
X-BAND MIXER/DETECTOR DIODE

Silicon Schottky barrier diode in DO-23 outline specially designed for use in Doppler radar systems and intruder alarms where low 1/f noise and high sensitivity are required. May be used for both mixer and detector applications. This device is a direct replacement for the BAV46 and has an all-bonded structure capable of withstanding higher shock levels and wide temperature excursions during operation and storage.

QUICK REFERENCE DATA

Mixer mode Voltage output for -90 dBm input power at X-band 1/f noise in the bandwidth 1 Hz to 1 kHz from carrier	typ.	40	μV
	typ.	1.0	μV
Detector mode Tangential sensitivity in bandwidth 0 to 2 MHz	typ.	– 55	dBm

This data must be read in conjunction with GENERAL SAFETY RECOMMENDATIONS — MICROWAVE SEMICONDUCTORS

Terminal identification: diode symbol indicates polarity

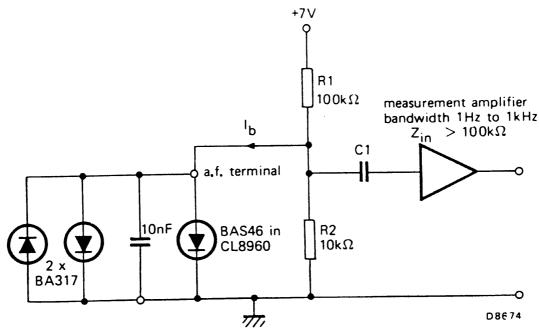
Accessory: collet type 56321 (see page 4) converts BAS46 to JEDEC DO-22 outline.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Storage temperature range	T _{stg}	-55 to +125		οС
Ambient temperature range for operation	T _{amb}	-55 to +125		οС
Reverse voltage	٧ _R	max.	2	V
Forward current	۱۴	max.	10	mA
CHARACTERISTICS (T _{amb} = 25 °C)				
Forward voltage at $I_F = 1 \text{ mA}$	٧ _F	typ.	0.5	V
Reverse current at $V_R = 2 V$	IR	max.	2	μΑ
→ Total capacitance at V _R = 0 V	CT	typ.	0.3	pF
Mixer mode				
Voltage output at X-band (notes 1 and 2)	V _o V _o	min. typ.	15 40	μV μV
1/ _f noise (note 3)	N _f N _f	typ. max.	1.0 2.0	μV μV
Detector mode				
Tangential sensitivity (note 4)	S _{ts} S _{ts}	min. typ.	-52 -55	dBm dBm
Video impedance (note 5)	Z _v	typ.	850	Ω

Notes


- 1. Mixer operated with d.c. bias of 35 μ A and r.f. bias of -18 dBm, giving a total bias of 42 μ A.
- Measurement made using CL8960 doppler radar module, output power 10 mW (typ.). The input power to the mixer of -90 dBm is a signal 100 dB down on the output power from a typical CL8960 with signal + noise at 18 dB (min.)

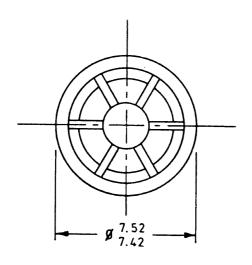
A return signal, 100 dB down on radiated power, is equivalent to that achieved from a man target of radar cross-section 1.0 m² at a range of 15 m when operating the CL8960 with a 5 dB antenna.

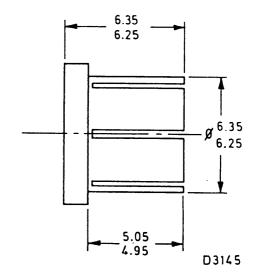
- 3. Noise measured in the bandwidth 1 Hz to 1 kHz from carrier with a d.c. bias of 50 μ A.
- 4. Bandwidth 0 to 2 MHz and a forward bias of 50 μ A.
- 5. Measured with a forward bias of 50 μ A.

Alternative capacitance versions and packages may be made available to suit customers' specific requirements

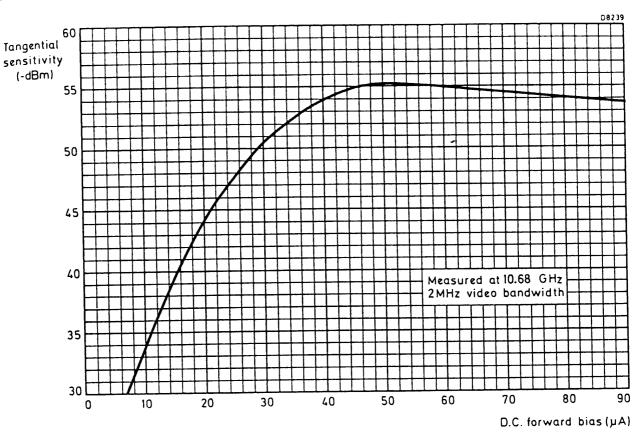
Measurement circuit:

- N.B. a) The current I_b should be approximately 35 μ A with the Gunn device disconnected and approximately 42 μ A with the Gunn device operational and the antenna operating into free space, using the mounting recommended in the CL8960 data.
 - b) The coupling capacitor C₁ should have a small impedance compared with Z_{in}. See measurement circuit above.

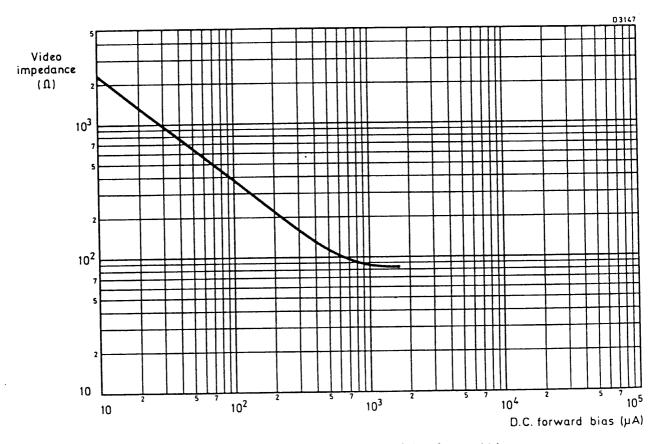

OPERATING PRECAUTIONS


Care must be taken when making measurements that the precautions described in the operating notes are observed and that test equipment does not introduce transients.

- 1. The diode has a low junction capacitance and may be damaged by transients of very short duration. It is therefore recommended that soldering irons are isolated from the mains supply when making soldered connections to the diode.
- 2. Precautions similar to those required for CMOS devices are necessary namely:
 - (a) Earthed wrist straps should be worn.
 - (b) Table tops or other working surfaces should be conductive and earthed.
 - (c) Anti-static clothing should be worn.
 - (d) To prevent the development of damaging transient voltages, the device should not be inserted or removed from the user's circuit with the d.c. power applied.
- 3. It is recommended that the user incorporates a diode protection circuit. A suitable circuit consists of two BA317 diodes connected in parallel but with one diode reversed, together with a parallel 10 nF capacitor. This circuit should be connected in close proximity to the diode terminals and has been found to afford a suitable degree of protection.
- 4. A d.c. bias level of at least 30 μA must be maintained to ensure adequate mixer performance.


COLLET 56321

Dimensions in mm



Typical tangential sensitivity as a function of d.c. forward bias.

Typical video impedance as a function of d.c. forward bias