

Dual Channel Small Outline Optoisolators Transistor Output

These devices consist of two gallium arsenide infrared emitting diodes optically coupled to two monolithic silicon phototransistor detectors, in a surface mountable, small outline, plastic package. They are ideally suited for high density applications and eliminate the need for through–the–board mounting.

- • Dual Channel Coupler
- Convenient Plastic SOIC–8 Surface Mountable Package Style
- Closely Matched Current Transfer Ratios to Minimize Unit-to-Unit Variation
- Minimum V(BR)CEO of 70 Volts Guaranteed
- Standard SOIC–8 Footprint, with 0.050" Lead Spacing
- Compatible with Dual Wave, Vapor Phase and IR Reflow Soldering
- High Input-Output Isolation of 3000 Vac (rms) Guaranteed
- Meets U.L. Regulatory Requirements, File #E90700, Volume 2

Ordering Information:

- •To obtain MOCD207, 208 in tape and reel, add R2 suffix to device numbers as follows:
 R2 = 2500 units on 13" reel
- •To obtain MOCD207, 208 in quantities of 50 (shipped in sleeves) no suffix

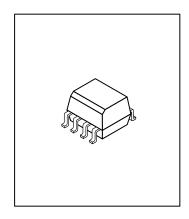
Marking Information:

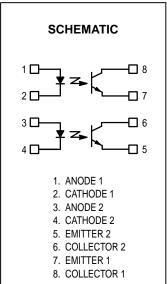
- MOCD207 = D207
- MOCD208 = D208

Applications:

- Feedback Control Circuits
- Interfacing and Coupling Systems of Different Potentials and Impedances
- General Purpose Switching Circuits
- · Monitor and Detection Circuits

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit	
INPUT LED				
Forward Current — Continuous	lF	60	mA	
Forward Current — Peak (PW = 100 μs, 120 pps)	IF(pk)	1.0	Α	
Reverse Voltage	٧R	6.0	V	
LED Power Dissipation @ T _A = 25°C Derate above 25°C	PD	90 0.8	mW mW/°C	


OUTPUT TRANSISTOR

Collector–Emitter Voltage	VCEO	70	V
Collector–Base Voltage	VCBO	70	V
Emitter–Collector Voltage	VECO	7.0	V
Collector Current — Continuous	IC	150	mA
Detector Power Dissipation @ T _A = 25°C Derate above 25°C	PD	150 1.76	mW mW/°C

MOCD207 MOCD208

DUAL CHANNEL SMALL OUTLINE OPTOISOLATORS TRANSISTOR OUTPUT

0.2

рF

MAXIMUM RATINGS—continued (T_A = 25°C unless otherwise noted)

Rating		Symbol	Value		Unit
TOTAL DEVICE					
Input-Output Isolation Voltage) ^(1,2) (60 Hz, 1.0 sec. duration)		VISO	30	000	Vac(rms)
Total Device Power Dissipation @ T _A = 25°C Derate above 25°C		PD		50 .94	mW mW/°C
Ambient Operating Temperature Range		TA	-45 to	o +100	°C
Storage Temperature Range		T _{stg}	-45 to	o +125	°C
Lead Soldering Temperature (1/16" from case, 10 sec. duration)		_	260		°C
ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise	se noted) ⁽³⁾		•	•	
Characteristic	Symbol	Min	Typ ⁽³⁾	Max	Unit
NPUT LED					
Forward Voltage (I _F = 30 mA)	VF	_	1.2	1.55	V
Reverse Leakage Current (V _R = 6.0 V)	I _R	_	0.1	100	μΑ
Capacitance	С	_	18	_	pF
DUTPUT TRANSISTOR					
Collector–Emitter Dark Current (V _{CE} = 10 V, T _A = 25°C)	I _{CEO} 1	_	1.0	50	nA
$(V_{CE} = 10 \text{ V}, T_A = 100^{\circ}\text{C})$	I _{CEO} 2	_	1.0	_	μА
Collector–Emitter Breakdown Voltage (I _C = 100 μA)	V(BR)CEO	70	120	_	V
Emitter–Collector Breakdown Voltage ($I_E = 100 \mu A$)	V(BR)ECO	7.0	7.8	_	V
Collector–Emitter Capacitance (f = 1.0 MHz, V _{CE} = 0)	C _{CE}	_	7.0	_	pF
COUPLED					
Output Collector Current MOCD207 $(I_F = 10 \text{ mA}, V_{CE} = 5 \text{ V})$ MOCD208	I _C (CTR) ⁽⁴⁾	10 (100) 4.0 (40)	15 (150) —	20 (200) 12.5 (125)	mA (%)
Output Collector Current MOCD207 $(I_F = 1 \text{ mA}, V_{CE} = 5 \text{ V})$ MOCD208	IC	3.4 1.3	7.0 3.0	_	mA
Collector–Emitter Saturation Voltage (I _C = 2.0 mA, I _F = 10 mA)	VCE(sat)	_	0.15	0.4	V
Turn–On Time (I _C = 2.0 mA, V_{CC} = 10 V, R_L = 100 Ω)	ton	_	3.0	_	μs
Turn–Off Time (I_C = 2.0 mA, V_{CC} = 10 V, R_L = 100 Ω)	t _{off}	_	2.8	_	μs
Rise Time (I _C = 2.0 mA, V_{CC} = 10 V, R_{L} = 100 Ω)	t _r	_	1.6	_	μs
Fall Time (I _C = 2.0 mA, V _{CC} = 10 V, R _L = 100 Ω)	t _f	_	2.2	_	μs
Input–Output Isolation Voltage (f = 60 Hz, t = 1.0 sec)(1,2)	Viso	3000	_	_	Vac(rms)
Isolation Resistance (V _{I–O} = 500 V) ⁽²⁾	RISO	1011	_	_	Ω
(0)		1		1	1

