Developing code for
the

element14 /Freescale
XL_STAR board

nt Revision: 1.04 07/2011

element iy

+

=~ freescale"

Please note — when using the XL_STAR for USB device development, via J1 (the
USB connector on the top side of the XL_STAR), the XL_STAR must be powered
via a USB cable connected to J6 (the USB connector on the underside of the
XL_STAR) before a USB cable is connected to J1.

If USB cables are not connected in this order the USB regulator on U1 will be
over loaded and permanent damage to U1 may occur.

For those of you who wish to permanently modify the XL_STAR board so that
this damage will not occur the picture below details a relatively simple
modification. In summary a via next to capacitor C1 on the top side of the
board must be drilled out breaking the connection of the +3.3V supply to C1
and C2. The break in connectivity can be confirmed by placing a multi-meter
set for resistance measurement between the +3.3V supply (top left plated
through hole) and the left hand pad of C2, which should show high impedance.

SETO[PTEs

o WO IPTES
.. 07.- rrcp | . . okt
o 6 [ransf-' NN ' OlpTes

QOI|PTE2

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can
and do vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by customer’s
technical experts. Freescale Semiconductor does not convey any license under its patent rights nor
the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for
use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Freescale
Semiconductor product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product
or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2011. All rights reserved

Table of Contents

1.

2.

INtrOAUCTION ... s e n e 6

XL_STAR board hardWareccciiiiieeeeciiiiiiieennneiieneneeennsseseseseennnssssssssesesnnssssssssssssnnnssssses 7
0 O Vo o I o [TP 7
D N T o] 3 T o [T PRSP 8
0 T ¥ 0 o 1= SRR 10

The Sample APPLlICAtioNiiiiiieiiiiiiiiereere e reeeeeneeeeeereeennasssesesesennnsssssssessesnnnsssssssnans 11
20 R B 1T o T BT =1 =T ol 4 Lo Yo PSSP 11
I A € o =Y o V=i o V=Y =T o I 1 Y/ VTSR 12
3.3, Selecting 8- 0r 14-Dit data.....ccccuveeeiicieee et e e e e e e e e e e nra e e e aneeas 13
3.4, LOW POWET IMIOTE ..ttt sttt ettt et sttt e st e e st e e sbte e sate e s st e e sabeesnnaeans 13

Installing CodeWarrior......cccuiiiiiiiiiiiiiiiiiiiiniii e essssnens 14
I VU d=T o T 2 U=Te [U1 =] 0 =] o PP PURPRRRPRN 14
4.2, EQSY INSTAll.ciiiiiii i ettt st e s bae e sabaesaaeas 14
4.3, INStAlliNg The USB DIiVEIS....uuiiiiiiieieceiieeeeeiiee st e et e e s siee e s ssabae e e s sabteeesssabaeesssasaeeasnanes 17
4.4. Checking that the XL_STAR board is recognised by Windows...........cccceeveeeeecveeeeecvnneenn. 18
4.5. Installing CodeWarrior 6.3 SE ManuUally.......ccceeeeiiiieiciiiee e rre e 19

Developing code for the XL_STAR BOArdcccceeeeuuerccereineennnncceerenennnssssesssessnnssssssssasessnnes 21
L7 B [4 o o [o1 4 e] o KPS PRSP 21
5.2, Sample COdeWarTior PrOJECT ...uvuiiiiiiieeceiteieeccitee e e eittee e eette e e e etaee e s e aeee e eeabbaeeeenbaeeesenneeas 21
5.3. Turning off Multi-Document Interface (MDI) mode (Optional)......ccccccevveeevicieeecciieeeennns 22
5.4. The CodeWarrior Project WiNAOWccccocieiriieiniieiiieeniee et eeieeeire e eesibeesteeesieeesvee s 24
5.5. Editing and compPiling @ Fil@uveieiiiiiii ettt ettt e bae e e 25
LT ST 101 o 1T V= ol Yo =TT 27
5.7. DEDUEEING COUR ...oiiniiiiiiiiiiee ettt ettt sttt e st e s sate e s bt e e s ate e s bt e esabeesbeeens 28

5.8. Problems connecting t0 the boardcocueiriiiiiiiiiii e 31

5.9. Problems debugging at high clock speedsccoocueiiiiiiiiiiniiii e, 33
Updating the OSBDM-JMG60 Firmware on the board............ccceevivviiiiiiiiiiiiiiininnneennneneeenenene. 34
Understanding the source code of the DEmMO Program.......cccccceeeeeerereeeencceerrernensnsecereeennnnes 38

/2% TR O 1 1T o | -1 o] o PR T PP P PP PPPTTRPPPP 38

7.2, Lighting the 0range LEDS......ccccuiiiiiiiiiiie ettt ettt sttt e e s e s st ae e e e saabae e s s naaeeas 38

7.3. Communicating With the ACCElErOMELEr.......ccccviiiiiciiee et e 40

2 S [=T d AU T Al - T o 1 g =SS 40

7.5, LOW POWEE MOGE ...uiiiiiiieiiiee ettt ettt ettt et e s e sttt e stte e sataesaae e sateeesaeeesabeesaaeans 41

7.6, Floating POINt COUE ..uviiiiiiiiiiiiiee et e s st e e e s s eee e s raaeeas 41

7.7. Freescale Application Notes for the MMA8451Q Accelerometer.......ccoceeevcuveeeeeivereennns 41
Writing your own code for the XL_STAR BOQrdccceeeeeuciiirirennnnnnceeieneeennnncseseneesnnnnnnnnns 43

8.1, Creating @ NEW PrOJECT..cccuuiieee ittt e eeitteeeetitee st e et e e et e e s s bt e e s esaneeeessbraeesssnneeesennes 43

8.2. Finding your way around the CodeWarrior Project WindOowccccccevvieeiiniieeeencineennn. 49

8.3. Writing SOme SIMPIE SOUIMCE COUR.....cutiiiiiiiiieeeereeeeccttee e cette e e et e e e eetree e s staeeeeeeabeeeeeanns 50

8.4. BUIldINg the NEW ProJECT.....uviii i re e e e e e e e e e enae e e eanes 53

8.5. Downloading the project to the XL_STAR boardcccvueiiiiiiiiiiiiiiiiccieee e sieee e 53

8.6. RUNNINE ThE COUR ...ttt e e e e e e e tbee e e e eabe e e e e abeae e s snneeeeennes 53

1. Introduction

This document describes the process of developing code for Freescale’s XL_STAR, a low cost
development board featuring one of the most recent members of the HCS08 family of 8-bit
microcontrollers, the MC9S08MM128.

The document will look at the following topics:

An introduction to the XL_STAR hardware
e How to use the sample application pre-programmed onto the board

e How to install Freescale’s CodeWarrior for Microcontrollers V6.3 Integrated
Development Environment (IDE) on a Windows PC

e How to compile and build a sample HCS08 project
e Programming the code into the Flash memory on the HCS08
e Debugging

e Writing your own code for the XL_STAR board

If you are keen to experiment before reading this manual, just switch on the board and try
the pre-programmed application. It features a number of demos designed to show some of
the things you can do with the on-board accelerometer. You can find details about the
available demo modes in Section 3.

NB: Do not connect the board to a PC until you have installed CodeWarrior, because the PC
won’t recognise the board until a USB driver has been installed.

2. XL_STAR board hardware

The XL_STAR is a double-sided board. It may be simplest to imagine that the two sides are
separate circuit boards that are stuck together. As a developer you will mainly be concerned

with the top side.

