
A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

J-Link / J-Trace
User Guide

Software Version V4.51h
Manual Rev. 0

Document: UM08001

Date: July 17, 2012

2

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (the manufacturer) assumes no
responsibility for any errors or omissions. The manufacturer makes and you receive
no warranties or conditions, express, implied, statutory or in any communication with
you. The manufacturer specifically disclaims any implied warranty of merchantability
or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2012 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com

Revisions

This manual describes the J-Link and J-Trace device.

For further information on topics or routines not yet specified, please contact us.

Revision Date By Explanation

V4.51h Rev. 0 120717 EL

Chapter "Flash download"
 * Section "J-Link commander" updated.
 Chapter "Support and FAQs"
 * Section "Frequently asked questions" updated.
Chapter "J-Link and J-Trace related software"
 * Section "J-Link Commander" updated.

V4.51e Rev. 1 120704 EL
Chapter "Working with J-Link"
 * Section "Reset strategies" updated and
 corected. Added reset type 8.

V4.51e Rev. 0 120704 AG Chapter "Device specifics"
 * Section "ST" updated and corrected.

V4.51b Rev. 0 120611 EL Chapter "J-Link and J-Trace related software"
 * Section "SWO Viewer" added.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

3

V4.51a Rev. 0 120606 EL

Chapter "Device specifics"
 * Section "ST", subsection "ETM init"
 for some STM32 devices added..
 * Section "Texas Instruments" updated.
Chapter "Target interfaces and adapters"
 * Section "Pinout for SWD" updated.

V4.47a Rev. 0 120419 AG Chapter "Device specifics"
 * Section "Texas Instruments" updated.

V4.46 Rev. 0 120416 EL Chapter "Support" updated.

V4.42 Rev. 0 120214 EL Chapter "Working with J-Link"
 * Section "J-Link script files" updated.

V4.36 Rev. 1 110927 EL

Chapter "Flash download" added.
Chapter "Flash breakpoints" added.
Chapter "Target interfaces and adapters"
 * Section "20-pin JTAG/SWD connector" updated.
Chapter "RDI" added.
Chapter "Setup" updated.
Chapter "Device specifics" updated.
Several corrections / updates.

V4.36 Rev. 0 110909 AG Chapter "Working with J-Link"
 * Section "J-Link script files" updated.

V4.26 Rev. 1 110513 KN Chapter "Introduction"
 * Section "J-Link / J-Trace models" corrected.

V4.26 Rev. 0 110427 KN Several corrections.

V4.24 Rev. 1 110228 AG

Chapter "Introduction"
 * Section "J-Link / J-Trace models" corrected.
Chapter "Device specifics"
 * Section "ST Microelectronics" updated.

V4.24 Rev. 0 110216 AG

Chapter "Device specifics"
 * Section "Samsung" added.
Chapter "Working with J-Link"
 * Section "Reset strategies" updated.
Chapter "Target interfaces and adapters"
 * Section "9-pin JTAG/SWD connector" added.

V4.23d 110202 AG

Chapter "J-Link and J-Trace related software"
 * Section "J-Link software and documentation
 package in detail" updated.
Chapter "Introduction"
 * Section "Built-in intelligence for
 supported CPU-cores" added.

V4.21g 101130 AG

Chapter "Working with J-Link"
 * Section "Reset strategies" updated.
Chapter "Device specifics"
 * Section "Freescale" updated.
Chapter "Flash download and flash breakpoints
 * Section "Supported devices" updated
 * Section "Setup for different debuggers
 (CFI flash)" updated.

V4.21 101025 AG Chapter "Device specifics"
 * Section "Freescale" updated.

V4.20j 101019 AG Chapter "Working with J-Link"
 * Section "Reset strategies" updated.

V4.20b 100923 AG Chapter "Working with J-Link"
 * Section "Reset strategies" updated.

Revision Date By Explanation
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

4

90 100818 AG

Chapter "Working with J-Link"
 * Section "J-Link script files" updated.
 * Section "Command strings" upadted.
Chapter "Target interfaces and adapters"
 * Section "19-pin JTAG/SWD and Trace
 connector" corrected.
Chapter "Setup"
 * Section "J-Link configurator added."

89 100630 AG Several corrections.

88 100622 AG Chapter "J-Link and J-Trace related software"
 * Section "SWO Analyzer" added.

87 100617 AG Several corrections.

86 100504 AG

Chapter "Introduction"
 * Section "J-Link / J-Trace models" updated.
Chapter "Target interfaces and adapters"
 * Section "Adapters" updated.

85 100428 AG Chapter "Introduction"
 * Section "J-Link / J-Trace models" updated.

84 100324 KN

Chapter "Working with J-Link and J-Trace"
 * Several corrections
Chapter Flash download & flash breakpoints
 * Section "Supported devices" updated

83 100223 KN Chapter "Introduction"
 * Section "J-Link / J-Trace models" updated.

82 100215 AG Chapter "Working with J-Link"
 * Section "J-Link script files" added.

81 100202 KN

Chapter "Device Specifics"
 * Section "Luminary Micro" updated.
Chapter "Flash download and flash breakpoints"
 * Section "Supported devices" updated.

80 100104 KN Chapter "Flash download and flash breakpoints
 * Section "Supported devices" updated

79 091201 AG

Chapter "Working with J-Link and J-Trace"
 * Section "Reset strategies" updated.
Chapter "Licensing"
 * Section "J-Link OEM versions" updated.

78 091023 AG Chapter "Licensing"
 * Section "J-Link OEM versions" updated.

77 090910 AG Chapter "Introduction"
 * Section "J-Link / J-Trace models" updated.

76 090828 KN

Chapter "Introduction"
 * Section" Specifications" updated
 * Section "Hardware versions" updated
 * Section "Common features of the J-Link product
 family" updated
Chapter "Target interfaces and adapters"
 * Section "5 Volt adapter" updated

75 090729 AG

Chapter "Introduction"
 * Section "J-Link / J-Trace models" updated.
Chapter "Working with J-Link and J-Trace"
 * Section "SWD interface" updated.

Revision Date By Explanation
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

5

74 090722 KN

Chapter "Introduction"
 * Section "Supported IDEs" added
 * Section "Supported CPU cores" updated
 * Section "Model comparison chart" renamed to
 "Model comparison"
 * Section "J-Link bundle comparison chart"
 removed

73 090701 KN

Chapter "Introduction"
 * Section "J-Link and J-Trace models" added
 * Sections "Model comparison chart" &
 "J-Link bundle comparison chart"added
Chapter "J-Link and J-Trace models" removed
Chapter "Hardware" renamed to
 "Target interfaces & adapters"
 * Section "JTAG Isolator" added
Chapter "Target interfaces and adapters"
 * Section "Target board design" updated
Several corrections

72 090618 AG

Chapter "Working with J-Link"
 * Section "J-Link control panel" updated.
Chapter "Flash download and flash breakpoints"
 * Section "Supported devices" updated.
Chapter "Device specifics"
 * Section "NXP" updated.

71 090616 AG Chapter "Device specifics"
 * Section "NXP" updated.

70 090605 AG
Chapter "Introduction"
 * Section "Common features of the J-Link
 product family" updated.

69 090515 AG

Chapter "Working with J-Link"
 * Section "Reset strategies" updated.
 * Section "Indicators" updated.
Chapter "Flash download and flash breakpoints"
 * Section "Supported devices" updated.

68 090428 AG

Chapter "J-Link and J-Trace related software"
 * Section "J-Link STM32 Commander" added.
Chapter "Working with J-Link"
 * Section "Reset strategies" updated.

67 090402 AG Chapter "Working with J-Link"
 * Section "Reset strategies" updated.

66 090327 AG

Chapter "Background information"
 * Section "Embedded Trace Macrocell (ETM)"
 updated.
Chapter "J-Link and J-Trace related software"
 * Section "Dedicated flash programming
 utilities for J-Link" updated.

65 090320 AG Several changes in the manual structure.

64 090313 AG Chapter "Working with J-Link"
 * Section "Indicators" added.

63 090212 AG
Chapter "Hardware"
 * Several corrections.
 * Section "Hardware Versions" Version 8.0 added.

Revision Date By Explanation
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

6

62 090211 AG

Chapter "Working with J-Link and J-Trace"
 * Section "Reset strategies" updated.
Chapter J-Link and J-Trace related software
 * Section "J-Link STR91x Commander
 (Command line tool)" updated.
Chapter "Device specifics"
 * Section "ST Microelectronics" updated.
Chapter "Hardware" updated.

61 090120 TQ Chapter "Working with J-Link"
 * Section "Cortex-M3 specific reset strategies"

60 090114 AG Chapter "Working with J-Link"
 * Section "Cortex-M3 specific reset strategies"

59 090108 KN

Chapter Hardware
 * Section "Target board design for JTAG"
 updated.
 * Section "Target board design for SWD" added.

58 090105 AG
Chapter "Working with J-Link Pro"
 * Section "Connecting J-Link Pro the first time"
 updated.

57 081222 AG

Chapter "Working with J-Link Pro"
 * Section "Introduction" updated.
 * Section "Configuring J-Link Pro
 via web interface" updated.
Chapter "Introduction"
 * Section "J-Link Pro overview" updated.

56 081219 AG

Chapter "Working with J-Link Pro"
 * Section "FAQs" added.
Chapter "Support and FAQs"
 * Section "Frequently Asked Questions" updated.

55 081218 AG Chapter "Hardware" updated.

54 081217 AG Chapter "Working with J-Link and J-Trace"
 * Section "Command strings" updated.

53 081216 AG Chapter "Working with J-Link Pro" updated.

52 081212 AG
Chapter "Working with J-Link Pro" added.
Chapter "Licensing"
 * Section "Original SEGGER products" updated.

51 081202 KN Several corrections.

50 081030 AG Chapter "Flash download and flash breakpoints"
 * Section "Supported devices" corrected.

49 081029 AG Several corrections.

48 080916 AG
Chapter "Working with J-Link and J-Trace"
 * Section "Connecting multiple J-Links /
 J-Traces to your PC" updated.

47 080910 AG Chapter "Licensing" updated.

46 080904 AG

Chapter "Licensing" added.
Chapter "Hardware"
 Section "J-Link OEM versions" moved to chapter
 "Licensing"

45 080902 AG

Chapter "Hardware"
 Section "JTAG+Trace connector" JTAG+Trace
 connector pinout corrected.
 Section "J-Link OEM versions" updated.

44 080827 AG
Chapter "J-Link control panel" moved to chapter
"Working with J-Link".
Several corrections.

Revision Date By Explanation
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

7

43 080826 AG Chapter "Flash download and flash breakpoints"
 Section "Supported devices" updated.

42 080820 AG Chapter "Flash download and flash breakpoints"
 Section "Supported devices" updated.

41 080811 AG

Chapter "Flash download and flash breakpoints"
updated.
Chapter "Flash download and flash breakpoints",
section "Supported devices" updated.

40 080630 AG

Chapter "Flash download and flash breakpoints"
updated.
Chapter "J-Link status window" renamed to "J-Link
control panel"
Various corrections.

39 080627 AG

Chapter "Flash download and flash breakpoints"
 Section "Licensing" updated.
 Section "Using flash download and flash
 breakpoints with different debuggers" updated.
Chapter "J-Link status window" added.

38 080618 AG

Chapter "Support and FAQs"
 Section "Frequently Asked Questions" updated
Chapter "Reset strategies"
 Section "Cortex-M3 specific reset strategies"
updated.

37 080617 AG
Chapter "Reset strategies"
Section "Cortex-M3 specific reset strategies"
updated.

36 080530 AG

Chapter "Hardware"
 Section "Differences between different versions"
 updated.
Chapter "Working with J-Link and J-Trace"
 Section "Cortex-M3 specific reset strategies"
 added.

35 080215 AG
Chapter "J-Link and J-Trace related software"
 Section "J-Link software and documentation
 package in detail" updated.

34 080212 AG

Chapter "J-Link and J-Trace related software"
 Section "J-Link TCP/IP Server (Remote J-Link /
 J-Trace use)" updated.
Chapter "Working with J-Link and J-Trace"
 Section "Command strings" updated.
Chapter "Flash download and flash breakpoints"
 Section "Introduction" updated.
 Section "Licensing" updated.
 Section "Using flash download and flash
 breakpoints with different debuggers" updated.

33 080207 AG

Chapter "Flash download and flash breakpoints"
added
Chapter "Device specifics:"
 Section "ATMEL - AT91SAM7 - Recommended init
 sequence" added.

32 0080129 SK
Chapter "Device specifics":
 Section "NXP - LPC - Fast GPIO bug" list of
 device enhanced.

31 0080103 SK Chapter "Device specifics":
 Section "NXP - LPC - Fast GPIO bug" updated.

Revision Date By Explanation
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

8

30 071211 AG

Chapter "Device specifics":
 Section "Analog Devices" updated.
 Section "ATMEL" updated.
 Section "Freescale" added.
 Section "Luminary Micro" added.
 Section "NXP" updated.
 Section "OKI" added.
 Section "ST Microelectronics" updated.
 Section "Texas Instruments" updated.
Chapter "Related software":
 Section "J-Link STR91x Commander" updated

29 070912 SK Chapter "Hardware", section "Target board design"
updated.

28 070912 SK

Chapter "Related software":
 Section "J-LinkSTR91x Commander" added.
Chapter "Device specifics":
 Section "ST Microelectronics" added.
 Section "Texas Instruments" added.
 Subsection "AT91SAM9" added.

28 070912 AG Chapter "Working with J-Link/J-Trace":
 Section "Command strings" updated.

27 070827 TQ Chapter "Working with J-Link/J-Trace":
 Section "Command strings" updated.

26 070710 SK

Chapter "Introduction":
 Section "Features of J-Link" updated.
Chapter "Background Information":
 Section "Embedded Trace Macrocell" added.
 Section "Embedded Trace Buffer" added.

25 070516 SK

Chapter "Working with J-Link/J-Trace":
 Section "Reset strategies in detail"
 - "Software, for Analog Devices ADuC7xxx
 MCUs" updated
 - "Software, for ATMEL AT91SAM7 MCUs"
 added.
Chapter "Device specifics"
 Section "Analog Devices" added.
 Section "ATMEL" added.

24 070323 SK
Chapter "Setup":
 "Uninstalling the J-Link driver" updated.
 "Supported ARM cores" updated.

23 070320 SK Chapter "Hardware":
 "Using the JTAG connector with SWD" updated.

22 070316 SK Chapter "Hardware":
 "Using the JTAG connector with SWD" added.

21 070312 SK
Chapter "Hardware":
 "Differences between different versions"
 supplemented.

20 070307 SK Chapter "J-Link / J-Trace related software":
 "J-Link GDB Server" licensing updated.

19 070226 SK

Chapter "J-Link / J-Trace related software" updated
and reorganized.
Chapter "Hardware"
 "List of OEM products" updated

18 070221 SK Chapter "Device specifics" added
Subchapter "Command strings" added

Revision Date By Explanation
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

9

17 070131 SK

Chapter "Hardware":
 "Version 5.3": Current limits added
 "Version 5.4" added
Chapter "Setup":
 "Installating the J-Link USB driver" removed.
 "Installing the J-Link software and documentation
 pack" added.
Subchapter "List of OEM products" updated.
"OS support" updated

16 061222 SK Chapter "Preface": "Company description" added.
J-Link picture changed.

15 060914 OO

Subchapter 1.5.1: Added target supply voltage and
target supply current to specifications.
Subchapter 5.2.1: Pictures of ways to connect J-
Trace.

14 060818 TQ Subchapter 4.7 "Using DCC for memory reads"
added.

13 060711 OO Subchapter 5.2.2: Corrected JTAG+Trace connec-
tor pinout table.

12 060628 OO Subchapter 4.1: Added ARM966E-S to List of sup-
ported ARM cores.

11 060607 SK Subchapter 5.5.2.2 changed.
Subchapter 5.5.2.3 added.

10 060526 SK

ARM9 download speed updated.
Subchapter 8.2.1: Screenshot "Start sequence"
updated.
Subchapter 8.2.2 "ID sequence" removed.
Chapter "Support" and "FAQ" merged.
Various improvements

9 060324 OO

Chapter "Literature and references" added.
Chapter "Hardware":
 Added common information trace signals.
 Added timing diagram for trace.
Chapter "Designing the target board for trace"
added.

8 060117 OO Chapter "Related Software": Added JLinkARM.dll.
Screenshots updated.

7 051208 OO Chapter Working with J-Link: Sketch added.

6 051118 OO

Chapter Working with J-Link: "Connecting multiple
J-Links to your PC" added.
Chapter Working with J-Link: "Multi core debug-
ging" added.
Chapter Background information: "J-Link firm-
ware" added.

5 051103 TQ Chapter Setup: "JTAG Speed" added.

4 051025 OO

Chapter Background information: "Flash program-
ming" added.
Chapter Setup: "Scan chain configuration" added.
Some smaller changes.

3 051021 TQ Performance values updated.
2 051011 TQ Chapter "Working with J-Link" added.
1 050818 TW Initial version.

Revision Date By Explanation
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

10
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

11
About this document
This document describes J-Link and J-Trace. It provides an overview over the major
features of J-Link and J-Trace, gives you some background information about JTAG,
ARM and Tracing in general and describes J-Link and J-Trace related software pack-
ages available from Segger. Finally, the chapter Support and FAQs on page 267 helps
to troubleshoot common problems.

For simplicity, we will refer to J-Link ARM as J-Link in this manual.

For simplicity, we will refer to J-Link ARM Pro as J-Link Pro in this manual.

Typographic conventions

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on the
display (that is system functions, file- or pathnames).

Reference Reference to chapters, tables and figures or other documents.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Table 1.1: Typographic conventions
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

12
EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.
Starterkits, eval- and trial-versions are
available.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources. The profiling
PC tool embOSView is included.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support.
emFile has been optimized for mini-
mum memory consumption in RAM and
ROM while maintaining high speed.
Various Device drivers, e.g. for NAND
and NOR flashes, SD/MMC and Com-
pactFlash cards, are available.

emUSB
USB device stack
A USB stack designed to work on any
embedded system with a USB client
controller. Bulk communication and
most standard device classes are sup-
ported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for microcon-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development
time for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash microcontrollers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

13

Table of Contents
1 Introduction ..19

1.1 Requirements..20
1.2 Supported OS ...21
1.3 J-Link / J-Trace models ..22
1.3.1 Model comparison..23
1.3.2 J-Link ARM ...24
1.3.3 J-Link Ultra ...27
1.3.4 J-Link ARM Pro ..28
1.3.5 J-Link ARM Lite ...29
1.3.6 J-Link Lite Cortex-M...30
1.3.7 J-Trace ARM ...32
1.3.8 J-Trace for Cortex-M ..34
1.3.9 Flasher ARM..36
1.3.10 J-Link ColdFire ..37
1.4 Common features of the J-Link product family ...38
1.5 Supported CPU cores ...39
1.6 Built-in intelligence for supported CPU-cores ...40
1.6.1 Intelligence in the J-Link firmware ...40
1.6.2 Intelligence on the PC-side (DLL)...40
1.6.3 Firmware intelligence per model ..42
1.7 Supported IDEs ...44

2 Licensing..45

2.1 Introduction..46
2.2 Software components requiring a license ..47
2.3 License types ..48
2.3.1 Built-in license ..48
2.3.2 Key-based license..48
2.3.3 Device-based license..49
2.4 Legal use of SEGGER J-Link software..52
2.4.1 Use of the software with 3rd party tools..52
2.5 Original SEGGER products...53
2.5.1 J-Link ..53
2.5.2 J-Link Ultra ...53
2.5.3 J-Link Pro ...54
2.5.4 J-Trace...54
2.5.5 J-Trace for Cortex-M ..55
2.5.6 Flasher ARM..55
2.6 J-Link OEM versions ...56
2.6.1 Analog Devices: mIDASLink ..56
2.6.2 Atmel: SAM-ICE ..56
2.6.3 Digi: JTAG Link..57
2.6.4 IAR: J-Link / J-Link KS ...57
2.6.5 IAR: J-Link Lite ...57
2.6.6 IAR: J-Trace ...58
2.6.7 NXP: J-Link Lite LPC Edition ..58
2.6.8 SEGGER: J-Link Lite...58
2.7 J-Link OBs ..59
2.8 Illegal Clones ..60

3 J-Link and J-Trace related software...61
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

14
3.1 J-Link related software... 62
3.1.1 J-Link software and documentation package ... 62
3.1.2 List of additional software packages... 63
3.2 J-Link software and documentation package in detail 64
3.2.1 J-Link Commander (Command line tool)... 64
3.2.2 J-Link SWO Viewer .. 66
3.2.3 SWO Analyzer... 69
3.2.4 J-Link STR91x Commander (Command line tool) ... 70
3.2.5 J-Link STM32 Commander (Command line tool) .. 71
3.2.6 J-Link TCP/IP Server (Remote J-Link / J-Trace use) 72
3.2.7 J-Mem Memory Viewer... 73
3.2.8 J-Flash ARM (Program flash memory via JTAG) ... 74
3.2.9 J-Link RDI (Remote Debug Interface)... 75
3.2.10 J-Link GDB Server ... 76
3.3 Dedicated flash programming utilities for J-Link... 77
3.3.1 Introduction ... 77
3.3.2 Supported Eval boards... 77
3.3.3 Supported flash memories.. 78
3.3.4 How to use the dedicated flash programming utilities 78
3.3.5 Using the dedicated flash programming utilities for production and commercial
purposes 78
3.3.6 F.A.Q... 79
3.4 Additional software packages in detail .. 80
3.4.1 JTAGLoad (Command line tool) ... 80
3.4.2 J-Link Software Developer Kit (SDK).. 80
3.4.3 J-Link Flash Software Developer Kit (SDK).. 80
3.5 Using the J-LinkARM.dll.. 81
3.5.1 What is the JLinkARM.dll?... 81
3.5.2 Updating the DLL in third-party programs... 81
3.5.3 Determining the version of JLinkARM.dll ... 82
3.5.4 Determining which DLL is used by a program.. 82

4 Setup..83

4.1 Installing the J-Link ARM software and documentation pack 84
4.1.1 Setup procedure ... 84
4.2 Setting up the USB interface... 87
4.2.1 Verifying correct driver installation .. 87
4.2.2 Uninstalling the J-Link USB driver.. 88
4.3 Setting up the IP interface.. 90
4.3.1 Configuring J-Link using J-Link Configurator.. 90
4.3.2 Configuring J-Link using the webinterface... 90
4.4 FAQs ... 92
4.5 J-Link Configurator .. 93
4.5.1 Configure J-Links using the J-Link Configurator ... 93
4.6 J-Link USB identification... 95
4.6.1 Connecting to different J-Links connected to the same host PC via USB 95

5 Working with J-Link and J-Trace..97

5.1 Connecting the target system ... 98
5.1.1 Power-on sequence ... 98
5.1.2 Verifying target device connection ... 98
5.1.3 Problems.. 98
5.2 Indicators .. 99
5.2.1 Main indicator... 99
5.2.2 Input indicator ...101
5.2.3 Output indicator...101
5.3 JTAG interface ...102
5.3.1 Multiple devices in the scan chain ...102
5.3.2 Sample configuration dialog boxes..102
5.3.3 Determining values for scan chain configuration ...105
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

15
5.3.4 JTAG Speed .. 106
5.4 SWD interface ... 107
5.4.1 SWD speed... 107
5.4.2 SWO.. 107
5.5 Multi-core debugging ... 109
5.5.1 How multi-core debugging works ... 109
5.5.2 Using multi-core debugging in detail .. 110
5.5.3 Things you should be aware of .. 111
5.6 Connecting multiple J-Links / J-Traces to your PC 113
5.6.1 How does it work? ... 113
5.7 J-Link control panel.. 115
5.7.1 Tabs .. 115
5.8 Reset strategies .. 121
5.8.1 Strategies for ARM 7/9 devices.. 121
5.8.2 Strategies for Cortex-M devices ... 123
5.9 Using DCC for memory access ... 126
5.9.1 What is required? .. 126
5.9.2 Target DCC handler ... 126
5.9.3 Target DCC abort handler ... 126
5.10 J-Link script files ... 127
5.10.1 Actions that can be customized ... 127
5.10.2 Script file API functions .. 127
5.10.3 Global DLL variables .. 131
5.10.4 Global DLL constants.. 134
5.10.5 Script file language .. 135
5.10.6 Script file writing example .. 136
5.10.7 Executing J-Link script files ... 136
5.11 Command strings .. 138
5.11.1 List of available commands ... 138
5.11.2 Using command strings .. 144
5.12 Switching off CPU clock during debug ... 146
5.13 Cache handling.. 147
5.13.1 Cache coherency ... 147
5.13.2 Cache clean area ... 147
5.13.3 Cache handling of ARM7 cores... 147
5.13.4 Cache handling of ARM9 cores... 147

6 Flash download..149

6.1 Introduction.. 150
6.2 Licensing .. 151
6.3 Supported devices ... 152
6.4 Setup for various debuggers (internal flash) .. 153
6.4.1 IAR Embedded Workbench.. 153
6.4.2 Keil MDK .. 153
6.4.3 J-Link GDB Server ... 155
6.4.4 J-Link Commander... 156
6.4.5 J-Link RDI .. 157
6.5 Setup for various debuggers (CFI flash).. 158
6.5.1 IAR Embedded Workbench / Keil MDK .. 158
6.5.2 J-Link GDB Server ... 159
6.5.3 J-Link commander ... 159
6.6 Using the DLL flash loaders in custom applications 161

7 Flash breakpoints...163

7.1 Introduction.. 164
7.2 Licensing .. 165
7.2.1 24h flash breakpoint trial license ... 165
7.3 Supported devices ... 166
7.4 Setup & compatibility with various debuggers.. 167
7.4.1 Setup... 167
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

16
7.4.2 Compatibility with various debuggers..167
7.5 FAQ..168

8 RDI...169

8.1 Introduction ..170
8.1.1 Features ...170
8.2 Licensing...171
8.3 Setup for various debuggers ..172
8.3.1 IAR Embedded Workbench IDE ..172
8.3.2 ARM AXD (ARM Developer Suite, ADS)..175
8.3.3 ARM RVDS (RealView developer suite) ..177
8.3.4 GHS MULTI ...182
8.3.5 KEIL MDK (µVision IDE) ..185
8.4 Configuration...188
8.4.1 Configuration file JLinkRDI.ini ..188
8.4.2 Using different configurations ..188
8.4.3 Using mutliple J-Links simulatenously ...188
8.4.4 Configuration dialog ...188
8.5 Semihosting ..197
8.5.1 Overview ..197
8.5.2 The SWI interface ..197
8.5.3 Implementation of semihosting in J-Link RDI ...198
8.5.4 Semihosting with AXD...198
8.5.5 Unexpected / unhandled SWIs ...199

9 Device specifics ...201

9.1 Analog Devices ..202
9.1.1 ADuC7xxx ...202
9.2 ATMEL ..204
9.2.1 AT91SAM7 ..205
9.2.2 AT91SAM9 ..207
9.3 DSPGroup ...208
9.4 Ember ..209
9.5 Energy Micro ...210
9.6 Freescale ..211
9.6.1 Kinetis family...211
9.6.2 Unlocking..211
9.6.3 Tracing ...212
9.7 Fujitsu ..213
9.8 Itron ..214
9.9 Luminary Micro ..215
9.9.1 Unlocking LM3Sxxx devices ...216
9.10 NXP..217
9.10.1 LPC ARM7-based devices...218
9.10.2 Reset (Cortex-M3 based devices) ...219
9.10.3 LPC288x flash programming ..219
9.10.4 LPC43xx: ..219
9.11 OKI ..220
9.12 Renesas..221
9.13 Samsung ..222
9.13.1 S3FN60D ..222
9.14 ST Microelectronics...223
9.14.1 STR91x...224
9.14.2 STM32F10xxx..224
9.14.3 STM32F2xxx..226
9.14.4 STM32F4xxx..227
9.15 Texas Instruments ...228
9.15.1 AM335x ..228
9.15.2 AM35xx / AM37xx ..229
9.15.3 OMAP4430 ..229
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

17
9.15.4 OMAP-L138... 229
9.15.5 TMS470M ... 229
9.15.6 OMAP3530.. 230
9.15.7 OMAP3550.. 230
9.16 Toshiba .. 231

10 Target interfaces and adapters ..233

10.1 20-pin JTAG/SWD connector ... 234
10.1.1 Pinout for JTAG ... 234
10.1.2 Pinout for SWD.. 237
10.2 38-pin Mictor JTAG and Trace connector ... 239
10.2.1 Connecting the target board.. 239
10.2.2 Pinout .. 240
10.2.3 Assignment of trace information pins between ETM architecture versions 242
10.2.4 Trace signals... 242
10.3 19-pin JTAG/SWD and Trace connector... 244
10.3.1 Target power supply .. 245
10.4 9-pin JTAG/SWD connector ... 246
10.5 Adapters .. 247

11 Background information ...249

11.1 JTAG.. 250
11.1.1 Test access port (TAP).. 250
11.1.2 Data registers ... 250
11.1.3 Instruction register .. 250
11.1.4 The TAP controller ... 251
11.2 Embedded Trace Macrocell (ETM)... 253
11.2.1 Trigger condition ... 253
11.2.2 Code tracing and data tracing.. 253
11.2.3 J-Trace integration example - IAR Embedded Workbench for ARM 253
11.3 Embedded Trace Buffer (ETB) ... 257
11.4 Flash programming.. 258
11.4.1 How does flash programming via J-Link / J-Trace work?.............................. 258
11.4.2 Data download to RAM ... 258
11.4.3 Data download via DCC .. 258
11.4.4 Available options for flash programming ... 258
11.5 J-Link / J-Trace firmware .. 260
11.5.1 Firmware update ... 260
11.5.2 Invalidating the firmware.. 260

12 Designing the target board for trace ..263

12.1 Overview of high-speed board design ... 264
12.1.1 Avoiding stubs .. 264
12.1.2 Minimizing Signal Skew (Balancing PCB Track Lengths)............................... 264
12.1.3 Minimizing Crosstalk .. 264
12.1.4 Using impedance matching and termination .. 264
12.2 Terminating the trace signal.. 265
12.2.1 Rules for series terminators .. 265
12.3 Signal requirements... 266

13 Support and FAQs ...267

13.1 Measuring download speed ... 268
13.1.1 Test environment .. 268
13.2 Troubleshooting .. 269
13.2.1 General procedure ... 269
13.2.2 Typical problem scenarios... 269
13.3 Contacting support .. 271
13.4 Frequently Asked Questions .. 272
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

18
14 Glossary...273

15 Literature and references...279
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

19
Chapter 1

Introduction
This chapter gives a short overview about J-Link and J-Trace.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 1 Introduction
1.1 Requirements
Host System

To use J-Link or J-Trace you need a host system running Windows 2000 or later. For a
list of all operating systems which are supported by J-Link, please refer to Supported
OS on page 21.

Target System

A target system with a supported CPU is required.
You should make sure that the emulator you are looking at supports your target CPU.
For more information about which J-Link features are supported by each emulator,
please refer to Model comparison on page 23.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

21
1.2 Supported OS
J-Link/J-Trace can be used on the following operating systems:

� Microsoft Windows 2000
� Microsoft Windows XP
� Microsoft Windows XP x64
� Microsoft Windows Vista
� Microsoft Windows Vista x64
� Windows 7
� Windows 7 x64
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 1 Introduction
1.3 J-Link / J-Trace models
J-Link / J-Trace is available in different variations, each designed for different pur-
poses / target devices. Currently, the following models of J-Link / J-Trace are avail-
able:

� J-Link ARM
� J-Link Ultra
� J-Link ARM Pro
� J-Trace ARM
� J-Trace for Cortex-M

In the following, the different J-Link / J-Trace models are described and the changes
between the different hardware versions of each model are listed. To determine the
hardware version of your J-Link / J-Trace, the first step should be to look at the label
at the bottom side of the unit. J-Links / J-Traces have the hardware version printed
on the back label.

If this is not the case with your J-Link / J-Trace, start JLink.exe. As part of the initial
message, the hardware version is displayed.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

23
1.3.1 Model comparison
The following tables show the features which are included in each J-Link / J-Trace
model.

Hardware features

Software features

Software features are features implemented in the software primarily on the host.
Software features can either come with the J-Link or be added later using a license
string from Segger.

1 Most IDEs come with its own flashloaders, so in most cases this feature is not
essential for debugging your applications in flash. The J-Link flash download
(FlashDL) feature is mainly used in debug environments where the debugger does
not come with an own flashloader (for example, the GNU Debugger). For more infor-
mation about how flash download via FlashDL works, please refer to Flash download
on page 149.

