

Product Overview

Reflowable Thermal Protection Solutions for Power Electronics Designs in Rugged Environments

TE Reflowable Thermal Protection (RTP) device is a low resistance, robust surface mountable thermal protector. It has a set open temperature and can be installed using reliable, lead-free, Surface Mount Device (SMD) assembly and reflow processes.

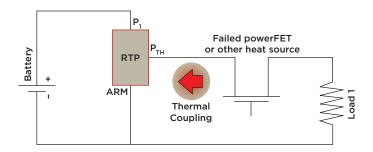
KEY FEATURES

- Opens at temperature below critical thermal threshold
- Compatible with up to 3 Pb-free solder reflow processes with peak temperatures up to 260°C
- Low series resistance
- DC interrupt voltage capable
- Robust design for harsh environment tested per stringent qualification specification
- RoHS compliant, lead and halogen free

The RTP device described in this overview can withstand the demanding environmental, life, and reliability requirements of automotive and industrial applications, including shock, vibration, temperature cycling, and humidity exposures. In the field, the RTP device opens if its internal junction exceeds the device's specified open temperature. Temperature increases can have multiple sources, one of which is component failure (i.e. when using power components such as a power FET, capacitor, resistor, triac, etc.). The RTP device open temperature is selected so that the device does not open within normal component operating windows, but it does open in a thermal runaway event and before the melt temperature of typical lead free solders.

To simplify installation, improve reliability, and optimize thermal coupling with the PCB, the RTP device is surface mountable. No special SMD installation is required. Instead, after installation, the RTP device utilizes a one time electronic arming process to become thermally sensitive. Before the arming procedure, the device can go through installation temperatures up to 260°C without going open. After arming, the device will open when the critical junction exceeds the open temperature. Arming can occur during test, or in the field.

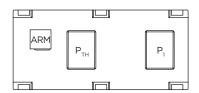
APPLICATIONS

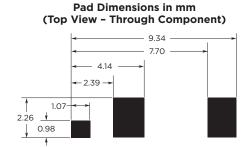

- Helps provide protection against thermal runaway for power FETs and other components if failure occurs in applications such as automotive HVAC, ABS, power steering, DC/DC converters, PTC heaters, etc. or IT servers, telecom power, converters, etc.
- Other DC thermal protection

BENEFITS

- Helps prevent failed components from smoking, and or de-soldering in case of a thermal event
- Allows use of standard surface-mount production methods with no special assembly costs
- Low power dissipation and voltage drop
- Supports DC electronic circuits
- Suitable for rugged environment applications (automotive and industrial)
- · Green design

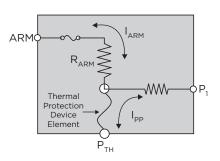
TYPICAL APPLICATION BLOCK DIAGRAM




PIN CONFIGURATION & DESCRIPTION PAD LAYOUT RECOMMENDATIONS

Pin Description

Pin Number	Pin Name	Pin Function
1	P ₁	Power I/O pin (Main power current path)
2	P _{TH}	Thermally sensitive power I/O pin - Intended to share protected component heat sink
3	ARM	Electronic arming pin


Pin Configuration (Bottom View of Device)

DEFINITION OF TERMS / DEVICE BLOCK DIAGRAM

Junction	The internal interface which must achieve the "Open Temperature" for the RTP device to open thermally after arming. This interface (thermal element) is located directly above the P_{TH} pad.		
Open Temp	Temp The device will open when the junction temperature achieves this value.		
$I_{\rm ARM}$ and $R_{\rm ARM}$	Current and resistance levels measured between the ARM pin and either the $P_{\rm 1}$ or $P_{\rm TH}$ pin. These values are relevant only pre device arming.		
R _{PP} and I _{PP}	Current and resistance levels measured between the P_1 and P_{TH} pins.		

METHOD OF OPERATION - ELECTRONIC ARMING

The RTP device is a unique thermal protector. It can be reflowed at temperatures up to 260°C without opening, yet in operation it will open at temperatures well below 260°C. To achieve this functionality, the RTP device uses an electronic arming mechanism.

Electronic arming must be done after reflow, and can be done during final test.