2.1. Top Side

Sw2 USB connector for
application use

SW1 SW3

-~

5| freesca

USBE connector for debugging

Figure 1: XL_STAR Board - Top Side

On/Off Switch

MCIS08MM128
microcontroller (MCU)

Green
LEDs

Jumpers
JP1-4

Orange
LEDs

Accelerometer

On the top side of the board (Figure 1) is the main microcontroller (MCU) - a Freescale
MC9S08MM128. This is an 8-bit MCU based on the HCS08-family architecture, with the
following specification:

e 128 KB of Flash
e 12 KB of RAM
e Processor speed configurable up to 48 MHz

Also on the top side is a Freescale accelerometer, the MMA8451Q. This can detect both its
orientation, through the static pull of gravity, and any movement of the board which causes
acceleration or deceleration.

There is a set of 48 orange LEDs arranged in an 8-pointed star with the accelerometer at its
centre. The LEDs are used by the demo program to indicate information such as how the
board is tilted.

Three small push buttons SW1 - SW3 allow the user to select different accelerometer demos
(tilt, tap, shake, freefall detection, etc), and to configure the accelerometer. The
accompanying green LEDs are used by the demo program to indicate status information.

There is an On/Off switch connected to a Lithium lon Coin Cell battery which is mounted on
the underside of the board.

Finally there is a spare USB connector next to the On/Off switch. You will not need to use
this USB connector unless you are writing your own application which includes a USB
interface. It is not the USB port which is used to debug the board.

2.2. Bottom Side

In normal use, when the XL_STAR board is not connected to a PC for debugging, most of the
circuit on the bottom side of the board is not powered. The only thing in use is the battery.

The bottom side of the board (Figure 2) is required when downloading a new program from
the PC to be stored in the flash on the MC9S08MM 128, and when debugging the program.

-

Battery
charger

Lithium lon
Coin Cell
hattery

MC9508IMe0
microcontroller

WED Ltdo ..
:ln-FEEu —a= l:lgsn;n

o

freescal J;

i

%5
4*
&

USB connector for debugging

Figure 2: XL_STAR Board - Bottom Side

The bottom side of the board includes the following major components:
e The Lilon battery

e Asecondary 8-bit microcontroller (a Freescale MC9S08JM60) which accepts
debugging commands from the PC and forms the Open Source Background Debug
Mode (OSBDM) interface. The JM60 then controls the main MCU on the top side of
the board using its BDM interface.

e The USB port used to connect the JM60 to a PC

e A Freescale MC34673 battery charger for the Li lon battery.

10

When a USB cable is plugged into the underside USB port, the power for both sides of the
board is taken from the PC and regulated down to 3.3V using a Freescale MC34727CFC. The
battery charger will top up the battery using power drawn from the USB connection.

NB: If you have used other Freescale development systems you may be familiar with a setup
in which the target board that you’re writing code for is connected to the PC via special
debug hardware such as a ‘P & E’ USB BDM MULTILINK. Such devices typically have a USB
connection to connect to the PC, and a 6-pin BDM cable to connect to the target board. In
the case of the XL_STAR board this separate debug interface is not required; this
functionality is provided by the electronics on the bottom of the board.

2.3. Jumpers

Also on the top side of the board are four jumpers. For normal use they should be
configured as follows:

JP1 Fitted Access point for measuring SO8MM128 MCU current

P2 Not fitted When fitted, the JM60 acts as a USB-to-Serial converter
(Requires additional software)

JP3 Not fitted When fitted, the JM60 runs a bootloader out of reset,
allowing updating of the OSBDM debug firmware. (See
Section 0).

P4 Fitted Access point for measuring MMA8451Q accelerometer

current

11

3. The Sample Application

The XL_STAR board comes with a sample application already programmed into the on-chip
Flash of the MM128 MCU. The program is designed to show some of the things that can be
done with the on-board MMA8451Q accelerometer.

When first powered on, the board will go into an 'orientation' demo mode. Try picking the
board up and tipping it in different directions. You should see that the orange LEDs
illuminate to indicate the direction of the tip and its magnitude.

3.1. Demo Selection

You can select between five different demos by repeatedly pressing button SW3, labelled
Chan as shown in Figure 3. The current demo mode will be indicated by the green LEDs
D6-D10.

The available demo modes are:

Orient: Try tipping the board and watch the orange LEDs indicate the direction and
magnitude of tip

Shake: Try flicking the board in a direction, either up or down, left or right, or
forward or back. You need to use a sharp flick, like striking a ball in a game of
table tennis. The orange LEDs will point in the direction of the initial flick, re-
setting after a couple of seconds.

If the initial flick is not fast enough, the accelerometer may instead detect
the rebound event as your hand stops the board’s movement. In this case
the reverse direction will be illuminated.

Tap: Hold the board loosely and tap it once with your finger; the LEDs will show a
'pulse’ pattern. Tap twice in quick succession (double tap) to get a different
animated pattern.

Freefall: Drop the board from the height of a few centimetres or more. The freefall
event will be detected and displayed on the LEDs for a couple of seconds.

Transient: The orange LEDs will all illuminate if the board is moving (strictly, if it is
accelerating or decelerating) and turns off after a short while if the board is
stationary.

Select
Denmo

Select 8-bit or
14-bit date

select 2g, 4p or

Bg sensitivity
- R32 Freefall demo
i " I rea selectad

Transient
demo selected

Orientation
demo selected

Shake demo
selected

Tap demo
selected

Figure 3: Demo mode selection

3.2. Changing sensitivity

The accelerometer sensitivity can be changed by pressing button SW1, labelled G sel. This
selects which multiple of normal gravity corresponds to a full-scale accelerometer reading.
The options are 2g, 4g and 8g as indicated by the green LEDs D3-D5.

Note that changing the sensitivity only affects the 'Orient' demo, because the other
accelerometer functions used here don't depend on the sensitivity setting.

13

3.3. Selecting 8- or 14-bit data

The accelerometer can return 8-bit or 14-bit data to the MM128 MCU. Applications
requiring more accuracy can use 14-bit data; otherwise it is faster to read 8-bit data. You can
select between the two options by pressing the SW2 button, labelled DataW, see Figure 3.
The current selection is shown on the green LEDs D1-D2.

Changing between 8-bit and 14-bit data only affects the 'Orient' demo but, although the
data width setting is honoured, you probably won't notice the difference. See Section 7.3
for more information.

3.4. Low Power Mode

When the accelerometer doesn't detect any interesting events i.e. acceleration or
deceleration for around 20 seconds, software will put the board into a power-saving mode.
So that you can see this happening, an 'X' pattern is displayed briefly before almost all the
LEDs turn off.

To wake the board up, just pick it up. A '+' pattern is displayed briefly to indicate that the
board is awake again, and the current demo mode is then resumed. See Section 7.5 for
more information.

14

4. Installing CodeWarrior

NB: Do not connect the board to a PC until you have installed CodeWarrior, because the PC
won’t recognise the board until a USB driver has been installed.

The XL_STAR development kit includes a copy of CodeWarrior for Microcontrollers V6.3
Special Edition. CodeWarrior is an integrated development environment for editing,
compiling and debugging code. The Special Edition is free, but the C compiler is limited to a
maximum of 32KB of object code. In later releases of CodeWarrior for Microcontrollers V6.3
Special Edition this was increased to 64KB of object code, please check the Freescale website
for the latest release -
http://www.freescale.com/webapp/sps/site/overview.jsp?code=CW_SPECIALEDITIONS&tid
=CWH

4.1. System Requirements

e 1.0 GHz Pentiumcompatible processor or better
e Microsoft Windows XP or later

e 512 MB RAM (1 GB recommended)

e 2 GB hard disk space on Windows system disk

e CD-ROM drive for installation

e USB port for communications with target hardware

4.2. Easy Install

The software for the XL_STAR development kit is supplied on CD. When you insert the CD,
the auto-run feature should launch the XL_STAR Starter Kit Installation Wizard. Alternatively
you can double-click on the file install_all .hta to run the wizard.

Initial installation requires the completion of six install steps (Figure 4), the first five of which
launch a separate installer. Follow the on-screen instructions to complete each step.