2 In order to use the flash breakpoints with J-Link no additional license for flash
download is required. The flash breakpoint feature allows setting an unlimited num-
ber of breakpoints even if the application program is not located in RAM, but in flash
memory. Without this feature, the number of breakpoints which can be set in flash is
limited to the number of hardware breakpoints (typically two for ARM 7/9, up to six
for Cortex-M) For more information about flash breakpoints, please refer to Flash
breakpoints on page 163.

J-Link J-Link Pro
J-Trace

for Cortex-M
J-Trace

USB yes yes yes yes
Ethernet no yes no no

Supported cores

ARM7/9/11,
Cortex-A5/A8,
Cortex-M0/M1/
M3/M4, Cor-
tex-A5/A8/A9/
R4

ARM7/9/11,
Cortex-A5/A8,
Cortex-M0/M1/
M3/M4, Cor-
tex-A5/A8/A9/
R4

ARM 7/9 (no
tracing), Cor-
tex-M0/M1/
M3/M4

ARM 7/9

JTAG yes yes yes yes
SWD yes yes yes no
SWO yes yes yes no
ETM Trace no no yes yes

J-Link J-Link Pro
J-Trace

for Cortex-M
J-Trace

J-Flash yes(opt) yes yes(opt) yes(opt)

Flash breakpoints2 yes(opt) yes yes(opt) yes(opt)

Flash download1 yes(opt) yes yes(opt) yes(opt)

GDB Server yes(opt) yes yes(opt) yes(opt)
RDI yes(opt) yes yes(opt) yes(opt)
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 1 Introduction
1.3.2 J-Link ARM
J-Link is a JTAG emulator designed for ARM cores. It connects
via USB to a PC running Microsoft Windows 2000 or later. For a
complete list of all operating systems which are supported,
please refer to Supported OS on page 21. J-Link has a built-in
20-pin JTAG connector, which is compatible with the standard
20-pin connector defined by ARM.

1.3.2.1 Additional features
� Direct download into flash memory of most popular micro-

controllers supported
� Full-speed USB 2.0 interface
� Serial Wire Debug supported *
� Serial Wire Viewer supported *
� Download speed up to 720 KBytes/second **
� JTAG speed up to 12 MHz
� RDI interface available, which allows using J-Link with RDI

compliant software

* = Supported since J-Link hardware version 6

** = Measured with J-Link Rev.5, ARM7 @ 50 MHz, 12MHz JTAG
speed.

1.3.2.2 Specifications
The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Link ARM. All values are valid for J-Link ARM hardware version 8.

General

Supported OS
For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 21.

Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH

Mechanical

Size (without cables) 100mm x 53mm x 27mm
Weight (without cables) 70g

Available interfaces

USB interface USB 2.0, full speed

Target interface JTAG 20-pin
(14-pin adapter available)

JTAG/SWD Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.

Target interface voltage (VIF) 1.2V ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA

Reset Type Open drain. Can be pulled low or
tristated.

Reset low level output voltage (VOL) VOL <= 10% of VIF

For the whole target voltage range (1.2V <= VIF <= 5V)

Table 1.1: J-Link ARM specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

25
1.3.2.3 Download speed
The following table lists performance values (Kbytes/s) for writing to memory (RAM):

All tests have been performed in the testing environment which is described on Mea-
suring download speed on page 268.

The actual speed depends on various factors, such as JTAG/SWD, clock speed, host
CPU core etc.

1.3.2.4 Hardware versions
Versions 1-4

Obsolete.

Version 5.0

Identical to version 4.0 with the following exception:

� Uses a 32-bit RISC CPU.
� Maximum download speed (using DCC) is over 700 Kbytes/second.
� JTAG speed: Maximum JTAG frequency is 12 MHz; possible JTAG speeds are:

48 MHz / n, where n is 4, 5, ..., resulting in speeds of:
12.000 MHz (n = 4)
9.600 MHz (n = 5)
8.000 MHz (n = 6)
6.857 MHz (n = 7)
6.000 MHz (n = 8)

LOW level input voltage (VIL) VIL <= 40% of VIF

HIGH level input voltage (VIH) VIH >= 60% of VIF

For 1.8V <= VIF <= 3.6V

LOW level output voltage (VOL) with a
load of 10 kOhm

VOL <= 10% of VIF

HIGH level output voltage (VOH) with a
load of 10 kOhm

VOH >= 90% of VIF

For 3.6 <= VIF <= 5V

LOW level output voltage (VOL) with a
load of 10 kOhm

VOL <= 20% of VIF

HIGH level output voltage (VOH) with a
load of 10 kOhm

VOH >= 80% of VIF

JTAG/SWD Interface, Timing

SWO sampling frequency Max. 6 MHz
Data input rise time (Trdi) Trdi <= 20ns

Data input fall time (Tfdi) Tfdi <= 20ns

Data output rise time (Trdo) Trdo <= 10ns

Data output fall time (Tfdo) Tfdo <= 10ns

Clock rise time (Trc) Trc <= 10ns

Clock fall time (Tfc) Tfc <= 10ns

Hardware
ARM7

via JTAG
ARM9

via JTAG
Cortex-M3
via SWD

J-Link Rev. 6 � 8 720 Kbytes/s
(12MHz JTAG)

550 Kbytes/s
(12MHz JTAG)

180 Kbytes/s
(12 MHz SWD)

Table 1.2: Download speed differences between hardware revisions

Table 1.1: J-Link ARM specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

26 CHAPTER 1 Introduction
5.333 MHz (n = 9)
4.800 MHz (n = 10)

� Supports adaptive clocking.

Version 5.2

Identical to version 5.0 with the following exception:

� Target interface: RESET is open drain

Version 5.3

Identical to version 5.2 with the following exception:

� 5V target supply current limited
5V target supply (pin 19) of Kick-Start versions of J-Link is current monitored
and limited. J-Link automatically switches off 5V supply in case of over-current to
protect both J-Link and host computer. Peak current (<= 10 ms) limit is 1A,
operating current limit is 300mA.

Version 5.4

Identical to version 5.3 with the following exception:

� Supports 5V target interfaces.

Version 6.0

Identical to version 5.4 with the following exception:

� Outputs can be tristated (Effectively disabling the JTAG interface)
� Supports SWD interface.
� SWD speed: Software implementation. 4 MHz maximum SWD speed.
� J-Link supports SWV (Speed limited to 500 kHz)

Version 7.0

Identical to version 6.0 with the following exception:

� Uses an additional pin to the UART unit of the target hardware for SWV support
(Speed limited to 6 MHz).

Version 8.0

Identical to version 7.0 with the following exception:

� SWD support for non-3.3V targets.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

27
1.3.3 J-Link Ultra
J-Link Ultra is a JTAG/SWD emulator designed for ARM/Cortex
and other supported CPUs. It is fully compatible to the standard
J-Link and works with the same PC software. Based on the
highly optimized and proven J-Link, it offers even higher speed
as well as target power measurement capabilities due to the
faster CPU, built-in FPGA and High speed USB interface. It con-
nects via USB to a PC running Microsoft Windows 2000 or later.
For a complete list of all operating systems which are sup-
ported, please refer to Supported OS on page 19.. J-Link Ultra
has a built-in 20-pin JTAG/SWD connector.

1.3.3.1 Additional features
� Fully compatible to the standard J-Link
� Very high performance for all supported CPU cores
� Hi-Speed USB 2.0 interface
� JTAG speed up to 25 MHz
� Serial Wire Debug (SWD) supported
� Serial Wire Viewer (SWV) supported
� SWV: UART and Manchester encoding supported
� SWO sampling frequencies up to 25 MHz
� Target power can be supplied
� Target power consumption can be measured with high accuracy. External ADC

can be connected via SPI

1.3.3.2 Specifications
The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Link Ultra. All values are valid for J-Link Ultra hardware version 1.

Note: Some specifications, especially speed, are likely to be improved in the
future with newer versions of the J-Link software (freely available).

General

Supported OS
For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 21.

Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH

Mechanical

Size (without cables) 100mm x 53mm x 27mm
Weight (without cables) 73g

Available interfaces

USB interface USB 2.0, Hi-Speed
Target interface JTAG/SWD 20-pin
External (SPI) analog power measure-
ment interface

4-pin (Pins 14, 16, 18 and 20 of the 20-
pin JTAG/SWD interface)

JTAG/SWD Interface, Electrical

Target interface voltage (VIF) 1.8V ... 5V
Target supply voltage 4.5V ... 5V
Target supply current Max. 300mA

Reset Type Open drain. Can be pulled low or
tristated.

Table 1.3: J-Link Ultra specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 1 Introduction
1.3.4 J-Link ARM Pro
J-Link Pro is a JTAG emulator designed for ARM cores. It is fully
compatible to J-Link and connects via Ethernet/USB to a PC
running Microsoft Windows 2000 or later. For a complete list of
all operating systems which are supported, please refer to Sup-
ported OS on page 19. Additional support for Cortex-R4 and
Cortex-R8 cores will be available in the near future. J-Link Pro
comes with licenses for all J-Link related SEGGER software
products which allows using J-Link Pro "out-of-the-box".

1.3.4.1 Additional features
� Fully compatible to J-Link ARM
� More memory for future firmware extensions (ARM11, X-

Scale, Cortex R4 and Cortex A8)
� Additional LEDs for power and RESET indication
� Comes with web interface for easy TCP/IP configuration

(built-in web server)
� Built-in GDB Server (planned to be implemented in the near

future)
� Serial Wire Debug supported

Reset low level output voltage (VOL) VOL <= 10% of VIF

For the whole target voltage range (1.8V <= VIF <= 5V)

LOW level input voltage (VIL) VIL <= 40% of VIF

HIGH level input voltage (VIH) VIH >= 60% of VIF

For 1.8V <= VIF <= 3.6V

LOW level output voltage (VOL) with a
load of 10 kOhm

VOL <= 10% of VIF

HIGH level output voltage (VOH) with a
load of 10 kOhm

VOH >= 90% of VIF

For 3.6 <= VIF <= 5V

LOW level output voltage (VOL) with a
load of 10 kOhm

VOL <= 20% of VIF

HIGH level output voltage (VOH) with a
load of 10 kOhm

VOH >= 80% of VIF

JTAG/SWD Interface, Timing

SWO sampling frequency Max. 25 MHz
Data input rise time (Trdi) Trdi <= 20ns

Data input fall time (Tfdi) Tfdi <= 20ns

Data output rise time (Trdo) Trdo <= 10ns

Data output fall time (Tfdo) Tfdo <= 10ns

Clock rise time (Trc) Trc <= 10ns

Clock fall time (Tfc) Tfc <= 10ns

Analog power measurement interface

Sampling frequency 50 kHz
Resolution 1 mA

External (SPI) analog interface

SPI frequency Max. 4 MHz
Samples/sec Max. 50000
Resolution Max. 16-bit

Table 1.3: J-Link Ultra specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

29
� Serial Wire Viewer supported
� Download speed up to 720 KBytes/second ** (higher download speeds will be

available in the near future)
� DCC speed up to 800 Kbytes/second **
� Comes with licenses for: J-Link ARM RDI, J-Link ARM FlashBP, J-Link ARM

FlashDL, J-Link ARM GDB Server and J-Flash ARM.
� Embedded Trace Buffer (ETB) support
� Galvanic isolation from host via Ethernet
� RDI interface available, which allows using J-Link with RDI compliant software

** = Measured with J-Link Pro Rev. 1.1, ARM7 @ 50 MHz, 12MHz JTAG speed.

1.3.4.2 Download speed
The following table lists performance values (Kbytes/s) for writing to memory (RAM):

All tests have been performed in the testing environment which is described on Mea-
suring download speed on page 268.

The actual speed depends on various factors, such as JTAG/SWD, clock speed, host
CPU core etc.

1.3.4.3 Hardware versions
Version 1.1

Compatible to J-Link ARM.

� Provides an additional Ethernet interface which allows to communicate with J-
Link via TCP/IP.

1.3.5 J-Link ARM Lite
J-Link ARM Lite is a fully functional OEM-version of J-Link ARM.
If you are selling evaluation-boards, J-Link ARM Lite is an inex-
pensive emulator solution for you. Your customer receives a
widely acknowledged JTAG-emulator which allows him to start
right away with his development.

1.3.5.1 Additional features
� Very small form factor
� Fully software compatible to J-Link ARM
� Any ARM7/9/11, Cortex-A5/A8, Cortex-M0/M1/M3/M4, Cortex-R4 core supported
� JTAG clock up to 4 MHz
� SWD, SWO supported for Cortex-M devices
� Flash download into supported MCUs
� Standard 20-pin 0.1 inch JTAG connector (compatible to J-Link ARM)

Hardware
ARM7

via JTAG
ARM9

via JTAG
Cortex-M3
via SWD

Rev. 1 via USB 720 Kbytes/s
(12 MHz JTAG)

550 Kbytes/s
(12 MHz JTAG)

190 Kbytes/s
(12 MHz SWD)

Rev. 1 via TCP/IP 720 Kbytes/s
(12 MHz JTAG)

550 Kbytes/s
(12 MHz JTAG)

190 Kbytes
(12 MHz SWD)

Table 1.4: Download speed differences between hardware revisions
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 1 Introduction
1.3.5.2 Specifications
The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Link ARM Lite. All values are valid for J-Link ARM hardware version 8.

1.3.6 J-Link Lite Cortex-M
J-Link Lite Cortex-M is a specific OEM-version of SEGGER J-Link
Lite which is designed to be used with Cortex-M devices. If you
are selling evaluation-boards, J-Link Lite CortexM is an inex-
pensive emulator solution for you. Your customer receives a
widely acknowledged JTAG/SWD-emulator which allows him to start right away with
his development.

� Very small form factor
� Fully software compatible to J-Link
� Any Cortex-M0/M1/M3/M4 core supported
� JTAG clock up to 4 MHz
� SWD, SWO supported
� Flash download into supported MCUs
� Standard 9- & 19-pin 0.05'' Samtec FTSH connector
� 3.3V target interface voltage

General

Supported OS
For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 21.

Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH
Size (without cables) 28mm x 26mm x 7mm
Weight (without cables) 6g

Mechanical

USB interface USB 2.0, full speed

Target interface JTAG 20-pin
(14-pin adapter available)

JTAG/SWD Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.

Target interface voltage (VIF) 3.3V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA
LOW level input voltage (VIL) Max. 40% of VIF

HIGH level input voltage (VIH) Min. 60% of VIF

JTAG/SWD Interface, Timing

Data input rise time (Trdi) Max. 20ns
Data input fall time (Tfdi) Max. 20ns
Data output rise time (Trdo) Max. 10ns
Data output fall time (Tfdo) Max. 10ns
Clock rise time (Trc) Max. 10ns
Clock fall time (Tfc) Max. 10ns

Table 1.5: J-Link ARM Lite specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

31
1.3.6.1 Specifications
The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Link Lite Cortex-M.

General

Supported OS
For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 21.

Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH
Size (without cables) 41mm x 34mm x 8mm
Weight (without cables) 6g

Mechanical

USB interface USB 2.0, full speed

Target interface 19-pin 0.05'' Samtec FTSH connector
9-pin 0.05'' Samtec FTSH connector

JTAG/SWD Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.

Target interface voltage (VIF) 3.3V
Target supply voltage 4.5V ... 5V
Target supply current Max. 300mA
LOW level input voltage (VIL) Max. 40% of VIF

HIGH level input voltage (VIH) Min. 60% of VIF

JTAG/SWD Interface, Timing

Data input rise time (Trdi) Max. 20ns
Data input fall time (Tfdi) Max. 20ns
Data output rise time (Trdo) Max. 10ns
Data output fall time (Tfdo) Max. 10ns
Clock rise time (Trc) Max. 10ns
Clock fall time (Tfc) Max. 10ns

Table 1.6: J-Link Lite Cortex-M specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 1 Introduction
1.3.7 J-Trace ARM
J-Trace is a JTAG emulator designed for ARM cores which
includes trace (ETM) support. It connects via USB to a PC run-
ning Microsoft Windows 2000 or later. For a complete list of all
operating systems which are supported, please refer to Sup-
ported OS on page 19. J-Trace has a built-in 20-pin JTAG con-
nector and a built in 38-pin JTAG+Trace connector, which are
compatible to the standard 20-pin connector and 38-pin con-
nector defined by ARM.

1.3.7.1 Additional features
� Supports tracing on ARM7/9 targets
� JTAG speed up to 12 MHz
� Download speed up to 420 Kbytes/second *
� DCC speed up to 600 Kbytes/second *

* = Measured with J-Trace, ARM7 @ 50 MHz, 12MHz JTAG
speed.

1.3.7.2 Specifications for J-Trace

General

Supported OS
For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 21.

Electromagnetic Compatibility (EMC) EN 55022, EN 55024
Operating Temperature +5°C ... +40°C
Storage Temperature -20°C ... +65 °C
Relative Humidity (non-condensing) <90% rH
Size (without cables) 123mm x 68mm x 30mm
Weight (without cables) 120g

Mechanical

USB Interface USB 2.0, full speed

Target Interface JTAG 20-pin (14-pin adapter available)
JTAG+Trace: Mictor, 38-pin

JTAG/SWD Interface, Electrical

Power Supply USB powered < 300mA
Supported Target interface voltage 3.0 - 3.6 V (5V adapter available)

Table 1.7: J-Trace specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

33
1.3.7.3 Download speed
The following table lists performance values (Kbytes/s) for writing to memory (RAM):

All tests have been performed in the testing environment which is described on Mea-
suring download speed on page 268.

The actual speed depends on various factors, such as JTAG, clock speed, host CPU
core etc.

1.3.7.4 Hardware versions
Version 1

This J-Trace uses a 32-bit RISC CPU. Maximum download speed is approximately 420
KBytes/second (600 KBytes/second using DCC).

Hardware ARM7 via JTAG ARM9 via JTAG

J-Trace Rev. 1 420.0 Kbytes/s
(12MHz JTAG)

280.0 Kbytes/s
(12MHz JTAG)

Table 1.8: Download speed differences between hardware revisions
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 1 Introduction
1.3.8 J-Trace for Cortex-M
J-Trace for Cortex-M is a JTAG/SWD emulator designed for Cor-
tex-M cores which includes trace (ETM) support. J-Trace for
Cortex-M can also be used as a J-Link and it also supports
ARM7/9 cores. Tracing on ARM7/9 targets is not supported.

1.3.8.1 Additional features
� Has all the J-Link functionality
� Supports tracing on Cortex-M targets

1.3.8.2 Specifications
The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Trace for Cortex-M. All values are valid for the latest hardware ver-
sion of J-Trace for Cortex-M.

General

Supported OS
For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 19.

Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH
Size (without cables) 123mm x 68mm x 30mm
Weight (without cables) 120g

Mechanical

USB interface USB 2.0, Hi-Speed

Target interface
JTAG/SWD 20-pin
(14-pin adapter available)
JTAG/SWD + Trace 19-pin

JTAG/SWD Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.

Target interface voltage (VIF) 1.2V ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA
LOW level input voltage (VIL) Max. 40% of VIF

HIGH level input voltage (VIH) Min. 60% of VIF

JTAG/SWD Interface, Timing

Data input rise time (Trdi) Max. 20ns
Data input fall time (Tfdi) Max. 20ns
Data output rise time (Trdo) Max. 10ns
Data output fall time (Tfdo) Max. 10ns
Clock rise time (Trc) Max. 10ns

Table 1.9: J-Trace for Cortex-M3 specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

35
1.3.8.3 Download speed
The following table lists performance values (Kbytes/s) for writing to memory (RAM):

The actual speed depends on various factors, such as JTAG, clock speed, host CPU
core etc.

1.3.8.4 Hardware versions
Version 2

Obsolete.

Version 3.1

Identical to version 2.0 with the following exceptions:

� Hi-Speed USB
� Voltage range for trace signals extended to 1.2 - 3.3 V
� Higher download speed

Clock fall time (Tfc) Max. 10ns

Trace Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.

Target interface voltage (VIF) 1.2V ... 5V
Voltage interface low pulse (VIL) Max. 40% of VIF

Voltage interface high pulse (VIH) Min. 60% of VIF

Trace Interface, Timing

TRACECLK low pulse width (Twl) Min. 2ns
TRACECLK high pulse width (Twh) Min. 2ns
Data rise time (Trd) Max. 3ns
Data fall time (Tfd) Max. 3ns
Clock rise time (Trc) Max. 3ns
Clock fall time (Tfc) Max. 3ns
Data setup time (Ts) Min. 3ns
Data hold time (Th) Min. 2ns

Hardware Cortex-M3

J-Trace for Cortex-M3 V2 190 Kbytes/s (12MHz SWD)
760 KB/s (12 MHz JTAG)

J-Trace for Cortex-M V3.1 190 Kbytes/s (12MHz SWD)
1440 KB/s (25 MHz JTAG)

Table 1.10: Download speed differences between hardware revisions

Table 1.9: J-Trace for Cortex-M3 specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 1 Introduction
1.3.9 Flasher ARM
Flasher ARM is a programming tool for microcontrollers with on-
chip or external Flash memory and ARM core. Flasher ARM is
designed for programming flash targets with the J-Flash soft-
ware or stand-alone. In addition to that Flasher ARM has all of
the J-Link functionality. For more information about Flasher
ARM, please refer to UM08007, Flasher ARM User�s Guide.

1.3.9.1 Specifications
The following table gives an overview about the specifications
(general, mechanical, electrical) for Flasher ARM.

General

Supported OS
For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 19.

Mechanical

USB interface USB 2.0, full speed
Target interface JTAG/SWD 20-pin

JTAG Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.

Target interface voltage (VIF) 1.2V ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA

For the whole target voltage range (1.8V <= VIF <= 5V)

LOW level input voltage (VIL) Max. 40% of VIF

HIGH level input voltage (VIH) Min. 60% of VIF

For 1.8V <= VIF <= 3.6V

LOW level output voltage (VOL) with a
load of 10 kOhm

Max. 10% of VIF

HIGH level output voltage (VOH) with a
load of 10 kOhm

Min. 90% of VIF

For 3.6 <= VIF <= 5V

LOW level output voltage (VOL) with a
load of 10 kOhm

Max. 20% of VIF

HIGH level output voltage (VOH) with a
load of 10 kOhm

Min. 80% of VIF

SWD Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.

Target interface voltage (VIF)
1.2V ... 5V (SWD interface is 5V tolerant
but can output a maximum of 3.3V SWD
signals)

Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Table 1.11: Flasher ARM specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

37
1.3.10 J-Link ColdFire
J-Link ColdFire is a BDM emulator designed for ColdFire® cores.
It connects via USB to a PC running Microsoft Windows 2000,
Windows XP, Windows 2003, or Windows Vista. J-Link ColdFire
has a built-in 26-pin BDM connector, which is compatible to the
standard 26-pin connector defined by Freescale. For more infor-
mation about J-Link ColdFire BDM 26, please refer to UM08009,
J-Link ColdFire BDM26 User�s Guide.

Target supply current Max. 300mA
LOW level input voltage (VIL) Max. 0.8V
HIGH level input voltage (VIH) Min. 2.0V
LOW level output voltage (VOL) with a
load of 10 kOhm

Max. 0.5V

HIGH level output voltage (VOH) with a
load of 10 kOhm

Min. 2.85V

Table 1.11: Flasher ARM specifications
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

38 CHAPTER 1 Introduction
1.4 Common features of the J-Link product family
� USB 2.0 interface (Full-Speed/Hi-Speed, depends on J-Link model)
� Any ARM7/9/11 (including thumb mode), Cortex-A5/A8, Cortex-M0/M1/M3/M4,

Cortex-R4 core supported
� Automatic core recognition
� Maximum JTAG speed 12/25 MHz (depends on J-Link model)
� Seamless integration into the IAR Embedded Workbench® IDE
� No power supply required, powered through USB
� Support for adaptive clocking
� All JTAG signals can be monitored, target voltage can be measured
� Support for multiple devices
� Fully plug and play compatible
� Standard 20-pin JTAG/SWD connector, 19-pin JTAG/SWD and Trace connector,

standard 38-pin JTAG+Trace connector
� USB and 20-pin ribbon cable included
� Memory viewer (J-Mem) included
� TCP/IP server included, which allows using J-Trace via TCP/IP networks
� RDI interface available, which allows using J-Link with RDI compliant software
� Flash programming software (J-Flash) available
� Flash DLL available, which allows using flash functionality in custom applications
� Software Developer Kit (SDK) available
� Full integration with the IAR C-SPY® debugger; advanced debugging features

available from IAR C-SPY debugger.
� 14-pin JTAG adapter available
� J-Link 19-pin Cortex-M Adapter available
� J-Link 9-pin Cortex-M Adapter available
� Adapter for 5V JTAG targets available for hardware revisions up to 5.3
� Optical isolation adapter for JTAG/SWD interface available
� Target power supply via pin 19 of the JTAG/SWD interface (up to 300 mA to tar-

get with overload protection), alternatively on pins 11 and 13 of the Cortex-M
19-pin trace connector
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

39
1.5 Supported CPU cores
J-Link / J-Trace has been tested with the following cores, but should work with any
ARM7/9/11, Cortex-M0/M1/M3/M4 and Cortex-A5/A8/A9/R4 core. If you experience
problems with a particular core, do not hesitate to contact Segger.

� ARM7TDMI (Rev 1)
� ARM7TDMI (Rev 3)
� ARM7TDMI-S (Rev 4)
� ARM720T
� ARM920T
� ARM922T
� ARM926EJ-S
� ARM946E-S
� ARM966E-S
� ARM1136JF-S
� ARM1136J-S
� ARM1156T2-S
� ARM1156T2F-S
� ARM1176JZ-S
� ARM1176JZF
� ARM1176JZF-S
� Cortex-A5
� Cortex-A8
� Cortex-A9
� Cortex-M0
� Cortex-M1
� Cortex-M3
� Cortex-M4
� Cortex-R4
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 1 Introduction
1.6 Built-in intelligence for supported CPU-cores
In general, there are two ways to support a CPU-core in the J-Link software:

1. Intelligence in the J-Link firmware
2. Intelligence on the PC-side (DLL)

Having the intelligence in the firmware is ideal since it is much more powerful and
robust. The J-Link PC software automatically detects which implementation level is
supported for the connected CPU-core. If Intelligence in the firmware is available, it
is used. If you are using a J-Link that does not have intelligence in the firmware and
only PC-side intelligence is available for the connected CPU, a warning message is
shown.

1.6.1 Intelligence in the J-Link firmware
On newer J-Links, the intelligence for a new CPU-core is also available in the J-Link
firmware which means, for these J-Links the target sequences are no longer gener-
ated on the PC-side but directly inside the J-Link. Having the intelligence in the firm-
ware leads to improved stability and higher performance.

1.6.2 Intelligence on the PC-side (DLL)
This is the basic implementation level for support of a CPU-core. This implementation
is not J-Link model dependend, since no intelligence for the CPU-core is necessary in
the J-Link firmware. This means, all target sequences (JTAG/SWD/...) are generated
on the PC-side and the J-Link simply sends out these sequences and sends the result
back to the DLL. Using this way of implementation also allows old J-Links to be used
with new CPU cores as long as a DLL-Version is used which has intelligence for the
CPU.

But there is one big disadvantage of implementing the CPU core support on the DLL-
side: For every sequence which shall be send to the target a USB or Ethernet trans-
action is triggered. The long latency especially on a USB connection significantly
affects the performance of J-Link. This is true especially, when performing actions
where J-Link has to wait for the CPU frequently. An example is a memory read/write
operation which needs to be followed by status read operations or repeated until the
memory operation is completed. Performing this kind of task with only PC-side intel-
ligence will have to either make some assumption like: Operation is completed after
a given number of cycles or will have to make a lot of USB/Ethernet transactions. The
first option (fast mode) will not work under some circumstances such as low CPU
speeds, the second (slow mode) will be more reliable but very slow due to the high
number of USB/Ethernet transactions. It simply boils down to: The best solution is
having intelligence in the emulator itself!
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

41
1.6.2.1 Limitations of PC-side implementations
� Instability, especially on slow targets

Due to the fact that a lot of USB transactions would cause a very bad perfor-
mance of J-Link, on PC-side implementations the assumption is made that the
CPU/Debug interface is fast enough to handle the commands/requests without
the need of waiting. So, when using the PC-side-intelligence, stability can not be
guaranteed in all cases, especially if the target interface speed (JTAG/SWD/...) is
significantly higher than the CPU speed.

� Poor performance
Since a lot more data has to be transferred over the host interface (typ. USB),
the resulting download speed is typically much lower than for implementations
with intelligence in the firmware, even if the number of transactions over the
host interface is limited to a minimum (fast mode).

� No support
Please understand that we can not give any support if you are running into prob-
lems when using a PC-side implementation.

Note: Due to these limitations, we recommend to use PC-side implementations
for evaluation only.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

42 CHAPTER 1 Introduction
1.6.3 Firmware intelligence per model
There are different models of J-Link / J-Trace which have built-in intelligence for dif-
ferent CPU-cores. In the following, we will give you an overview about which model
of J-Link / J-Trace has intelligence for which CPU-core.

1.6.3.1 Current models
The table below lists the firmware CPU support for J-Link & J-Trace models currently
available.

J-Link / J-Trace
model

V
e

rs
io

n

ARM
7/9

ARM
11

Cortex-
A/R

Cortex-M
Renesas

RX600

JTAG JTAG JTAG JTAG SWD JTAG

J-Link 8

J-Link Pro 3

J-Link Ultra 1

J-Link Lite 8

J-Link Lite Cortex-M 8

J-Link Lite RX 8

J-Trace ARM 1

J-Trace for Cortex-M 3

Table 1.12: Built-in intelligence of current J-Links

! ! ! ! ! !

! ! ! ! ! !

! ! ! ! ! !

! ! ! ! ! !

" " " ! ! "

" " " " " !

! " " " " "

" " " ! ! "
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

43
1.6.3.2 Older models
The table below lists the firmware CPU support for older J-Link & J-Trace models
which are not sold anymore.

J-Link / J-Trace
model

V
e

rs
io

n

ARM
7/9

ARM
11

Cortex-
A/R

Cortex-M
Renesas

RX600

JTAG JTAG JTAG JTAG SWD JTAG

J-Link 3 not sup-
ported

J-Link 4 not sup-
ported

J-Link 5 not sup-
ported

J-Link 6

J-Link 7

J-Link Pro 1

J-Trace for Cortex-M 1

Table 1.13: Built-in intelligence of older J-Link models

" " " " "

" " " " "

! " " " "

! " " " ! "

! " " " ! "

! ! ! ! ! !

" " ! ! ! "
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 1 Introduction
1.7 Supported IDEs
J-Link / J-Trace can be used with different IDEs. Some IDEs support J-Link directly,
for other ones additional software (such as J-Link RDI) is necessary in order to use J-
Link. The following tables list which features of J-Link / J-Trace can be used with the
different IDEs.

ARM7/9

ARM Cortex-M3

ARM11

ARM11 has currently been tested with IAR EWARM only.

IDE
Debug

support4
Flash

download
Flash

breakpoints
Trace

support3

IAR EWARM yes yes yes yes
Keil MDK yes yes yes no
Rowley yes yes no no
CodeSourcery yes no no no
Yargato (GDB) yes yes yes no
RDI compliant
toolchains such as
RVDS/ADS

yes1 yes1 yes1 no

IDE
Debug

support4
Flash

download
Flash

breakpoints
Trace

support3
SWO

support

IAR EWARM yes yes yes yes yes
Keil MDK yes yes yes yes yes
Rowley yes yes no no no
CodeSourcery yes no no no no
Yargato (GDB) yes yes yes no no

IDE
Debug

support4
Flash

download
Flash

breakpoints
Trace

support3

IAR EWARM yes no2 no2 no

Rowley yes no2 no no

Yargato (GDB) yes no2 no2 no

1 Requires J-Link RDI license for download of more than 32KBytes
2 Coming soon
3 Requires emulator with trace support
4 Debug support includes the following: Download to RAM, memory read/write, CPU

register read/write, Run control (go, step, halt), software breakpoints in RAM and
hardware breakpoints in flash memory.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

45
Chapter 2

Licensing
This chapter describes the different license types of J-Link related software and the
legal use of the J-Link software with original SEGGER and OEM products.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

46 CHAPTER 2 Licensing
2.1 Introduction
J-Link functionality can be enhanced by the features J-Flash, RDI, flash download and
flash breakpoints (FlashBP). The flash breakpoint feature does not come with J-Link
and need an additional license. In the following the licensing options of the software
will be explained.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

47
2.2 Software components requiring a license
There are different software components which need an additional license:

� J-Flash
� J-Link RDI
� Flash breakpoints (FlashBP)

For more information about J-Link RDI licensing procedure / license types, please
refer to the J-Link RDI User Guide (UM08004), chapter Licensing.

For more information about J-Flash licensing procedure / license types, please refer
to the J-Flash User Guide (UM08003), chapter Licensing.

