
SEMIX 202GB066HD

SEMiX[®] 2

Trench IGBT Modules

SEMIX 202GB066HD

Target Data

Features

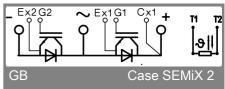
- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient

Typical Applications

- Matrix Converter
- Resonant Inverter
- Current Source Inverter

Remarks


- · Case temperatur limited to
- T_C=125°C max.
 Product reliability results are valid for T_i=150°C
- SC data: $t_p \le 6 \ \mu s; \ V_{GE} \le 15 \ V; \ T_j$ = 150°C; V_{CC} = 360 V


Absolute	Maximum Ratings	T _{case} = 25°C, unless otherwise sp	25°C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		600	V					
I _C	$T_c = 25 (80) ^{\circ}C, T_i = 150 ^{\circ}C$	240 (170)	Α					
I _C	$T_c = 25 (80) ^{\circ}\text{C}, T_i = 175 ^{\circ}\text{C}$	270 (200)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	400	Α					
V_{GES}		± 20	V					
T_j , (T_{stg})		- 40 + 175 (125)	°C					
V_{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	$T_c = 25 (80) ^{\circ}C, T_i = 150 ^{\circ}C$	190 (130)	Α					
I _F	$T_c = 25 (80) ^{\circ}\text{C}, T_i = 175 ^{\circ}\text{C}$	210 (160)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	400	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 25 \text{ °C}$	1000	Α					

Characte	ristics	case = 25°C	se = 25°C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT					•		
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6.4$ mA		5,8		V		
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 () ^{\circ}C$			0,1	mA		
$V_{CE(TO)}$	T _j = 25 (150) °C		0,9 (0,85)	, , ,	V		
r_{CE}	V _{GE} = 15 V, T _j = 25 (150) °C		2,75 (4,25)	,	mΩ		
V _{CE(sat)}	$I_C = 200 \text{ A}, V_{GE} = 15 \text{ V},$		1,45 (1,7)	1,9 (2,1)	V		
	T _j = 25 (150) °C, chip level						
C _{ies}	under following conditions				nF		
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25$ V, $f = 1$ MHz				nF		
C _{res}					nF		
L _{CE}					nH		
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ		
$t_{d(on)}/t_r$	V _{CC} = 300 V, I _C = 200 A				ns		
$t_{d(off)}/t_{f}$	V _{GE} = ±15V				ns		
$E_{on} \left(E_{off} \right)$	$R_{Gon} = R_{Goff} = 6 \Omega$, $T_j = 150 °C$		5 (9)		mJ		
Inverse D							
$V_F = V_{EC}$	I_F = 200 A; V_{GE} = 0 V; T_j = 25 (150) °C, chip level		1,4 (1,4)	1,6	V		
$V_{(TO)}$	T _j = 25 (150) °C		1 (0,85)	1,1	V		
r _T	$T_{j} = 25 (150) ^{\circ}C$		2 (2,8)	2,6	mΩ		
I _{RRM}	I _F = 200 A; T _j = 25 (150) °C				Α		
Q_{rr}	di/dt = A/µs				μC		
E _{rr}	V _{GE} = -15 V				mJ		
Thermal	characteristics						
$R_{th(j-c)}$	per IGBT			0,22	K/W		
$R_{th(j-c)D}$	per Inverse Diode			0,4	K/W		
$R_{th(j-c)FD}$	per FWD				K/W		
$R_{th(c-s)}$	per module		0,045		K/W		
Tempera	ture sensor						
R ₂₅	T _c = 25 °C		5 ±5%		kΩ		
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K		
Mechanical data							
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm		
w			250		g		

SEMIX 202GB066HD

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.