15

B | XL_STAR Starter Kit Installation Wizard o

L

Z “freescale

semiconductor

Welcome to the XL_STAR Starter Kit

This wizard will help guide your through the installation of the XL_STAR Starter Kit software. First, you need to install the CodeWarrior
development environment. Then there are a couple of important Cade\Warrior patches to be installed. Next, install the XL_STAR sample
project. Finally, take a look at the documentation which tells you how to get started exploring the fascinating world of XL_STAR
programming

To proceed, click on the six buttons below, in the order shown. Each of the first five buttons will launch one of the five installers you need to
run. Fallow the an-screen instructions for each installer, and wait far each installer to finish before launching the next ane. The last shows
the documentation.

Caution: Some of the installers are quite big and may take a while to start up, so there may be quite a delay before anything happens
after you click on one of the buttons. Please be patient.

Step 1: Install CodeWarrior | Don't choose ‘Check for updates’ at the end

Step 2: Install Patch 1 |

Step 3: Install Patch 2 | lgnore warning that Processor Expert v3.09 Service Pack must be installed first
Step 4: Install Latest Drivers |

Step 5: Install Sample Project |

Step 6: View Documentatian |

Copyright € 2011 Freescale Semiconductor, Inc

Figure 4: XL_STAR Starter Kit installation wizard

Note that there may be a long delay between clicking on one of the buttons and the
individual installer starting up. Please be patient.

Make sure you wait for each install step to complete before going on to the next step.

At the end of Step 1, which installs the base CodeWarrior software, you will see a dialog
asking whether you want to check for on-line updates (Figure 5). Do not check for updates
at this time.

‘_ﬁ' CodeWarricr Development Studic for Microcontrollers V6.3 - InstallShield Wizardu

e InstallShield Wizard Completed
- .
= freescale
semiconductor

The InstallShield Wizard has successfully installed Code'Warriar
Development Studio for Microcontrollers v&.3. Click Finish to
exit the wizard,

Mo - Don't check for program
updates

t, check for program updates (Recommended)
ier the setup completes,

< Back Cancel

Figure 5: Do not check for updates when the first installer completes

16

During Step 3 you will see a warning message that Processor Expert v3.09 Service Pack is not

installed (Figure 6). Ignore this warning and continue with the installation anyway.

(&) CWO08 V6.3 HCS08 MM128/JE128 Service Pack Setup [F5C

& Thefellowing servicepack must be installed before installing this
L& servicepack:

Processor Expert v3.09 Service Pack

Do you want to continue with the installation anyway?

es | ’ Mo

Figure 6: Ignore the warning about Processor Expert

17

Step 5 allows you to install a demonstration CodeWarrior project for use with the XL_STAR
board. Install this in a folder that is easily writable - for example, use the Documents folder
not C:\Program Files which is protected under Windows Vista and later OS versions.

Using the demonstration project is described in detail in Section 5.

4.3. Installing the USB Drivers

The XL_STAR board requires a number of USB drivers. Although the drivers were partially
installed in Step 4 above you may need to carry out some additional configuration,
depending on the version of Windows you are using. When doing this you should note that
there are three drivers in total, and the process will need to be repeated for each. The three
drivers are as follows:

OSBDM Debug Port
OSBDM Serial Port
OSBDM Bootloader Port

To install the first two drivers, make sure that jumper JP3 on the XL_STAR board is not fitted.
Then connect the board to the PC using a USB cable. You should see a dialog similar to the
following (Figure 7):

[57] Found New Hardware @

Windows needs to install driver software for your OSEDM -
Debug Port

W Locate and install driver software (recommended) :
Windows will guide you through the process of installing driver software
for your device,

2 Ask me again later

Windows will ask again the next time you plug in your device or log on,

¥ Don't show this message again for this device
Your device will not function until yeu install driver software,

Cancel

Figure 7: Installing the OSBDM Debug Port driver

18

Windows will look for a suitable driver in a number of locations, but fail to find one. You will then be
given the option of specifying the driver location manually (Figure 8). Specify the folder in which you
installed the P & E Drivers in Step 4 above, e.g. C:\Program Files\PEMicro

@ [l Found Mew Hardware - OSEDM - Debug Port

Browse for driver software on your computer

Search for driver software in this location:

C:\Program Files\PEMicro - Browse...

[Include subfolders

et][Cancel

Figure 8: Specifying the location of the OSBDM Debug Port driver

After successful installation of the OSBDM Debug Port driver, you will be prompted to repeat
the steps for the OSBDM Virtual Serial Port.

Finally, disconnect the cable, install jumper JP3 and then reconnect the cable. You will be
prompted once more to complete the steps for the OSBDM Bootloader Port.

After installing the last driver, remove jumper JP3 and reconnect the board once more,
ready for normal operation.

4.4. Checking that the XL_STAR board is recognised by Windows

You can check that the board is recognised by Windows using the Device Manager. With the
board connected to the PC and Jumper JP3 not installed, the board will show up twice
(Figure 9):

19

e Open Source BDM Debug Port in the section LibUSB-Win32 Devices

e PEMicro USB Serial Port (i1) in the section Jungo

&= Device Manager = E S

File Action View Help
&% T B HE & %S

B Display adapters B
ey DVD/CD-ROM drives
1:‘;' Fleppy drive contrellers
Eﬁ Human Interface Devices
- IDE ATASATAPI controllers
¥ Jungo
l_-'l'* PEMicro USE Serial Port (1]
L¥ LISE Multilink 2.0
LE WinDriver
H-Z2 Keyboards
B- i LibUSB-Win32 Devices
6
U Mice and other pointing devices
':'.1' Monitors
-m¥ Network adapters
ﬂ Processors
-3y »ound, video and game controllers

1

{} Storage controllers

[

F-AM System devices

Figure 9: Windows Device Manager showing USB connections to XL_STAR board

4.5. Installing CodeWarrior 6.3 SE manually

Instead of using the installation wizard described in Section 4.2 above, you can also proceed
manually, using the individual installers supplied on the CD in the following order:

(1) Install CodeWarrior for Microcontrollers V6.3
CW_MCU_V6_3_SE.exe

(2) Install the CodeWarrior for Microcontrollers V6.3.1 update

CWMCUV631.exe

(3) Install the MM128-specific patches
CWO8_V6_3_HCS08_MM128_JE128_SP.exe

(4) Install the latest USB drivers need when debugging code on the board
PEDrivers_install._exe

(5) Install the sample XL_STAR CodeWarrior project

setup_sample_project.exe

20

21

5. Developing code for the XL_STAR Board

5.1. Introduction

In this section we will look at how to use the CodeWarrior IDE to develop programs to run
on the XL_STAR board. The material is a brief introduction aiming to cover the following:

e Editing files

e Compiling and linking

e Programming the application into Flash memory on the MCU
e Debugging

For further information the reader is referred to the CodeWarrior documentation.

5.2. Sample CodeWarrior Project

A sample CodeWarrior project is supplied with the XL_STAR development kit and you can
use it to try things out. The project builds the same demo code which is supplied pre-
installed on the board and described in Section 3.

Installation of the sample project was described in Section 4.2 above.

To open the project, launch CodeWarrior and, if the startup dialog in Figure 10 is shown,
select the option Start Using CodeWarrior. Then use the Open. . . option from the File
menu to navigate to the installed project and select the project file XL_STAR_Demo.mcp

22

[Startup ﬁ

Create Mew Project

Load Example Project

Load Previous Project

Fun Getting Started Tutorial

Start Uzing Codeh arrior

-,

> freescale

semiconductor [+ Display on Startup

Figure 10: CodeWarrior Startup dialog

5.3. Turning off Multi-Document Interface (MDI) mode (Optional)

CodeWarrior includes support for MDI mode, in which individual CodeWarrior windows are
all children of a single container window (Figure 11). This is the default mode when you first

install CodeWarrior.