In the following the licensing procedure and license types of the flash breakpoint fea-
ture are explained.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 2 Licensing
2.3 License types
For each of the software components which require an additional license, there are
three types of licenses:

Built-in License

This type of license is easiest to use. The customer does not need to deal with a
license key. The software automatically finds out that the connected J-Link contains
the built-in license(s). This is the type of license you get if you order J-Link and the
license at the same time, typically in a bundle.

Key-based license

This type of license is used if you already have a J-Link, but want to enhance its func-
tionality by using flash breakpoints. In addition to that, the key-based license is used
for trial licenses. To enable this type of license you need to obtain a license key from
SEGGER. Free trial licenses are available upon request from www.segger.com. This
license key has to be added to the J-Link license management. How to enter a license
key is described in detail in Licensing on page 165. Every license can be used on dif-
ferent PCs, but only with the J-Link the license is for. This means that if you want to
use flash breakpoints with other J-Links, every J-Link needs a license.

Device-based license

The device-based license comes with the J-Link software and is available for some
devices. For a complete list of devices which have built-in licenses, please refer to
Device list on page 50. The device-based license has to be activated via the debug-
ger. How to activate a device-based license is described in detail in the section Acti-
vating a device-based license on page 50.

2.3.1 Built-in license
This type of license is easiest to use. The customer does not need to deal with a
license key. The software automatically finds out that the connected J-Link contains
the built-in license(s). To check what licenses the used J-Link have, simply open the
J-Link commander (JLink.exe). The J-Link commander finds and lists all of the J-
Link�s licenses automatically, as can be seen in the screenshot below.

This J-Link for example, has built-in licenses for RDI, J-Link ARM FlashDL and
FlashBP.

2.3.2 Key-based license
When using a key-based license, a license key is required in order to enable the J-
Link flash breakpoint feature. License keys can be added via the license manager.
How to enter a license via the license manager is described in Licensing on page 165.
Like the built-in license, the key-based license is only valid for one J-Link, so if
another J-Link is used it needs a separate license.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

49
2.3.2.1 Entering a key-based license
The easiest way to enter a license is the following:

Open the J-Link control panel window, go to the General tab and choose License.

Now the J-Link license manager will open and show all licenses, both key-based and
built-in licenses of J-Link.

Now choose Add license to add one or more new licenses. Enter your license(s) and
choose OK. Now the licenses should have been added.

2.3.3 Device-based license
The device-based license is a free license, available for some devices. It�s already
included in J-Link, so no keys are necessary to enable this license type. To activate a
device based license, the debugger needs to select a supported device.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 2 Licensing
2.3.3.1 Activating a device-based license
In order to activate a device-based license, the debugger needs to select a supported
device. To check if the debugger has selected the right device, simply open the J-Link
control panel and check the device section in the General tab.

2.3.3.2 Device list
The following list contains all devices which are supported by the device-based
license

Manufacturer Name Licenses

NXP LPC2101 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2102 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2103 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2104 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2105 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2106, J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2109 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2114 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2119 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2124 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2129 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2131 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2132 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2134 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2136 J-Link ARM FlashDL, J-Link
ARM FlashBP

Table 2.1: Device list
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

51
NXP LPC2138 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2141 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2142 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2144 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2146 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2148 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2194 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2212 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2214 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2292 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2294 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2364 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2366 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2368 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2378 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2468 J-Link ARM FlashDL, J-Link
ARM FlashBP

NXP LPC2478 J-Link ARM FlashDL, J-Link
ARM FlashBP

Manufacturer Name Licenses

Table 2.1: Device list
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 2 Licensing
2.4 Legal use of SEGGER J-Link software
The software consists of proprietary programs of SEGGER, protected under copyright
and trade secret laws. All rights, title and interest in the software are and shall
remain with SEGGER. For details, please refer to the license agreement which needs
to be accepted when installing the software. The text of the license agreement is also
available as entry in the start menu after installing the software.

Use of software

SEGGER J-Link software may only be used with original SEGGER products and autho-
rized OEM products. The use of the licensed software to operate SEGGER product
clones is prohibited and illegal.

2.4.1 Use of the software with 3rd party tools
For simplicity, some components of the J-Link software are also distributed from
partners with software tools designed to use J-Link. These tools are primarily debug-
ging tools, but also memory viewers, flash programming utilities but also software
for other purposes. Distribution of the software components is legal for our partners,
but the same rules as described above apply for their usage: They may only be used
with original SEGGER products and authorized OEM products. The use of the licensed
software to operate SEGGER product clones is prohibited and illegal.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

53
2.5 Original SEGGER products
The following products are original SEGGER products for which the use of the J-Link
software is allowed:

2.5.1 J-Link
J-Link is a JTAG emulator designed for ARM cores. It connects
via USB to a PC running Microsoft Windows 2000, Windows XP,
Windows 2003, Windows Vista or Windows 7. J-Link has a built-
in 20-pin JTAG connector, which is compatible with the standard
20-pin connector defined by ARM.

Licenses

Comes with built-in licenses for flash download and flash break-
points for some devices. For a complete list of devices which
are supported by the built-in licenses, please refer to Device
list on page 50.

2.5.2 J-Link Ultra
J-Link Ultra is a JTAG/SWD emulator designed for ARM/Cortex
and other supported CPUs. It is fully compatible to the standard
J-Link and works with the same PC software. Based on the
highly optimized and proven J-Link, it offers even higher speed
as well as target power measurement capabilities due to the
faster CPU, built-in FPGA and High speed USB interface.
It connects via USB to a PC running Microsoft Windows 2000,
Windows XP, Windows 2003, Windows Vista or Windows 7.
J-Link Ultra has a built-in 20-pin JTAG/SWD connector.

Licenses

Comes with built-in licenses for flash download and flash break-
points for some devices. For a complete list of devices which are
supported by the built-in licenses, please refer to Device list on
page 50.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 2 Licensing
2.5.3 J-Link Pro
J-Link Pro is a JTAG emulator designed for ARM cores. It con-
nects via USB or Ethernet to a PC running Microsoft Windows
2000, Windows XP, Windows 2003, Windows Vista or Windows
7. J-Link has a built-in 20-pin JTAG connector, which is compat-
ible with the standard 20-pin connector defined by ARM.

Licenses

Comes with built-in licenses for all J-Link related software prod-
ucts: J-Link ARM FlashDL, FlashBP, RDI, J-Link GDB Server and
J-Flash.

2.5.4 J-Trace
J-Trace is a JTAG emulator designed for ARM cores which
includes trace (ETM) support. It connects via USB to a PC run-
ning Microsoft Windows 2000, Windows XP, Windows 2003,
Windows Vista or Windows 7. J-Trace has a built-in 20-pin JTAG
connector and a built in 38-pin JTAG+Trace connector, which is
compatible with the standard 20-pin connector and 38-pin con-
nector defined by ARM.

Licenses

Comes with built-in licenses for flash download and flash break-
points for some devices. For a complete list of devices which
are supported by the built-in licenses, please refer to Device list
on page 50.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

55
2.5.5 J-Trace for Cortex-M
J-Trace for Cortex-M is a JTAG/SWD emulator designed for Cor-
tex-M cores which include trace (ETM) support. J-Trace for Cor-
tex-M can also be used as a regular J-Link and it also supports
ARM7/9 cores. Please note that tracing on ARM7/9 targets is
not supported by J-Trace for Cortex-M. In order to use ETM
trace on ARM7/9 targets, a J-Trace is needed.

Licenses

Comes with built-in licenses for flash download and flash
breakpoints for some devices. For a complete list of devices
which are supported by the built-in licenses, please refer to
Device list on page 50.

2.5.6 Flasher ARM
Flasher ARM is a programming tool for microcontrollers with on-
chip or external Flash memory and ARM core. Flasher ARM is
designed for programming flash targets with the J-Flash soft-
ware or stand-alone. In addition to that Flasher ARM has all of
the J- Link functionality. Flasher ARM connects via USB or via
RS232 interface to a PC, running Microsoft Windows 2000, Win-
dows XP, Windows 2003 or Windows Vista. Flasher ARM has a
built-in 20-pin JTAG connector, which is compatible with the
standard 20-pin connector defined by ARM.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 2 Licensing
2.6 J-Link OEM versions
There are several different OEM versions of J-Link on the market. The OEM versions
look different, but use basically identical hardware. Some of these OEM versions are
limited in speed, some of these can only be used with certain chips and some of
these have certain add-on features enabled, which normally requires license. In any
case, it should be possible to use the J-Link software with these OEM versions. How-
ever, proper function cannot be guaranteed for OEM versions. SEGGER Microcontrol-
ler does not support OEM versions; support is provided by the respective OEM.

2.6.1 Analog Devices: mIDASLink
mIDASLink is an OEM version of J-Link, sold by Analog Devices.

Limitations

mIDASLink works with Analog Devices chips only. This limitation
can NOT be lifted; if you would like to use J-Link with a device
from an other manufacturer, you need to buy a separate J-Link.

Licenses

Licenses for RDI, J-Link ARM FlashDL and FlashBP are included.
Other licenses can be added.

2.6.2 Atmel: SAM-ICE
SAM-ICE is an OEM version of J-Link, sold by Atmel.

Limitations

SAM-ICE works with Atmel devices only. This limitation can NOT
be lifted; if you would like to use J-Link with a device from an
other manufacturer, you need to buy a separate J-Link.

Licenses

Licenses for RDI and GDB Server are included. Other licenses can
be added.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

57
2.6.3 Digi: JTAG Link
Digi JTAG Link is an OEM version of J-Link, sold by Digi Interna-
tional.

Limitations

Digi JTAG Link works with Digi devices only. This limitation can
NOT be lifted; if you would like to use J-Link with a device from an
other manufacturer, you need to buy a separate J-Link.

Licenses

License for GDB Server is included. Other licenses can be added.

2.6.4 IAR: J-Link / J-Link KS
IAR J-Link / IAR J-Link KS are OEM versions of J-Link, sold by IAR.

Limitations

IAR J-Link / IAR J-Link KS can not be used with Keil MDK. This lim-
itation can NOT be lifted; if you would like to use J-Link with Keil
MDK, you need to buy a separate J-Link. IAR J-Link does not sup-
port kickstart power.

Licenses

No licenses are included. All licenses can be added.

2.6.5 IAR: J-Link Lite
IAR J-Link Lite is an OEM version of J-Link, sold by IAR.

Limitations

IAR J-Link Lite can not be used with Keil MDK. This limitation can
NOT be lifted; if you would like to use J-Link with Keil MDK, you
need to buy a separate J-Link.

JTAG speed is limited to 4 MHz.

Licenses

No licenses are included. All licenses can be added.

Note: IAR J-Link is only delivered and supported as part of Starter-Kits. It is not
sold to end customer directly and not guaranteed to work with custom hardware.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER 2 Licensing
2.6.6 IAR: J-Trace
IAR J-Trace is an OEM version of J-Trace, sold by IAR.

Limitations

IAR J-Trace can not be used with Keil MDK. This limitation can NOT
be lifted; if you would like to use J-Trace with Keil MDK, you need
to buy a separate J-Trace.

Licenses

No licenses are included. All licenses can be added.

2.6.7 NXP: J-Link Lite LPC Edition
J-Link Lite LPC Edition is an OEM version of J-Link, sold by NXP.

Limitations

J-Link Lite LPC Edition only works with NXP devices. This limita-
tion can NOT be lifted; if you would like to use J-Link with a
device from an other manufacturer, you need to buy a separate
J-Link.

Licenses

No licenses are included.

2.6.8 SEGGER: J-Link Lite
J-Link ARM Lite is a fully functional OEM-version of SEGGER J-Link
ARM. If you are selling evaluation-boards, J-Link ARM Lite is an
inexpensive emulator solution for you. Your customer receives a
widely acknowledged JTAG-emulator which allows him to start
right away with his development.

Limitations

JTAG speed is limited to 4 MHz

Licenses

No licenses are included. All licenses can be added.

Note

J-Link ARM Lite is only delivered and supported as part of Starter Kits. It is not sold
to end customer and not guaranteed to work with custom hardware.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

59
2.7 J-Link OBs
J-Link OBs (J-Link On Board) are single chip versions of J-Link which are used on var-
ious evalboards. It is legal to use J-Link software with these boards, provided that
the eval board manufacturer has obtained a license from SEGGER. The following list
shows the eval board manufacturer which are allowed to use J-Link OBs:

� IAR Systems
� Embedded Artists
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 2 Licensing
2.8 Illegal Clones
Clones are copies of SEGGER products which use the copyrighted SEGGER Firmware
without a license. It is strictly prohibited to use SEGGER J-Link software with illegal
clones of SEGGER products. Manufacturing and selling these clones is an illegal act
for various reasons, amongst them trademark, copyright and unfair business practise
issues.

The use of illegal J-Link clones with this software is a violation of US, European and
other international laws and is prohibited.

If you are in doubt if your unit may be legally used with SEGGER J-Link software,
please get in touch with us.

End users may be liable for illegal use of J-Link software with clones.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

61
Chapter 3

J-Link and J-Trace related soft-
ware
This chapter describes Segger�s J-Link / J-Trace related software portfolio, which cov-
ers nearly all phases of the development of embedded applications. The support of
the remote debug interface (RDI) and the J-Link GDBServer allows an easy J-Link
integration in all relevant toolchains.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

62 CHAPTER 3 J-Link and J-Trace related software
3.1 J-Link related software

3.1.1 J-Link software and documentation package
J-Link is shipped with a bundle of applications. Some of the applications require an
additional license, free trial licenses are available upon request from www.seg-
ger.com.

Software Description

JLinkARM.dll DLL for using J-Link / J-Trace with third-party programs.

JLink.exe Free command-line tool with basic functionality for target anal-
ysis.

JLinkSTR91x
Free command-line tool to configure the ST STR91x cores. For
more information please refer to J-Link STR91x Commander
(Command line tool) on page 70

JLinkSTM32
Free command-line tool for STM32 devices. Can be used to dis-
able the hardware watchdog and to unsecure STM32 devices
(override read-protection).

J-Link TCP/IP
Server

Free utility which provides the possibility to use J-Link / J-Trace
remotely via TCP/IP.

J-Link SWO Viewer
Free-of-charge utility for J-Link. Displays the terminal output
of the target using the SWO pin. Can be used in parallel with a
debugger or stand-alone.

J-Mem memory
viewer

Free target memory viewer. Shows the memory content of a
running target and allows editing as well.

J-Flash
Stand-alone flash programming application. Requires an addi-
tional license. For more information about J-Flash please refer
to J-Flash ARM User�s Guide (UM08003).

RDI support
Provides Remote Debug Interface (RDI) support. This allows
the user to use J-Link with any RDI-compliant debugger. (Addi-
tional license required)

J-Link Configurator

GUI-based configuration tool for J-Link. Allows configuration of
USB identification as well as TCP/IP identification of J-Link. For
more information about the J-Link Configurator, please refer to
J-Link Configurator on page 93.

Table 3.1: J-Link / J-Trace related software
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

63
3.1.2 List of additional software packages
The software packages listed below are available upon request from www.seg-
ger.com.

J-Link GDB Server
The J-Link GDB Server is a remote server for the GNU Debug-
ger (GDB). For more information about J-Link GDB Server,
please refer to J-Link GDB Server User�s Guide (UM08005).

J-Link GDB Server
command line ver-
sion

Command line version of the J-Link GDB Server. Same func-
tionality as the GUI version.

Dedicated flash
programming utili-
ties

Free dedicated flash programming utilities for the following
eval boards: Cogent CSB737, ST MB525, Toshiba TOPAS 910.

Software Description

JTAGLoad Command line tool that opens an svf file and sends the data in
it via J-Link / J-Trace to the target.

J-Link Software
Developer Kit
(SDK)

The J-Link Software Developer Kit is needed if you want to
write your own program with J-Link / J-Trace.

J-Link Flash Soft-
ware Developer Kit
(SDK)

An enhanced version of the JLinkARM.DLL, which contains
additional API functions for flash programming.

Table 3.2: J-Link / J-Trace additional software packages

Software Description

Table 3.1: J-Link / J-Trace related software
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER 3 J-Link and J-Trace related software
3.2 J-Link software and documentation package in
detail

The J-Link / J-Trace software documentation package is supplied together with J-Link
/ J-Trace and may also be downloaded from www.segger.com.

3.2.1 J-Link Commander (Command line tool)
J-Link Commander (JLink.exe) is a tool that can be used for verifying proper instal-
lation of the USB driver and to verify the connection to the ARM chip, as well as for
simple analysis of the target system. It permits some simple commands, such as
memory dump, halt, step, go and ID-check, as well as some more in-depths analysis
of the state of the ARM core and the ICE breaker module.

3.2.1.1 Command line options
J-Link Commander can be started with different command line options for test and
automation purposes. In the following, the command line options which are available
for J-Link Commander are explained.

-CommanderScript

Selects a commander script and starts J-Link Commander in script mode. The script
mode of J-Link Commander is similar to the execution of a batch file. the commander
script is parsed line by line and one command is executed at a time.

Syntax

-CommanderScript <CommanderScriptPath>

Example

See Using command script files on page 66

-Device

Pre-selects the device J-Link Commander shall connect to. For some devices, J-Link
already needs to know the device at the time of connecting, since special handling is
required for some of them. For a list of all supported device names, please refer to
http://www.segger.com/jlink_supported_devices.html.

Syntax

-Device <DeviceName>

Example

JLink.exe -Device STM32F103ZE
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

65
-If

Selects the target interface J-Link shall use to connect to the target. By default, J-
Link Commander first tries to connect to the target using the target interface which is
currently selected in the J-Link firmware. If connecting fails, J-Link Commander goes
through all target interfaces supported by the connected J-Link and tries to connect
to the device.

Syntax

-If <TargetInterface>

Example

JLink.exe -If SWD

Additional information

Currently, the following target target interfaces are supported:

� JTAG
� SWD

-IP

Selects IP as host interface to connect to J-Link. Default host interface is USB.

Syntax

-IP <IPAddr>

Example

JLink.exe -IP 192.168.1.17

Additional information

To select from a list of all available emulators on Ethernet, please use * as <IPAddr>.

-SelectEmuBySN

Connect to a J-Link with a specific serial number via USB. Useful if multiple J-Links
are connected to the same PC and multiple instances of J-Link Commander shall run
and each connects to another J-Link.

Syntax

-SelectEmuBySN <SerialNo>

Example

JLink.exe -SelectEmuBySN 580011111

-Speed

Select initial target interface speed in kHz used by J-Link Commander to connect to
the target. Default interface speed is 100kHz.

Syntax

-Speed <Speed_kHz>

Example

JLink.exe -Speed 1000
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

66 CHAPTER 3 J-Link and J-Trace related software
3.2.1.2 Using command script files
J-Link commander can also be used in script mode which allows the user to use J-
Link commander for batch processing and without user interaction. Please do not
confuse commander scripts with J-Link script files (please refer to J-Link script files
on page 127 for more information about J-Link script files). When using J-Link com-
mander in script mode, the path to a script file is passed to it. The syntax in the
script file is the same as when using regular commands in J-Link commander (one
line per command).

Example

JLink.exe -CommanderScript C:\CommanderScript.jlink

Contents of CommanderScript.jlink:

r
h
exec device = STM32F103ZE
loadbin C:\firmware.bin,0x08000000

3.2.2 J-Link SWO Viewer
Free-of-charge utility for J-Link. Displays the terminal output of the target using the
SWO pin. Can be used in parallel with a debugger or stand-alone. This is especially
useful when using debuggers which do not come with built-in support for SWO such
as most GDB / GDB+Eclipse based debug environments.

3.2.2.1 Usage
J-Link SWO Viewer is available via the start menu and asks for a device name or CPU
clock speed at startup to be able to calculate the correct SWO speed.

J-Link SWO Viewer automatically performs the necessary initialization to enable SWO
output on the target.

3.2.2.2 List of available command line options
J-Link SWO Viewer can also be controlled from the command line if used in a auto-
mated test environment etc.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

67
When passing all necessary information to the utility via command line, the configu-
ration dialog at startup is suppressed. Minimum information needed by J-Link SWO
Viewer is the device name (to enable CPU frequency auto detection) or the CPU clock
speed.

The table below lists the commands accepted by the J-Link SWO Viewer.

3.2.2.3 cpufreq
Defines the speed in Hz the CPU is running at. If the CPU is for example running at
96 MHz, the command line should look as below.

Syntax
-cpufreq <CPUFreq>

Example

-cpufreq 96000000

3.2.2.4 device
Select the target device to enable the CPU frequency auto detection of the J-Link
DLL. To select a ST STM32F207IG as target device, the command line should look as
below.

For a list of all supported device names, please refer to <Ref>

Syntax
-device <DeviceID>

Example
-deivce STM32F207IG

3.2.2.5 itmport
Defines the stimulus port from which SWO data is received and displayed by the SWO
Viewer. Default is stimulus port 0. The command line should look as below.

Syntax
-itmport <ITMPortIndex>

Example
-itmport 0

3.2.2.6 swofreq
Define the SWO frequency that shall be used by J-Link SWO Viewer for sampling
SWO data.

Usually not necessary to define since optimal SWO speed is calculated automatically
based on the CPU frequency and the capabilities of the connected J-Link.

Syntax
-swofreq <SWOFreq>

Command Description

cpufreq Select the CPU frequency.
device Select the target deivce.

itmport
Selects a itm stimulus port which should be used to listen
to.

swofreq Select the CPU frequency.
Table 3.3: Available command line options
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 3 J-Link and J-Trace related software
Example
-swofreq 6000

3.2.2.7 Target example code for terminal output
/***
* SEGGER MICROCONTROLLER GmbH & Co KG *
* Solutions for real time microcontroller applications *
**
* *
* (c) 2012 SEGGER Microcontroller GmbH & Co KG *
* *
* www.segger.com Support: support@segger.com *
* *
**

--
File: SWO.c
Purpose : Simple implementation for output via SWO for Cortex-M processors.
 It can be used with any IDE. This sample implementation ensures that
 output via SWO is enabled in order to gurantee that the application
 does not hang.

-------- END-OF-HEADER ---
*/

/***
*
* Prototypes (to be placed in a header file such as SWO.h)
*/
void SWO_PrintChar (char c);
void SWO_PrintString(const char *s);

*
*
* Defines for Cortex-M debug unit
*/
#define ITM_STIM_U32 (*(volatile unsigned int*)0xE0000000) // STIM word acces
#define ITM_STIM_U8 (*(volatile char*)0xE0000000) // STIM byte acces
#define ITM_ENA (*(volatile unsigned int*)0xE0000E00) // ITM Enable
#define ITM_TCR (*(volatile unsigned int*)0xE0000E80) // ITM Trace Control Reg.
#define DHCSR (*(volatile unsigned int*)0xE000EDF0) // Debug register
#define DEMCR (*(volatile unsigned int*)0xE000EDFC) // Debug register

**
*
* Function description
* Prints a character to the ITM_STIM register in order to provide data for SWO
*
void SWO_PrintChar(char c) {
 //
 // Check if SWO is set up. If it is not, return to avoid that a program
 // hangs if no debugger is connected.
 //
 //
 // Check if DEBUGEN in DHCSR is set
 //
 if ((DHCSR & 1)!= 1) {
 return;
 }
 //
 // Check if TRACENA in DEMCR is set
 //
 if ((DEMCR & (1 << 24)) == 0) {
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

69
 return;
 }
 //
 // Check if ITM_TRC is enabled
 //
 if ((ITM_TCR & (1 << 22)) == 1) {
 return;
 }
 //
 // Check if stimulus port 0 is enabled
 //
 if ((ITM_ENA & 1) == 0) {
 return;
 }
 //
 // Wait until STIMx is ready to accept at least 1 word
 //
 while ((ITM_STIM_U8 & 1) == 0);
 ITM_STIM_U8 = c;
}

**
*
* SWO_PrintString
*
* Function description
* Prints a string via SWO
*
*/
void SWO_PrintString(const char *s) {
 //
 // Print out character per character
 //
 while (*s) {
 SWO_PrintChar(*s++);
 }
}

3.2.3 SWO Analyzer
SWO Analyzer (SWOAnalyzer.exe) is a tool that analyzes SWO output. Status and
summary of the analysis are output to standard out, the details of the analysis are
stored in a file.

Usage

SWOAnalyzer.exe <SWOfile>

This can be achieved by simply dragging the SWO output file created by the J-Link
DLL onto the executable.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

70 CHAPTER 3 J-Link and J-Trace related software
Creating an SWO output file

In order to create the SWO output file, which is th input file for the SWO Analyzer,
the J-Link config file needs to be modified.

It should contain the following lines:

[SWO]

SWOLogFile="C:\TestSWO.dat"

3.2.4 J-Link STR91x Commander (Command line tool)
J-Link STR91x Commander (JLinkSTR91x.exe) is a tool that can be used to configure
STR91x cores. It permits some STR9 specific commands like:

� Set the configuration register to boot from bank 0 or 1
� Erase flash sectors
� Read and write the OTP sector of the flash
� Write-protect single flash sectors by setting the sector protection bits
� Prevent flash from communicate via JTAG by setting the security bit

All of the actions performed by the commands, excluding writing the OTP sector and
erasing the flash, can be undone. This tool can be used to erase the flash of the con-
troller even if a program is in flash which causes the ARM core to stall.

When starting the STR91x commander, a command sequence will be performed
which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the
GPIOs in output. The IOs are maintained in this state until a next JTAG instruction is
send." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in
the STR91x Commander.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

71
3.2.5 J-Link STM32 Commander (Command line tool)
J-Link STM32 Commander (JLinkSTM32.exe) is a free command line tool which can
be used to disable the hardware watchdog of STM32 devices which can be activated
by programming the option bytes. Moreover the J-Link STM32 Commander unsecures
a read-protected STM32 device by re-programming the option bytes.

Note: Unprotecting a secured device or will cause a mass erase of the flash
memory.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

72 CHAPTER 3 J-Link and J-Trace related software
3.2.6 J-Link TCP/IP Server (Remote J-Link / J-Trace use)
The J-Link TCP/IP Server allows using J-Link / J-Trace remotely via TCP/IP. This
enables you to connect to and fully use a J-Link / J-Trace from another computer.
Performance is just slightly (about 10%) lower than with direct USB connection.

The J-Link TCP/IP Server also accepts commands which are passed to the J-Link TCP/
IP Server via the command line.

3.2.6.1 List of available commands
The table below lists the commands accepted by the J-Link TCP/IP Server

3.2.6.2 port
Syntax
-port <Portno.>

Example

To start the J-Link TCP/IP Server listening on port 19021 the command should look
as follows:

-port 19021

3.2.6.3 usb
Syntax
-usb <USBIndex>

Example

Currently usb 0-3 are supported, so if the J-Link TCP/IP Server should connect to the
J-Link on usb port 2 the command should look as follows:

-usb 2

Command Description

port
Selects the IP port on which the J-Link TCP/IP Server is
listening.

usb Selects a usb port for communication with J-Link.
Table 3.4: Available commands
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

73
3.2.7 J-Mem Memory Viewer
J-Mem displays memory contents of ARM-systems and allows modifications of RAM
and SFRs (Special Function Registers) while the target is running. This makes it pos-
sible to look into the memory of an ARM chip at run-time; RAM can be modified and
SFRs can be written. You can choose between 8/16/32-bit size for read and write
accesses. J-Mem works nicely when modifying SFRs, especially because it writes the
SFR only after the complete value has been entered.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

74 CHAPTER 3 J-Link and J-Trace related software
3.2.8 J-Flash ARM (Program flash memory via JTAG)
J-Flash ARM is a software running on Windows 2000, Windows XP, Windows 2003 or
Windows Vista systems and enables you to program your flash EEPROM devices via
the JTAG connector on your target system.

J-Flash ARM works with any ARM7/9 system and supports all common external
flashes, as well as the programming of internal flash of ARM microcontrollers. It
allows you to erase, fill, program, blank check, upload flash content, and view mem-
ory functions of the software with your flash devices.

J-Flash requires a additional license from Segger. Even without a license key you can
still use J-Flash ARM to open project files, read from connected devices, blank check
target memory, verify data files and so on. However, to actually program devices via
J-Flash ARM and J-Link / J-Trace you are required to obtain a license key from us.
Evaluation licenses are available free of charge. For further information go to our
website or contact us directly.

Features
� Works with any ARM7/ARM9 chip
� ARM microcontrollers (internal flash) supported
� Most external flash chips can be programmed
� High-speed programming: up to 300 Kbytes/second (depends on flash device)
� Very high-speed blank check: Up to 16 Mbytes/sec (depends on target)
� Smart read-back: Only non-blank portions of flash transferred and saved
� Easy to use, comes with projects for standard eval boards.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

75
3.2.9 J-Link RDI (Remote Debug Interface)
The J-Link RDI software is an remote debug interface for J-Link. It makes it possible
to use J-Link with any RDI compliant debugger. The main part of the software is an
RDI-compliant DLL, which needs to be selected in the debugger. There are two addi-
tional features available which build on the RDI software foundation. Each additional
features requires an RDI license in addition to its own license. Evaluation licenses are
available free of charge. For further information go to our website or contact us
directly.

Note: The RDI software (as well as flash breakpoints and flash downloads) do
not require a license if the target device is an LPC2xxx. In this case the software ver-
ifies that the target device is actually an LPC 2xxx and have a device-based license.

3.2.9.1 Flash download and flash breakpoints
Flash download and flash breakpoints are supported by J-Link RDI. For more infor-
mation about flash download and flash breakpoints, please refer to J-Link RDI User�s
Guide (UM08004), chapter Flash download and chapter Breakpoints in flash memory.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

76 CHAPTER 3 J-Link and J-Trace related software
3.2.10 J-Link GDB Server
GDB Server is a remote server for the GNU Debugger GDB. GDB and GDB Server
communicate via a TCP/IP connection, using the standard GDB remote serial proto-
col. The GDB Server translates the GDB monitor commands into J-Link commands.

The GNU Project Debugger (GDB) is a freely available debugger, distributed under
the terms of the GPL. It connects to an emulator via a TCP/IP connection. It can con-
nect to every emulator for which a GDB Server software is available. The latest Unix
version of the GDB is freely available from the GNU committee under:

http://www.gnu.org/software/gdb/download/

J-Link GDB Server is distributed free of charge.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

77
3.3 Dedicated flash programming utilities for J-Link
The SEGGER J-Link comes with dedicated flash programming utilities (DFPU) for a
number of popular Eval boards. These utilities are designed to program a .bin file into
the flash memory of the target hardware, with J-Link. Each dedicated flash program-
ming utility works only with the Eval board it was designed for.

3.3.1 Introduction
Using the dedicated flash programming utilities which come with J-Link, is permitted
for development purposes only. As long as the dedicated flash programming tools are
used for development purposes only, no additional license is required. If you want to
use the dedicated flash programming utilities for commercial and production pur-
poses, you need to obtain a license from SEGGER. SEGGER also offers to create ded-
icated flash programming utilities for custom hardware. When starting a dedicated
flash programming utility, a message box appears which tells the user about the pur-
pose of the dedicated flash programming utility:

3.3.2 Supported Eval boards
The list below shows the Eval boards for which dedicated flash programming utilities
have been already developed. Simple flash programming utilities for other, popular
Eval boards are on the schedule.

CPU / MCU
Eval board

manufacturer
Eval board

name
Flash memory

Atmel AT91SAM9263 Cogent CSB737 Typically 65 MB external
NOR flash

ST STM32F103RBT6 ST Microelectron-
ics MB525 Typically 128 KB internal

flash
Toshiba
TMPA910CRXBG Toshiba TOPAS910 Typically 32 MB external

NOR flash

NXP LPC3250 Phytec PCM-967
Typically 32 MB external
NAND flash (ST
NAND256R3A)

Table 3.5:

PC

Target

CPU
Flash

Memory

Data
File

USB JTAG

J-
Li

nk
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

78 CHAPTER 3 J-Link and J-Trace related software
3.3.3 Supported flash memories
The dedicated flash programming utilities for J-Link can be created for the following
flash memories:

� External NOR flash
� Internal flash
� NAND flash
� Data flash
� SPI flash

In order to use external NOR flash, a CFI compliant flash memory has to be used
because the flash programming utilities use the CFI information to detect the flash
size and sectorization.

3.3.4 How to use the dedicated flash programming utilities
The dedicated flash programming utilities are very simple to use. Every tool expects
a path to a data file (*.bin) passed as a command line parameter, on startup. If no
path is passed the flash programming utility searches for a data in the Samples\
directory. This .bin file has to be named as shown in the table above. For example,
for the Cogent CSB737 Eval board this file is named: CogentCSB737.bin.