- 1. Input–Output Isolation Voltage, $V_{\mbox{\scriptsize ISO}}$, is an internal device dielectric breakdown rating.
- 2. For this test, pins 1, 2, 3 and 4 are common, and pins 5, 6 and 7 are common.
- 3. Always design to the specified minimum/maximum electrical limits (where applicable).
- 4. Current Transfer Ratio (CTR) = I_C/I_F x 100%.

Isolation Capacitance $(V_{I-O} = 0, f = 1.0 \text{ MHz})(2)$

TYPICAL CHARACTERISTICS

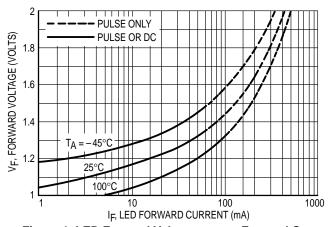


Figure 1. LED Forward Voltage versus Forward Current

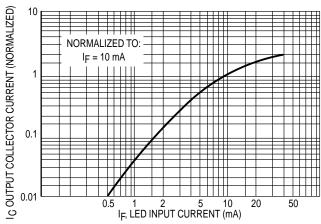


Figure 2. Output Current versus Input Current

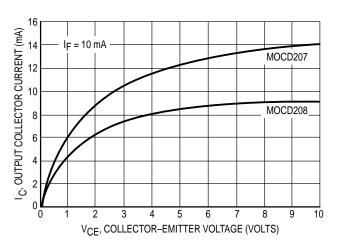


Figure 3. Output Current versus Collector–Emitter Voltage

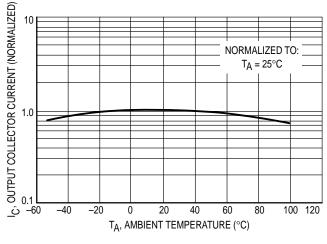


Figure 4. Output Current versus Ambient Temperature

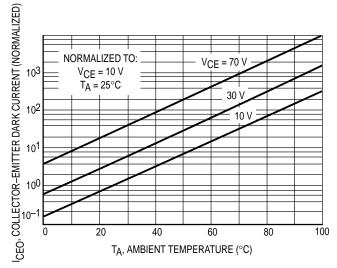


Figure 5. Dark Current versus Ambient Temperature

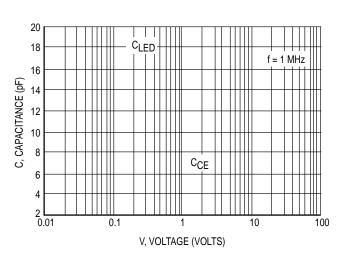
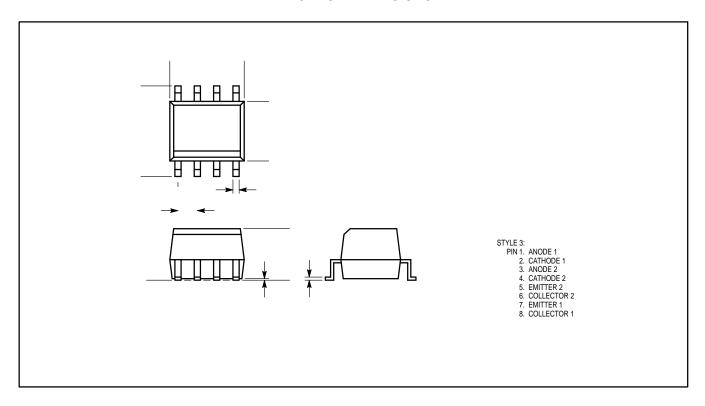



Figure 6. Capacitance versus Voltage

PACKAGE DIMENSIONS

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.