Brocecwmon . W e

File Edit View Search Project ProcessorExpert Device Initialization Window Help

REEEv e hB2ANESR R EER
lx

SimpleProject.mep l
[0 HCs0 FSL pen Source BV ~ | it 1B & B 5 &b~} - M~ [~ o'~ Path:[Gi\curent\DebugS08\SmpleProjectSources \main.c. &
= #include <hidef.h> /% for Enablelnterrupts nacto *. o
tes | Link Qrder | Targets | finclude "derivative h® <% includs periphoral declarations */ 5
| Code | Data # [
[0. =
0 0. void main(void)
0 0=
0 0= Encblelnterrupts; % enable interrupts *-
1 (3 Froject Settings 0 0. /= include your code hers =
for{::) {
__RESET_VATCHDOG(): ~* fesds the dog »~
} 7% loop forever #7
7% please nmake sure that you never leave nain %/
¥
Line 1 Coll []4] /
9 fles 0 i
4
[A

Figure 11: CodeWarrior in MDI mode

Some programmers really like to work this way, but other people prefer the ability to have
independent windows that can be placed anywhere on the screen and are not constrained
by the container.

If you want to turn MDI mode off you can do so through the Preferences. . . option in the
CodeWarrior’s Edit menu (Figure 12). You need to restart CodeWarrior for this change to
take effect.

IDE Preferences

R IDE Preference Panel: J

=+ General
- Build Settings

-+ IDE Startup
- Plugin Settings
- Shielded Folders
- Source Trees
=+ Editor
- Ciode Campletion
- Code Formatting
- Editor Seftings
- Font & Tabs
- Text Colors

R IDE Extras
Menuz
Merw bar layout: ’m
Recent projects: |5_ Recent docurents: ’5_
Recent symbalics: |5_ Fecent waorkspaces: ’5_

[Use Third Party Editor

Launch editor;

Launch editar w! line #: |

ngz
[Use Multiple Document |nterface [MO)

v Show o
[Use text-bazed projects

Factory Settings |mport Panel... | Export Panel..

QK. | Cancel ‘

Figure 12: Turning off MDI mode

5.4. The CodeWarrior Project window

All development work in CodeWarrior requires the creation of a Project which specifies
which source files and libraries are required to build a specific executable.

Figure 13 shows a screen shot of the demo project open in the CodeWarrior IDE, with the

some of the most useful options labelled.

Note that you can access many more project-specific options through the Edit Project

Settings button. For example you can configure compiler and linker options here.

25

Make

Edit project
settings Dehug

"HB XL_STAR Demo.mcp [= [/ [

| [Dv HC308 FSL Open Source BDM ~ | 5 B & @ 1
Files l Link Order | Targets |
W File Code | Data |4 2
=3 Sounces 328 22 e =~
o Yroain.c 2822 19 « =
L icc 459 3. =
= &3 Includes 0 o =
@l derivative.l a o =
i MCHS0EMMT 28 h o o =
- £3Libs 57248 2378 + o
B ansifslib 57243 2021 =
“fl MCOS0SMMT 280 a 357 . =
=3 Project Seftings 132 E + =l
=43 Startup Code 132 E + =
il StatDSc 132 B+ =
+{_J Linker Filez 1] 1] =l
10 files GOEET 2406

Double-click to
open source file

Figure 13: CodeWarrior Project window

When using CodeWarrior you will also see references to Processor Expert and Device
Initialization. These are expert wizards aimed at helping you to write code for embedded
targets. Although sometimes useful for new projects, you don’t need to make use of them
when working with the demo project supplied.

5.5. Editing and compiling a File

You can edit an individual source file by double-clicking on its name in the project window,
which brings up an editor window like this (Figure 14):

Click here to get a pop-up list of
header files used by this source file

Right-click on a symbol to get various

Click here to get a pop-up list of functions
/context-speciﬁc options

declared in this file

26

Hl mairf< v]
b~ {} ~ M~ [F~ o~ Path: |C\Ussrs\Simon' Desktop' DebuaS08\ Dep#B S08Demo' Sources \main o

7
= main - Program main entry pnint/ =

void main(void)

{

int count, ring;

clocks, GPIO, etc */
CHOH

/* Initialise syst
initialise_hardw:

/* Delay about 2 seconds to indicate that board is OK =/
leds_all_on ();
millisecond_delay (2000);

/* Show that we're live =/

leds_pulse (68);

/* Force main loop to initially select DEMO_ORIENTATION, 14-bit accuracy, 2g sensitivity =/
NewDemo = DEMO_ORIEMTATION;

NewReadMode = READ_MODE_14BITS;

NewRange = FULL_SCALE_2G;

CurrentDemo = ~NewDemo;

/* Loop forever to run demos =/
for (550 {
/* ---- Check for button press events ---- =/

/* Did user press one of the buttons SWl - SW3 ?
Requested new sensitivity by pressing "g Sel” button SW1
Requested new read mode by pressing "Datall” button SW2 ?
Reguest new demo mode by pressing "Chan" button SW3 ?

w

wy

if (MewRange != CurrentRange || WewReadMode != CurrentReadMode || NewDemo != CurrentDemo) {

Line 219 Col20 |

0
| »|DQE

Figure 14: CodeWarrior Editor window

If you right-click within the editor window you will get a context-sensitive popup of useful

options, including the option to compile the file.

If there are any error or warning messages when compiling a source file the error window is

displayed (Figure 15):

27

Show/hide error messages

Show/hide warnings Show previous / next error

Show/hide notes

Errors & Warhings s @I!g
[6 23 |—‘&_ 2 0 Errars and warnings for "D ebugS080ema.mep” y ﬂﬂ
W ; -
[—
: ';" missing
< »
~
i} rn- Ia « 8 v Path: |C:\Users\Simon'Desktop\DebugS084Debug S08Dema Sources\main.c <>
* Initialise system clocks, GPIO, etc */ E‘
initialise_hardware (); b
/% Delay zbout 2 seconds to indicate that board is OK =/ =
leds_all on ();
b millisecond _delay (20688, 18);
* Show that we're live */
leds_pulse (68);
/% Force main loop to initially select DEMO_ORIENTATION, 14-bit zccuracy, 2g sensitivity =/
NewDemo = D i'H
NewReadMode = _14BITS;
NewRange = FULL_SCALE_2G;
CurrentDemo = ~NewDemo;
/* Loop forever to run demos */
o
Line 223 Coll < v[A

Normal editor area

Figure 15: CodeWarrior Errors & Warnings window

Note that you can correct errors by typing directly within the error window, which behaves
like a normal edit window.

5.6. Building code

The whole build process of compiling the individual source files and then linking them
together with any libraries can be performed in a single step using the ‘Make’ button in the
project window, or by selecting Make in the Project menu.

Compilation proceeds as described above and, if there are no compilation errors in the
individual source files, the linker is invoked (Figure 16):

Building XL_STAR_Dema.mcp |
Praject: %L_STAR_Demo.mep Target: | Standard Stop
File Tazk File Count Line Count
®L_STAR_Demo.abs Linking...
Totalz 1]

Figure 16: CodeWarrior Build Progress window

28

5.7. Debugging code
To download code to the XL_STAR board, first ensure that the board is connected to the PC

using a USB cable - see Figure 17.

Note that the USB cable needs to be plugged into the USB port on the underside of the
XL_STAR board as shown below. Don’t be confused by the other USB port which is for use
when developing applications for the SO8MM128 which need their own USB interface.

This USB port is not used
X for debugging

D000 D

(o]

iﬁﬂ q-
)
h

(]
(w]
al-
al-
O
]
)

OO

=
Lo

escale"

SomACEnauCto!

Q

Connect USE cable here for
debugging

Figure 17: Connecting a USB cable for debugging

29

To download code to the board click the ‘Debug’ button in the project window, or select
Debug from the Project menu. This will cause the Hiwave debugger to launch in a separate
window.

