|                    |                                                              | 4-mA drive                        |     | 9   | 13  | ns   |
|                    |                                                              | 8-mA drive                        |     | 6   | 9   | ns   |
|                    |                                                              | 8-mA drive with slew rate control |     | 10  | 12  | ns   |
| t <sub>GPIOF</sub> | GPIO Fall Time (from 80% to 20% of $V_{DD}$ )                | 2-mA drive                        | -   | 17  | 25  | ns   |
|                    |                                                              | 4-mA drive                        |     | 8   | 12  | ns   |
|                    |                                                              | 8-mA drive                        |     | 6   | 10  | ns   |
|                    |                                                              | 8-mA drive with slew rate control |     | 11  | 13  | ns   |

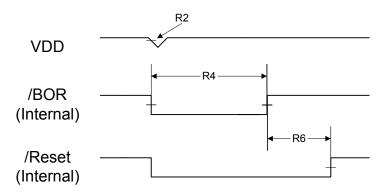
#### Table 20-16. GPIO Characteristics


## 20.2.10 Reset

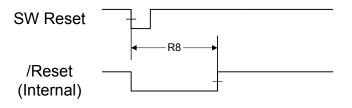
#### Table 20-17. Reset Characteristics


| Parameter No. | Parameter            | Parameter Name                                                               | Min  | Nom | Max  | Unit |
|---------------|----------------------|------------------------------------------------------------------------------|------|-----|------|------|
| R1            | V <sub>TH</sub>      | Reset threshold                                                              |      | 2.0 | -    | V    |
| R2            | V <sub>BTH</sub>     | Brown-Out threshold                                                          | 2.85 | 2.9 | 2.95 | V    |
| R3            | T <sub>POR</sub>     | Power-On Reset timeout                                                       | -    | 10  | -    | ms   |
| R4            | T <sub>BOR</sub>     | Brown-Out timeout                                                            | -    | 500 | -    | μs   |
| R5            | T <sub>IRPOR</sub>   | Internal reset timeout after POR                                             | 6    | -   | 11   | ms   |
| R6            | T <sub>IRBOR</sub>   | Internal reset timeout after BOR <sup>a</sup>                                | 0    | -   | 1    | μs   |
| R7            | T <sub>IRHWR</sub>   | Internal reset timeout after hardware reset ( $\overline{\mathtt{RST}}$ pin) | 0    | -   | 1    | ms   |
| R8            | T <sub>IRSWR</sub>   | Internal reset timeout after software-initiated system reset a               | 2.5  | -   | 20   | μs   |
| R9            | T <sub>IRWDR</sub>   | Internal reset timeout after watchdog reset <sup>a</sup>                     | 2.5  | -   | 20   | μs   |
| R10           | T <sub>VDDRISE</sub> | Supply voltage (V <sub>DD</sub> ) rise time (0V-3.3V)                        | -    | -   | 100  | ms   |
| R11           | T <sub>MIN</sub>     | Minimum RST pulse width                                                      | 2    | -   | -    | μs   |

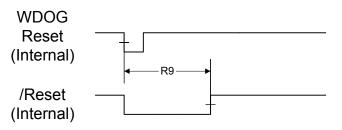
a. 20 \* t <sub>MOSC\_per</sub>


## Figure 20-9. External Reset Timing (RST)



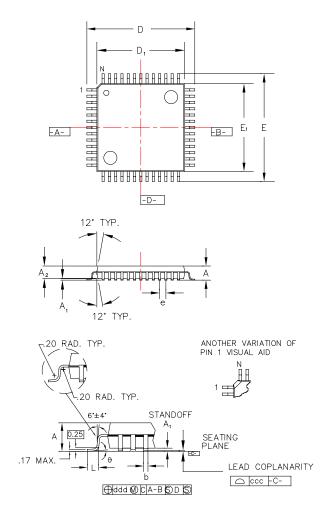

#### Figure 20-10. Power-On Reset Timing




#### Figure 20-11. Brown-Out Reset Timing



#### Figure 20-12. Software Reset Timing




#### Figure 20-13. Watchdog Reset Timing



# 21 Package Information

#### Figure 21-1. 100-Pin LQFP Package



#### Notes

- 1. All dimensions shown in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- 3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.
- 4. L/F: Eftec 64T Cu or equivalent, 0.127 mm (0.005") or 0.152 mm (0.006") thick.
- 5. Use variation BED for body dimensions.