3.3.5 Using the dedicated flash programming utilities for pro-
duction and commercial purposes

If you want to use dedicated flash programming utilities for production and commer-
cial purposes you need to obtain a license from SEGGER. In order to obtain a license
for a dedicated flash programming utility, there are two options:

� Purchasing the source code of an existing dedicated flash programming utility
� Purchasing the source code of a dedicated flash programming utility for custom

hardware

The source code can be compiled using a Microsoft Visual C++ V6 or newer compiler.
It contains code which is executed on the target device (RAMCODE). This RAMCODE
may not be used with debug probes other than J-Link.

3.3.5.1 Purchasing the source code of an existing dedicated flash pro-
gramming utility

Purchasing the source code of an existing dedicated flash programming utility
(described above) allows you to use the dedicated flash programming utility for pro-
duction and commercial purposes. Making the resulting executable publicly available
is not permitted.

For more information about the pricing for the source code of existing dedicated flash
programming utilities, please refer to the price list on our website
http://www.segger.com/pricelist_jlink.html#8.20.01.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

79
3.3.5.2 Purchasing the source code of a dedicated flash programming
utility for custom hardware

SEGGER also offers to design dedicated flash programming utilities for custom hard-
ware for which you will also need to obtain a license. The resulting executable may
be used for organization internal purposes only.

3.3.6 F.A.Q.
Q: Q: Can the dedicated flash programming utilities be used for commercial pur-

poses?
A: A: Yes, you can buy the source code of one or more of the flash programming util-

ities which makes it possible to use them for commercial and production purposes.

Q: Q: I want to use the dedicated flash programming utilities with my own hardware.
Is that possible?

A: A: The free dedicated flash programming utilities which come with J-Link do not
support custom hardware.mIn order to use your own hardware with a dedicated
flash programming utility, SEGGER offers to create dedicated flash programming
utilities for custom hardware

Q: Q: Do I need a license to use the dedicated flash programming utilities?
A: A: As long as you use the dedicated flash programming utilities, which come with

J-Link, for development purposes only, you do not need an additional license. In
order to use them for commercial and/or production purposes you need to obtain a
license from SEGGER.

Q: Q: Which file types are supported by the dedicated flash programming utilities?
A: A: Currently, the dedicated flash programming utilities support *.bin files.

Q: Q: Can I use the dedicated flash programming utilities with other debug probes
than J-Link?

A: A: No, the dedicated flash programming utilities only work with J-Link
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

80 CHAPTER 3 J-Link and J-Trace related software
3.4 Additional software packages in detail
The packages described in this section are not available for download. If you wish to
use one of them, contact SEGGER Microcontroller Systeme directly.

3.4.1 JTAGLoad (Command line tool)
JTAGLoad is a tool that can be used to open an svf (Serial vector format) file. The
data in the file will be sent to the target via J-Link / J-Trace.

3.4.2 J-Link Software Developer Kit (SDK)
The J-Link Software Developer Kit is needed if you want to write your own program
with J-Link / J-Trace. The J-Link DLL is a standard Windows DLL typically used from C
programs (Visual Basic or Delphi projects are also possible). It makes the entire
functionality of J-Link / J-Trace available through its exported functions, such as halt-
ing/stepping the ARM core, reading/writing CPU and ICE registers and reading/writ-
ing memory. Therefore it can be used in any kind of application accessing an ARM
core. The standard DLL does not have API functions for flash programming. However,
the functionality offered can be used to program flash. In this case, a flash loader is
required. The table below lists some of the included files and their respective pur-
pose.

3.4.3 J-Link Flash Software Developer Kit (SDK)
This is an enhanced version of the JLinkARM.DLL which contains additional API func-
tions for flash programming. The additional API functions (prefixed
JLINKARM_FLASH_) allow erasing and programming of flash memory. This DLL comes
with a sample executable, as well as with source code of this executable and a
Microsoft Visual C/C++ project file. It can be an interesting option if you want to
write your own programs for production purposes.

Files Contents

GLOBAL.h
JLinkARMDLL.h

Header files that must be included to use the DLL functions.
These files contain the defines, typedef names, and function dec-
larations.

JLinkARM.lib A Library that contains the exports of the JLink DLL.
JLinkARM.dll The DLL itself.
Main.c Sample application, which calls some JLinkARM DLL functions.
JLink.dsp
JLink.dsw

Project files of the sample application. Double click JLink.dsw to
open the project.

JLinkARMDLL.pdf Extensive documentation (API, sample projects etc.).
Table 3.6: J-Link SDK
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

81
3.5 Using the J-LinkARM.dll

3.5.1 What is the JLinkARM.dll?
The J-LinkARM.dll is a standard Windows DLL typically used from C or C++, but
also Visual Basic or Delphi projects. It makes the entire functionality of the J-Link / J-
Trace available through the exported functions.

The functionality includes things such as halting/stepping the ARM core, reading/
writing CPU and ICE registers and reading/writing memory. Therefore, it can be used
in any kind of application accessing an ARM core.

3.5.2 Updating the DLL in third-party programs
The JLinkARM.dll can be used by any debugger that is designed to work with it. Some
debuggers, like the IAR C-SPY® debugger, are usually shipped with the JLinkARM.dll
already installed. Anyhow it may make sense to replace the included DLL with the
latest one available, to take advantage of improvements in the newer version.

3.5.2.1 Updating the JLinkARM.dll in the IAR Embedded Workbench for
ARM (EWARM)

It�s recommended to use the J-Link DLL updater to update the JLinkARM.dll in the
IAR Embedded Workbench. The IAR Embedded Workbench IDE is a high-performance
integrated development environment with an editor, compiler, linker, debugger. The
compiler generates very efficient code and is widely used. It comes with the J-
LinkARM.dll in the arm\bin subdirectory of the installation directory. To update this
DLL, you should backup your original DLL and then replace it with the new one.

Typically, the DLL is located in C:\Program Files\IAR Systems\Embedded Work-
bench 6.n\arm\bin\.

After updating the DLL, it is recommended to verify that the new DLL is loaded as
described in Determining which DLL is used by a program on page 82.

J-Link DLL updater

The J-Link DLL updater is a tool which comes with the J-Link software and allows the
user to update the JLinkARM.dll in all installations of the IAR Embedded Work-
bench, in a simple way. The updater is automatically started after the installation of a
J-Link software version and asks for updating old DLLs used by IAR. The J-Link DLL
updater can also be started manually. Simply enable the checkbox left to the IAR
installation which has been found. Click Ok in order to update the JLinkARM.dll
used by the IAR installation.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

82 CHAPTER 3 J-Link and J-Trace related software
3.5.3 Determining the version of JLinkARM.dll
To determine which version of the JLinkARM.dll you are facing, the DLL version can
be viewed by right clicking the DLL in explorer and choosing Properties from the
context menu. Click the Version tab to display information about the product ver-
sion.

3.5.4 Determining which DLL is used by a program
To verify that the program you are working with is using the DLL you expect it to use,
you can investigate which DLLs are loaded by your program with tools like Sysinter-
nals� Process Explorer. It shows you details about the DLLs, used by your program,
such as manufacturer and version.

Process Explorer is - at the time of writing - a free utility which can be downloaded
from www.sysinternals.com.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

83
Chapter 4

Setup
This chapter describes the setup procedure required in order to work with J-Link / J-
Trace. Primarily this includes the installation of the J-Link software and documenta-
tion package, which also includes a kernel mode J-Link USB driver in your host sys-
tem.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

84 CHAPTER 4 Setup
4.1 Installing the J-Link ARM software and documen-
tation pack

J-Link is shipped with a bundle of applications, corresponding manuals and some
example projects and the kernel mode J-Link USB driver. Some of the applications
require an additional license, free trial licenses are available upon request from
www.segger.com.

Refer to chapter J-Link and J-Trace related software on page 61 for an overview
about the J-Link software and documentation pack.

4.1.1 Setup procedure
To install the J-Link ARM software and documentation pack, follow this procedure:

Note: We recommend to check if a newer version of the J-Link software and doc-
umentation pack is available for download before starting the installation. Check
therefore the J-Link related download section of our website:
http://www.segger.com/download_jlink.html

1. Before you plug your J-Link / J-Trace into your computer's USB port, extract the
setup tool Setup_JLinkARM_V<VersionNumber>.zip. The setup wizard will
install the software and documentation pack that also includes the certified J-
Link USB driver. Start the setup by double clicking Setup_JLinkARM_V<Version-
Number>.exe. The license Agreement dialog box will be opened. Accept the
terms with the Yes button.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

85
2. The Welcome dialog box is opened. Click Next > to open the Choose Destina-
tion Location dialog box.

3. Accept the default installation path C:\Program Files\SEG-
GER\JLinkARM_V<VersionNumber> or choose an alternative location. Confirm
your choice with the Next > button.

4. The Choose options dialog is opened. The Create entry in start menu and the
Add shortcuts to desktop option are preselected. Accept or deselect the
options and confirm the selection with the Next > button.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

86 CHAPTER 4 Setup
5. The installation process will be started.

6. The Installation Complete dialog box appears after the copy process. Close the
installation wizard with the Finish > button.

The J-Link software and documentation pack is successfully installed on your PC.
7. Connect your J-Link via USB with your PC. The J-Link will be identified and after

a short period the J-Link LED stops rapidly flashing and stays on permanently.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

87
4.2 Setting up the USB interface
After installing the J-Link ARM software and documentation package it should not be
necessary to perform any additional setup sequences in order to configure the USB
interface of J-Link.

4.2.1 Verifying correct driver installation
To verify the correct installation of the driver, disconnect and reconnect J-Link / J-
Trace to the USB port. During the enumeration process which takes about 2 seconds,
the LED on J-Link / J-Trace is flashing. After successful enumeration, the LED stays
on permanently.

Start the provided sample application JLink.exe, which should display the compila-
tion time of the J-Link firmware, the serial number, a target voltage of 0.000V, a
complementary error message, which says that the supply voltage is too low if no
target is connected to J-Link / J-Trace, and the speed selection. The screenshot below
shows an example.

In addition you can verify the driver installation by consulting the Windows device
manager. If the driver is installed and your J-Link / J-Trace is connected to your com-
puter, the device manager should list the J-Link USB driver as a node below "Univer-
sal Serial Bus controllers" as shown in the following screenshot:
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

88 CHAPTER 4 Setup
Right-click on the driver to open a context menu which contains the command Prop-
erties. If you select this command, a J-Link driver Properties dialog box is opened
and should report: This device is working properly.

If you experience problems, refer to the chapter Support and FAQs on page 267 for
help. You can select the Driver tab for detailed information about driver provider,
version, date and digital signer.

4.2.2 Uninstalling the J-Link USB driver
If J-Link / J-Trace is not properly recognized by Windows and therefore does not enu-
merate, it makes sense to uninstall the J-Link USB driver.

This might be the case when:

� The LED on the J-Link / J-Trace is rapidly flashing.
� The J-Link / J-Trace is recognized as Unknown Device by Windows.

To have a clean system and help Windows to reinstall the J-Link driver, follow this
procedure:

1. Disconnect J-Link / J-Trace from your PC.
2. Open the Add/Remove Programs dialog (Start > Settings > Control Panel

> Add/Remove Programs) and select Windows Driver Package - Segger
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

89
(jlink) USB and click the Change/Remove button.

3. Confirm the uninstallation process.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

90 CHAPTER 4 Setup
4.3 Setting up the IP interface
Some emulators of the J-Link family have (or future members will have) an additional
Ethernet interface, to communicate with the host system. These emulators will also
come with a built-in web server which allows configuration of the emulator via web
interface. In addition to that, you can set a default gateway for the emulator which
allows using it even in large intranets. For simplicity the setup process of J-Link Pro
(referred to as J-Link) is described in this section.

4.3.1 Configuring J-Link using J-Link Configurator
The J-Link software and documentation package comes with a free GUI-based utility
called J-Link Configurator which auto-detects all J-Links that are connected to the
host PC via USB & Ethernet. The J-Link Configurator allows the user to setup the IP
interface of J-Link. For more information about how to use the J-Link Configurator,
please refer to J-Link Configurator on page 93.

4.3.2 Configuring J-Link using the webinterface
All emulators of the J-Link family which come with an Ethernet interface also come
with a built-in web server, which provides a web interface for configuration. This
enables the user to configure J-Link without additional tools, just with a simple web
browser. The Home page of the web interface shows the serial number, the current
IP address and the MAC address of the J-Link.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

91
The Network configuration page allows configuration of network related settings
(IP address, subnet mask, default gateway) of J-Link. The user can choose between
automatic IP assignment (settings are provided by a DHCP server in the network)
and manual IP assignment by selecting the appropriate radio button.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

92 CHAPTER 4 Setup
4.4 FAQs
Q: How can I use J-Link with GDB and Ethernet?
A: You have to use the J-Link GDB Server in order to connect to J-Link via GDB and

Ethernet.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

93
4.5 J-Link Configurator
Normally, no configuration is required, especially when using J-Link via USB. For spe-
cial cases like: having multiple older J-Links connected to the same host PC in paral-
lel, they need to be re-configured to be identified by their real serial number when
enumerating on the host PC. This is the default identification method for current J-
Links (J-Link with hardware version 8 or later). For re-configuration of old J-Links or
for configuration of the IP settings (use DHCP, IP address, subnet mask, ...) of a J-
Link supporting the Ethernet interface, SEGGER provides a GUI-based tool, called J-
Link Configurator. The J-Link Configurator is part of the J-Link software and docu-
mentation package and can be used free of charge.

4.5.1 Configure J-Links using the J-Link Configurator
A J-Link can be easily configured by selecting the appropriate J-Link from the emula-
tor list and using right click -> Configure.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

94 CHAPTER 4 Setup
In order to configure a J-Link to use the new USB identification method (reporting
the real serial number) simply select "Real SN" as USB identification method and
click the OK button. The same dialog also allows configuration of the IP settings of
the connected J-Link if it supports the Ethernet interface.

Note: When re-configuring older J-Links which use the old enumeration method
(USB identification: USB 0 - USB 3) you can only have 1 J-Link connected which uses
the old method at the same time. So re-configuration has to be done one at a time.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

95
4.6 J-Link USB identification
In general, when using USB, there are two ways in which a J-Link can be identified:

� By serial number
� By USB address

Default configuration of J-Link is: Identification by serial number. Identification via
USB address is used for compatibility and not recommended.

Background information

"USB address" really means changing the USB-Product Id (PID).

The following table shows how J-Links enumerate in the different identification
modes.

4.6.1 Connecting to different J-Links connected to the same
host PC via USB

In general, when having multiple J-Links connected to the same PC, the J-Link to
connect to is explicitly selected by its serial number. Most software/debuggers pro-
vide an extra field to type-in the serial number of the J-Link to connect to:

The following screenshot shows the connection dialog of the J-Flash software:

Identification PID Serial number

Serial number (default) 0x0101 Serial number is real serial number of the
J-Link or user assigned.

 USB address 0 (Deprecated) 0x0101 123456
 USB address 1 (Deprecated) 0x0102 123456
 USB address 2 (Deprecated) 0x0103 123456
 USB address 3 (Deprecated) 0x0104 123456

Table 4.1: J-Link enumeration in different identification modes
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

96 CHAPTER 4 Setup
The following screenshot shows the connection dialog of IAR EWARM:

For debuggers / software which does not provide such a functionality, the J-Link DLL
automatically detects that mutliple J-Links are connected to the PC and shows a
selection dialog which allows the user to select the appropriate J-Link he wants to
connect to.

So even in IDEs which do not have an selection option for the J-Link, it is possible to
connect to different J-Links.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

97
Chapter 5

Working with J-Link and J-Trace
This chapter describes functionality and how to use J-Link and J-Trace.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

98 CHAPTER 5 Working with J-Link and J-Trace
5.1 Connecting the target system

5.1.1 Power-on sequence
In general, J-Link / J-Trace should be powered on before connecting it with the target
device. That means you should first connect J-Link / J-Trace with the host system via
USB and then connect J-Link / J-Trace with the target device via JTAG. Power-on the
device after you connected J-Link / J-Trace to it.

5.1.2 Verifying target device connection
If the USB driver is working properly and your J-Link / J-Trace is connected with the
host system, you may connect J-Link / J-Trace to your target hardware. Then start
JLink.exe which should now display the normal J-Link / J-Trace related information
and in addition to that it should report that it found a JTAG target and the target�s
core ID. The screenshot below shows the output of JLink.exe. As can be seen, it
reports a J-Link with one JTAG device connected.

5.1.3 Problems
If you experience problems with any of the steps described above, read the chapter
Support and FAQs on page 267 for troubleshooting tips. If you still do not find appro-
priate help there and your J-Link / J-Trace is an original SEGGER product, you can
contact SEGGER support via e-mail. Provide the necessary information about your
target processor, board etc. and we will try to solve your problem. A checklist of the
required information together with the contact information can be found in chapter
Support and FAQs on page 267 as well.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

99
5.2 Indicators
J-Link uses indicators (LEDs) to give the user some information about the current
status of the connected J-Link. All J-Links feature the main indicator. Some newer J-
Links such as the J-Link Pro / Ultra come with additional input/output Indicators. In
the following, the meaning of these indicators will be explained.

5.2.1 Main indicator
For J-Links up to V7, the main indicator is single color (Green). J-Link V8 comes with
a bi-color indicator (Green & Red LED), which can show multiple colors: green, red
and orange.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

100 CHAPTER 5 Working with J-Link and J-Trace
5.2.1.1 Single color indicator (J-Link V7 and earlier)

5.2.1.2 Bi-color indicator (J-Link V8)

Indicator status Meaning

GREEN, flashing at 10 Hz Emulator enumerates.

GREEN, flickering

Emulator is in operation. Whenever the emulator is exe-
cuting a command, the LED is switched off temporarily.
Flickering speed depends on target interface speed. At
low interface speeds, operations typically take longer and
the "OFF" periods are typically longer than at fast
speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

GREEN, switched off for
10ms once per second

J-Link heart beat. Will be activated after the emulator
has been in idle mode for at least 7 seconds.

GREEN, flashing at 1 Hz Emulator has a fatal error. This should not normally hap-
pen.

Table 5.1: J-Link single color main indicator

Indicator status Meaning

GREEN, flashing at 10 Hz Emulator enumerates.

GREEN, flickering

Emulator is in operation. Whenever the emulator is exe-
cuting a command, the LED is switched off temporarily.
Flickering speed depends on target interface speed. At
low interface speeds, operations typically take longer and
the "OFF" periods are typically longer than at fast
speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

GREEN, switched off for
10ms once per second

J-Link heart beat. Will be activated after the emulator
has been in idle mode for at least 7 seconds.

ORANGE Reset is active on target.

RED, flashing at 1 Hz Emulator has a fatal error. This should not normally hap-
pen.

Table 5.2: J-Link single color LED main color indicator
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

101
5.2.2 Input indicator
Some newer J-Links such as the J-Link Pro/Ultra come with additional input/output
Indicators. The input indicator is used to give the user some information about the
status of the target hardware.

5.2.2.1 Bi-color input indicator

5.2.3 Output indicator
Some newer J-Links such as the J-Link Pro/Ultra come with additional input/output
Indicators. The output indicator is used to give the user some information about the
emulator-to-target connection.

5.2.3.1 Bi-color output indicator

Indicator status Meaning

GREEN Target voltage could be measured. Target is connected.

ORANGE Target voltage could be measured. RESET is pulled low
(active) on target side.

RED RESET is pulled low (active) on target side. If no target is
connected, reset will be also active on target side.

Table 5.3: J-Link bi-color input indicator

Indicator status Meaning

OFF Target power supply via Pin 19 is not active.

GREEN Target power supply via Pin 19 is active.

ORANGE Target power supply via Pin 19 is active. Emulator pulls
RESET low (active).

RED Emulator pulls RESET low (active).

Table 5.4: J-Link bi-color output indicator
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

102 CHAPTER 5 Working with J-Link and J-Trace
5.3 JTAG interface
By default, only one ARM device is assumed to be in the JTAG scan chain. If you have
multiple devices in the scan chain, you must properly configure it. To do so, you have
to specify the exact position of the ARM device that should be addressed. Configuration of
the scan is done by the target application. A target application can be a debugger
such as the IAR C-SPY® debugger, ARM�s AXD using RDI, a flash programming appli-
cation such as SEGGER�s J-Flash, or any other application using J-Link / J-Trace. It is
the application�s responsibility to supply a way to configure the scan chain. Most
applications offer a dialog box for this purpose.

5.3.1 Multiple devices in the scan chain
J-Link / J-Trace can handle multiple devices in the scan chain. This applies to hard-
ware where multiple chips are connected to the same JTAG connector. As can be seen
in the following figure, the TCK and TMS lines of all JTAG device are connected, while
the TDI and TDO lines form a bus.

Currently, up to 8 devices in the scan chain are supported. One or more of these
devices can be ARM cores; the other devices can be of any other type but need to
comply with the JTAG standard.

5.3.1.1 Configuration
The configuration of the scan chain depends on the application used. Read JTAG
interface on page 102 for further instructions and configuration examples.

5.3.2 Sample configuration dialog boxes
As explained before, it is responsibility of the application to allow the user to config-
ure the scan chain. This is typically done in a dialog box; some sample dialog boxes
are shown below.

Device 1 Device 0TDI TDITDO TDO

TDI TDO

JTAG

T
R

S
T

T
C

K

T
M

S

T
C

K

T
M

S

T
R

S
T

T
C

K

T
M

S

T
R

S
T

J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

103
SEGGER J-Flash configuration dialog

This dialog box can be found at Options|Project settings.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

104 CHAPTER 5 Working with J-Link and J-Trace
SEGGER J-Link RDI configuration dialog box

This dialog can be found under RDI|Configure for example in IAR Embedded Work-
bench®. For detailed information check the IAR Embedded Workbench user guide.

IAR J-Link configuration dialog box

This dialog box can be found under Project|Options.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

105
5.3.3 Determining values for scan chain configuration
When do I need to configure the scan chain?

If only one device is connected to the scan chain, the default configuration can be
used. In other cases, J-Link / J-Trace may succeed in automatically recognizing the
devices on the scan chain, but whether this is possible depends on the devices
present on the scan chain.

How do I configure the scan chain?

2 values need to be known:

� The position of the target device in the scan chain
� The total number of bits in the instruction registers of the devices before the tar-

get device (IR len).

The position can usually be seen in the schematic; the IR len can be found in the
manual supplied by the manufacturers of the others devices.

ARM7/ARM9 have an IR len of four.

Sample configurations

The diagram below shows a scan chain configuration sample with 2 devices con-
nected to the JTAG port.

Examples

The following table shows a few sample configurations with 1,2 and 3 devices in dif-
ferent configurations.

Device 0
Chip(IR len)

Device 1
Chip(IR len)

Device 2
Chip(IR len)

Position IR len

ARM(4) - - 0 0
ARM(4) Xilinx(8) - 0 0

Xilinx(8) ARM(4) - 1 8
Xilinx(8) Xilinx(8) ARM(4) 2 16

Table 5.5: Example scan chain configurations

Device 1 Device 0TDI TDITDO TDO

TDI TDO

JTAG

T
R

S
T

T
C

K

T
M

S

T
C

K

T
M

S

T
R

S
T

T
C

K

T
M

S

T
R

S
T

J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

106 CHAPTER 5 Working with J-Link and J-Trace
The target device is marked in blue.

5.3.4 JTAG Speed
There are basically three types of speed settings:

� Fixed JTAG speed
� Automatic JTAG speed
� Adaptive clocking.

These are explained below.

5.3.4.1 Fixed JTAG speed
The target is clocked at a fixed clock speed. The maximum JTAG speed the target can
handle depends on the target itself. In general ARM cores without JTAG synchroniza-
tion logic (such as ARM7-TDMI) can handle JTAG speeds up to the CPU speed, ARM
cores with JTAG synchronization logic (such as ARM7-TDMI-S, ARM946E-S,
ARM966EJ-S) can handle JTAG speeds up to 1/6 of the CPU speed.

JTAG speeds of more than 10 MHz are not recommended.

5.3.4.2 Automatic JTAG speed
Selects the maximum JTAG speed handled by the TAP controller.

Note: On ARM cores without synchronization logic, this may not work reliably,
because the CPU core may be clocked slower than the maximum JTAG speed.

5.3.4.3 Adaptive clocking
If the target provides the RTCK signal, select the adaptive clocking function to syn-
chronize the clock to the processor clock outside the core. This ensures there are no
synchronization problems over the JTAG interface.

If you use the adaptive clocking feature, transmission delays, gate delays, and syn-
chronization requirements result in a lower maximum clock frequency than with non-
adaptive clocking.

ARM(4) Xilinx(8) ARM(4) 0 0
ARM(4) Xilinx(8) ARM(4) 2 12
Xilinx(8) ARM(4) Xilinx(8) 1 8

Device 0
Chip(IR len)

Device 1
Chip(IR len)

Device 2
Chip(IR len)

Position IR len

Table 5.5: Example scan chain configurations
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

107
5.4 SWD interface
The J-Link support ARMs Serial Wire Debug (SWD). SWD replaces the 5-pin JTAG port
with a clock (SWDCLK) and a single bi-directional data pin (SWDIO), providing all the
normal JTAG debug and test functionality. SWDIO and SWCLK are overlaid on the
TMS and TCK pins. In order to communicate with a SWD device, J-Link sends out
data on SWDIO, synchronous to the SWCLK. With every rising edge of SWCLK, one
bit of data is transmitted or received on the SWDIO.

5.4.1 SWD speed
Currently only fixed SWD speed is supported by J-Link. The target is clocked at a
fixed clock speed. The SWD speed which is used for target communication should not
exceed target CPU speed * 10. The maximum SWD speed which is supported by J-
Link depends on the hardware version and model of J-Link. For more information
about the maximum SWD speed for each J-Link / J-Trace model, please refer to J-
Link / J-Trace models on page 22.

5.4.2 SWO
Serial Wire Output (SWO) support means support for a single pin output signal from
the core. The Instrumentation Trace Macrocell (ITM) and Serial Wire Output (SWO)
can be used to form a Serial Wire Viewer (SWV). The Serial Wire Viewer provides a
low cost method of obtaining information from inside the MCU.

Usually it should not be necessary to configure the SWO speed because this is usually
done by the debugger.

5.4.2.1 Max. SWO speeds
The supported SWO speeds depend on the connected emulator. They can be retrieved

from the emulator. Currently, the following are supported:

5.4.2.2 Configuring SWO speeds
The max. SWO speed in practice is the max. speed which both, target and J-Link can
handle. J-Link can handle the frequencies described in SWO on page 107 whereas the
max. deviation between the target and the J-Link speed is about 3%.

The computation of possible SWO speeds is typically done in the debugger. The SWO
output speed of the CPU is determined by TRACECLKIN, which is normally the same
as the CPU clock.

Example1

Target CPU running at 72 MHz. n is be between 1 and 8192.

Possible SWO output speeds are:

72MHz, 36MHz, 24MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:

6MHz, 3MHz, 2MHz, 1.5MHz, ...

Emulator Speed formula Resulting max. speed

J-Link V6 6MHz/n, n >= 12 500kHz
J-Link V7/V8 6MHz/n, n >= 1 6MHz
J-Link Pro 6MHz/n, n >= 1 6MHz

Table 5.6: J-Link supported SWO input speeds
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

108 CHAPTER 5 Working with J-Link and J-Trace
Permitted combinations are:

Example 2

Target CPU running at 10 MHz.

Possible SWO output speeds are:

10MHz, 5MHz, 3.33MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:

6MHz, 3MHz, 2MHz, 1.5MHz, ...

Permitted combinations are:

SWO output SWO input Deviation percent

 6MHz, n = 12 6MHz, n = 1 0
3MHz, n = 24 3MHz, n = 2 0
... ... <= 3
2MHz, n = 36 2MHz, n = 3 0
...

Table 5.7: Permitted SWO speed combinations

SWO output SWO input Deviation percent

 2MHz, n = 5 2MHz, n = 3 0
1MHz, n = 10 1MHz, n = 6 0
769kHz, n = 13 750kHz, n = 8 2.53
...

Table 5.8: Permitted SWO speed combinations
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

109
5.5 Multi-core debugging
J-Link / J-Trace is able to debug multiple cores on one target system connected to the
same scan chain. Configuring and using this feature is described in this section.

5.5.1 How multi-core debugging works
Multi-core debugging requires multiple debuggers or multiple instances of the same
debugger. Two or more debuggers can use the same J-Link / J-Trace simultaneously.
Configuring a debugger to work with a core in a multi-core environment does not
require special settings. All that is required is proper setup of the scan chain for each
debugger. This enables J-Link / J-Trace to debug more than one core on a target at
the same time.

The following figure shows a host, debugging two ARM cores with two instances of
the same debugger.

Both debuggers share the same physical connection. The core to debug is selected
through the JTAG-settings as described below.

Host (PC)

Target hardware ARM2

Debugger
Instance 2

Debugger
Instance 1

USB

JTAG

ARM1

J-Link
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

110 CHAPTER 5 Working with J-Link and J-Trace
5.5.2 Using multi-core debugging in detail
1. Connect your target to J-Link / J-Trace.
2. Start your debugger, for example IAR Embedded Workbench for ARM.
3. Choose Project|Options and configure your scan chain. The picture below

shows the configuration for the first ARM core on your target.

4. Start debugging the first core.
5. Start another debugger, for example another instance of IAR Embedded Work-

bench for ARM.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

111
6. Choose Project|Options and configure your second scan chain. The following
dialog box shows the configuration for the second ARM core on your target.

7. Start debugging your second core.

Example:

Cores to debug are marked in blue.

5.5.3 Things you should be aware of
Multi-core debugging is more difficult than single-core debugging. You should be
aware of the pitfalls related to JTAG speed and resetting the target.

5.5.3.1 JTAG speed
Each core has its own maximum JTAG speed. The maximum JTAG speed of all cores
in the same chain is the minimum of the maximum JTAG speeds.

For example:

� Core #1: 2MHz maximum JTAG speed
� Core #2: 4MHz maximum JTAG speed
� Scan chain: 2MHz maximum JTAG speed

Core #1 Core #2 Core #3
TAP number
debugger #1

TAP number
debugger #2

ARM7TDMI ARM7TDMI-S ARM7TDMI 0 1
ARM7TDMI ARM7TDMI ARM7TDMI 0 2
ARM7TDM
I-S ARM7TDMI-S ARM7TDMI-S 1 2

Table 5.9: Multicore debugging
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

112 CHAPTER 5 Working with J-Link and J-Trace
5.5.3.2 Resetting the target
All cores share the same RESET line. You should be aware that resetting one core
through the RESET line means resetting all cores which have their RESET pins con-
nected to the RESET line on the target.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

113
5.6 Connecting multiple J-Links / J-Traces to your PC
In general, it is possible to have an unlimited number of J-Links / J-Traces connected
to the same PC. Current J-Link models are already factory-configured to be used in a
multi-J-Link environment, older J-Links can be re-configured to use them in a multi-
J-link environment.

5.6.1 How does it work?
USB devices are identified by the OS by their product id, vendor id and serial number.
The serial number reported by current J-Links is a unique number which allows to
have an almost unlimited number of J-Links connected to the same host at the same
time.

The sketch below shows a host, running two application programs. Each application-
communicates with one ARM core via a separate J-Link.

Older J-Links / J-Traces all reported the same serial number which made it necessary
to configure them for USB0-3 if multiple J-Link should be connected to the same PC
in parallel.

For these J-Links, we recommend to re-configure them to use the new enumeration
method (report real serial number).

Re-configuration can be done by using the J-Link Configurator, which is part of the J-
Link software and documentation package.

Re-configuring J-Link to use the new method does not have any bad side-effects on
the current debug environment. Usually the user does not see any difference as long
as only one emulator is connected.

Host (PC)

Target hardware 1

ARM2

Application
Instance 2

Application
Instance 1

ARM1

USB

JTAG

J-Link
1

USB

JTAG

J-Link
2

Target hardware 2
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

114 CHAPTER 5 Working with J-Link and J-Trace
In order to re-configure a J-Link to use the new USB identification method use the J-
Link Configurator which comes with the J-Link software and documentation package.
For more information about the J-Link Configurator and how to use it, please refer to
J-Link Configurator on page 93.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

115
5.7 J-Link control panel
Since software version V3.86 J-Link the J-Link control panel window allows the user
to monitor the J-Link status and the target status information in real-time. It also
allows the user to configure the use of some J-Link features such as flash download,
flash breakpoints and ARM instruction set simulation. The J-Link control panel win-
dow can be accessed via the J-Link tray icon in the tray icon list. This icon is available
when the debug session is started.

To open the status window, simply click on the tray icon.

5.7.1 Tabs
The J-Link status window supports different features which are grouped in tabs. The
organization of each tab and the functionality which is behind these groups will be
explained in this section

5.7.1.1 General
In the General section, general information about J-Link and the target hardware
are shown. Moreover the following general settings can be configured:

� Show tray icon: If this checkbox is disabled the tray icon will not show from the
next time the DLL is loaded.