The Hiwave debugger will automatically program the application into Flash memory on the
XL_STAR board, as shown in Figure 18.

B, True-Time Simulator & Real-Time Debi CAU \DesktophD D Demo\HCS08_FSL_OpenSourceBDM.ini =@ = |
File View Run Connsction Component Memory Window Help
D)@l &|=|d 2| >z 2
[8] source [= @2 | [A] Assembly [S=Er=]
oces a1s s i

0 JSR 0 D
F3 LDX #0x3C
DCFS CLRH
DCFé JSR 0xESSD
DCF2 CLRA
DCFA STR 0x0101 i
Register == ==
Executing Command File == | Auto
o
[B] Procedure execuling HOS02_FSL_OpenSourceBDM_starlup 700 SP | 314

[e2 stacus [vemzc

100%
[<DCES'E>
Datal
futo | Symb | Global
Data:2 =@ =]
fuo | Symb | Locel -
! At startup the written below wWill be execu
5 1 mand file cuted.
.]
in> pa
1 [»
For Help, press F1 Automatic triggers, breakpoints, watchpaints, and trace possible) MCIS0SMML28 Target Ready

Figure 18: Hiwave Debugger with code download in progress

Following successful programming, the application will be executed automatically up until
the point where the ‘main’ procedure is about to start (Figure 19 below). The point at which
code execution halts can be changed through the Configuration... menu option in the
debugger’s File menu if required.

H, True-Time Simulator & Real-Time Deb CAUsers\Simon\Desktop\D

\HCS08_FSL_OpenSourceBDM.ini

30

File View Run HCS08 FSL Open SourceBDM Component Memory Window Help

D]l 4[n]e] o] +[z|z|e[s[-] 9]

= D

[8] source == [A] Assembly
|CAUsers\SimontDeskiop\D ebug5 08\D ebugS 08D emoS ouress\main.c Line: 209 [main
static byte last xyz values [§]: /* Last values of X, ¥ and Z */ o DCES AIS 4 o
DCET JSR OxDE44 @
SRR R AR AR AR R AR IR AR AR R AR AR AR A AR H R IR R IR AR R AR AR AR A AR A AR m DCER JSR OXE62F
B main - Program main entry point * DCED LDHX #0x07D0
A) SOFD IR OxELDA
ECT Rz in (void) DCF3 IDK #0x3C
= DCFS CLRH
int count, riag: DCFS ISR ORESSD
DCF3 CLEL
/* Initialise system clocks, GEID, ecc */ DCFA STA Ox0101 il
initizlise_hardware ();
/* Delay about 2 seconds to indicate that board is OK */ + | B8] Register

[B] Procedure

HCS08 |

main ()
<FFAF'E>
Datal [= (=] | & Memory [E=REeR(Ex)
[main.c Buta Symb | Global [[Aue Paged
CurrentDemo 0 unsigned char i 0 0 0a 00 it
HewDemso 0 unzigned char] 04 00 00 @
CurrentRange 0 unsigned char H 0 0a 00
NewRange 0 unsigned char 0 00 00
CurrentReadMode 0 unsigned char 000RO'P 00 00 00 00
NewReadMode 0 unsigned char - O00AS'P 00 00 00 00 00 -
Data:2 = [® =] | & Command
[Imain Autg Symb | Local done .\cmd\HCS0Z_FSL OpenSourceBIM postload.cmd fil
count -16255 iat
ring 255 ine Bostload command file correctly executed.
main OXDCES'E T
STARTED (]
RUNNING il
| 3
For Help, press F1 Automatic (triggers, breakpaints, watchpoints, and trace possible) [mcesoammL2e |Breakpeint Y

Figure 19: Hiwave Debugger

The close up in Figure 20 shows the most useful buttons in the debugger’s tool bar:

O |w[e| &[5%|@] 2| 2|2

6l

Start / Continue

Single Step
[steps into
subroutines)

Reset
Target

Halt (break into
gxecuting program)

Step Qut (steps
out of subrouting)

Step Cver (steps over
subroutine calls)

Figure 20: Hiwave debugger Toolbar

31

To set a breakpoint, use the debugger Source window to right-click on the line where you

want the breakpoint to be set. A context-sensitive popup menu (Figure 21) includes Set

Breakpoint

[, True-Time Simulator & Real-Time Debugger C:\Users\Simon\Desktop'\DebugS08\Debug508Demao\HCS08_FSL_OpenSourceBDM.ini

= | E [

File View Run

HCS08 FSL Open Source BDM Component

Source Window Help

B = e L R I

4] ®f|

Figure 21:

5.8.

(8] Seurce =1 [A] Assembly
|CUsers\SimoniD esktophD ebugS 08\ DebugSDBDema\Sourceshmain.c Line: 210 |main
i
R Rk Rk R Rk kR Rk kR kR kR R R DCE7 JSR OxDE4 @
* main - Program main entry point * @ CEA JSR 0xE62F
S DCED LDHE #0%0700
void main{veid) DCFO JSR OxELD4
= DCF3 LDX #0x3C
int count, ring: DCFS CLRH
DCF§ JSR OxESSD
/+ Initizlise system clocks, GEIO, =tc */ DCT CLER
inivizlise hard DCFA STA Ox0101 il
Set Breakpoint
/* Delay about
7 Run To Cursor e
leds all en (): i - | EE] Register
= Show Brezkpoints... ' HCS08 |
Show Location z
Proced 3
[B] Procedure Set Trigger Address A = = -
T . SR Status [VEINZC
I Set Trigger Address B e | o
PN Triggers Settings 4 e[oces peagE [2
Open Trigger Settings Dialog...
Trigger Module Usage v
Data:l Set Markpoint = (2] | B Memery
[[rnd Show Markpoints... Auto | Spmb | Global
CurrentDemc |~ oo [il:]
NewDene Set Program Counter [l a0 00
CurrentRangs 00 i1
NewRange Open Source File... 00 a0
CurrentReadMods 00 i1
NewReadode Copy Crl+C i a0 00
Go To Line.. Ctrl+G
Data:2 [= === | Bl command
————— Find... Clilif ——————————
[mq Auta | Spmb [Local mein OxDCES'T T -
Find Procedure... Ctrl+] e
count -16255 if e
ring 255 1in ¢
Folding L Sreskpoint i
(o
Freeze . a
WMarks <l 3
Far Help, press F1 ToolTips » takpoints, watchpoints, and trace possible} [MCosoaMM128 |Breakpaint A

Problems connecting to the board

Context-sensitive menu available through right-click

In rare circumstances the debugger may have problems connecting to the board, e.g.

32

r

Mo Communication I&

There is currently ne communication with the hardware,
l % Pleasetry to connect before loading an executable file,

oK

One possible cause is that Windows has failed to recognise that the board is connected to
the PC.

The first thing to try is to disconnect the USB cable and then reconnect it. This should cause
Windows to see the board. NB: Make sure that you are connecting to the USB port on the
underside of the board, not the one near the On/Off switch on the top of the board.

If this doesn’t work, try using another USB port on your PC. Also make sure that the board
connects directly to the PC, not through an external USB hub.

You can verify that the XL_STAR board has been recognized by checking the Windows Device
Manager whilst the board is connected. You should an entry for ‘Open Source BDM-Debug
Port (LibUSB-Win32 Devices) or similar see Figure 22:

33

=4 Device Manager SRR X

File Action View Help

e = E HE

g DELL-SIMON
¥ Acronis Devices

o | [%S

-8 Computer
[y Disk drives
- B Display adapters
[y DVD/CD-ROM drives
(- Floppy drive controllers
[]--&5 Hurnan Interface Devices
- IDE ATASATAPI controllers
- Junge
-2 Keyboards
= a LibUSB-Win32 Devices
"
j---}f!, Mice and other pointing devices
7Bl Monitors
- ¥ Metwork adapters
o} Processors
H-% Sound, video and game controllers
i€ Storage controllers
)1l Systern devices

E
£
£
£
£
E
E
£

H- a Universal Serial Bus controllers

Figure 22: ‘Open Source BDM-Debug Port’ in Windows Device Manager

If Windows can detect that the XL_STAR board is attached, but warns that it cannot locate
the appropriate drivers, see Section 4.3.