| Body +2.00 mm Footprint, 1.4 mm package thickness |       |                     |  |  |
|---------------------------------------------------|-------|---------------------|--|--|
| Symbols                                           | Leads | 100L                |  |  |
| A                                                 | Max.  | 1.60                |  |  |
| A <sub>1</sub>                                    |       | 0.05 Min./0.15 Max. |  |  |

| A <sub>2</sub> | ±0.05                   | 1.40  |
|----------------|-------------------------|-------|
| D              | ±0.20                   | 16.00 |
| D <sub>1</sub> | ±0.05                   | 14.00 |
| E              | ±0.20                   | 16.00 |
| E <sub>1</sub> | ±0.05                   | 14.00 |
| L              | ±0.15/-0.10             | 0.60  |
| е              | BASIC                   | 0.50  |
| b              | ±0.05                   | 0.22  |
| θ              |                         | 0°~7° |
| ddd            | Max.                    | 0.08  |
| CCC            | Max.                    | 0.08  |
| JEDEC Refer    | JEDEC Reference Drawing |       |
| Variation [    | BED                     |       |

# A Serial Flash Loader

# A.1 Serial Flash Loader

The Stellaris<sup>®</sup> serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

## A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

## A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris<sup>®</sup> device.

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2\*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2\*(20/115200) or 0.35 ms.

### A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See the section on SSI formats for more details on this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

# A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

### A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
Data
                               This is the raw data intended for the device, which is formatted in
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

## A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the commands that interact with the flash.

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet were valid, just that the packet was received correctly.

## A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

## A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

## A.4.1 COMMAND\_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

```
Byte[0] = 0x03;
Byte[1] = checksum(Byte[2]);
Byte[2] = COMMAND_PING;
```

The ping command has 3 bytes and the value for COMMAND\_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

## A.4.2 COMMAND\_GET\_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND\_GET\_STATUS

## A.4.3 COMMAND\_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND\_SEND\_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND\_GET\_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11

Byte[1] = checksum(Bytes[2:10])

Byte[2] = COMMAND_DOWNLOAD

Byte[3] = Program Address [31:24]

Byte[4] = Program Address [23:16]

Byte[5] = Program Address [7:0]

Byte[6] = Program Size [31:24]

Byte[8] = Program Size [23:16]

Byte[9] = Program Size [15:8]

Byte[10] = Program Size [7:0]
```

## A.4.4 COMMAND\_SEND\_DATA (0x24)

This command should only follow a COMMAND\_DOWNLOAD command or another COMMAND\_SEND\_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND\_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND\_GET\_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

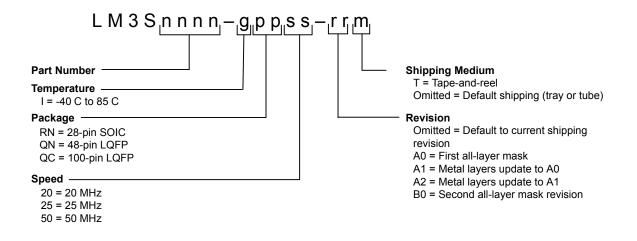
```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

## A.4.5 COMMAND\_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

## A.4.6 COMMAND\_RESET (0x25)


This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND\_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

```
Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET
```

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

# **B** Ordering and Contact Information

# B.1 Ordering Information



#### Table B-1. Part Ordering Information

| Orderable Part Number | Description                                     |
|-----------------------|-------------------------------------------------|
| LM3S2139-IQC25        | Stellaris <sup>®</sup> LM3S2139 Microcontroller |

## B.2 Company Information

Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs). Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit microcontroller designs. With entry-level pricing at \$1.00 for an ARM technology-based MCU, Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural upgrades or software tool changes.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com sales@luminarymicro.com

## B.3 Support Information

For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3