� Start minimized: If this checkbox is disabled the J-Link status window will show
up automatically each time the DLL is loaded.

� Always on top: if this checkbox is enabled the J-Link status window is always
visible even if other windows will be opened.

The general information about target hardware and J-Link which are shown in this
section, are:

� Process: Shows the path of the file which loaded the DLL.
� J-Link: Shows OEM of the connected J-Link, the hardware version and the Serial

number. If no J-Link is connected it shows "not connected" and the color indica-
tor is red.

� Target interface: Shows the selected target interface (JTAG/SWD) and the cur-
rent JTAG speed. The target current is also shown. (Only visible if J-Link is con-
nected)

� Endian: Shows the target endianess (Only visible if J-Link is connected)
� Device: Shows the selected device for the current debug session.
� License: Opens the J-Link license manager.
� About: Opens the about dialog.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

116 CHAPTER 5 Working with J-Link and J-Trace
5.7.1.2 Settings
In the Settings section project- and debug-specific settings can be set. It allows the
configuration of the use of flash download and flash breakpoints and some other tar-
get specific settings which will be explained in this topic. Settings are saved in the
configuration file. This configuration file needs to be set by the debugger. If the
debugger does not set it, settings can not be saved. All settings can only the changed
by the user himself. All settings which are modified during the debug session have to
be saved by pressing Save settings, otherwise they are lost when the debug session
is closed.

Section: Flash download

In this section, settings for the use of the J-Link ARM FlashDL feature and related
settings can be configured. When a license for J-Link ARM FlashDL is found, the
color indicator is green and "License found" appears right to the J-Link ARM
FlashDL usage settings.

� Auto: This is the default setting of J-Link ARM FlashDL usage. If a license is
found J-Link ARM FlashDL is enabled. Otherwise J-Link ARM FlashDL will be
disabled internally.

� On: Enables the J-Link ARM FlashDL feature. If no license has been found an
error message appears.

� Off: Disables the J-Link ARM FlashDL feature.
� Skip download on CRC match: J-Link checks the CRC of the flash content to

determine if the current application has already been downloaded to the flash. If
a CRC match occurs, the flash download is not necessary and skipped. (Only
available if J-Link ARM FlashDL usage is configured as Auto or On)

� Verify download: If this checkbox is enabled J-Link verifies the flash content
after the download. (Only available if J-Link ARM FlashDL usage is configured
as Auto or On)

Section: Flash breakpoints:

In this section, settings for the use of the FlashBP feature and related settings can
be configured. When a license for FlashBP is found, the color indicator is green and
"License found" appears right to the FlashBP usage settings.

� Auto: This is the default setting of FlashBP usage. If a license has been found
the FlashBP feature will be enabled. Otherwise FlashBP will be disabled inter-
nally.

� On: Enables the FlashBP feature. If no license has been found an error message
appears.

� Off: Disables the FlashBP feature.
� Show window during program: When this checkbox is enabled the "Program-

ming flash" window is shown when flash is re-programmed in order to set/clear
flash breakpoints.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

117
Flash download and flash breakpoints independent settings

These settings do not belong to the J-Link flash download and flash breakpoints set-
tings section. They can be configured without any license needed.

� Log file: Shows the path where the J-Link log file is placed. It is possible to
override the selection manually by enabling the Override checkbox. If the Over-
ride checkbox is enabled a button appears which let the user choose the new
location of the log file.

� Settings file: Shows the path where the configuration file is placed. This config-
uration file contains all the settings which can be configured in the Settings tab.

� Override device selection: If this checkbox is enabled, a dropdown list
appears, which allows the user to set a device manually. This especially makes
sense when J-Link can not identify the device name given by the debugger or if a
particular device is not yet known to the debugger, but to the J-Link software.

� Allow caching of flash contents: If this checkbox is enabled, the flash con-
tents are cached by J-Link to avoid reading data twice. This speeds up the trans-
fer between debugger and target.

� Allow instruction set simulation: If this checkbox is enabled, ARM instructions
will be simulated as far as possible. This speeds up single stepping, especially
when FlashBPs are used.

� Save settings: When this button is pushed, the current settings in the Settings
tab will be saved in a configuration file. This file is created by J-Link and will be
created for each project and each project configuration (e.g. Debug_RAM,
Debug_Flash). If no settings file is given, this button is not visible.

� Modify breakpoints during execution: This dropdown box allows the user to
change the behavior of the DLL when setting breakpoints if the CPU is running.
The following options are available:
Allow: Allows settings breakpoints while the CPU is running. If the CPU needs to
be halted in order to set the breakpoint, the DLL halts the CPU, sets the break-
points and restarts the CPU.
Allow if CPU does not need to be halted: Allows setting breakpoints while the
CPU is running, if it does not need to be halted in order to set the breakpoint. If
the CPU has to be halted the breakpoint is not set.
Ask user if CPU needs to be halted: If the user tries to set a breakpoint while
the CPU is running and the CPU needs to be halted in order to set the breakpoint,
the user is asked if the breakpoint should be set. If the breakpoint can be set
without halting the CPU, the breakpoint is set without explicitly confirmation by
the user.
Do not allow: It is not allowed to set breakpoints while the CPU is running.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

118 CHAPTER 5 Working with J-Link and J-Trace
5.7.1.3 Break/Watch
In the Break/Watch section all breakpoints and watchpoints which are in the DLL
internal breakpoint and watchpoint list are shown.

Section: Code

Lists all breakpoints which are in the DLL internal breakpoint list are shown.

� Handle: Shows the handle of the breakpoint.
� Address: Shows the address where the breakpoint is set.
� Mode: Describes the breakpoint type (ARM/THUMB)
� Permission: Describes the breakpoint implementation flags.
� Implementation: Describes the breakpoint implementation type. The break-

point types are: RAM, Flash, Hard. An additional TBC (to be cleared) or TBS (to
be set) gives information about if the breakpoint is (still) written to the target or
if it�s just in the breakpoint list to be written/cleared.

Note: It is possible for the debugger to bypass the breakpoint functionality of
the J-Link software by writing to the debug registers directly. This means for ARM7/
ARM9 cores write accesses to the ICE registers, for Cortex-M3 devices write accesses
to the memory mapped flash breakpoint registers and in general simple write
accesses for software breakpoints (if the program is located in RAM). In these cases,
the J-Link software can not determine the breakpoints set and the list is empty.

Section: Data

In this section, all data breakpoints which are listed in the DLL internal breakpoint
list are shown.

� Handle: Shows the handle of the data breakpoint.
� Address: Shows the address where the data breakpoint is set.
� AddrMask: Specifies which bits of Address are disregarded during the compari-

son for a data breakpoint match. (A 1 in the mask means: disregard this bit)
� Data: Shows on which data to be monitored at the address where the data

breakpoint is set.
� Data Mask: Specifies which bits of Data are disregarded during the comparison
� for a data breakpoint match. (A 1 in the mask means: disregard this bit)
� Ctrl: Specifies the access type of the data breakpoint (read/write).
� CtrlMask: Specifies which bits of Ctrl are disregarded during the comparison for

a data breakpoint match.

5.7.1.4 Log
In this section the log output of the DLL is shown. The user can determine which
function calls should be shown in the log window.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

119
Available function calls to log: Register read/write, Memory read/write, set/clear
breakpoint, step, go, halt, is halted.

5.7.1.5 CPU Regs
In this section the name and the value of the CPU registers are shown.

5.7.1.6 Target Power
In this section currently just the power consumption of the target hardware is shown.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

120 CHAPTER 5 Working with J-Link and J-Trace
5.7.1.7 SWV
In this section SWV information are shown.

� Status: Shows the encoding and the baudrate of the SWV data received by the
target (Manchester/UART, currently J-Link only supports UART encoding).

� Bytes in buffer: Shows how many bytes are in the DLL SWV data buffer.
� Bytes transferred: Shows how many bytes have been transferred via SWV,

since the debug session has been started.
� Refresh counter: Shows how often the SWV information in this section has

been updated since the debug session has been started.
� Host buffer: Shows the reserved buffer size for SWV data, on the host side.
� Emulator buffer: Shows the reserved buffer size for SWV data, on the emulator

side.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

121
5.8 Reset strategies
J-Link / J-Trace supports different reset strategies. This is necessary because there is
no single way of resetting and halting an ARM core before it starts to execute instruc-
tions. For example reset strategies which use the reset pin can not succeed on tar-
gets where the reset pin of the CPU is not connected to the reset pin of the JTAG
connector. Reset strategy 0 is always the recommended one because it has been
adapted to work on every target even if the reset pin (Pin 15) is not connected.

What is the problem if the core executes some instructions after RESET?

The instructions which are executed can cause various problems. Some cores can be
completely "confused", which means they can not be switched into debug mode (CPU
can not be halted). In other cases, the CPU may already have initialized some hard-
ware components, causing unexpected interrupts or worse, the hardware may have
been initialized with illegal values. In some of these cases, such as illegal PLL set-
tings, the CPU may be operated beyond specification, possibly locking the CPU.

5.8.1 Strategies for ARM 7/9 devices

5.8.1.1 Type 0: Hardware, halt after reset (normal)
The hardware reset pin is used to reset the CPU. After reset release, J-Link continu-
ously tries to halt the CPU. This typically halts the CPU shortly after reset release;
the CPU can in most systems execute some instructions before it is halted. The num-
ber of instructions executed depends primarily on the JTAG speed: the higher the
JTAG speed, the faster the CPU can be halted.

Some CPUs can actually be halted before executing any instruction, because the start
of the CPU is delayed after reset release. If a pause has been specified, J-Link waits
for the specified time before trying to halt the CPU. This can be useful if a bootloader
which resides in flash or ROM needs to be started after reset.

This reset strategy is typically used if nRESET and nTRST are coupled. If nRESET and
nTRST are coupled, either on the board or the CPU itself, reset clears the breakpoint,
which means that the CPU can not be stopped after reset with the BP@0 reset strat-
egy.

5.8.1.2 Type 1: Hardware, halt with BP@0
The hardware reset pin is used to reset the CPU. Before doing so, the ICE breaker is
programmed to halt program execution at address 0; effectively, a breakpoint is set
at address 0. If this strategy works, the CPU is actually halted before executing a sin-
gle instruction.

This reset strategy does not work on all systems for two reasons:

� If nRESET and nTRST are coupled, either on the board or the CPU itself, reset
clears the breakpoint, which means the CPU is not stopped after reset.

� Some MCUs contain a bootloader program (sometimes called kernel), which
needs to be executed to enable JTAG access.

5.8.1.3 Type 2: Software, for Analog Devices ADuC7xxx MCUs
This reset strategy is a software strategy. The CPU is halted and performs a sequence
which causes a peripheral reset. The following sequence is executed:

� The CPU is halted
� A software reset sequence is downloaded to RAM
� A breakpoint at address 0 is set
� The software reset sequence is executed.

This sequence performs a reset of CPU and peripherals and halts the CPU before exe-
cuting instructions of the user program. It is the recommended reset sequence for
Analog Devices ADuC7xxx MCUs and works with these chips only.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

122 CHAPTER 5 Working with J-Link and J-Trace
5.8.1.4 Type 3: No reset
No reset is performed. Nothing happens.

5.8.1.5 Type 4: Hardware, halt with WP
The hardware RESET pin is used to reset the CPU. After reset release, J-Link continu-
ously tries to halt the CPU using a watchpoint. This typically halts the CPU shortly
after reset release; the CPU can in most systems execute some instructions before it
is halted.

The number of instructions executed depends primarily on the JTAG speed: the
higher the JTAG speed, the faster the CPU can be halted. Some CPUs can actually be
halted before executing any instruction, because the start of the CPU is delayed after
reset release

5.8.1.6 Type 5: Hardware, halt with DBGRQ
The hardware RESET pin is used to reset the CPU. After reset release, J-Link continu-
ously tries to halt the CPU using the DBGRQ. This typically halts the CPU shortly after
reset release; the CPU can in most systems execute some instructions before it is
halted.

The number of instructions executed depends primarily on the JTAG speed: the
higher the JTAG speed, the faster the CPU can be halted. Some CPUs can actually be
halted before executing any instruction, because the start of the CPU is delayed after
reset release.

5.8.1.7 Type 6: Software
This reset strategy is only a software reset. "Software reset" means basically no
reset, just changing the CPU registers such as PC and CPSR. This reset strategy sets
the CPU registers to their after-Reset values:

� PC = 0
� CPSR = 0xD3 (Supervisor mode, ARM, IRQ / FIQ disabled)
� All SPSR registers = 0x10
� All other registers (which are unpredictable after reset) are set to 0.
� The hardware RESET pin is not affected.

5.8.1.8 Type 7: Reserved
Reserved reset type.

5.8.1.9 Type 8: Software, for ATMEL AT91SAM7 MCUs
The reset pin of the device is disabled by default. This means that the reset strate-
gies which rely on the reset pin (low pulse on reset) do not work by default. For this
reason a special reset strategy has been made available.

It is recommended to use this reset strategy. This special reset strategy resets the
peripherals by writing to the RSTC_CR register. Resetting the peripherals puts all
peripherals in the defined reset state. This includes memory mapping register, which
means that after reset flash is mapped to address 0. It is also possible to achieve the
same effect by writing 0x4 to the RSTC_CR register located at address 0xfffffd00.

5.8.1.10 Type 9: Hardware, for NXP LPC MCUs
After reset a bootloader is mapped at address 0 on ARM 7 LPC devices. This reset
strategy performs a reset via reset strategy Type 1 in order to reset the CPU. It also
ensures that flash is mapped to address 0 by writing the MEMMAP register of the LPC.
This reset strategy is the recommended one for all ARM 7 LPC devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

123
5.8.2 Strategies for Cortex-M devices
J-Link supports different specific reset strategies for the Cortex-M cores. All of the
following reset strategies are available in JTAG and in SWD mode. All of them halt the
CPU after the reset.

Note: It is recommended that the correct device is selected in the debugger so
the debugger can pass the device name to the J-Link DLL which makes it possible for
J-Link to detect what is the best reset strategy for the device. Moreover, we recom-
mend that the debugger uses reset type 0 to allow J-Link to dynamically select what
reset is the best for the connected device.

5.8.2.1 Type 0: Normal
This is the default strategy. It does whatever is the best way to reset the target
device.

If the correct device is selected in the debugger this reset strategy may also perform
some special handling which might be necessary for the connected device. This for
example is the case for devices which have a ROM bootloader that needs to run after
reset and before the user application is started (especially if the debug interface is
disabled after reset and needs to be enabled by the ROM bootloader).

For most devices, this reset strategy does the same as reset strategy 8 does:

1. Make sure that the device halts immediately after reset (before it can execute any
instruction of the user application) by setting the VC_CORERESET in the DEMCR.

2. Reset the core and peripherals by setting the SYSRESETREQ bit in the AIRCR.
3. Wait for the S_RESET_ST bit in the DHCSR to first become high (reset active) and

then low (reset no longer active) afterwards.
4. Clear VC_CORERESET.

5.8.2.2 Type 1: Core
Only the core is reset via the VECTRESET bit. The peripherals are not affected. After
setting the VECTRESET bit, J-Link waits for the S_RESET_ST bit in the Debug Halting
Control and Status Register (DHCSR) to first become high and then low afterwards.
The CPU does not start execution of the program because J-Link sets the
VC_CORERESET bit before reset, which causes the CPU to halt before execution of the
first instruction.

Note: In most cases it is not recommended to reset the core only since most tar-
get applications rely of the reset state of some peripherals (PLL, External memory
interface etc.) and may be confused if they boot up but the peripherals are already
configured.

5.8.2.3 Type 2: ResetPin
J-Link pulls its RESET pin low to reset the core and the peripherals. This normally
causes the CPU RESET pin of the target device to go low as well, resulting in a reset
of both CPU and peripherals. This reset strategy will fail if the RESET pin of the target
device is not pulled low. The CPU does not start execution of the program because J-
Link sets the VC_CORERESET bit before reset, which causes the CPU to halt before
execution of the first instruction.

5.8.2.4 Type 3: Connect under Reset
J-Link connects to the target while keeping Reset active (reset is pulled low and
remains low while connecting to the target). This is the recommended reset strategy
for STM32 devices. This reset strategy has been designed for the case that communi-
cation with the core is not possible in normal mode so the VC_CORERESET bit can not
be set in order to guarantee that the core is halted immediately after reset.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

124 CHAPTER 5 Working with J-Link and J-Trace
5.8.2.5 Type 4: Reset core & peripherals, halt after bootloader
Same as type 0, but bootloader is always executed. This reset strategy has been
designed for MCUs/CPUs which have a bootloader located in ROM which needs to run
at first, after reset (since it might initialize some target settings to their reset state).
When using this reset strategy, J-Link will let the bootloader run after reset and halts
the target immediately after the bootloader and before the target application is
started. This is the recommended reset strategy for LPC11xx and LPC13xx devices
where a bootloader should execute after reset to put the chip into the "real" reset
state.

5.8.2.6 Type 5: Reset core & peripherals, halt before bootloader
Basically the same as reset type 8. Performs a reset of core & peripherals and halts
the CPU immediately after reset. The ROM bootloader is NOT executed.

5.8.2.7 Type 6: Reset for Freescale Kinetis devices
Performs a via reset strategy 0 (normal) first in order to reset the core & peripherals
and halt the CPU immediately after reset. After the CPU is halted, the watchdog is
disabled, since the watchdog is running after reset by default and if the target appli-
cation does not feed the watchdog, J-Link loses connection to the device since it is
reset permanently.

5.8.2.8 Type 7: Reset for Analog Devices CPUs (ADI Halt after kernel)
Performs a reset of the core and peripherals by setting the SYSRESETREQ bit in the
AIRCR. The core is allowed to perform the ADI kernel (which enables the debug inter-
face) but the core is halted before the first instruction after the kernel is executed in
order to guarantee that no user application code is performed after reset.

Type 8: Reset core and peripherals

J-Link tries to reset both, core and peripherals by setting the SYSRESETREQ bit in the
AIRCR. The VC_CORERESET bit is used to halt the CPU before it executes a single
instruction.

5.8.2.9 Type 8: Reset core and peripherals
Performs a reset by setting the SYSRESETREQ bit in the AIRCR. VC_CORERESET in the
DEMCR is also set to make sure that the CPU is halted immediately after reset and
before executing any instruction.

Reset procedure:

1. Make sure that the device halts immediately after reset (before it can execute any
instruction of the user application) by setting the VC_CORERESET in the DEMCR.

2. Reset the core and peripherals by setting the SYSRESETREQ bit in the AIRCR.
3. Wait for the S_RESET_ST bit in the DHCSR to first become high (reset active) and

then low (reset no longer active) afterwards.
4. Clear VC_CORERESET.

This type of reset may fail if:

� J-Link has no connection to the debug interface of the CPU because it is in a low
power mode.

� The debug interface is disabled after reset and needs to be enabled by a device
internal bootloader. This would cause J-Link to lose communication after reset
since the CPU is halted before it can execute the internal bootlader.

5.8.2.10 Type 9: Reset for LPC1200 devices
On the NXP LPC1200 devices the watchdog is enabled after reset and not disabled by
the bootloader, if a valid application is in the flash memory. Moreover, the watchdog
keeps counting if the CPU is in debug mode. When using this reset strategy, J-Link
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

125
performs a reset of the CPU and peripherals, using the SYSRESETREQ bit in the AIRCR
and halts the CPU after the bootloader has been performed and before the first
instruction of the user code is executed. Then the watchdog of the LPC1200 device is
disabled. This reset strategy is only guaranteed to work on "modern" J-Links (J-Link
V8, J-Link Pro, J-Link Ultra, J-Trace for Cortex-M, J-Link Lite) and if a SWD speed of
min. 1 MHz is used. This reset strategy should also work for J-Links with hardware
version 6, but it can not be guaranteed that these J-Links are always fast enough in
disabling the watchdog.

5.8.2.11 Type 10: Reset for Samsung S3FN60D devices
On the Samsung S3FN60D devices the watchdog may be running after reset (if the
watchdog is active after reset or not depends on content of the smart option bytes at
addr 0xC0). The watchdog keeps counting even if the CPU is in debug mode (e.g.
halted by a halt request or halted by vector catch). When using this reset strategy, J-
Link performs a reset of the CPU and peripherals, using the SYSRESETREQ bit and sets
VC_CORERESET in order to halt the CPU after reset, before it executes a single instruc-
tion. Then the watchdog of the S3FN60D device is disabled.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

126 CHAPTER 5 Working with J-Link and J-Trace
5.9 Using DCC for memory access
The ARM7/9 architecture requires cooperation of the CPU to access memory when the
CPU is running (not in debug mode). This means that memory can not normally be
accessed while the CPU is executing the application program. The normal way to read
or write memory is to halt the CPU (put it into debug mode) before accessing mem-
ory. Even if the CPU is restarted after the memory access, the real time behavior is
significantly affected; halting and restarting the CPU costs typically multiple millisec-
onds. For this reason, most debuggers do not even allow memory access if the CPU is
running.
Fortunately, there is one other option: DCC (Direct communication channel) can be
used to communicate with the CPU while it is executing the application program. All
that is required is that the application program calls a DCC handler from time to
time. This DCC handler typically requires less than 1 µs per call.

The DCC handler, as well as the optional DCC abort handler, is part of the J-Link soft-
ware package and can be found in the Samples\DCC\IAR directory of the package.

5.9.1 What is required?
� An application program on the host (typically a debugger) that uses DCC
� A target application program that regularly calls the DCC handler
� The supplied abort handler should be installed (optional)

An application program that uses DCC is JLink.exe.

5.9.2 Target DCC handler
The target DCC handler is a simple C-file taking care of the communication. The func-
tion DCC_Process() needs to be called regularly from the application program or
from an interrupt handler. If a RTOS is used, a good place to call the DCC handler is
from the timer tick interrupt. In general, the more often the DCC handler is called,
the faster memory can be accessed. On most devices, it is also possible to let the
DCC generate an interrupt which can be used to call the DCC handler.

5.9.3 Target DCC abort handler
An optional DCC abort handler (a simple assembly file) can be included in the appli-
cation. The DCC abort handler allows data aborts caused by memory reads/writes via
DCC to be handled gracefully. If the data abort has been caused by the DCC commu-
nication, it returns to the instruction right after the one causing the abort, allowing
the application program to continue to run. In addition to that, it allows the host to
detect if a data abort occurred.

In order to use the DCC abort handler, 3 things need to be done:

� Place a branch to DCC_Abort at address 0x10 ("vector" used for data aborts)
� Initialize the Abort-mode stack pointer to an area of at least 8 bytes of stack

memory required by the handler
� Add the DCC abort handler assembly file to the application
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

127
5.10 J-Link script files
In some situations it it necessary to customize some actions performed by J-Link. In
most cases it is the connection sequence and/or the way in which a reset is per-
formed by J-Link, since some custom hardware needs some special handling which
can not be integrated into the generic part of the J-Link software. J-Link script files
are written in C-like syntax in order to have an easy start to learning how to write J-
Link script files. The script file syntax does support most statements (if-else, while,
declaration of variables, ...) which are allowed in C, but not all of them. Moreover,
there are some statements that are script file specific. The script file allows maxi-
mum flexibility, so almost any target initialization which is necessary, can be sup-
ported.

5.10.1 Actions that can be customized
The script file support allows customizing of different actions performed by J-Link. If
an generic-implemented action is replaced by an action defined in a script file
depends on if the corresponding function is present in the script file. In the following
all J-Link actions which can be customized using a script file, are listed and
explained.

5.10.1.1 ResetTarget()
Decsription

If present, it replaces the reset strategy performed by the DLL when issuing a reset.

Prototype
void ResetTarget(void);

5.10.1.2 InitEMU()
Decsription

If present, it allows configuration of the emulator prior to starting target communica-
tion. Currently this function is only used to configure if the target which is connected
to J-Link has an ETB or not. For more information how to configure the existence of
an ETB, please refer to Global DLL variables on page 131.

Prototype
void InitEMU(void);

5.10.1.3 InitTarget()
Decsription

If present, it can replace the auto-detection capability of J-Link. Some targets can
not be auto-detected by J-Link since some special target initialization is necessary
before communication with the core is possible. Moreover, J-Link uses a TAP reset to
get the JTAG IDs of the devices in the JTAG chain. On some targets this disables
access to the core.

Prototype
void InitTarget(void);

5.10.2 Script file API functions
In the following, the API functions which can be used in a script file to communicate
with the DLL are explained.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

128 CHAPTER 5 Working with J-Link and J-Trace
5.10.2.1 MessageBox()
Description

Outputs a string in a message box.

Prototype
__api__ int MessageBox(const char * sMsg);

5.10.2.2 MessageBox1()
Description

Outputs a constant character string in a message box. In addition to that, a given
value (can be a constant value, the return value of a function or a variable) is added,
right behind the string.

Prototype
__api__ int MessageBox1(const char * sMsg, int v);

5.10.2.3 Report()
Description

Outputs a constant character string on stdio.

Prototype
__api__ int Report(const char * sMsg);

5.10.2.4 Report1()
Description

Outputs a constant character string on stdio. In addition to that, a given value (can
be a constant value, the return value of a function or a variable) is added, right
behind the string.

Prototype
__api__ int Report1(const char * sMsg, int v);

5.10.2.5 JTAG_SetDeviceId()
Description

Sets the JTAG Id of a specified device, in the JTAG chain. The index of the device
depends on its position in the JTAG chain. The device closest to TDO has index 0. The
Id is used by the DLL to recognize the device.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 131.

Prototype
__api__ int JTAG_SetDeviceId(int DeviceIndex, unsigned int Id);

5.10.2.6 JTAG_GetDeviceId()
Description

Retrieves the JTAG Id of a specified device, in the JTAG chain. The index of the device
depends on its position in the JTAG chain. The device closest to TDO has index 0.

Prototype
__api__ int JTAG_GetDeviceId(int DeviceIndex);
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

129
5.10.2.7 JTAG_WriteIR()
Description

Writes a JTAG instruction.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 131.

Prototype
__api__ int JTAG_WriteIR(unsigned int Cmd);

5.10.2.8 JTAG_StoreIR()
Description

Stores a JTAG instruction in the DLL JTAG buffer.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 131.

Prototype
__api__ int JTAG_StoreIR(unsigned int Cmd);

5.10.2.9 JTAG_WriteDR()
Description

Writes JTAG data.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 131.

Prototype
__api__ int JTAG_WriteDR(unsigned __int64 tdi, int NumBits);

5.10.2.10JTAG_StoreDR()
Description

Stores JTAG data in the DLL JTAG buffer.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 131.

Prototype
__api__ int JTAG_StoreDR(unsigned __int64 tdi, int NumBits);

5.10.2.11JTAG_Write()
Description

Writes a JTAG sequence (max. 64 bits per pin).

Prototype
__api__ int JTAG_Write(unsigned __int64 tms, unsigned __int64 tdi, int
NumBits);
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

130 CHAPTER 5 Working with J-Link and J-Trace
5.10.2.12JTAG_Store()
Description

Stores a JTAG seuqnece (max. 64 bits per pin) in the DLL JTAG buffer.

Prototype
__api__ int JTAG_Store(unsigned __int64 tms, unsigned __int64 tdi, int
NumBits);

5.10.2.13JTAG_GetU32()
Description

Gets 32 bits JTAG data, starting at given bit position.

Prototype
__api__ int JTAG_GetU32(int BitPos);

5.10.2.14JTAG_WriteClocks()
Description

Writes a given number of clocks.

Prototype
__api__ int JTAG_WriteClocks(int NumClocks);

5.10.2.15JTAG_StoreClocks()
Description

Stores a given number of clocks in the DLL JTAG buffer.

Prototype
__api__ int JTAG_StoreClocks(int NumClocks);

5.10.2.16JTAG_Reset()
Description

Performs a TAP reset and tries to auto-detect the JTAG chain (Total IRLen, Number of
devices). If auto-detection was successful, the global DLL variables which determine
the JTAG chain configuration, are set to the correct values. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 131.

Note: This will not work for devices which need some special init (for example to
add the core to the JTAG chain), which is lost at a TAP reset.

Prototype
__api__ int JTAG_Reset(void);

5.10.2.17SYS_Sleep()
Description

Waits for a given number of miliseconds. During this time, J-Link does not communi-
cate with the target.

Prototype
__api__ int SYS_Sleep(int Delayms);
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

131
5.10.2.18CORESIGHT_AddAP()
Description

Allows the user to manually configure the AP-layout of the device J-Link is connected
to. This makes sense on targets where J-Link can not perform a auto-detection of the
APs which are present of the target system. Type can only be a known global J-Link
DLL AP constant. For a list of all available constants, please refer to Global DLL con-
stants on page 134.

Prototype
__api__ int CORESIGHT_AddAP(int Index, unsigned int Type);

Example

CORESIGHT_AddAP(0, CORESIGHT_AHB_AP); // First AP is a AHB-AP
CORESIGHT_AddAP(1, CORESIGHT_APB_AP); // Second AP is a APB-AP
CORESIGHT_AddAP(2, CORESIGHT_JTAG_AP); // Third AP is a JTAG-AP

5.10.3 Global DLL variables
The script file feature also provides some global variables which are used for DLL
configuration. Some of these variables can only be set to some specifc values, other
ones can be set to the whole datatype with. In the following all global variables and
their value ranges are listed and described.

Note: All global variables are treated as unsigned 32-bit values and are zero-ini-
tialized.

Variable Description R/W

CPU

Pre-selct target CPU J-Link is communicating
with. Used in InitTarget() to skip the core auto-
detection of J-Link. This variable can only be set
to a known global J-Link DLL constant. For a list
of all valid values, please refer to Global DLL con-
stants on page 134.
Example
CPU = ARM926EJS;

W

JTAG_IRPre

Used for JTAG chain configuration. Sets the num-
ber of IR-bits of all devices which are closer to
TDO than the one we want to communicate with.
Example
JTAG_IRPre = 6;

R/W

JTAG_DRPre

Used for JTAG chain configuration. Sets the num-
ber of devices which are closer to TDO than the
one we want to communicate with.
Example
JTAG_DRPre = 2;

R

JTAG_IRPost

Used for JTAG chain configuration. Sets the num-
ber of IR-bits of all devices which are closer to
TDI than the one we want to communicate with.
Example
JTAG_IRPost = 6;

R

JTAG_DRPost

Used for JTAG chain configuration. Sets the num-
ber of devices which are closer to TDI than the
one we want to "communicate with.
Example
JTAG_DRPost = 0;

R

Table 5.10: Global DLL variables
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

132 CHAPTER 5 Working with J-Link and J-Trace
JTAG_IRLen

IR-Len (in bits) of the device we want to commu-
nicate with.
Example
JTAG_IRLen = 4;

R

JTAG_TotalIRLen

Computed automatically, based on the values of
JTAG_IRPre, JTAG_DRPre, JTAG_IRPost and
JTAG_DRPost.
Example
v = JTAG_TotalIRLen;

R

JTAG_AllowTAPReset

En-/Disables auto-JTAG-detection of J-Link. Has
to be disabled for devices which need some spe-
cial init (for example to add the core to the JTAG
chain), which is lost at a TAP reset.
Allowed values
 0 Auto-detection is enabled.
 1 Auto-detection is disabled.