5.9. Problems debugging at high clock speeds

You may find that debugging works perfectly with the example project, but that you
encounter problems when writing your own code which runs the MM128 MCU at a higher
bus clock speed.

The bus clock provides the clock source for the MM128’s Background Debug Controller
(BDC), so if the bus clock is too fast the debug information sent on the BGND pin will be too
fast for the OSBDM module on the bottom side of the board to handle.

For applications which require a high bus clock speed (e.g. 24MHz for the USB port) you will
need to use an external debug device, such as a P & E USB Multilink Interface, connected to
the BDM header labelled ‘Target BDM'.

34

6. Updating the OSBDM-JM60 Firmware on the board

WARNING

You will not normally need to update the OSBDM firmware on the XL_STAR board,
and doing so wrongly can render the board unusable.

To fix this situation you would need to be able to reprogram the JM60 using a
separate programming device like the P&E Micro HCS08 USB Multilink cable.

The XL_STAR board includes two microcontrollers. On the top side of the board is the main
MM128 MCU. This is the processor you will normally target when writing new programs.
You update the code for this MCU every time you change your program, and programming
mistakes shouldn’t cause lasting problems.

The other processor, on the underside, is the JM60 MCU. This runs firmware which allows
the CodeWarrior debugger to control the MM128 via its Background Debug Mode (BDM)
module.

The firmware is known as Open Source BDM, or OSBDM. It is responsible for USB
communications with the debugger on the PC, controlling the MM128 via the BGND debug
pin, and configuring the on-board battery charger. It also includes a Bootloader to allow you
to update the running code with a newer OSBDM version.

You do not need to update the OSBDM firmware in normal operation, unless Freescale
issues an update to the code.

If you do need to update the OSBDM firmware, make sure that you use a version that’s
specifically intended for the XL_STAR board. The following steps should help you.

1. Disconnect the board from the PC.
2. Install a jumper in position JP3 to select Bootloader mode.

3. With the On/Off switch set to the Off position, connect the board to the PC using a

USB cable plugged into the board’s normal debugging port on the underside of the
board.

4. If you wish, you can check that the board has been recognised by the PC by using
the Windows Device Manager:

35

= Device Manager =REC X

File Action View Help

= =6 B

- DELL-SIMON
- EF Acronis Devices

| 2%

#-18 Computer
[y Disk drives
- M Display adapters
-y DVD/CD-ROM drives
(- Floppy drive controllers
[]--’3\5 Hurnan Interface Devices
- IDE ATA/ATAPI controllers
- Junge
-2 Keyboards
= a LibUSE-Win32 Devices
"
j---}f!, Mice and cther pointing devices
7B Monitors
i MNetwork adapters
o} Processors
H-% Sound, video and game controllers
H-4; Storage controllers
b1l System devices

E
£
£
£
£
E
E
£

|- a Universal Serial Bus controllers

Figure 23: The board shows up as Open Source BDM - Bootloader Port

in Windows Device Manager

5. Use the PE Firmware Updater program version 1.01, available from Freescale’s
website (see Figure 24):

e Select OSBDM/OSITAG as the hardware type
e Select Embedded OSBDM/OSITAG Device - Bootloader Mode as the device
e Select SO8 as the architecture to support

e Select the Choose Firmware Update File or S-Record option. NB: Don’t choose
the Automatic option.

e Select the file containing the new OSBDM firmware

e Press the Update Firmware button. You should get a progress dialog similar to
Figure 25

36

® Multilink/Osbdm Firmware Update and Architecture Selection Utility - Version 1.01 E=EE X

MNew verzsions of PEE's software products automatically update the firmware of the different hardware
=1 | interffaces as necessary. This application allows updating/configuration of the hardware for uge with

older applications which dao nat have this capability. [Clopwright 2017, PLE Microcomputer Systems,
Iy=3
IEﬁ(BP(D hbtp A v, pEmic o, COT

1. Select Hardware Type : |0SBDM/0SITAG - Embedded debug circuitiy in Freescale Tower hoaldsj

Freescale embeds an open source debug processar in many of it's Tower cards and
Demonstration boards, PEE haz taken a leading role, along with the open zource
commurity, in maintaining and updating the firmware of this hardware, This utility allows
updating of the firmware of theze boards.

The Multilink Universal iz a much higher speed, more fully featured, interface designed to
work, either with the tower cards or the user's own target hardware,

Infarmation : Click. this link for more information on this hardware

2. Select Device © |Embedded 0SBDM/0S)TAG Device - Bootloader Mode j

Refrezh list of devices |

3. Select Architecture to Support : |5I]3 j

4_ Firmware File Selection :

dmens_s08.2900
" Chooze Firmware pdate File or 5-Record Select
¥L_S5TAR-ozbdm-im60_s08_abs 519

Jpdate Firnnware

Figure 24: PE Firmware Updater, used to update the bootloader

8 Updating firmware of P&E Interface... =N X

Interface hardware detected with old firmware.
Updating... (Flease Wait)

Update Firmware: osbdmens_s08.2900
Erasing Address S0000CEQD

Figure 25: OSBDM update in progress

7. When the update completes you will see a warning similar to Figure 26. Unplug the
USB cable, remove the JP3 jumper, and finally reconnect the USB cable to return to
normal operation.

37

Confirm &J

The embedded OSITAG/OSBDM needs to enter run mode to start the debug/programming session. Please unplug the USB cable, remove the jumper from the

2-pin bootloader header, and reconnect the USE cable.
Cancel

Figure 26: Last stage of updating OSBDM firmware

38

7. Understanding the source code of the Demo program

You may want to explore the source code of the demo program and develop it further. The
following remarks may be helpful when looking at the source code.

7.1. Orientation

The MMAS8451Q_is a three axis accelerometer. It can measure the acceleration in three
independent directions X, Y and Z.

Holding the board so that the On/Off switch is at the top and the word ‘Freescale’ is at the
bottom, the accelerometer is oriented as follows:

Y

Z axis out of page towards reader

This is referred to in the MMA8451Q documentation as the Portrait Down (PD) orientation
mode. In this orientation, the reading for the Y axis would be 1g, and X and Z would be 0g.

7.2. Lighting the orange LEDs

The orange LEDs are arranged in an 8-pointed star as shown in Figure 27. Each of the 8
‘spokes’ of the star is connected to a GPIO pin. For example, LEDs D62, D54, D46, D38, D30
and D22 are all connected to Port D Pin 4 (PTD4)

Similarly, each of the 6 concentric ‘circles’ is connected to another GPIO pin. For example
the outer circle D56-D63 is connected to Port C Pin 5 (PTC5).

Thus to illuminate D62 you would drive PTD4 low and PTC5 high.

PTDS

PTF2

PTF1

FTD4

PTD3

PTD2

PTE?

PTFO

Figure 27: Relationship between GPIO pins and LEDs

For one of the demo modes - the Orientation demo - the LEDs are driven in a more

39

sophisticated way. This takes advantage of the fact that each of the GPIO pins connected to
a ‘spoke’ can be reconfigured so that it is controlled by one of the MCU’s Timer/PWM (TPM)

modules.

GPIO pin TPM module/channel
PTD5 TPM1CH3
PTD4 TPM1CH2
PTD3 TPM1CH1
PTD2 TPM1CHO
PTE7 TPM2CH3
PTFO TPM2CH2
PTF1 TPM2CH1
PTF2 TPM2CHO

40

By driving a pin with a PWM signal which has a duty cycle of less than 100%, the LED can be
iluminated less intensely. The orientation demo uses this effect to illustrate the direction in
which gravity is pulling relative to the board’s orientation.