The device is armed by sending a specified arming current through the ARM pin of the device. Arming is a time- & current-dependent event. Arming times vs. current are provided in the "Arming Characteristics" section of this overview. Current can flow in either direction through the ARM pin.

Prior to arming, R_{ARM} should have resistance levels as specified in the "Arming Characteristics" section. Once armed, the ARM pin will be electrically open relative to the P_1 or P_{TH} pins.

Arming has been successful once R_{ARM} exceeds the post-arming minimum resistance specified in the "Arming Characteristics" section. RTP devices must be armed individually and cannot be armed simultaneously in series.

Once "armed", the RTP device will permanently open when the device junction achieves its specified opening temperature.

Although multiple options exist, below is one simple arming option.

Sample Arming Options

During Test	Current Flow	Description		
Point 1 PowerFET Test Point 2	$P_{TH} \longleftrightarrow ARM = Arming$	ARM pin connected between two test points In this case, pin P_1 is left "floating", and arming can occur during test, at a user defined time, by connecting to the Test Points and applying sufficient current (I_{ARM}) between Test Point 1 and Test Point 2 until the device is armed.		

PRELIMINARY ABSOLUTE MAX RATINGS

Absolute Max Ratings	RTP200R060SA	Units	
Absolute Max Ratings	Max	Offics	
Max DC Open Voltage (1)	32	V_{DC}	
	@ 16 V _{DC}	200	А
Max DC Interrupt Current (1)	@ 24 V _{DC}	130	
	@ 32 V _{DC}	100	
ESD rating (Human Body Model)	25	KV	
Max Reflow Temperature (pre-arming)	260	°C	
Operating temperature limits, post-arming, non-opening		-55 +175	°C

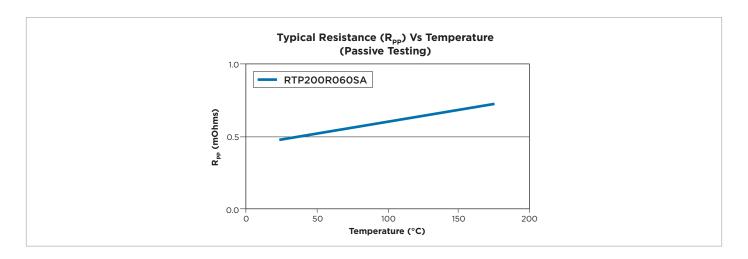
Performance capability at these conditions can be influenced by board design. Performance should be verified in the user's system.

PRELIMINARY PERFORMANCE CHARACTERISTICS (TYPICAL UNLESS OTHERWISE SPECIFIED)

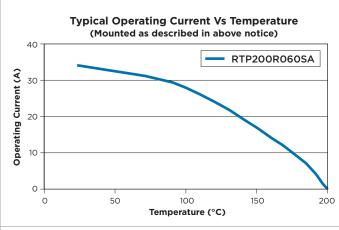
Resistance and Open Characteristics $P_{\rm 1}$ to $P_{\rm TH}$			RTP200R060SA		
			Тур	Max	Units
D. (Decister of from D. to D.)	@ 23+/-3°C	_	0.6	0.8	mΩ
R_{PP} (Resistance from P_1 to P_{TH})	@ 175+/-3°C	-	0.8	1.0	
Operating Voltage	-	-	32	-	V _{DC}
Open Temperature, post-arming	I _{PP} = O	200	205	207	°C
Thermal Resistance: Junction to Ambient (2)	See note	-	150	-	°C/W
Thermal Resistance: Junction to Case	Case = P _{TH} pad	-	0.5	-	°C/W
	@ 23+/-3°C	32	34	-	
Installation dependent Operating Current, post-arming (2)(3)	@ 100+/-3°C	-	28	-	А
3	@ 175+/-3°C	_	10	_	
Moisture Sensitivity Level Rating (4)	-	-	1	-	-