W

JTAG_Speed

Sets the JTAG interface speed. Speed is given in
kHz.
Example
JTAG_Speed = 2000; // 2MHz JTAG speed

W

JTAG_ResetPin

Pulls reset pin low / Releases nRST pin. Used to
issue a reset of the CPU. Value assigned to reset
pin reflects the state. 0 = Low, 1 = high.
Example
JTAG_ResetPin = 0;
SYS_Sleep(5); // Give pin some time to get low
JTAG_ResetPin = 1;

W

JTAG_TRSTPin

Pulls reset pin low / Releases nTRST pin. Used to
issue a reset of the debug logic of the CPU. Value
assigned to reset pin reflects the state. 0 = Low,
1 = high.
Example
JTAG_TRSTPin = 0;
SYS_Sleep(5); // Give pin some time to get low
JTAG_TRSTPin = 1;

W

JTAG_TCKPin

Pulls TCK pin LOW / HIGH. Value assigned to
reset pin reflects the state. 0 = LOW, 1 = HIGH.
Example
JTAG_TCKPin = 0;

R/W

JTAG_TDIPin

Pulls TDI pin LOW / HIGH. Value assigned to
reset pin reflects the state. 0 = LOW, 1 = HIGH.
Example
JTAG_TDIPin = 0;

R/W

JTAG_TMSPin

Pulls TMS pin LOW / HIGH. Value assigned to
reset pin reflects the state. 0 = LOW, 1 = HIGH.
Example
JTAG_TMSPin = 0;

R/W

EMU_ETB_IsPresent

If the connected device has an ETB and you want
to use it with J-link, this variable should be set to
1. Setting this variable in another function as
InitEmu() does not have any effect.
Example
void InitEmu(void) {
 EMU_ETB_IsPresent = 1;
}

W

Variable Description R/W

Table 5.10: Global DLL variables
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

133
EMU_ETB_UseETB

Use ETB instead of RAWTRACE capability of the
emulator. Setting this variable in another func-
tion as InitEmu() does not have any effect.
Example
EMU_ETB_UseETB = 0;

R

EMU_ETM_IsPresent

Selects whether an ETM is present on the target
or not. Setting this variable in another function
as InitEmu() does not have any effect.
Example
EMU_ETM_IsPresent= 0;

R/W

EMU_ETM_UseETM

Use ETM as trace source. Setting this variable in
another function as InitEmu() does not have any
effect.
Example
EMU_ETM_UseETM = 1;

W

EMU_JTAG_
DisableHWTransmissions

Disable use of hardware units for JTAG transmis-
sions since this can cause problems on some
hardware designs.
Example
EMU_JTAG_DisableHWTransmissions = 1;

W

CORESIGHT_CoreBaseAddr

Set base address of core debug component for
CoreSight compliant devices. Setting this vari-
able disables the J-Link auto-detection of the
core debug component base address. Used on
devices where auto-detection of the core debug
component base address is not possible due to
incorrect CoreSight information.
Example
CORESIGHT_CoreBaseAddr = 0x80030000;

R/W

CORESIGHT_
IndexAHBAPToUse

Pre-select an AP as an AHB-AP that J-Link uses
for debug communication (Cortex-M). Setting
this variable is necessary for example when
debugging multi-core devices where multiple
AHB-APs are present (one for each device). This
function can only be used if a AP-layout has been
configured via CORESIGHT_AddAP().
Example
CORESIGHT_AddAP(0, CORESIGHT_AHB_AP);
CORESIGHT_AddAP(1, CORESIGHT_AHB_AP);
CORESIGHT_AddAP(2, CORESIGHT_APB_AP);
//
// Use second AP as AHB-AP
// for target communication
//
CORESIGHT_IndexAHBAPToUse = 1;

W

Variable Description R/W

Table 5.10: Global DLL variables
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

134 CHAPTER 5 Working with J-Link and J-Trace
5.10.4 Global DLL constants
Currently there are only global DLL constants to set the global DLL variable CPU. If
necessary, more constants will be implemented in the future.

5.10.4.1 Constants for global variable: CPU
The following constants can be used to set the global DLL variable CPU:

� ARM7
� ARM7TDMI
� ARM7TDMIR3
� ARM7TDMIR4
� ARM7TDMIS
� ARM7TDMISR3
� ARM7TDMISR4
� ARM9
� ARM9TDMIS
� ARM920T
� ARM922T
� ARM926EJS
� ARM946EJS

CORESIGHT_
IndexAPBAPToUse

Pre-select an AP as an APB-AP that J-Link uses
for debug communication (Cortex-A/R). Setting
this variable is necessary for example when
debugging multi-core devices where multiple
APB-APs are present (one for each device). This
function can only be used if a AP-layout has been
configured via CORESIGHT_AddAP().
Example
CORESIGHT_AddAP(0, CORESIGHT_AHB_AP);
CORESIGHT_AddAP(1, CORESIGHT_APB_AP);
CORESIGHT_AddAP(2, CORESIGHT_APB_AP);
//
// Use third AP as APB-AP
// for target communication
//
CORESIGHT_IndexAPBAPToUse = 2;

W

MAIN_ResetType

Used to determine what reset type is currently
selected by the debugger. This is useful, if the
script has to behave differently if a specific reset
type is selected by the debugger and the script
file has a ResetTarget() function which over-
rides the J-Link reset strategies.
Example
if (MAIN_ResetType == 2) {
 [...]
} else {
 [...]
}

R

MAIN_IsFirstIdentify

Used to check if this is the first time we are run-
ning into InitTarget(). Useful if some init steps
only need to be executed once per debug ses-
sion.Example
if (MAIN_IsFirstIdentify == 1) {
 [...]
} else {
 [...]
}

R

Variable Description R/W

Table 5.10: Global DLL variables
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

135
� ARM966ES
� ARM968ES
� ARM11
� ARM1136
� ARM1136J
� ARM1136JS
� ARM1136JF
� ARM1136JFS
� ARM1156
� ARM1176
� ARM1176J
� ARM1176JS
� ARM1176IF
� ARM1176JFS
� CORTEX_M0
� CORTEX_M1
� CORTEX_M3
� CORTEX_M3R1P0
� CORTEX_M3R1P1
� CORTEX_M3R2P0
� CORTEX_M4
� CORTEX_A5
� CORTEX_A8
� CORTEX_A9
� CORTEX_R4
� CORESIGHT_AHB_AP
� CORESIGHT_APB_AP
� CORESIGHT_JTAG_AP
� CORESIGHT_CUSTOM_AP

5.10.5 Script file language
The syntax of the J-Link script file language follows the conventions of the C-lan-
guage, but it does not support all expresisons and operators which are supported by
the C-language. In the following, the supported operators and expressions are listed.

5.10.5.1 Supported Operators
The following operators are supported by the J-Link script file language:

� Multiplicative operators: *, /, %
� Additive operators: +, -
� Bitwise shift operators: <<, >>)
� Relational operators: <, >, <=, >=
� Equality operators: ==, !=
� Bitwise operators: &, |, ^
� Logical operators: &&, ||
� Assignment operators: =, *=, /=, +=, -=, <<=, >>=, &=, ^=, |=

5.10.5.2 Supported type specifiers
The following type specifiers are supported by the J-Link script file language:

� void
� char
� int (32-bit)
� __int64

5.10.5.3 Supported type qualifiers
The following type qualifiers are supported by the J-Link script file language:

� const
� signed
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

136 CHAPTER 5 Working with J-Link and J-Trace
� unsigned

5.10.5.4 Supported declarators
The following type qualifiers are supported by the J-Link script file language:

� Array declarators

5.10.5.5 Supported selection statements
The following selection statements are supported by the J-Link script file language:

� if-statements
� if-else-statements

5.10.5.6 Supported iteration statements
The following iteration statements are supported by the J-Link script file language:

� while
� do-while

5.10.5.7 Jump statements
The following jump statements are supported by the J-Link script file language:

� return

5.10.5.8 Sample script files
The J-Link software and documentation package comes with sample script files for
different devices. The sample script files can be found at $JLINK_INST_DIR$\Sam-
ples\JLink\Scripts.

5.10.6 Script file writing example
In the following, a short example how a J-Link script file could look like. In this
example we assume a JTAG chain with two devices on it (Cortex-A8 4 bits IRLen, cus-
tom device 5-bits IRLen).

void InitTarget(void) {
 Report("J-Link script example.");
 JTAG_Reset(); // Perform TAP reset and J-Link JTAG auto-detection
 if (JTAG_TotalIRLen != 9) { // Basic check if JTAG chain information matches
 MessageBox("Can not find xxx device");
 return 1;
 }
 JTAG_DRPre = 0; // Cortex-A8 is closest to TDO, no no pre devices
 JTAG_DRPost = 1; // 1 device (custom device) comes after the Cortex-A8
 JTAG_IRPre = 0; // Cortex-A8 is closest to TDO, no no pre IR bits
 JTAG_IRPost = 5; // custom device after Cortex-A8 has 5 bits IR len
 JTAG_IRLen = 4; // We selected the Cortex-A8, it has 4 bits IRLen
 CPU = CORTEX_A8; // We are connected to a Cortex-A8
 JTAG_AllowTAPReset = 1; // We are allowed to enter JTAG TAP reset
 //
 // We have a non-CoreSight compliant Cortex-A8 here
 // which does not allow auto-detection of the Core debug components base address.
 // so set it manually to overwrite the DLL auto-detection
 //
 CORESIGHT_CoreBaseAddr = 0x80030000;
}

5.10.7 Executing J-Link script files

5.10.7.1 In J-Link commander
When J-Link commander is started it searches for a script file called
Default.JLinkScript. If this file is found, it is executed instead of the standard
auto detection of J-Link. If this file is not present, J-Link commander behaves as
before and the normal auto-detection is performed.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

137
5.10.7.2 In debugger IDE environment
To execute a script file out of your debugger IDE, simply select the script file to exe-
cute in the Settings tab of the J-Link control panel and click the save button (after
the debug session has been started). Usually a project file for J-Link is set by the
debugger, which allows the J-Link DLL to save the settings of the control panel in this
project file. After selecting the script file restart your debug session. From now on,
the script file will be executed when starting the debug session.

5.10.7.3 In GDB Server
In order to execute a script file when using J-Link GDB Server, simply start the GDB
Server, using the following command line paramter:

-scriptfile <file>

For more information about the -scriptfile command line parameter, please refer
to UM08005, chapter "command line options".
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

138 CHAPTER 5 Working with J-Link and J-Trace
5.11 Command strings
The behavior of the J-Link can be customized via command strings passed to the
JLinkARM.dll which controls J-Link. Applications such as the J-Link Commander, but
also the C-SPY debugger which is part of the IAR Embedded Workbench, allow pass-
ing one or more command strings. Command line strings can be used for passing
commands to J-Link (such as switching on target power supply), as well as customize
the behavior (by defining memory regions and other things) of J-Link. The use of
command strings enables options which can not be set with the configuration dialog
box provided by C-SPY.

5.11.1 List of available commands
The table below lists and describes the available command strings.

Command Description

device Selects the target device.
DisableFlashBPs Disables the FlashPB feature.
DisableFlashDL Disables the J-Link ARM FlashDL feature.
EnableFlashBPs Enables the FlashPB feature.
EnableFlashDL Enables the J-Link ARM FlashDL feature.
map exclude Ignore all memory accesses to specified area.
map indirectread Specifies an area which should be read indirect.
map ram Specifies location of target RAM.

map reset
Restores the default mapping, which means all mem-
ory accesses are permitted.

SetAllowSimulation Enable/Disable instruction set simulation.
SetCheckModeAfterRead Enable/Disable CPSR check after read operations.
SetResetPulseLen Defines the length of the RESET pulse in milliseconds.
SetResetType Selects the reset strategy
SetRestartOnClose Specifies restart behavior on close.

SetDbgPowerDownOnClose
Used to power-down the debug unit of the target CPU
when the debug session is closed.

SetSysPowerDownOnIdle
Used to power-down the target CPU, when there are
no transmissions between J-Link and target CPU, for a
specified timeframe.

SupplyPower
Activates/Deactivates power supply over pin 19 of the
JTAG connector.

SupplyPowerDefault
Activates/Deactivates power supply over pin 19 of the
JTAG connector permanently.

Table 5.11: Available command line options
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

139
5.11.1.1 device
This command selects the target device.

Syntax
device = <DeviceID>

DeviceID has to be a valid device identifier. For a list of all available device identifi-
ers please refer to chapter Supported devices on page 152.

Example

device = AT91SAM7S256

5.11.1.2 DisableFlashBPs
This command disables the FlashBP feature.

Syntax
DisableFlashBPs

5.11.1.3 DisableFlashDL
This command disables the J-Link ARM FlashDL feature.

Syntax
DisableFlashDL

5.11.1.4 EnableFlashBPs
This command enables the FlashBP feature.

Syntax
EnableFlashBPs

5.11.1.5 EnableFlashDL
This command enables the J-Link ARM FlashDL feature.

Syntax
EnableFlashDL

5.11.1.6 map exclude
This command excludes a specified memory region from all memory accesses. All
subsequent memory accesses to this memory region are ignored.

Memory mapping

Some devices do not allow access of the entire 4GB memory area. Ideally, the entire
memory can be accessed; if a memory access fails, the CPU reports this by switching
to abort mode. The CPU memory interface allows halting the CPU via a WAIT signal.
On some devices, the WAIT signal stays active when accessing certain unused mem-
ory areas. This halts the CPU indefinitely (until RESET) and will therefore end the
debug session. This is exactly what happens when accessing critical memory areas.
Critical memory areas should not be present in a device; they are typically a hard-
ware design problem. Nevertheless, critical memory areas exist on some devices.

To avoid stalling the debug session, a critical memory area can be excluded from
access: J-Link will not try to read or write to critical memory areas and instead
ignore the access silently. Some debuggers (such as IAR C-SPY) can try to access
memory in such areas by dereferencing non-initialized pointers even if the debugged
program (the debuggee) is working perfectly. In situations like this, defining critical
memory areas is a good solution.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

140 CHAPTER 5 Working with J-Link and J-Trace
Syntax
map exclude <SAddr>-<EAddr>

Example

This is an example for the map exclude command in combination with an NXP
LPC2148 MCU.

Memory map

The "problematic" memory areas are:

To exclude these areas from being accessed through J-Link the map exclude com-
mand should be used as follows:

map exclude 0x00080000-0x3FFFFFFF
map exclude 0x40008000-0x7FCFFFFF
map exclude 0x7FD02000-0x7FD02000
map exclude 0x80000000-0xDFFFFFFF

5.11.1.7 map indirectread
This command can be used to read a memory area indirectly. Indirectly reading
means that a small code snippet is downloaded into RAM of the target device, which
reads and transfers the data of the specified memory area to the host. Before map
indirectread can be called a RAM area for the indirectly read code snippet has to be
defined. Use therefor the map ram command and define a RAM area with a size of >=
256 byte.

Typical applications

Refer to chapter Fast GPIO bug on page 218 for an example.

Syntax
map indirectread <StartAddressOfArea>-<EndAddress>

Example

map indirectread 0x3fffc000-0x3fffcfff

0x00000000-0x0007FFFF On-chip flash memory
0x00080000-0x3FFFFFFF Reserved
0x40000000-0x40007FFF On-chip SRAM
0x40008000-0x7FCFFFFF Reserved
0x7FD00000-0x7FD01FFF On-chip USB DMA RAM
0x7FD02000-0x7FD02000 Reserved
0x7FFFD000-0x7FFFFFFF Boot block (remapped from on-chip flash memory)
0x80000000-0xDFFFFFFF Reserved
0xE0000000-0xEFFFFFFF VPB peripherals
0xF0000000-0xFFFFFFFF AHB peripherals

0x00080000-0x3FFFFFFF Reserved
0x40008000-0x7FCFFFFF Reserved
0x7FD02000-0x7FD02000 Reserved
0x80000000-0xDFFFFFFF Reserved
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

141
5.11.1.8 map ram
This command should be used to define an area in RAM of the target device. The area
must be 256-byte aligned. The data which was located in the defined area will not be
corrupted. Data which resides in the defined RAM area is saved and will be restored if
necessary. This command has to be executed before map indirectread will be
called.

Typical applications

Refer to chapter Fast GPIO bug on page 218 for an example.

Syntax
map ram <StartAddressOfArea>-<EndAddressOfArea>

Example

map ram 0x40000000-0x40003fff;

5.11.1.9 map reset
This command restores the default memory mapping, which means all memory
accesses are permitted.

Typical applications

Used with other "map" commands to return to the default values. The map reset
command should be called before any other "map" command is called.

Syntax
map reset

Example

map reset

5.11.1.10 SetAllowSimulation
This command can be used to enable or disable the instruction set simulation. By
default the instruction set simulation is enabled.

Syntax
SetAllowSimulation = 0 | 1

Example

SetAllowSimulation 1 // Enables instruction set simulation

5.11.1.11 SetCheckModeAfterRead
This command is used to enable or disable the verification of the CPSR (current pro-
cessor status register) after each read operation. By default this check is enabled.
However this can cause problems with some CPUs (e.g. if invalid CPSR values are
returned). Please note that if this check is turned off (SetCheckModeAfterRead = 0),
the success of read operations cannot be verified anymore and possible data aborts
are not recognized.

Typical applications

This verification of the CPSR can cause problems with some CPUs (e.g. if invalid CPSR
values are returned). Note that if this check is turned off (SetCheckModeAfterRead =
0), the success of read operations cannot be verified anymore and possible data
aborts are not recognized.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

142 CHAPTER 5 Working with J-Link and J-Trace
Syntax
SetCheckModeAfterRead = 0 | 1

Example

SetCheckModeAfterRead = 0

5.11.1.12 SetResetPulseLen
This command defines the length of the RESET pulse in milliseconds. The default for
the RESET pulse length is 20 milliseconds.

Syntax
SetResetPulseLen = <value>

Example

SetResetPulseLen = 50

5.11.1.13 SetResetType
This command selects the reset startegy which shall be used by J-Link, to reset the
device. The value which is used for this command is analog to the reset type which
shall be selected. For a list of all reset types which are available, please refer to
Reset strategies on page 121. Please note that there different reset strategies for
ARM 7/9 and Cortex-M devices.

Syntax
SetResetType = <value>

Example

SetResetType = 0 // Selects reset strategy type 0: normal

5.11.1.14 SetRestartOnClose
This command specifies whether the J-Link restarts target execution on close. The
default is to restart target execution. This can be disabled by using this command.

Syntax
SetRestartOnClose = 0 | 1

Example

SetRestartOnClose = 1

5.11.1.15 SetDbgPowerDownOnClose
When using this command, the debug unit of the target CPU is powered-down when
the debug session is closed.

Note: This command works only for Cortex-M3 devices

Typical applications

This feature is useful to reduce the power consumption of the CPU when no debug
session is active.

Syntax

SetDbgPowerDownOnClose = <value>

Example

SetDbgPowerDownOnClose = 1 // Enables debug power-down on close.
SetDbgPowerDownOnClose = 0 // Disables debug power-down on close.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

143
5.11.1.16 SetSysPowerDownOnIdle
When using this command, the target CPU is powered-down when no transmission
between J-Link and the target CPU was performed for a specific time. When the next
command is given, the CPU is powered-up.

Note: This command works only for Cortex-M3 devices.

Typical applications

This feature is useful to reduce the power consumption of the CPU.

Syntax
SetSysPowerDownOnIdle = <value>

Note: A 0 for <value> disables the power-down on idle functionality.

Example

SetSysPowerDownOnIdle = 10; // The target CPU is powered-down when there is no
 // transmission between J-Link and target CPU for at least
10ms

5.11.1.17 SupplyPower
This command activates power supply over pin 19 of the JTAG connector. The KS
(Kickstart) versions of J-Link have the V5 supply over pin 19 activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG con-
nector.

Syntax
SupplyPower = 0 | 1

Example

SupplyPower = 1

5.11.1.18 SupplyPowerDefault
This command activates power supply over pin 19 of the JTAG connector perma-
nently. The KS (Kickstart) versions of J-Link have the V5 supply over pin 19 activated
by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG con-
nector.

Syntax
SupplyPowerDefault = 0 | 1

Example

SupplyPowerDefault = 1
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

144 CHAPTER 5 Working with J-Link and J-Trace
5.11.2 Using command strings

5.11.2.1 J-Link Commander
The J-Link command strings can be tested with the J-Link Commander. Use the com-
mand exec supplemented by one of the command strings.

Example

exec SupplyPower = 1
exec map reset
exec map exclude 0x10000000-0x3FFFFFFF

5.11.2.2 IAR Embedded Workbench
The J-Link command strings can be supplied using the C-SPY debugger of the IAR
Embedded Workbench. Open the Project options dialog box and select Debugger.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

145
On the Extra Options page, select Use command line options.
Enter --jlink_exec_command "<CommandLineOption>" in the textfield, as shown in
the screenshot below. If more than one command should be used separate the com-
mands with semicolon.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

146 CHAPTER 5 Working with J-Link and J-Trace
5.12 Switching off CPU clock during debug
We recommend not to switch off CPU clock during debug. However, if you do, you
should consider the following:

Non-synthesizable cores (ARM7TDMI, ARM9TDMI, ARM920, etc.)

With these cores, the TAP controller uses the clock signal provided by the emulator,
which means the TAP controller and ICE-Breaker continue to be accessible even if the
CPU has no clock.
Therefore, switching off CPU clock during debug is normally possible if the CPU clock
is periodically (typically using a regular timer interrupt) switched on every few ms for
at least a few us. In this case, the CPU will stop at the first instruction in the ISR
(typically at address 0x18).

Synthesizable cores (ARM7TDMI-S, ARM9E-S, etc.)

With these cores, the clock input of the TAP controller is connected to the output of a
three-stage synchronizer, which is fed by clock signal provided by the emulator,
which means that the TAP controller and ICE-Breaker are not accessible if the CPU
has no clock.
If the RTCK signal is provided, adaptive clocking function can be used to synchronize
the JTAG clock (provided by the emulator) to the processor clock. This way, the JTAG
clock is stopped if the CPU clock is switched off.

If adaptive clocking is used, switching off CPU clock during debug is normally possi-
ble if the CPU clock is periodically (typically using a regular timer interrupt) switched
on every few ms for at least a few us. In this case, the CPU will stop at the first
instruction in the ISR (typically at address 0x18).
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

147
5.13 Cache handling
Most ARM systems with external memory have at least one cache. Typically, ARM7
systems with external memory come with a unified cache, which is used for both
code and data. Most ARM9 systems with external memory come with separate caches
for the instruction bus (I-Cache) and data bus (D-Cache) due to the hardware archi-
tecture.

5.13.1 Cache coherency
When debugging or otherwise working with a system with processor with cache, it is
important to maintain the cache(s) and main memory coherent. This is easy in sys-
tems with a unified cache and becomes increasingly difficult in systems with hard-
ware architecture. A write buffer and a D-Cache configured in write-back mode can
further complicate the problem.

ARM9 chips have no hardware to keep the caches coherent, so that this is the
responsibility of the software.

5.13.2 Cache clean area
J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike
other emulators, it does not have to download code to the target system. This makes
setting up J-Link / J-Trace easier. Therefore, a cache clean area is not required.

5.13.3 Cache handling of ARM7 cores
Because ARM7 cores have a unified cache, there is no need to handle the caches dur-
ing debug.

5.13.4 Cache handling of ARM9 cores
ARM9 cores with cache require J-Link / J-Trace to handle the caches during debug. If
the processor enters debug state with caches enabled, J-Link / J-Trace does the fol-
lowing:

When entering debug state

J-Link / J-Trace performs the following:

� it stores the current write behavior for the D-Cache
� it selects write-through behavior for the D-Cache.

When leaving debug state

J-Link / J-Trace performs the following:

� it restores the stored write behavior for the D-Cache
� it invalidates the D-Cache.

Note: The implementation of the cache handling is different for different cores.
However, the cache is handled correctly for all supported ARM9 cores.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

148 CHAPTER 5 Working with J-Link and J-Trace
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

149
Chapter 6

Flash download
This chapter describes how the flash download feature of the DLL can be used in dif-
ferent debugger environments.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

150 CHAPTER 6 Flash download
6.1 Introduction
The J-Link DLL comes with a lot of flash loaders that allow direct programming of
internal flash memory for popular microcontrollers. Moreover, the J-Link DLL also
allows programming of CFI-compliant external NOR flash memory. The flash down-
load feature of the J-Link DLL does not require an extra license and can be used free
of charge.

Why should I use the J-Link flash download feature?

Being able to download code directly into flash from the debugger or integrated IDE

significantly shortens the turn-around times when testing software. The flash down-
load feature of J-Link is very efficient and allows fast flash programming. For exam-
ple, if a debugger splits the download image into several pieces, the flash download
software will collect the individual parts and perform the actual flash programming
right before program execution. This avoids repeated flash programming. Once the
setup of flash download is completed. Moreover, the J-Link flash loaders make flash
behave as RAM. This means that the debugger only needs to select the correct device
which enables the J-Link DLL to automatically activate the correct flash loader if the
debugger writes to a specific memory address.

This also makes it very easy for debugger vendors to make use of the flash download
feature because almost no extra work is necessary on the debugger side since the
debugger has not to differ between memory writes to RAM and memory writes to
flash.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

151
6.2 Licensing
No extra license required. The flash download feature can be used free of charge.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

152 CHAPTER 6 Flash download
6.3 Supported devices
J-Link supports download into the internal flash of a large number of microcontrol-
lers. You can always find the latest list of supported devices on our website:

http://www.segger.com/jlink_supported_devices.html

In general, J-Link can be used with any ARM7/9/11, Cortex-M0/M1/M3/M4 and Cor-
tex-A5/A8/R4 core even if it does not provide internal flash.

Furthermore, flash download is also available for all CFI-compliant external NOR-
flash devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

153
6.4 Setup for various debuggers (internal flash)
The J-Link flash download feature can be used by different debuggers, such as IAR
Embedded Workbench, Keil MDK, GDB based IDEs, ... For different debuggers there
are different steps required to enable J-Link flash download. In this section, the
setup for different debuggers is explained.

6.4.1 IAR Embedded Workbench
Using the J-Link flash download feature in IAR EWARM is quite simple:

First, choose the right device in the project settings if not already done. The device
settings can be found at Project->Options->General Options->Target.

To use the J-Link flash loaders, the IAR flash loader has to be disabled. To disable the
IAR flash loader, the checkbox Use flash loader(s) at Project->Options->Debug-
ger->Download has to be disabled, as shown below.

6.4.2 Keil MDK
To use the J-Link flash download feature in Keil MDK, the following steps need to be
performed:
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

154 CHAPTER 6 Flash download
First, choose the device in the project settings if not already done. The device set-
tings can be found at Project->Options for Target->Device.

To enable the J-Link flash loader J-Link / J-Trace at Project->Options for Tar-
get->Utilities has to be selected. It is important that "Update Target before Debug-
ging" is unchecked since otherwise uVision tries to use its own flashloader.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

155
Then J-Link has to be selected as debugger. To select J-Link as debugger simply
choose J-Link / J-Trace from the list box which can be found at Project-
>Options for Target->Debug.

Now setup the Download Options at Project->Options for Target->Debug ->
Settings. Check Verify Code Download and Download to Flash as shown in the
screenshot below.

6.4.3 J-Link GDB Server
The configuration for the J-Link GDB Server is done by the .gdbinit file. The follow-
ing command has to be added to the .gdbinit file to enable the J-Link flash down-
load feature:

monitor flash device <DeviceName>

<DeviceName> is the name of the device for which download into internal flash mem-
ory shall be enabled. For a list of supported devices, please refer to Supported
devices on page 152. For more information about the GDB monitor commands please
refer to UM08005, J-Link GDB Server User Guide chapter Supported remote com-
mands.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

156 CHAPTER 6 Flash download
6.4.4 J-Link Commander
J-Link Commander supports downloading bin files into internal flash memory of pop-
ular microcontrollers. In the following, it is explained which steps are necessary to
prepare J-Link Commander for download into internal flash memory.

6.4.4.1 Preparing J-Link Commander for flash download
To configure J-Link Commander for flash download simply select the connected
device by typing in the following command:

exec device = <DeviceName>

<DeviceName> is the name of the device for which download into internal flash mem-
ory shall be enabled. For a list of supported devices, please refer to Supported
devices on page 152. In order to start downloading the binary data file into flash,
please type in the following command:

loadbin <filename>, <addr>

<Filename> is the path of the binary data file which should be downloaded into the
flash.<Addr> is the start address, the data file should be written to.

6.4.4.2 Converting non-bin files
As previously mentioned, J-Link Commander supports programming of bin files into
flash memory. If the data file to be programmed is in non-bin format (.hex, .mot,
.srec), the file needs to be converted into binary first. There are various free soft-
ware utilities available which allow data file conversion. Another possibility is to use
J-Flash which is part of the J-Link software and documentation package. For convert-
ing data files, no J-Flash license is needed.

In order to convert a hex/mot/... file into a bin file using J-Flash, the following needs
to be done:

1. Start J-Flash
2. Click File | Open data file... to open the data file to be converted in J-Flash.
3. Click File | Save data file as...
4. Select Binary file (*.bin) as file type so J-Flash knows that the file shall be saved

as binary (bin) file.
5. Click Save
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

157
6.4.5 J-Link RDI
The configuration for J-Link RDI is done via the J-Link RDI configuration dialog.

For more information about the J-Link RDI configuration dialog please refer to
UM08004, J-Link RDI User Guide, chapter Configuration dialog.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

158 CHAPTER 6 Flash download
6.5 Setup for various debuggers (CFI flash)
The setup for download into CFI-compliant memory is different from the one for
internal flash. In this section, the setup for different debuggers is explained.

6.5.1 IAR Embedded Workbench / Keil MDK
Using the J-Link flash download feature with IAR Embedded Workbench / Keil MDK is
quite simple:

First, start the debug session and open the J-Link Control Panel. In the tab "Settings"
you will find the location of the settings file.

Close the debug session and open the settings file with a text editor. Add the follow-
ing lines to the file:

[CFI]
CFISize = <FlashSize>
CFIAddr = <FlashAddr>
[GENERAL]
WorkRAMSize = <RAMSize>
WorkRAMAddr = <RAMAddr>

After this the file should look similar to the sample in the following screenshot.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

159
Save the settings file and restart the debug session. Open the J-Link Control Panel
and verify that the "MemMap" tab shows the new settings for CFI flash and work RAM
area.

6.5.2 J-Link GDB Server
The configuration for the J-Link GDB Server is done by the .gdbinit file. The follow-
ing commands have to be added to the .gdbinit file to enable the flash download
feature:

monitor WorkRAM = <SAddr>-<EAddr>
monitor flash CFI = <SAddr>-<EAddr>

For more information about the GDB monitor commands please refer to UM08005, J-
Link GDB Server User Guide chapter Supported remote commands.

6.5.3 J-Link commander
J-Link Commander supports downloading bin files into external CFI flash memory. In
the following, it is explained which steps are necessary to prepare J-Link Commander
for download into external CFI flash memory based on a sample sequence for a ST
STM32F103ZE device:

r
speed 1000
exec setcfiflash 0x64000000 - 0x64FFFFFF
exec setworkram 0x20000000 - 0x2000FFFF
w4 0x40021014, 0x00000114 // RCC_AHBENR, FSMC clock enable
w4 0x40021018, 0x000001FD // GPIOD~G clock enable
w4 0x40011400, 0xB4BB44BB // GPIOD low config, NOE, NWE => Output, NWAIT => Input
w4 0x40011404, 0xBBBBBBBB // GPIOD high config, A16-A18
w4 0x40011800, 0xBBBBBBBB // GPIOE low config, A19-A23
w4 0x40011804, 0xBBBBBBBB // GPIOE high config, D5-D12
w4 0x40011C00, 0x44BBBBBB // GPIOF low config, A0-A5
w4 0x40011C04, 0xBBBB4444 // GPIOF high config, A6-A9
w4 0x40012000, 0x44BBBBBB // GPIOG low config, A10-A15
w4 0x40012004, 0x444B4BB4 // GPIOG high config, NE2 => output
w4 0xA0000008, 0x00001059 // CS control reg 2, 16-bit, write enable, Type: NOR flash
w4 0xA000000C, 0x10000505 // CS2 timing reg (read access)
w4 0xA000010C, 0x10000505 // CS2 timing reg (write access)
speed 4000
mem 0x64000000,100
loadbin C:\STMB672_STM32F103ZE_TestBlinky.bin,0x64000000
mem 0x64000000,100

6.5.3.1 Converting non-bin files
As previously mentioned, J-Link Commander supports programming of bin files into
flash memory. If the data file to be programmed is in non-bin format (.hex, .mot,
.srec), the file needs to be converted into binary first. There are various free soft-
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

160 CHAPTER 6 Flash download
ware utilities available which allow data file conversion. Another possibility is to use
J-Flash which is part of the J-Link software and documentation package. For convert-
ing data files, no J-Flash license is needed.

In order to convert a hex/mot/... file into a bin file using J-Flash, the following needs
to be done:

1. Start J-Flash
2. Click File | Open data file... to open the data file to be converted in J-Flash.
3. Click File | Save data file as...
4. Select Binary file (*.bin) as file type so J-Flash knows that the file shall be saved

as binary (bin) file.
5. Click Save
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

161
6.6 Using the DLL flash loaders in custom applica-
tions

The J-Link DLL flash loaders make flash behave as RAM from a user perspective,
since flash programming is triggered by simply calling the J-Link API functions for
memory reading / writing. For more information about how to setup the J-Link API
for flash programming please refer to UM08002 J-Link SDK documentation (available
for SDK customers only).
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

162 CHAPTER 6 Flash download
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

163
Chapter 7

Flash breakpoints
This chapter describes how the flash breakpoints feature of the DLL can be used in
different debugger environments.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

164 CHAPTER 7 Flash breakpoints
7.1 Introduction
The J-Link DLL supports a feature called flash breakpoints which allows the user to
set an unlimited number of breakpoints in flash memory rather than only being able
to use the hardware breakpoints of the device. Usually when using hardware break-
points only, a maximum of 2 (ARM 7/9/11) to 8 (Cortex-A/R) breakpoints can be set.
The flash memory can be the internal flash memory of a supported microcontroller or
external CFI-compliant flash memory. In the following sections the setup for different
debuggers to use the flash breakpoints feature is explained.

How do breakpoints work?