7.3. Communicating with the Accelerometer

The MCU is connected to the accelerometer using an industry-standard connection known
as Inter-Integrated Circuit, or IIC.

The accelerometer’s lIC address is 0x1D, determined by a pull-up resistor on the board.

Typically IIC is used to read or write a single 8-bit register location within the accelerometer -
for example software reads the PULSE_SRC register to get information about the latest
tap/pulse event that the accelerometer has detected.

In the case of the accelerometer’s data registers, which are used to obtain the most recent
readings on the X, Y and Z axes, the full readings are 14 bits each, split into an MSB/LSB pair
of registers. This means that the software must read a total of six registers to obtain a full
XYZ readout. This is done with a single IIC command capable of transferring multiple
sequential bytes in one go.

Alternatively the accelerometer can be reconfigured to only return the MSB part of each X, Y
and Z value - i.e. the most significant 8 bits. This means that the IIC command must only read
three bytes, making it faster for applications which don’t require full 14-bit accuracy.

To demonstrate how to write code using either 8-bit or 14-bit sensitivity, the demo program
uses the SW2 switch (labelled DataW) to allow the user to reconfigure the accelerometer for
either mode.

7.4. Interrupt Handling

In order to conserve power, both the accelerometer and the MCU are configured to switch
to low-power sleep modes when no events of interest are occurring. The MCU is woken
from sleep mode when an interrupt occurs, either from the accelerometer or caused by one
of the push buttons SW1 - SW3.

In the case of the accelerometer, the interrupt is signalled when the accelerometer drives its
INT1 pin low. This is connected to the MCU’s Keyboard Interrupt KBI2P4, which is
configured to detect a falling edge. When INT1 goes low, the falling edge triggers the
interrupt to the MCU.

Note that although INT1 remains low until software has cleared the source of the interrupt
by reading data from the accelerometer, this will not cause a further interrupt to the MCU
because no further edges occur. This means that the interrupt service routine can be kept as
short as possible, being used only to wake the MCU from sleep.

41

7.5. Low Power mode

The demo software is designed so that the accelerometer will detect when there has been
no event of interest for 20 seconds or more. This will depend on the demo mode selected;
for example in freefall detection mode, only dropping the board will cause an event.

After 20 seconds of inactivity the accelerometer will switch to a low power sleep mode. This
causes an interrupt, allowing the MCU to be put into a low power mode too.

In the case of the demo software, the board can be woken again by picking it up. To achieve
this, the accelerometer is reconfigured at the moment when the MCU is about to sleep. In
the new configuration the accelerometer runs in Sleep mode and is set to detect any
transients which would indicate that the board has been moved.

Once the accelerometer detects movement it will wake up, and also signal to wake the MCU.
The MCU then reconfigures the accelerometer, restoring its normal wake-mode
configuration.

7.6. Floating Point code

The sample program is unusual because it makes use of floating point data types like
double, and maths support routines like atan2. Most embedded software only uses
integer data types.

The CodeWarrior compiler includes complete support for floating point data types,
implemented in software (The HCS08 family of microcontrollers don’t support floating point
instructions in hardware).

In order to link to floating point support routines, the CodeWarrior project includes a library
ansifs.lib. Forinteger-only routines this can be replaced by ansiis.lib which may
result in a slightly smaller program size.

7.7. Freescale Application Notes for the MMA8451Q Accelerometer

You may find the following Freescale application notes useful when writing code for the
accelerometer, all of which are available from the Freescale website — www.freescale.com:

e AN4068, Embedded Orientation Detection Using the MMA8451, 2, 3Q
e ANA4069, Offset Calibration of the MMAS8451, 2, 3Q

e AN4070, Motion and Freefall Detection Using the MMA8451, 2, 3Q

e AN4071, High Pass Data and Functions Using the MMAB8451, 2,3Q

e AN4072, MMAS8451, 2, 3Q Single/Double and Directional Tap Detection

42

AN4073, Using the 32 Sample First In First Out (FIFO) in the MMA8451Q
AN4074, Auto-Wake/Sleep Using the MMAS8451, 2, 3Q

AN4075, How Many Bits are Enough? The Trade-off Between High Resolution and
Low Power Using Oversampling Modes

AN4076, Data Manipulation and Basic Settings of the MMAB8451, 2, 3Q

AN4077, MMAB8451, 2, 3Q Design Checklist and Board Mounting Guidelines

43

8. Writing your own code for the XL_STAR Board

In this final section we will walk through the steps for creating your own CodeWarrior
project for the XL_STAR board. In brief the steps are as follows:

e Create a new project

e Write some code to do something interesting with the XL_STAR board
e Compile and link

e Download code to the board

e Debug and test

8.1. Creating a new project

1) When CodeWarrior is launched you should see the following dialog (Figure 28) which
includes the option to create a new project. Alternatively you can use the
New Project.. . optionin CodeWarrior’'s File menu.

Startup ﬁ

Create Mew Project

Load Example Project

Load Previous Project

Fun Getting Started Tutorial

Start Uzing Codeh’arrior

-

~ freescale

sarRconducior '7 DISFIla_'r' an Startup

Figure 28: CodeWarrior startup dialog

2) This will launch a New Project wizard (). Select MC9S08MM128 as the derivative and

HCS08 FSL Open Source BDM as the connection method:

44

Microcontrollers New Project

Wizard Map

Device and Connection
Project Farameters
Add Additional Files

Processor Bxpert

Select the dervative you would like to use:

Choose your default connection:

o OO s OO e OO s O s O s |

HCS08LC Family
HCSIELG Family
HCSIELL Family
HCSIEMM Family

- MC508MIM32
- MCOS08MM32A
. MC9508MMG4

- HCSOEMP Family
- HCS0EQ Family
-HCS08R Family
-HCS0E5C Family
- HCS0BSE Family
. HCSRSG Family

m

Connections

Full Chip Simulaticn

P&E Multilink/Cyclone Pro
HCS08 FSL Open Source BDM

Meat =

Connect to the new HCS08 FSL Open
Source BDM based on the MC3508JMED.

Cancel

Figure 29: CodeWarrior New Project wizard

3) Inthe next step (Figure 30), specify the name to give to the CodeWarrior project and its

location, using the Set. . . button.

45

Microcontrollers New Project ﬁ
Wizard Map
Please choose the =&t of languages to be Project name:
supported initialty. You can make multiple - -
. Simple Project. me
Device and Connection selections. | perel P
] - Location:
Project P r p:"-J:urrerﬂ"-.DebugSEE"-.SimpIeF‘rDjed
Add Additional Eiles I~ Relocatable assembly
o c
Processor Bxpert
[~ C=
C/C++ Options
PC-Lint C language support will be includedin -
the project

< Back Meat = Finigh Cancel

Figure 30: Specifying the project name and location

Make sure that the directory where the new project is placed is writeable - for example,
place it in Documents rather than C:\Program Files (Figure 31). Note that CodeWarrior
will automatically add the file extension .mcp to the name of the project file.

[l Choose Project Location ﬁ

Save in: |) Debug508 j = I'ji FEEE g
Mame : Date modified =
J Accelerometer Info 14/12/2010 16:08
| Board Photos 17/01/2011 11:1) ™
) Debugi08Demo 09/02/201111:3:—
J Histaric 25/01/201112:1°
) Open Source BOM 24/01/2011 14:5(+
4 | 1 3
File: name: |Sim|:u|e Project mcp
Save as type: |Pn:.je|:1 Files (" mcp) j Cancel

Figure 31: Use a writeable directory for the new project

46

4) In the next step (Figure 32) you have the option to add existing files to the new project.
We will not add any for this demonstration.