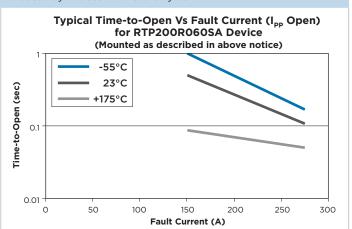
ARMING CHARACTERISTICS

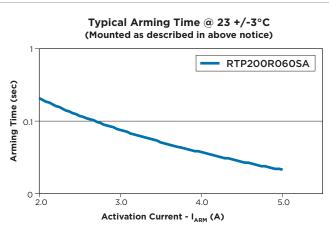
Arming Characteristics ARM			RTP200R060SA		
			Тур	Max	Units
Arming Type			Electronically Armed		
	Pre-Arming	-	300	-	mΩ
R_{ARM} (Resistance from ARM to P_1 or P_{TH})	Post-Arming	10	-	-	KΩ
Arming Current (I _{ARM}) (2)	@ 23 +/-3°C	2	_	5	А
Auralian Time (CO7 1 / 70C) (2)	@ 2A	-	0.20	-	
Arming Time (@23 +/-3°C) (2)	@ 5A	_	0.02	-	Sec

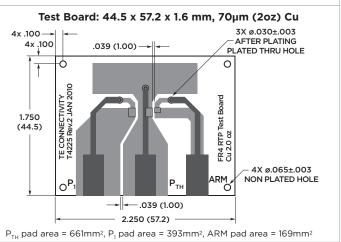

⁽²⁾ Results obtained on $44.5 \times 57.2 \times 1.6$ (in mm) single layer FR4 boards with $70\mu m$ (2oz) Cu traces, a $645mm^2$, $70\mu m$ (2oz) Cu heat spreader connected to the P_{TH} pad, and a $387mm^2$ Cu heat spreader connected to the P₁ pad of the RTP device. (See RTP device test board drawing) Results are highly installation dependent.

⁽³⁾ Operating current is measured on the RTP test boards at the specified temperature. It is a highly installation dependent value.

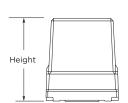

⁽⁴⁾ As per JEDEC J-STD-020C.

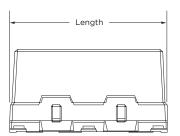

TYPICAL ELECTRICAL PERFORMANCE CHARACTERISTICS

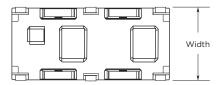



INSTALLATION DEPENDENT PERFORMANCE CHARACTERISTICS

Note: Results were obtained on 44.5 x 57.2 x 1.6 (in mm) single layer FR4 boards with 2mOhm, 70μm (2oz) Cu traces, and a 645mm², 70μm (2oz) Cu heat spreader connected to the P_{TH} pad of the RTP device. (See RTP device test board drawing) Results will vary based on user's configuration and should be validated by the user in the end system.







MECHANICAL DIMENSIONS

	RTP200	Units		
	Min	Max	Units	
Height	6.00	6.35	mm	
Length	11.60	12.00	mm	
Width	5.25	5.50	mm	

MATERIAL CONSTRUCTION

RoHS Compliant

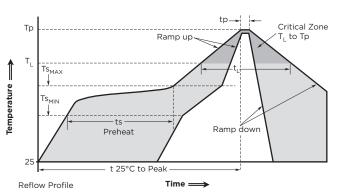
Directive 2002/95/EC Compliant

ELV Compliant

Directive 2000/53/EC Compliant

Pb-Free

Halogen Free*

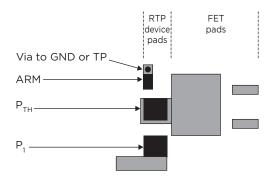


RECOMMENDED REFLOW PROFILE

Classification Reflow Profiles

Profile Feature	Pb-Free Assembly		
Average Ramp-Up Rate (Ts _{MAX} to Tp)	3°C/second max.		
Preheat			
• Temperature Min (Ts _{MIN})	150°C		
Temperature Max (Ts _{MAX})	200°C		
• Time (ts _{MIN} to ts _{MAX})	60-180 seconds		
Time maintained above:			
Temperature (T _L)	217°C		
• Time (t _L)	60-150 seconds		
Peak/Classification Temperature (Tp)	260°C		
Time within 5°C of actual Peak Temperature			
Time (tp)	20-24 seconds		
Ramp-Down Rate	6°C/second max.		
Time 25°C to Peak Temperature	8 minutes max.		