There are basically 2 types of breakpoints in a computer system: hardware break-
points and software breakpoints. Hardware breakpoints require a dedicate hardware
unit for every breakpoint. In other words, the hardware dictates how many hardware
breakpoints can be set simultaneously. ARM 7/9 cores have 2 breakpoint units (called
"watchpoint units" in ARM's documentation), allowing 2 hardware breakpoints to be
set. Hardware breakpoints do not require modification of the program code. Software
breakpoints are different: The debugger modifies the program and replaces the
breakpointed instruction with a special value. Additional software breakpoints do not
require additional hardware units in the processor, since simply more instructions are
replaced. This is a standard procedure that most debuggers are capable of, however,
this usually requires the program to be located in RAM.

What is special about software breakpoints in flash?

Flash breakpoints allows setting of an unlimited number of breakpoints even if the
user application is not located in RAM. On modern microcontrollers this is the stan-
dard scenario because on most microcontrollers the internal RAM is not big enough to
hold the complete application. When replacing instructions in flash memory this
requires re-programming of the flash which takes much more time than simply
replacing a instruction when debugging in RAM. The J-Link flash breakpoints feature
is highly optimized for fast flash programming speed and in combination with the
instruction set simulation only re-programs flash is absolutely necessary which
makes debugging in flash using flash breakpoints almost as flawless as debugging in
RAM.

What performance can I expect?

Flash algorithm, specially designed for this purpose, sets and clears flash breakpoints
extremely fast; on microcontrollers with fast flash the difference between software
breakpoints in RAM and flash is hardly noticeable.

How is this performance achieved?

We have put a lot of effort in making flash breakpoints really usable and convenient.
Flash sectors are programmed only when necessary; this is usually the moment exe-
cution of the target program is started. A lot of times, more then one breakpoint is
located in the same flash sector, which allows programming multiple breakpoints by
programming just a single sector. The contents of program memory are cached,
avoiding time consuming reading of the flash sectors. A smart combination of soft
ware and hardware breakpoints allows us to use hardware breakpoints a lot of times,
especially when the debugger is source level-stepping, avoiding re-programming the
flash in these situations. A built-in instruction set simulator further reduces the num-
ber of flash operations which need to be performed. This minimizes delays for the
user, while maximizing the life time of the flash. All resources of the ARM microcon-
troller are available to the application program, no memory is lost for debugging.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

165
7.2 Licensing
In order to use the flash breakpoints feature a separate license is necessary for each
J-Link. For some devices J-Link comes with a device-based license and some J-Link
models also come with a full license for flash breakpoints but the normal J-Link
comes without any licenses. For more information about licensing itself and which
devices have a device-based license, please refer to Licensing on page 45.

7.2.1 24h flash breakpoint trial license
In general, SEGGER offers free 30-days trial licenses for flash breakpoints upon
request. The J-Link DLL also comes with a special feature that allows the user to test
the flash breakpoints feature for 24 hours without the need to request a trial license
explicitly from SEGGER via E-Mail. This especially is useful for users who simply want
to do some short term testing with the flash breakpoints feature without needing to
wait for a requested trial license key. This special trial license can only activated once
per emulator. If the user sets breakpoints during the debug session which would
require a flash breakpoint license and no license is found, the DLL offers the user to
activate the 24 hour trial license for the connected emulator.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

166 CHAPTER 7 Flash breakpoints
7.3 Supported devices
J-Link supports flash breakpoints for a large number of microcontrollers. You can
always find the latest list of supported devices on our website:

http://www.segger.com/jlink_supported_devices.html

In general, J-Link can be used with any ARM7/9/11, Cortex-M0/M1/M3/M4 and Cor-
tex-A5/A8/R4 core even if it does not provide internal flash.

Furthermore, flash breakpoints are also available for all CFI compliant external NOR-
flash devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

167
7.4 Setup & compatibility with various debuggers

7.4.1 Setup
In compatible debuggers, flash breakpoints work if the J-Link flash loader works and
a license for flash breakpoints is present. No additional setup is required. The flash
breakpoint feature is available for internal flashes and for external CFI-flash. For
more information about how to setup various debuggers for flash download, please
refer to Setup for various debuggers (internal flash) on page 153. If flash break-
points are available can be verified using the J-Link control panel:

7.4.2 Compatibility with various debuggers
Flash breakpoints can be used in all debugger which use the proper J-Link API to set
breakpoints. Compatible debuggers/ debug interfaces are:

� IAR Embedded Workbench
� Keil MDK
� GDB-based debuggers
� Codewarrior
� RDI-compliant debuggers

Incompatible debuggers / debug interfaces

� Rowley Crossworks
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

168 CHAPTER 7 Flash breakpoints
7.5 FAQ
Q: Why can flash breakpoints not be used with Rowley Crossworks?
A: Because Rowley Crossworks does not use the proper J-Link API to set breakpoints.

Instead of using the breakpoint-API, Crossworks programs the debug hardware
directly, leaving J-Link no choice to use its flash breakpoints.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

169
Chapter 8

RDI
RDI (Remote Debug Interface) is a standard defined by ARM, trying to standardize a
debugger / debug probe interface. It is defined for cores only that have the same
CPU register set as ARM7 CPUs. This chapter describes how to use the RDI DLL which
comes with the J-Link software and documentation package. The J-Link RDI DLL
allows the user to use J-Link with any RDI-compliant debugger and IDE.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

170 CHAPTER 8 RDI
8.1 Introduction
Remote Debug Interface (RDI) is an Application Programming Interface (API) that
defines a standard set of data structures and functions that abstract hardware for
debugging purposes. J-Link RDI mainly consists of a DLL designed for ARM cores to
be used with any RDI compliant debugger. The J-Link DLL feature flash download and
flash breakpoints can also be used with J-Link RDI.

8.1.1 Features
� Can be used with every RDI compliant debugger
� Easy to use
� Flash download feature of J-Link DLL can be used
� Flash breakpoints feature of J-Link DLL can be used.
� Instruction set simulation (improves debugging performance)

elf.gif

Host (PC)

ARM

+
Data
File

(e.g. elf)

USB

JTAG

RDI compliant
Debugger

J-Link RDI DLL

J-Link
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

171
8.2 Licensing
In order to use the J-Link RDI software a separate license is necessary for each J-
Link. For some devices J-Link comes with a device-based license and some J-Link
models also come with a full license for J-Link RDI but the normal J-Link comes with-
out any licenses. For more information about licensing itself and which devices have
a device-based license, please refer to Licensing on page 45.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

172 CHAPTER 8 RDI
8.3 Setup for various debuggers
The J-Link RDI software is an ARM Remote Debug Interface (RDI) for J-Link. It makes
it possible to use J-Link with any RDI compliant debugger. Basically, J-Link RDI con-
sists of a additional DLL (JLinkRDI.dll) which builds the interface between the RDI
API and the normal J-Link DLL. The JLinkRDI.dll itself is part of the J-Link software
and documentation package.

8.3.1 IAR Embedded Workbench IDE
J-Link RDI can be used with IAR Embedded Workbench for ARM.

8.3.1.1 Supported software versions
J-Link RDI has been tested with IAR Embedded Workbench IDE version 4.40. There
should be no problems with other versions of IAR Embedded Workbench IDE. All
screenshots are taken from IAR Embedded Workbench version 4.40.

Note: Since IAR EWARM V5.30 J-Link is fully and natively supported by EWARM,
so RDI is no longer needed.

8.3.1.2 Configuring to use J-Link RDI
1. Start the IAR Embedded Workbench and open the tutor example project or the

desired project. This tutor project has been preconfigured to use the simulator driver.
In order to run the J-Link RDI you the driver needs to be changed.

2. Choose Project | Options and select the Debugger category. Change the
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

173
Driver option to RDI.

3. Go to the RDI page of the Debugger options, select the manufacturer driver
(JLinkRDI.dll) and click OK.

4. Now an extra menu, RDI, has been added to the menu bar.
Choose RDI | Configure to configure the J-Link. For more information about the
generic setup of J-Link RDI, please refer to Configuration on page 188.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

174 CHAPTER 8 RDI
8.3.1.3 Debugging on Cortex-M3 devices
The RDI protocol has only been specified by ARM for ARM 7/9 cores. For Cortex-M
there is no official extension of the RDI protocol regarding the register assignement,
that has been approved by ARM. Since IAR EWARM version 5.11 it is possible to use
J-Link RDI for Cortex-M devices because SEGGER and IAR have been come to an
agreement regarding the RDI register assignment for Cortex-M. The following table
lists the register assignment for RDI and Cortex-M:

Register
Index

Assigned register

0 R0
1 R1
2 R2
3 R3
4 R4
5 R5
6 R6
7 R7
8 R8
9 R9
10 R10
11 R11
12 R12
13 MSP / PSP (depending on mode)
14 R14 (LR)
16 R15 (PC)
17 XPSR
18 APSR
19 IPSR
20 EPSR
21 IAPSR
22 EAPSR
23 IEPSR
24 PRIMASK
25 FAULTMASK
26 BASEPRI
27 BASEPRI_MAX
28 CFBP (CONTROL/FAULT/BASEPRI/PRIMASK)

Table 8.1: Cortex-M register mapping for IAR + J-Link RDI
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

175
8.3.2 ARM AXD (ARM Developer Suite, ADS)

8.3.2.1 Software version
The JLinkRDI.dll has been tested with ARM�s AXD version 1.2.0 and 1.2.1.
There should be no problems with other versions of ARM�s AXD. All screenshots are
taken from ARM�s AXD version 1.2.0.

8.3.2.2 Configuring to use J-Link RDI
1. Start the ARM debugger and select Options | Configure Target.... This opens the

Choose Target dialog box:

2. Press the Add Button to add the JLinkRDI.dll.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

176 CHAPTER 8 RDI
3. Now J-Link RDI is available in the Target Environments list.

4. Select J-Link and press OK to connect to the target via J-Link ARM. For more
information about the generic setup of J-Link RDI, please refer to Configuration
on page 188. After downloading an image to the target board, the debugger win-
dow looks as follows:
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

177
8.3.3 ARM RVDS (RealView developer suite)

8.3.3.1 Software version
J-Link RDI has been tested with ARM RVDS version 2.1 and 3.0. There should be no
problems with earlier versions of RVDS (up to version v3.0.1). All screenshots are
taken from ARM�s RVDS version 2.1.

Note: RVDS version 3.1 does not longer support RDI protocol to communicate
with the debugger.

8.3.3.2 Configuring to use J-Link RDI
1. Start the Real View debugger:
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

178 CHAPTER 8 RDI
2. Select File | Connection | Connect to Target.

3. In the Connection Control dialog use the right mouse click on the first item and
select Add/Remove/Edit Devices
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

179
4. Now select Add DLL to add the JLinkRDI.dll. Select the installation path of the
software, for example:
C:\Program Files\SEGGER\JLinkARM_V350g\JLinkRDI.dll

5. After adding the DLL, an additional Dialog opens and asks for description: (These
values are voluntary, if you do not want change them, just click OK) Use the fol-
lowing values and click on OK, Short Name: JLinkRDI Description: J-Link
ARM RDI Interface.

6. Back in the RDI Target List Dialog, select JLink-RDI and click Configure. For
more information about the generic setup of J-Link RDI, please refer to Configu-
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

180 CHAPTER 8 RDI
ration on page 188.

7. Click the OK button in the configuration dialog. Now close the RDI Target List
dialog. Make sure your target hardware is already connected to J-Link.

8. In the Connection control dialog, expand the JLink ARM RDI Interface and
select the ARM_0 Processor. Close the Connection Control Window.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

181
9. Now the RealView Debugger is connected to J-Link.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

182 CHAPTER 8 RDI
10. A project or an image is needed for debugging. After downloading, J-Link is used
to debug the target.

8.3.4 GHS MULTI

8.3.4.1 Software version
J-Link RDI has been tested with GHS MULTI version 4.07. There should be no prob-
lems with other versions of GHS MULTI. All screenshots are taken from GHS MULTI
version 4.07.

8.3.4.2 Configuring to use J-Link RDI
1. Start Green Hills Software MULTI integrated development environment. Click Con-

nect | Connection Organizer to open the Connection Organizer.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

183
2. Click Method | New in the Connection Organizer dialog.

3. The Create a new Connection Method will be opened. Enter a name for your
configuration in the Name field and select Custom in the Type list. Confirm your
choice with the Create... button.

4. The Connection Editor dialog will be opened. Enter rdiserv in the Server field
and enter the following values in the Arguments field:
-config -dll <FullPathToJLinkDLLs>
Note that JLinkRDI.dll and JLinkARM.dll must be stored in the same directory.
If the standard J-Link installation path or another path that includes spaces has
been used, enclose the path in quotation marks.
Example:
-config -dll "C:\Program Files\SEGGER\JLinkARM_V350g\JLinkRDI.dll"
Refer to GHS manual "MULTI: Configuring Connections for ARM Targets", chapter
"ARM Remote Debug Interface (rdiserv) Connections" for a complete list of pos-
sible arguments.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

184 CHAPTER 8 RDI
5. Confirm the choices by clicking the Apply button afterwards the Connect button.

6. The J-Link RDI Configuration dialog will be opened. For more information
about the generic setup of J-Link RDI, please refer to Configuration on page 188.

7. Click the OK button to connect to the target. Build the project and start the
debugger. Note that at least one action (for example step or run) has to be per-
formed in order to initiate the download of the application.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

185
8.3.5 KEIL MDK (µVision IDE)

8.3.5.1 Software version
J-Link has been tested with KEIL MDK 3.34. There should be no problems with other
versions of KEIL µVision. All screenshots are taken from MDK 3.34.

8.3.5.2 Configuring to use J-Link RDI
Start KEIL uVision and open the project.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

186 CHAPTER 8 RDI
Select Project | Options for Target �<NameOfTarget>� to open the project options
dialog and select the Debug tab.

Choose RDI Interface Driver from the list as shown above and click the Settings
button. Select the location of JLinkRDI.dll in Browse for RDI Driver DLL field.
and click the Configure RDI Driver button.

The J-Link RDI Configuration dialog will be opened.For more information about the
generic setup of J-Link RDI, please refer to Configuration on page 188.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

187
After finishing configuration, the project can be build (Project | Build Target) and
the debugger can be started (Debug | Start/Stop debug session).
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

188 CHAPTER 8 RDI
8.4 Configuration
This section describes the generic setup of J-Link RDI (same for all debuggers) using
the J-Link RDI configuration dialog.

8.4.1 Configuration file JLinkRDI.ini
All settings are stored in the file JLinkRDI.ini. This file is located in the same direc-
tory as JLinkRDI.dll.

8.4.2 Using different configurations
It can be desirable to use different configurations for different targets. If this is the
case, a new folder needs to be created and the JLinkARM.dll as well as the
JLinkRDI.dll needs to be copied into it.

Project A needs to be configured to use JLinkRDI.dll A in the first folder, project B
needs to be configured to use the DLL in the second folder. Both projects will use
separate configuration files, stored in the same directory as the DLLs they are using.

If the debugger allows using a project-relative path (such as IAR EWARM: Use for
example $PROJ_DIR$\RDI\), it can make sense to create the directory for the DLLs
and configuration file in a subdirectory of the project.

8.4.3 Using mutliple J-Links simulatenously
Same procedure as using different configurations. Each debugger session will use
their own instance of the JLinkRDI.dll.

8.4.4 Configuration dialog
The configuration dialog consists of several tabs making the configuration of J-Link
RDI very easy.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

189
8.4.4.1 General tab

Connection to J-Link

This setting allows the user to configure how the DLL should connect to the J-Link.
Some J-Link models also come with an Ethernet interface which allows to use an
emulator remotely via TCP/IP connection.

License (J-Link RDI License managment)
1. The License button opens the J-Link RDI License management dialog. J-Link

RDI requires a valid license.

2. Click the Add license button and enter your license. Confirm your input by click-
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

190 CHAPTER 8 RDI
ing the OK button.

3. The J-Link RDI license is now added.

8.4.4.2 Init tab

Macro file

A macro file can be specified to load custom settings to configure J-Link RDI with
advanced commands for special chips or operations. For example, a macro file can be
used to initialize a target to use the PLL before the target application is downloaded,
in order to speed up the download.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

191
Comands in the macro file

Example of macro file

/***
*
* Macro file for J-LINK RDI
*
**
* File: LPC2294.setup
* Purpose: Setup for Philips LPC2294 chip
**
*/
SetJTAGSpeed(1000);
Reset(0);
Write32(0xE01FC040, 0x00000001); // Map User Flash into Vector area at (0-3f)
Write32(0xFFE00000, 0x20003CE3); // Setup CS0
Write32(0xE002C014, 0x0E6001E4); // Setup PINSEL2 Register
SetJTAGSpeed(2000);

Command Description

SetJTAGSpeed(x); Sets the JTAG speed, x = speed in kHz (0=Auto)

Delay(x);
Waits a given time,
x = delay in milliseconds

Reset(x);
Resets the target,
x = delay in milliseconds

Go(); Starts the ARM core
Halt(); Halts the ARM core
Read8(Addr);

Reads a 8/16/32 bit value,
Addr = address to read (as hex value)Read16(Addr);

Read32(Addr);

Verify8(Addr, Data); Verifies a 8/16/32 bit value,
Addr = address to verify (as hex value)
Data = data to verify (as hex value)

Verify16(Addr, Data);

Verify32(Addr, Data);

Write8(Addr, Data); Writes a 8/16/32 bit value,
Addr = address to write (as hex value)
Data = data to write (as hex value)

Write16(Addr, Data);

Write32(Addr, Data);

WriteVerify8(Addr, Data); Writes and verifies a 8/16/32 bit value,
Addr = address to write (as hex value)
Data = data to write (as hex value)

WriteVerify16(Addr, Data);

WriteVerify32(Addr, Data);

WriteRegister(Reg, Data); Writes a register
WriteJTAG_IR(Cmd); Writes the JTAG instruction register
WriteJTAG_DR(nBits, Data); Writes the JTAG data register

Table 8.2: Macro file commands
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

192 CHAPTER 8 RDI
8.4.4.3 JTAG tab

JTAG speed

This allows the selection of the JTAG speed. There are basically three types of speed
settings (which are explained below):

� Fixed JTAG speed
� Automatic JTAG speed
� Adaptive clocking

For more information about the different speed settings supported by J-Link, please
refer to JTAG Speed on page 106.

JTAG scan chain with multiple devices

The JTAG scan chain allows to specify the instruction register organization of the tar-
get system. This may be needed if there are more devices located on the target sys-
tem than the ARM chip you want to access or if more than one target system is
connected to one J-Link ARM at once.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

193
8.4.4.4 Flash tab

Enable flash programming

This checkbox enables flash programming. Flash programming is needed to use
either flash download or to use flash breakpoints.

If flash programming is enabled you must select the correct flash memory and flash
base address. Furthermore it is necessary for some chips to enter the correct CPU
clock frequence.

Cache flash contents

If enabled, the flash contents is cached by the J-Link RDI software to avoid reading
data twice and to speed up the transfer between debugger and target.

Allow flash download

This allows the J-Link RDI software to download program into flash. A small piece of
code will be downloaded and executed in the target RAM which then programs the
flash memory. This provides flash loading abilities even for debuggers without a
build-in flash loader.

An info window can be shown during download displaying the current operation.
Depending on your JTAG speed you may see the info window only very short.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

194 CHAPTER 8 RDI
8.4.4.5 Breakpoints tab

Use software breakpoints

This allows to set an unlimited number of breakpoints if the program is located in
RAM by setting and resetting breakpoints according to program code.

Use flash breakpoints

This allows to set an unlimited number of breakpoints if the program is located either
in RAM or in flash by setting and resetting breakpoints according to program code.

An info window can be displayed while flash breakpoints are used showing the cur-
rent operation. Depending on your JTAG speed the info window may only hardly to be
seen.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

195
8.4.4.6 CPU tab

Instruction set simulation

This enables instruction set simulation which speeds up single stepping instructions
especially when using flash breakpoints.

Reset strategy

This defines the behavior how J-Link RDI should handle resets called by software.

J-Link supports different reset strategies. This is necessary because there is no single
way of resetting and halting an ARM core before it starts to execute instructions.

For more information about the different reset strategies which are supported by J-
Link and why different reset strategies are necessary, please refer to Reset strategies
on page 121.

8.4.4.7 Log tab
A log file can be generated for the J-Link DLL and for the J-Link RDI DLL. This log
files may be useful for debugging and evaluating. They may help you to solve a prob-
lem yourself but is also needed by the support to help you with it.

Default path of the J-Link log file: c:\JLinkARM.log
Default path of the J-Link RDI log file: c:\JLinkRDI.log
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

196 CHAPTER 8 RDI
Example of logfile content:

060:028 (0000) Logging started @ 2005-10-28 07:36
060:028 (0000) DLL Compiled: Oct 4 2005 09:14:54
060:031 (0026) ARM_SetMaxSpeed - Testing speed 3F0F0F0F 3F0F0F0F 3F0F0F0F 3F0F0F0F
3F0F0F0F 3F0F0F0F 3F0F0F0F 3F0F0F0F 3F0F0F0F 3F0F0F0F 3F0F0F0F 3F0F0F0FAuto JTAG
speed: 4000 kHz
060:059 (0000) ARM_SetEndian(ARM_ENDIAN_LITTLE)
060:060 (0000) ARM_SetEndian(ARM_ENDIAN_LITTLE)
060:060 (0000) ARM_ResetPullsRESET(ON)
060:060 (0116) ARM_Reset(): SpeedIsFixed == 0 -> JTAGSpeed = 30kHz >48> >2EF>
060:176 (0000) ARM_WriteIceReg(0x02,00000000)
060:177 (0016) ARM_WriteMem(FFFFFC20,0004) -- Data: 01 06 00 00 - Writing 0x4 bytes
@ 0xFFFFFC20 >1D7>
060:194 (0014) ARM_WriteMem(FFFFFC2C,0004) -- Data: 05 1C 19 00 - Writing 0x4 bytes
@ 0xFFFFFC2C >195>
060:208 (0015) ARM_WriteMem(FFFFFC30,0004) -- Data: 07 00 00 00 - Writing 0x4 bytes
@ 0xFFFFFC30 >195>
060:223 (0002) ARM_ReadMem (00000000,0004)JTAG speed: 4000 kHz -- Data: 0C 00 00 EA
060:225 (0001) ARM_WriteMem(00000000,0004) -- Data: 0D 00 00 EA - Writing 0x4 bytes
@ 0x00000000 >195>
060:226 (0001) ARM_ReadMem (00000000,0004) -- Data: 0C 00 00 EA
060:227 (0001) ARM_WriteMem(FFFFFF00,0004) -- Data: 01 00 00 00 - Writing 0x4 bytes
@ 0xFFFFFF00 >195>
060:228 (0001) ARM_ReadMem (FFFFF240,0004) -- Data: 40 05 09 27
060:229 (0001) ARM_ReadMem (FFFFF244,0004) -- Data: 00 00 00 00
060:230 (0001) ARM_ReadMem (FFFFFF6C,0004) -- Data: 10 01 00 00
060:232 (0000) ARM_WriteMem(FFFFF124,0004) -- Data: FF FF FF FF - Writing 0x4 bytes
@ 0xFFFFF124 >195>
060:232 (0001) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00
060:233 (0001) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00
060:234 (0001) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00
060:236 (0000) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00
060:237 (0000) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00
060:238 (0001) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00
060:239 (0001) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00
060:240 (0001) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00
060:241 (0001) ARM_WriteMem(FFFFFD44,0004) -- Data: 00 80 00 00 - Writing 0x4 bytes
@ 0xFFFFFD44 >195>
060:277 (0000) ARM_WriteMem(00000000,0178) -- Data: 0F 00 00 EA FE FF FF EA ...
060:277 (0000) ARM_WriteMem(000003C4,0020) -- Data: 01 00 00 00 02 00 00 00 ... -
Writing 0x178 bytes @ 0x00000000
060:277 (0000) ARM_WriteMem(000001CC,00F4) -- Data: 30 B5 15 48 01 68 82 68 ... -
Writing 0x20 bytes @ 0x000003C4
060:277 (0000) ARM_WriteMem(000002C0,0002) -- Data: 00 47
060:278 (0000) ARM_WriteMem(000002C4,0068) -- Data: F0 B5 00 27 24 4C 34 4D ... -
Writing 0xF6 bytes @ 0x000001CC
060:278 (0000) ARM_WriteMem(0000032C,0002) -- Data: 00 47
060:278 (0000) ARM_WriteMem(00000330,0074) -- Data: 30 B5 00 24 A0 00 08 49 ... -
Writing 0x6A bytes @ 0x000002C4
060:278 (0000) ARM_WriteMem(000003B0,0014) -- Data: 00 00 00 00 0A 00 00 00 ... -
Writing 0x74 bytes @ 0x00000330
060:278 (0000) ARM_WriteMem(000003A4,000C) -- Data: 14 00 00 00 E4 03 00 00 ... -
Writing 0x14 bytes @ 0x000003B0
060:278 (0000) ARM_WriteMem(00000178,0054) -- Data: 12 4A 13 48 70 B4 81 B0 ... -
Writing 0xC bytes @ 0x000003A4
060:278 (0000) ARM_SetEndian(ARM_ENDIAN_LITTLE)
060:278 (0000) ARM_SetEndian(ARM_ENDIAN_LITTLE)
060:278 (0000) ARM_ResetPullsRESET(OFF)
060:278 (0009) ARM_Reset(): - Writing 0x54 bytes @ 0x00000178 >3E68>
060:287 (0001) ARM_Halt(): **** Warning: Chip has already been halted.
...
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

197
8.5 Semihosting
Semihosting is a mechanism for ARM targets to communicate input/output requests
from application code to a host computer running a debugger.

It effectively allows the target to do disk operations and console I/O and is used pri-
marily for flash loaders with ARM debuggers such as AXD.

8.5.1 Overview
Semihosting

Semihosting is a mechanism for ARM targets to communicate input/output requests
from application code to a host computer running a debugger. This mechanism is
used, to allow functions in the C library, such as printf() and scanf(), to use the
screen and keyboard of the host rather than having a screen and keyboard on the
target system.

This is useful because development hardware often does not have all the input and
output facilities of the final system. Semihosting allows the host computer to provide
these facilities.

Semihosting is also used for Disk I/O and flash programming; a flash loader uses
semihosting to load the target program from disk.

Semihosting is implemented by a set of defined software interrupt (SWI) operations.
The application invokes the appropriate SWI and the debug agent then handles the
SWI exception. The debug agent provides the required communication with the host.
In many cases, the semihosting SWI will be invoked by code within library functions.

Usage of semihosting

The application can also invoke the semihosting SWI directly. Refer to the C library
descriptions in the ADS Compilers and Libraries Guide for more information on sup-
port for semihosting in the ARM C library.

Semihosting is not used by all tool chains; most modern tool chains (such as IAR)
use different mechanisms to achive the same goal.

Semihosting is used primarily by ARM�s tool chain and debuggers, such as AXD.

Since semihosting has been used primarily by ARM, documents published by ARM are
the best source of add. information.

For further information on semihosting and the C libraries, see the "C and C++
Libraries" chapter in ADS Compilers and Libraries Guide. Please see also the "Writing
Code for ROM" chapter in ADS Developer Guide.

8.5.2 The SWI interface
The ARM and Thumb SWI instructions contain a field that encodes the SWI number
used by the application code. This number can be decoded by the SWI handler in the
system. See the chapter on exception handling in ADS Developer Guide for more
information on SWI handlers.

Semihosting operations are requested using a single SWI number. This leaves the
other SWI numbers available for use by the application or operating system. The SWI
used for semihosting is:

0x123456 in ARM state
0xAB in Thumb state

The SWI number indicates to the debug agent that the SWI is a semihosting request.
In order to distinguish between operations, the operation type is passed in r0. All
other parameters are passed in a block that is pointed to by r1. The result is returned
in r0, either as an explicit return value or as a pointer to a data block. Even if no
result is returned, assume that r0 is corrupted.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

198 CHAPTER 8 RDI
The available semihosting operation numbers passed in r0 are allocated as follows:

0x00 to 0x31 These are used by ARM.
0x32 to 0xFF These are reserved for future use by ARM.
0x100 to 0x1FF Reserved for applications.

8.5.2.1 Changing the semihosting SWI numbers
It is strongly recommended that you do not change the semihosting SWI numbers
0x123456 (ARM) or 0xAB (Thumb). If you do so you must:

� change all the code in your system, including library code, to use the new SWI
number

� reconfigure your debugger to use the new SWI number.

8.5.3 Implementation of semihosting in J-Link RDI
When using J-Link RDI in default configuration, semihosting is implemented as fol-
lows:

� A breakpoint / vector catch is set on the SWI vector.
� When this breakpoint is hit, J-Link RDI examines the SWI number.
� If the SWI is recognized as a semihosting SWI, J-Link RDI emulates it and trans-

parently restarts execution of the application.
� If the SWI is not recognized as a semihosting SWI, J-Link RDI halts the processor

and reports an error. (See Unexpected / unhandled SWIs on page 199)

8.5.3.1 DCC semihosting
J-Link RDI does not support using the debug communications channel for semihost-
ing.

8.5.4 Semihosting with AXD
This semihosting mechanism can be disabled or changed by the following debugger
internal variables:

$semihosting_enabled

Set this variable to 0 to disable semihosting. If you are debugging an application run-
ning from ROM, this allows you to use an additional watchpoint unit.
Set this variable to 1 to enable semihosting. This is the default.
Set this variable to 2 to enable Debug Communications Channel (DCC) semihosting.
The S bit in $vector_catch has no effect unless semihosting is disabled.

$semihosting_vector

This variable controls the location of the breakpoint set by J-Link RDI to detect a
semihosted SWI. It is set to the SWI entry in the exception vector table () by default.

8.5.4.1 Using SWIs in your application
If your application requires semihosting as well as having its own SWI handler, set
$semihosting_vector to an address in your SWI handler. This address must point to
an instruction that is only executed if your SWI handler has identified a call to a
semihosting SWI. All registers must already have been restored to whatever values
they had on entry to your SWI handler.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

199
8.5.5 Unexpected / unhandled SWIs
When an unhandled SWI is detected by J-Link RDI, the message box below is shown.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

200 CHAPTER 8 RDI
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

201
Chapter 9

Device specifics
This chapter describes for which devices some special handling is necessary to use
them with J-Link.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

202 CHAPTER 9 Device specifics
9.1 Analog Devices
J-Link has been tested with the following MCUs from Analog Devices:

� AD7160
� ADuC7020x62
� ADuC7021x32
� ADuC7021x62
� ADuC7022x32
� ADuC7022x62
� ADuC7024x62
� ADuC7025x32
� ADuC7025x62
� ADuC7026x62
� ADuC7027x62
� ADuC7028x62
� ADuC7030
� ADuC7031
� ADuC7032
� ADuC7033
� ADuC7034
� ADuC7036
� ADuC7038
� ADuC7039
� ADuC7060
� ADuC7061
� ADuC7062
� ADuC7128
� ADuC7129
� ADuC7229x126
� ADuCRF02
� ADuCRF101

9.1.1 ADuC7xxx

9.1.1.1 Software reset
A special reset strategy has been implemented for Analog Devices ADuC7xxx MCUs.
This special reset strategy is a software reset. "Software reset" means basically
RESET pin is used to perform the reset, the reset is initiated by writing special func-
tion registers via software.

The software reset for Analog Devices ADuC7xxxx executes the following sequence:

� The CPU is halted
� A software reset sequence is downloaded to RAM
� A breakpoint at address 0 is set
� The software reset sequence is executed.

It is recommended to use this reset strategy. This sequence performs a reset of CPU
and peripherals and halts the CPU before executing instructions of the user program.
It is the recommended reset sequence for Analog Devices ADuC7xxx MCUs and works
with these devices only.