Microcontrollers New Project ﬁ

Wizard Map
Add existing files to the project

Device and Connection =-4 M

*

Project Files

E Simon =

00 Public [add |
/M Computer ml

I

Project Farameters

Add Additional Files

Processor Expert ! & Network
) 102658076_macpaint_acc
C/C++= Options | APL
PC-Lint - L aphversions ¥ Copy files to project
. Backups]] .
& | CodeWarrior for Microcontre = W' Create main c/main asm fil
4 T b
Select files to be added to the new project and press "Add..." -

ITo copy the added files to the project folder, select "Copy Files to Project”
ITo have the wizard generate default main.c and/or main.asm files, select "Create

< Back et = Finish Cancel

Figure 32: Don't add any existing files

47

5) The demonstration does not make use of the Processor Expert or Device Initialization

wizards (Figure 33):

Microcontrollers New Project

Wizard Map

Device and Connection
Project Farameters
Add Addtional Files
Processor Expert
C/C++= Options

PC-Lint

Rapid Application Development
Cptions:

(" Device Inttialization
(" Processor Expert

Mo code is generated, it is necessary to write device -
nitialization code manually. Project contains startup
code onby.

- Help

< Back et = Finish | Cancel ‘

Figure 33:

Don't use a Rapid Application Development wizard

6) Accept the default C/C++ options (Figure 34):

48

Microcontrollers Mew Project

Wizard Map
Which level of startup code do you want to use?

Device and Connection
. . £ minimal startup code
roject Parameters o o
i &

Add Additional Files

Frocoseor Sl Which memary model shall be used?

c/C i o
E— & Smal
PC-Lint " Banked

Select the floating paint format supported.
Select "None’ for best code density.

+ MNone
" float is IEEE32, double is IEEE32
" float is IEEE32, double is IEEEG4

Select ‘minimal startup code’ for best code density.

Ehis will perfarm an ANSI compliant
artup code: it initializes global
ivariables/objects and calls the
mpplication main routine.

< Back

Meat = Finish Cancel

Figure 34: Use the default C/C++ options

49

7) Don’t enable the use of the PC-lint™ source code checker (Figure 35):

Microcontrollers Mew Project

Wizard Map
Do you want to create a project set up
for PCint{TM)?
Device and Connection
" Yes

Project Farameters

Add Addtional Files
Processor Expert
C/C++ Qptions
PC-Lint

Lint tools can find common programming mistakes or -
kuspicious lines in source code by analyzing it.
PCAint{TM) is a product from Gimpel Software. You

need the PCHirt(TM) software from Gimpel installed in
order to use the CodeWarmior plugin.

[Y'ou can enable PCHint(TM) later by manually cloning

i3 target and changing the linker to PCHint linker.

< Back ‘ Finish | Cancel

Figure 35: Don't use PC-lint™ for this project

8.2. Finding your way around the CodeWarrior Project Window

The steps outlined in Section 8.1 will create a CodeWarrior project suitable for use with the
XL_STAR board, and open the main project window (Figure 36)

Make

Edit project

settings \ /
SimpleProject.mcp \ EI%J

| [Dv HC308 FSL Open Source BDM ~| i 1B &/ <& g‘

Files l Link Order | Targets |

5

W File Code | Data |4 B
W =53 Sources 0 0 ==~
« -0 [0 0+ =
27 Includes 0 n =
w [+{_] Libs 0 0« =
w [+#{_] Project Setting 0 0+ =

9 files 0 0 w

Double-click to
open source file

Figure 36: CodeWarrior Project Window

8.3. Writing some simple source code

At the moment, our sample application code doesn’t actually do anything interesting -
although you could build it and download it to the XL_STAR board if you wanted to.

Shown below is the listing of a simple replacement for the code in the file main.c which
does the following:

e Turns off the COP Watchdog timer.

The Computer-Operating-Properly (COP) watchdog timer is useful for applications
which need to monitor whether software is functioning correctly. When the COP
watchdog is enabled the application must service it periodically using a specific

50

51

sequence. If the servicing does not occur within a set time period, the COP will
timeout and cause the processor to reboot.

To keep our example as simple as possible the COP watchdog is disabled.
Uses the default internal clock.

The XL_STAR board includes an external 16MHz crystal which can be used to give an
accurate processor clock. To keep this demo as simple as possible, the external
crystal is not used, and the processor remains in its boot-up clocking mode.

For an example of reconfiguring the processor to use the external crystal, see the
accelerometer demo code.

Note that the OSBDM module can only be used for debugging if the MM128
processor’s bus clock is slow enough (See Section 5.9)

Initialises the GPIO pins connected to the orange LEDs so that they are all outputs
(See Section 7.2)

Enters an endless loop to flash the LEDs, using a pattern in which the spokes light in
turn, giving the effect of a rotating finger of light.

#include <hidef.h> /* for Enablelnterrupts macro */
#include "derivative.h"™ /* include peripheral declarations */

void main(void)

{
unsigned char spoke;
unsigned short i;

/* Configure write-once System Options Register (SOPT)
STOPE=1 : Stop Mode enabled
COPE=0 : Disable watchdog
BKGDPE=1 : Background Debug Mode Pin Enable
*/
SOPT1 = 0x23;

/* Configure all GPIO pins connected to orange LEDs
as outputs

*/

PTCDD |= Ox3f;

PTDDD |= Ox3c;

PTEDD |= 0x80;

PTFDD |= Oxc7;

/* Port C pins must be high to turn on LEDs */
PTCD |= Ox3f;

/* Loop forever */

for (G3) {

for (spoke =
/* Delay */

for (i = O;

/* All LEDs off */

PTDD |= 0x3c;
PTED |= 0x80;
PTFD |= Oxc7;

i < 20000;

/* Turn on a spoke of LEDs */
switch (spoke) {

case O:
PTDD &=
break;

case 1:
PTDD &=
break;

case 2:
PTDD &=
break;

case 3:
PTED &=
break;

case 4:
PTFD &=
break;

case 5:
PTFD &=
break;

case 6:
PTFD &=
break;

case 7:
PTDD &=
break;

¢!

Q

Q@

Q@

@

¢!

Q@

@

<<

<<

<<

<<

<<

<<

<<

<<

4)

3)

2)

7

0

D

2)

5)

/*

/*

/*

/*

/*

/*

/*

/*

0; spoke < 8; spoke++) {

Spoke

Spoke

Spoke

Spoke

Spoke

Spoke

Spoke

Spoke

D62

D61

D60

D59

D58

D57

D56

D63

on

on

on

on

on

on

on

on

*/

*/

*/

*/

*/

*/

*/

*/

52

53

8.4. Building the new project

To build the project, use the Make button in the CodeWarrior project window (Figure 36).

8.5. Downloading the project to the XL_STAR board

To test the project, first make sure that a USB cable is connected between your PC and the
XL_STAR board, as described in Section 5.7. Note that the USB cable connects to the port on
the underside of the board, not the one near the On/Off switch.

Use the Debug button in the CodeWarrior project window (Figure 36) to launch the Hiwave
debugger in a new window. This will program the new application into Flash memory on the
MM128 MCU, erasing any existing application (Figure 37)

LOADER WARNING 5

The debugger iz going to mazs erase the non
volatile memary [eeprom and flash) of the
current device, then program the application.

ak | Abort

[Do not display this message anymore
for this project.

Figure 37: Loading code to the MM128 MCU

8.6. Running the code

Hit the green Start arrow in the Hiwave debugger window to start the program executing
(Figure 38). You should see a rotating pattern on the board’s orange LEDs.

D|e|e| &|%|@ 28] [

gl

Start / Continue

Single Step
[steps into
subroutines)

Reset
Target

Halt (break into
executing program)

Step Out (steps
out of subrouting]

Step Owver (steps over
subroutine calls)

Figure 38: Hiwave debugger Toolbar

For more information about debugging, see Section 5.7.

54