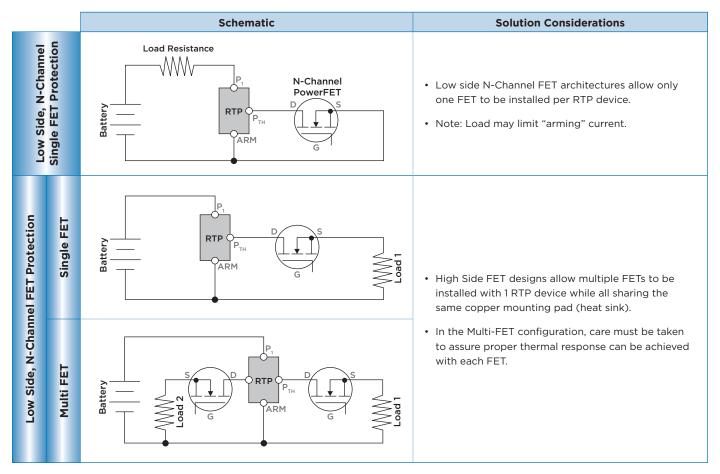
Reflow Profile


^{*} Halogen Free refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm.

LAYOUT RECOMMENDATIONS

Intimate thermal contact with the potential heat source is critical to achieve the desired protection performance. The RTP device should be used so that the P_{TH} pin shares a copper mounting pad with the primary thermal pin or heat sink of the FET or protected component. Board layout recommendations for appropriate thermal coupling are provided below.

- 1. The RTP device P_{TH} pad must be placed as close to the FET heat sink as practical.
- 2. Connect the P_{TH} pad to the FET heat sink with as thick and wide a copper trace as practical.
- 3. Additional copper layers should NOT be placed directly underneath the P_{TH} pad, and if possible, pull additional copper layers away from the RTP device P_{TH} pad. These additional copper layers work to pull heat away from the RTP device and decrease its thermal sensitivity.
- 4. Pull top layer "cooling" traces as far away from RTP device P_{TH} pad as practical.


Example layout of an RTP device mounted near to a typical powerFET package on an FR4 type PCB

Note: Thermal conductivity between the RTP device and the heat source is highly dependent on board layout, heat sink structures, and relative placement and design of co-located components. It is the responsibility of the user to verify that the RTP device provides sufficient protection in the user's specific final device implementation.

ALTERNATE & MULTI-FET SCHEMATIC IMPLEMENTATIONS

Note: The degree of thermal connectivity between the heat source and the RTP device is highly dependent on board layouts, PCB material, heat sink structures, and relative placement and design of co-located components. It is the responsibility of the user to verify that the RTP device provides sufficient protection in the user's specific final device implementation.

QUALIFICATION TESTING

The Qualification testing plan for this series of RTP devices is built upon AEC automotive grade testing for ICs (AEC-Q100), discrete semiconductors (AEC-Q101), and passive components (AEC-Q200), with the intent to demonstrate survivability to the most stringent of the relevant requirements. TE Circuit Protection requires that at least 3 lots of production devices pass internal qualification* tests prior to full production release.

Contact TE Circuit Protection for updated qualification status and detailed procedures.

*A specific list of tests and conditions is available upon request.

FOR MORE INFORMATION

TE CIRCUIT PROTECTION

South Africa / Nordic / Baltic / Others Tel: 49-89-6089485

Germany / Austria / Switzerland / Eastern Europe / Russia Tel: 49-89-6089584

Greece / TurkeyTel: 33-1-34208455
Fax: 33-1-34208479

China, Hong Kong Tel: 852-2738-8181 Fax: 852-2735-1185

China, Beijing

China, Shanghai

Singapore / Indonesia Tel : 65-6590-5089 Fax: 65-6481-9377

Australia / PhilippinesTel : 63-2-988-9465
Fax: 63-2-848-0205

te.com

© 2011 Tyco Electronics Corporation, a TE Connectivity Ltd. Company. All Rights Reserved. RCP0095E 06/2011

TE Connectivity and TE connectivity (logo) are trademarks. Other logos, product and/or company names might be trademarks of their respective owners.