This information is applicable to the following devices:
� Analog ADuC7020x62
� Analog ADuC7021x32
� Analog ADuC7021x62
� Analog ADuC7022x32
� Analog ADuC7022x62
� Analog ADuC7024x62
� Analog ADuC7025x32
� Analog ADuC7025x62
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

203
� Analog ADuC7026x62
� Analog ADuC7027x62
� Analog ADuC7030
� Analog ADuC7031
� Analog ADuC7032
� Analog ADuC7033
� Analog ADuC7128
� Analog ADuC7129
� Analog ADuC7229x126
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

204 CHAPTER 9 Device specifics
9.2 ATMEL
J-Link has been tested with the following ATMEL devices:

� AT91SAM3A2C
� AT91SAM3A4C
� AT91SAM3A8C
� AT91SAM3N1A
� AT91SAM3N1B
� AT91SAM3N1C
� AT91SAM3N2A
� AT91SAM3N2B
� AT91SAM3N2C
� AT91SAM3N4A
� AT91SAM3N4B
� AT91SAM3N4C
� AT91SAM3S1A
� AT91SAM3S1B
� AT91SAM3S1C
� AT91SAM3S2A
� AT91SAM3S2B
� AT91SAM3S2C
� AT91SAM3S4A
� AT91SAM3S4B
� AT91SAM3S4C
� AT91SAM3U1C
� AT91SAM3U2C
� AT91SAM3U4C
� AT91SAM3U1E
� AT91SAM3U2E
� AT91SAM3U4E
� AT91SAM3X2C
� AT91SAM3X2E
� AT91SAM3X2G
� AT91SAM3X2H
� AT91SAM3X4C
� AT91SAM3X4E
� AT91SAM3X4G
� AT91SAM3X4H
� AT91SAM3X8C
� AT91SAM3X8E
� AT91SAM3X8G
� AT91SAM3X8H
� AT91SAM7A3
� AT91SAM7L64
� AT91SAM7L128
� AT91SAM7S16
� AT91SAM7S161
� AT91SAM7S32
� AT91SAM7S321
� AT91SAM7S64
� AT91SAM7S128
� AT91SAM7S256
� AT91SAM7S512
� AT91SAM7SE32
� AT91SAM7SE256
� AT91SAM7SE512
� AT91SAM7X128
� AT91SAM7X256
� AT91SAM7X512
� AT91SAM7XC128
� AT91SAM7XC256
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

205
� AT91SAM7XC512
� AT91SAM9XE128
� AT91SAM9XE256

9.2.1 AT91SAM7

9.2.1.1 Reset strategy
The reset pin of the device is per default disabled. This means that the reset strate-
gies which rely on the reset pin (low pulse on reset) do not work per default. For this
reason a special reset strategy has been made available.

It is recommended to use this reset strategy. This special reset strategy resets the
peripherals by writing to the RSTC_CR register. Resetting the peripherals puts all
peripherals in the defined reset state. This includes memory mapping register, which
means that after reset flash is mapped to address 0. It is also possible to achieve the
same effect by writing 0x4 to the RSTC_CR register located at address 0xfffffd00.

This information is applicable to the following devices:
� AT91SAM7S (all devices)
� AT91SAM7SE (all devices)
� AT91SAM7X (all devices)
� AT91SAM7XC (all devices)
� AT91SAM7A (all devices)

9.2.1.2 Memory mapping
Either flash or RAM can be mapped to address 0. After reset flash is mapped to
address 0. In order to majlink_supported_devices.html RAM to address 0, a 1 can be
written to the RSTC_CR register. Unfortunately, this remap register is a toggle regis-
ter, which switches between RAM and flash with every time bit zero is written.

In order to achieve a defined mapping, there are two options:

1. Use the software reset described above.
2. Test if RAM is located at 0 using multiple read/write operations and testing the

results.

Clearly 1. is the easiest solution and is recommended.

This information is applicable to the following devices:
� AT91SAM7S (all devices)
� AT91SAM7SE (all devices)
� AT91SAM7X (all devices)
� AT91SAM7XC (all devices)
� AT91SAM7A (all devices)

9.2.1.3 Recommended init sequence
In order to work with an ATMEL AT91SAM7 device, it has to be initialized. The follow-
ing paragraph describes the steps of an init sequence. An example for different soft-
ware tools, such as J-Link GDB Server, IAR Workbench and RDI, is given.

� Set JTAG speed to 30kHz
� Reset target
� Perform peripheral reset
� Disable watchdog
� Initialize PLL
� Use full JTAG speed
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

206 CHAPTER 9 Device specifics
Samples

GDB Sample

connect to the J-Link gdb server
target remote localhost:2331
monitor flash device = AT91SAM7S256
monitor flash download = 1
monitor flash breakpoints = 1
Set JTAG speed to 30 kHz
monitor endian little
monitor speed 30
Reset the target
monitor reset 8
monitor sleep 10
Perform peripheral reset
monitor long 0xFFFFFD00 = 0xA5000004
monitor sleep 10
Disable watchdog
monitor long 0xFFFFFD44 = 0x00008000
monitor sleep 10
Initialize PLL
monitor long 0xFFFFFC20 = 0x00000601
monitor sleep 10
monitor long 0xFFFFFC2C = 0x00480a0e
monitor sleep 10
monitor long 0xFFFFFC30 = 0x00000007
monitor sleep 10
monitor long 0xFFFFFF60 = 0x00480100
monitor sleep 100
Setup GDB for faster downloads
#set remote memory-write-packet-size 1024
set remote memory-write-packet-size 4096
set remote memory-write-packet-size fixed
monitor speed 12000
break main
load
continue

IAR Sample

/***
*
* _Init()
*/
_Init() {
 __emulatorSpeed(30000); // Set JTAG speed to 30 kHz
 __writeMemory32(0xA5000004,0xFFFFFD00,"Memory"); // Perform peripheral reset
 __sleep(20000);
 __writeMemory32(0x00008000,0xFFFFFD44,"Memory"); // Disable Watchdog
 __sleep(20000);
 __writeMemory32(0x00000601,0xFFFFFC20,"Memory"); // PLL
 __sleep(20000);
 __writeMemory32(0x10191c05,0xFFFFFC2C,"Memory"); // PLL
 __sleep(20000);
 __writeMemory32(0x00000007,0xFFFFFC30,"Memory"); // PLL
 __sleep(20000);
 __writeMemory32(0x002f0100,0xFFFFFF60,"Memory"); // Set 1 wait state for
 __sleep(20000); // flash (2 cycles)
 __emulatorSpeed(12000000); // Use full JTAG speed
}

/***
*
* execUserReset()
*/
execUserReset() {
 __message "execUserReset()";
 _Init();
}

/***
*
* execUserPreload()
*/
execUserPreload() {
 __message "execUserPreload()";
 _Init();
}

J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

207
RDI Sample

SetJTAGSpeed(30); // Set JTAG speed to 30 kHz
Reset(0, 0);
Write32(0xFFFFFD00, 0xA5000004); // Perform peripheral reset
Write32(0xFFFFFD44, 0x00008000); // Disable watchdog
Write32(0xFFFFFC20, 0x00000601); // Set PLL
Delay(200);
Write32(0xFFFFFC2C, 0x00191C05); // Set PLL and divider
Delay(200);
Write32(0xFFFFFC30, 0x00000007); // Select master clock and processor clock
Write32(0xFFFFFF60, 0x00320300); // Set flash wait states
SetJTAGSpeed(12000);

9.2.2 AT91SAM9

9.2.2.1 JTAG settings
We recommend using adaptive clocking.

This information is applicable to the following devices:
� AT91RM9200
� AT91SAM9260
� AT91SAM9261
� AT91SAM9262
� AT91SAM9263
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

208 CHAPTER 9 Device specifics
9.3 DSPGroup
J-Link has been tested with the following DSPGroup devices:

� DA56KLF

Currently, there are no specifics for these devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

209
9.4 Ember
J-Link has been tested with the following Ember devices:

� EM351
� EM357

Currently, there are no specifics for these devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

210 CHAPTER 9 Device specifics
9.5 Energy Micro
J-Link has been tested with the following Energy Micro devices:

� EFM32G200F16
� EFM32G200F32
� EFM32G200F64
� EFM32G210F128
� EFM32G230F32
� EFM32G230F64
� EFM32G230F128
� EFM32G280F32
� EFM32G280F64
� EFM32G280F128
� EFM32G290F32
� EFM32G290F64
� EFM32G290F128
� EFM32G840F32
� EFM32G840F64
� EFM32G840F128
� EFM32G880F32
� EFM32G880F64
� EFM32G880F128
� EFM32G890F32
� EFM32G890F64
� EFM32G890F128
� EFM32TG108F4
� EFM32TG108F8
� EFM32TG108F16
� EFM32TG108F32
� EFM32TG110F4
� EFM32TG110F8
� EFM32TG110F16
� EFM32TG110F32
� EFM32TG210F8
� EFM32TG210F16
� EFM32TG210F32
� EFM32TG230F8
� EFM32TG230F16
� EFM32TG230F32
� EFM32TG840F8
� EFM32TG840F16
� EFM32TG840F32

Currently, there are no specifics for these devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

211
9.6 Freescale
J-Link has been tested with the following Freescale devices:

� MAC7101
� MAC7106
� MAC7111
� MAC7112
� MAC7116
� MAC7121
� MAC7122
� MAC7126
� MAC7131
� MAC7136
� MAC7141
� MAC7142
� MK10DN512
� MK10DX128
� MK10DX256
� MK20DN512
� MK20DX128
� MK20DX256
� MK30DN512
� MK30DX128
� MK30DX256
� MK40N512
� MK40X128
� MK40X256
� MK50DN512
� MK50DX256
� MK50DN512
� MK50DX256
� MK51DX256
� MK51DN512
� MK51DX256
� MK51DN512
� MK51DN256
� MK51DN512
� MK52DN512
� MK53DN512
� MK53DX256
� MK60N256
� MK60N512
� MK60X256

9.6.1 Kinetis family

9.6.2 Unlocking
If your device has been locked by setting the MCU security status to "secure", and
mass erase via debug interface is not disabled, J-Link is able to unlock your Kinetis
K40/K60 device. The device can be unlocked by using the "unlock" command in J-
Link Commander.

For more information regarding the MCU security status of the Kinetis devices, please
refer to the user manual of your device.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

212 CHAPTER 9 Device specifics
9.6.3 Tracing
The first silicon of the Kinetis devices did not match the data setup and hold times
which are necessary for ETM-Trace. On these devices, a low drive strength should be
configured for the trace clock pin in order to match the timing requirements.

On later silicons, this has been corrected.

The J-Link software and documentation package comes with a sample project for the
Kinetis K40 and K60 devices which is pre-configured for the TWR-40 and TWR-60 eval
boards and ETM / ETB Trace. This sample project can be found at \Sam-
ples\JLink\Projects.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

213
9.7 Fujitsu
J-Link has been tested with the following Fujitsu devices:

� MB9AF102N
� MB9AF102R
� MB9AF104N
� MB9AF104R
� MB9BF104N
� MB9BF104R
� MB9BF105N
� MB9BF105R
� MB9BF106N
� MB9BF106R
� MB9BF304N
� MB9BF304R
� MB9BF305N
� MB9BF305R
� MB9BF306N
� MB9BF306R
� MB9BF404N
� MB9BF404R
� MB9BF405N
� MB9BF405R
� MB9BF406N
� MB9BF406R
� MB9BF504N
� MB9BF504R
� MB9BF505N
� MB9BF505R
� MB9BF506N
� MB9BF506R

Currently, there are no specifics for these devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

214 CHAPTER 9 Device specifics
9.8 Itron
J-Link has been tested with the following Itron devices:

� TRIFECTA

Currently, there are no specifics for these devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

215
9.9 Luminary Micro
J-Link has been tested with the following Luminary Micro devices:

� LM3S101
� LM3S102
� LM3S301
� LM3S310
� LM3S315
� LM3S316
� LM3S317
� LM3S328
� LM3S601
� LM3S610
� LM3S611
� LM3S612
� LM3S613
� LM3S615
� LM3S617
� LM3S618
� LM3S628
� LM3S801
� LM3S811
� LM3S812
� LM3S815
� LM3S817
� LM3S818
� LM3S828
� LM3S2110
� LM3S2139
� LM3S2410
� LM3S2412
� LM3S2432
� LM3S2533
� LM3S2620
� LM3S2637
� LM3S2651
� LM3S2730
� LM3S2739
� LM3S2939
� LM3S2948
� LM3S2950
� LM3S2965
� LM3S6100
� LM3S6110
� LM3S6420
� LM3S6422
� LM3S6432
� LM3S6610
� LM3S6633
� LM3S6637
� LM3S6730
� LM3S6938
� LM3S6952
� LM3S6965
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

216 CHAPTER 9 Device specifics
9.9.1 Unlocking LM3Sxxx devices
If your device has been "locked" accidentially (e.g. by bad application code in flash
which mis-configures the PLL) and J-Link can not identify it anymore, there is a spe-
cial unlock sequence which erases the flash memory of the device, even if it can not
be identified. This unlock sequence can be send to the target, by using the "unlock"
comnmand in J-Link Commander.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

217
9.10 NXP
J-Link has been tested with the following NXP devices:

� LPC1111
� LPC1113
� LPC1311
� LPC1313
� LPC1342
� LPC1343
� LPC1751
� LPC1751
� LPC1752
� LPC1754
� LPC1756
� LPC1758
� LPC1764
� LPC1765
� LPC1766
� LPC1768
� LPC2101
� LPC2102
� LPC2103
� LPC2104
� LPC2105
� LPC2106
� LPC2109
� LPC2114
� LPC2119
� LPC2124
� LPC2129
� LPC2131
� LPC2132
� LPC2134
� LPC2136
� LPC2138
� LPC2141
� LPC2142
� LPC2144
� LPC2146
� LPC2148
� LPC2194
� LPC2212
� LPC2214
� LPC2292
� LPC2294
� LPC2364
� LPC2366
� LPC2368
� LPC2378
� LPC2468
� LPC2478
� LPC2880
� LPC2888
� LPC2917
� LPC2919
� LPC2927
� LPC2929
� PCF87750
� SJA2010
� SJA2510
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

218 CHAPTER 9 Device specifics
9.10.1 LPC ARM7-based devices

9.10.1.1 Fast GPIO bug
The values of the fast GPIO registers can not be read direct via JTAG from a debug-
ger. The direct access to the registers corrupts the returned values. This means that
the values in the fast GPIO registers normally can not be checked or changed from a
debugger.

Solution / Workaround

J-Link supports command strings which can be used to read a memory area indirect.
Indirectly reading means that a small code snippet will be written into RAM of the
target device, which reads and transfers the data of the specified memory area to the
debugger. Indirectly reading solves the fast GPIO problem, because only direct regis-
ter access corrupts the register contents.

Define a 256 byte aligned area in RAM of the LPC target device with the J-Link com-
mand map ram and define afterwards the memory area which should be read indirect
with the command map indirectread to use the indirectly reading feature of J-Link.
Note that the data in the defined RAM area is saved and will be restored after using
the RAM area.

This information is applicable to the following devices:
� LPC2101
� LPC2102
� LPC2103
� LPC213x/01
� LPC214x (all devices)
� LPC23xx (all devices)
� LPC24xx (all devices)

Example

J-Link commands line options can be used for example with the C-SPY debugger of
the IAR Embedded Workbench. Open the Project options dialog and select Debug-
ger. Select Use command line options in the Extra Options tap and enter in the
textfield --jlink_exec_command "map ram 0x40000000-0x40003fff; map indirec-
tread 0x3fffc000-0x3fffcfff; map exclude 0x3fffd000-0x3fffffff;" as shown
in the screenshot below.

With these additional commands are the values of the fast GPIO registers in the C-
SPY debugger correct and can be used for debugging. For more information about J-
Link command line options refer to subchapter Command strings on page 138.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

219
9.10.1.2 RDI
J-Link comes with a device-based RDI license for NXP LPC21xx-LPC24xx devices. This
means the J-Link RDI software can be used with LPC21xx-LPC24xx devices free of
charge. For more information about device-based licenses, please refer to License
types on page 48.

9.10.2 Reset (Cortex-M3 based devices)
For Cortex-M3 based NXP LPC devices the reset itself does not differ from the one for
other Cortex-M3 based devices: After the device has been reset, the core is halted
before any instruction is performed. For the Cortex-M3 based LPC devices this means
the CPU is halted before the bootloader which is mapped at address 0 after reset.

The user should write the memmap register after reset, to ensure that user flash is
mapped at address 0. Moreover, the user have to correct the Stack pointer (R13) and
the PC (R15) manually, after reset in order to debug the application.

9.10.3 LPC288x flash programming
In order to use the LPC288x devices in combination with the J-Link flash download
feature, the application you are trying to debug, should be linked to the original flash
@ addr 0x10400000. Otherwise it is user�s responsibility to ensure that flash is re-
mapped to 0x0 in order to debug the application from addr 0x0.

9.10.4 LPC43xx:
All devices of the LPC43xx are dual core devices (One Cortex-M4 core and one Cor-
tex-M0 core). For these devices, a J-Link script file is needed (exact file depends on if
the Cortex-M4 or the Cortex-M0 shall be debugged) in order to guarantee proper
functionality.

Script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 136.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

220 CHAPTER 9 Device specifics
9.11 OKI
J-Link has been tested with the following OKI devices:

� ML67Q4002
� ML67Q4003
� ML67Q4050
� ML67Q4051
� ML67Q4060
� ML67Q4061

Currently, there are no specifics for these devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

221
9.12 Renesas
J-Link has been tested with the following Renesas devices:

� R5F56104
� R5F56106
� R5F56107
� R5F56108
� R5F56216
� R5F56217
� R5F56218
� R5F562N7
� R5F562N8
� R5F562T6
� R5F562T7
� R5F562TA

Currently, there are no specifics for these devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

222 CHAPTER 9 Device specifics
9.13 Samsung
J-Link has been tested with the following Samsung devices:

� S3FN60D

9.13.1 S3FN60D
On the S3FN60D the watchdog may be running after reset (depends on the content
of the smart option bytes at addr. 0xC0). The watchdog keeps counting even if the
CPU is in debug mode (e.g. halted). So, please do not use the watchdog when debug-
ging to avoid unexpected behavior of the target application. A special reset strategy
has been implemented for this device which disables the watchdog right after a reset
has been performed. We recommend to use this reset strategy when debugging a
Samsung S3FN60D device.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

223
9.14 ST Microelectronics
J-Link has been tested with the following ST Microelectronics devices:

� STR710FZ1
� STR710FZ2
� STR711FR0
� STR711FR1
� STR711FR2
� STR712FR0
� STR712FR1
� STR712FR2
� STR715FR0
� STR730FZ1
� STR730FZ2
� STR731FV0
� STR731FV1
� STR731FV2
� STR735FZ1
� STR735FZ2
� STR736FV0
� STR736FV1
� STR736FV2
� STR750FV0
� STR750FV1
� STR750FV2
� STR751FR0
� STR751FR1
� STR751FR2
� STR752FR0
� STR752FR1
� STR752FR2
� STR755FR0
� STR755FR1
� STR755FR2
� STR755FV0
� STR755FV1
� STR755FV2
� STR911FM32
� STR911FM44
� STR911FW32
� STR911FW44
� STR912FM32
� STR912FM44
� STR912FW32
� STR912FW44
� STM32F101C6
� STM32F101C8
� STM32F101R6
� STM32F101R8
� STM32F101RB
� STM32F101V8
� STM32F101VB
� STM32F103C6
� STM32F103C8
� STM32F103R6
� STM32F103R8
� STM32F103RB
� STM32F103V8
� STM32F103VB
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

224 CHAPTER 9 Device specifics
9.14.1 STR91x

9.14.1.1 JTAG settings
These device are ARM966E-S based. We recommend to use adaptive clocking for
these devices.

9.14.1.2 Unlocking
The devices have 3 TAP controllers built-in. When starting J-Link.exe, it reports 3
JTAG devices. A special tool, J-Link STR9 Commander (JLinkSTR91x.exe) is available
to directly access the flash controller of the device. This tool can be used to erase the
flash of the controller even if a program is in flash which causes the ARM core to
stall. For more information about the J-Link STR9 Commander, please refer to J-Link
STR91x Commander (Command line tool) on page 70.

When starting the STR91x commander, a command sequence will be performed
which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the
GPIOs in output. The IOs are maintained in this state until a next JTAG instruction is
send." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in
the STR91x Commander.

9.14.1.3 Switching the boot bank
The bootbank of the STR91x devices can be switched by using the J-Link STR9 Com-
mander which is part of the J-Link software and documentation package. For more
information about the J-Link STR9 Commander, please refer to J-Link STR91x Com-
mander (Command line tool) on page 70.

9.14.2 STM32F10xxx
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

9.14.2.1 ETM init
The following sequence can be used to prepare STM32F10xxx devices for 4-bit ETM
tracing:

int v;
//
// DBGMCU_CR, enable trace I/O and configure pins for 4-bit trace.
//
v = *((volatile int *)(0xE0042004));
v &= ~(7 << 5); // Preserve all bits except the trace pin configuration
v |= (7 << 5); // Enable trace I/O and configure pins for 4-bit trace
*((volatile int *)(0xE0042004)) = v;

9.14.2.2 Option byte programming
J-Flash supports programming of the option bytes for STM32 devices. In order to
program the option bytes simply choose the appropriate Device, which allows option
byte programming, in the CPU settings tab (e.g. STM32F103ZE (allow opt.
bytes)). J-Flash will allow programming a virtual 16-byte sector at address
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

225
0x06000000 which represents the 8 option bytes and their complements. You do not
have to care about the option bytes� complements since they are computated auto-
matically. The following table describes the structure of the option bytes sector

Note: Writing a value of 0xFF inside option byte 0 will read-protect the STM32.
In order to keep the device unprotected you have to write the key value 0xA5 into
option byte 0.

Note: The address 0x06000000 is a virtual address only. The option bytes are
originally located at address 0x1FFFF800. The remap from 0x06000000 to
0x1FFFF800 is done automatically by J-Flash.

Example

To program the option bytes 2 and 3 with the values 0xAA and 0xBB but leave the
device unprotected your option byte sector (at addr 0x06000000) should look like as
follows:

For a detailed description of each option byte, please refer to ST programming man-
ual PM0042, section "Option byte description".

9.14.2.3 Securing/unsecuring the device
The user area internal flash of the STM32 devices can be protected (secured) against
read by untrusted code. The J-Flash software allows securing a STM32F10x device.
For more information about J-Flash, please refer to UM08003, J-Flash User Guide. In
order to unsecure a read-protected STM32F10x device, SEGGER offers two software
components:

� J-Flash
� J-Link STM32 Commander (command line utility)

For more information about J-Flash, please refer to UM08003, J-Flash User Guide. For
more information about the J-Link STM32 Commander, please refer to J-Link STM32
Commander (Command line tool) on page 71.

Note: Unsecuring a secured device will cause a mass-erase of the internal flash
memory.

9.14.2.4 Hardware watchdog
The hardware watchdog of a STM32F10x device can be enabled by programming the
option bytes. If the hardware watchdog is enabled the device is reset periodically if
the watchdog timer is not refreshed and reaches 0. If the hardware watchdog is
enabled by an application which is located in flash and which does not refresh the
watchdog timer, the device can not be debugged anymore.

Address [31:24] [23:16] [15:8] [7:0]

0x06000000 complement Option byte 1 complement Option byte 0
0x06000004 complement Option byte 3 complement Option byte 2
0x06000008 complement Option byte 5 complement Option byte 4
0x0600000C complement Option byte 7 complement Option byte 6

Table 9.1: Option bytes sector description

Address [31:24] [23:16] [15:8] [7:0]

0x06000000 0x00 0xFF 0x5A 0xA5
0x06000004 0x44 0xBB 0x55 0xAA
0x06000008 0x00 0xFF 0x00 0xFF
0x0600000C 0x00 0xFF 0x00 0xFF

Table 9.2: Option bytes programming example
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

226 CHAPTER 9 Device specifics
Disabling the hardware watchdog

In order to disable the hardware watchdog the option bytes have to be re-pro-
grammed. SEGGER offers a free command line tool which reprograms the option
bytes in order to disable the hardware watchdog. For more information about the
STM32 commander, please refer to J-Link STM32 Commander (Command line tool)
on page 71.

9.14.2.5 Debugging with software watchdog enabled
If the device shall be debugged with one of the software watchdogs (independed
watchdog / window watchdog) enabled, there is an additional init step necessary to
make the watchdog counter stop when the CPU is halted by the debugger. This is
configured in the DBGMCU_CR register. The following sequence can be used to enable
debugging with software watchdogs enabled:

//
// Configure both watchdog timers to be halted if the CPU is halted by the debugger
//
*((volatile int *)(0xE0042004)) |= (1 << 8) | (1 << 9);

9.14.3 STM32F2xxx
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

9.14.3.1 ETM init
The following sequence can be used to prepare STM32F2xxx devices for 4-bit ETM
tracing:

int v;
//
// Enable GPIOE clock
//
*((volatile int *)(0x40023830)) = 0x00000010;
//
// Assign trace pins to alternate function in order
// to make them usable as trace pins
// PE2: Trace clock
// PE3: TRACE_D0
// PE4: TRACE_D1
// PE5: TRACE_D2
// PE6: TRACE_D3
//
*((volatile int *)(0x40021000)) = 0x00002AA0;
//
// DBGMCU_CR, enable trace I/O and configure pins for 4-bit trace.
//
v = *((volatile int *)(0xE0042004));
v &= ~(7 << 5); // Preserve all bits except the trace pin configuration
v |= (7 << 5); // Enable trace I/O and configure pins for 4-bit trace
*((volatile int *)(0xE0042004)) = v;

9.14.3.2 Debugging with software watchdog enabled
If the device shall be debugged with one of the software watchdogs (independed
watchdog / window watchdog) enabled, there is an additional init step necessary to
make the watchdog counter stop when the CPU is halted by the debugger. This is
configured in the DBGMCU_APB1_FZ register. The following sequence can be used to
enable debugging with software watchdogs enabled:

//
// Configure both watchdog timers to be halted if the CPU is halted by the debugger
//
*((volatile int *)(0xE0042008)) |= (1 << 11) | (1 << 12);
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

227
9.14.4 STM32F4xxx
These device are Cortex-M4 based.
All devices of this family are supported by J-Link.

9.14.4.1 ETM init
The following sequence can be used to prepare STM32F4xxx devices for 4-bit ETM
tracing:

int v;
//
// Enable GPIOE clock
//
*((volatile int *)(0x40023830)) = 0x00000010;
//
// Assign trace pins to alternate function in order
// to make them usable as trace pins
// PE2: Trace clock
// PE3: TRACE_D0
// PE4: TRACE_D1
// PE5: TRACE_D2
// PE6: TRACE_D3
//
*((volatile int *)(0x40021000)) = 0x00002AA0;
//
// DBGMCU_CR, enable trace I/O and configure pins for 4-bit trace.
//
v = *((volatile int *)(0xE0042004));
v &= ~(7 << 5); // Preserve all bits except the trace pin configuration
v |= (7 << 5); // Enable trace I/O and configure pins for 4-bit trace
*((volatile int *)(0xE0042004)) = v;

9.14.4.2 Debugging with software watchdog enabled
If the device shall be debugged with one of the software watchdogs (independed
watchdog / window watchdog) enabled, there is an additional init step necessary to
make the watchdog counter stop when the CPU is halted by the debugger. This is
configured in the DBGMCU_APB1_FZ register. The following sequence can be used to
enable debugging with software watchdogs enabled:

//
// Configure both watchdog timers to be halted if the CPU is halted by the debugger
//
*((volatile int *)(0xE0042008)) |= (1 << 11) | (1 << 12);
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

228 CHAPTER 9 Device specifics
9.15 Texas Instruments
J-Link has been tested with the following Texas Instruments devices:

� AM3352
� AM3354
� AM3356
� AM3357
� AM3358
� AM3359
� OMAP3530
� OMAP3550
� OMAP4430
� OMAP-L138
� TMS470M
� TMS470R1A64
� TMS470R1A128
� TMS470R1A256
� TMS470R1A288
� TMS470R1A384
� TMS470R1B512
� TMS470R1B768
� TMS470R1B1M
� TMS470R1VF288
� TMS470R1VF688
� TMS470R1VF689

9.15.1 AM335x
The AM335x series CPUs need some special handling in various cases so the J-Link
DLL needs to know that it shall connect to a AM335x device.

9.15.1.1 Selecting the device in the IDE
When using J-Link in an IDE, this is done by selecting the correct device in the IDE.
The device name will then be passed to the J-Link DLL when connecting to the target
device.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

229
9.15.1.2 Selecting the device when using GDBServer
When using the J-Link GDBServer, the device needs to be known BEFORE GDB con-
nects to the GDBServer since GDBServer connects to the device as soon as it is
started. So selecting the device via monitor command is too late. In order to select
the device before GDBServer connects to it, simply start it with the following com-
mand line:

-device=<DeviceName>
Example: JLinkGDBServer -device=AM3359

9.15.1.3 Selecting the device when using J-Link Commander
For J-Link Commander, type:

device <DeviceName>

Then J-Link Commander will perform a reconnect with the device name selected
before.

9.15.1.4 Known values for <DeviceName>
Currently, the following device names for AM335x are known by the DLL:

� AM3352
� AM3354
� AM3356
� AM3357
� AM3358
� AM3359

9.15.2 AM35xx / AM37xx
Needs a J-Link script file to guarantee proper functionality.

J-Link script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 136.

9.15.3 OMAP4430
Needs a J-Link script file to guarantee proper functionality.

J-Link script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 136.

9.15.4 OMAP-L138
Needs a J-Link script file to guarantee proper functionality.

J-Link script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 136.

9.15.5 TMS470M
Needs a J-Link script file to guarantee proper functionality.

J-Link script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 136.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

230 CHAPTER 9 Device specifics
9.15.6 OMAP3530
Needs a J-Link script file to guarantee proper functionality.

J-Link script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 136.

9.15.7 OMAP3550
Needs a J-Link script file to guarantee proper functionality.

J-Link script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 136.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

231
9.16 Toshiba
J-Link has been tested with the following Toshiba devices:

� TMPM321F10FG
� TMPM322F10FG
� TMPM323F10FG
� TMPM324F10FG
� TMPM330FDFG
� TMPM330FWFG
� TMPM330FYFG
� TMPM332FWUG
� TMPM333FDFG
� TMPM333FWFG
� TMPM333FYFG
� TMPM341FDXBG
� TMPM341FYXBG
� TMPM360F20FG
� TMPM361F10FG
� TMPM362F10FG
� TMPM363F10FG
� TMPM364F10FG
� TMPM366FDFG
� TMPM366FWFG
� TMPM366FYFG
� TMPM370FYDFG
� TMPM370FYFG
� TMPM372FWUG
� TMPM373FWDUG
� TMPM374FWUG
� TMPM380FWDFG
� TMPM380FWFG
� TMPM380FYDFG
� TMPM380FYFG
� TMPM382FSFG
� TMPM382FWFG
� TMPM395FWXBG

Currently, there are no specifics for these devices.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

232 CHAPTER 9 Device specifics
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

233
Chapter 10

Target interfaces and adapters
This chapter gives an overview about J-Link / J-Trace specific hardware details, such
as the pinouts and available adapters.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

234 CHAPTER 10 Target interfaces and adapters
10.1 20-pin JTAG/SWD connector

10.1.1 Pinout for JTAG
J-Link and J-Trace have a JTAG connector compati-
ble to ARM�s Multi-ICE. The JTAG connector is a 20
way Insulation Displacement Connector (IDC) keyed
box header (2.54mm male) that mates with IDC
sockets mounted on a ribbon cable.

*On later J-Link products like the J-Link Ultra, these
pins are reserved for firmware extension purposes.
They can be left open or connected to GND in nor-
mal debug environment. They are not essential for
JTAG/SWD in general.

The following table lists the J-Link / J-Trace JTAG pinout.

PIN SIGNAL TYPE Description

 1 VTref Input

This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference for
the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board
and must not have a series resistor.

 2 Not con-
nected NC This pin is not connected in J-Link.

 3 nTRST Output

JTAG Reset. Output from J-Link to the Reset signal of the
target JTAG port. Typically connected to nTRST of the target
CPU. This pin is normally pulled HIGH on the target to avoid
unintentional resets when there is no connection.

 5 TDI Output
JTAG data input of target CPU.- It is recommended that this
pin is pulled to a defined state on the target board. Typically
connected to TDI of the target CPU.

 7 TMS Output
JTAG mode set input of target CPU. This pin should be
pulled up on the target. Typically connected to TMS of the
target CPU.

 9 TCK Output
JTAG clock signal to target CPU. It is recommended that this
pin is pulled to a defined state of the target board. Typically
connected to TCK of the target CPU.

11 RTCK Input

Return test clock signal from the target. Some targets must
synchronize the JTAG inputs to internal clocks. To assist in
meeting this requirement, you can use a returned, and
retimed, TCK to dynamically control the TCK rate. J-Link
supports adaptive clocking, which waits for TCK changes to
be echoed correctly before making further changes. Con-
nect to RTCK if available, otherwise to GND.

13 TDO Input JTAG data output from target CPU. Typically connected to
TDO of the target CPU.

Table 10.1: J-Link / J-Trace pinout

1 2

3 4
5 6

7 8
9 10

11 12

13 14
15 16

17 18
19 20

VTref

nTRST
TD I

TM S
TCK

RTCK

TD O
RESET

D BG RQ
5V-Supply

N C

G N D

G N D
G N D

G N D

G N D *
G N D *

G N D *
G N D *

G N D
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

235
Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They
should also be connected to GND in the target system.

10.1.1.1 Target board design
We strongly advise following the recommendations given by the chip manufacturer.
These recommendations are normally in line with the recommendations given in the
table Pinout for JTAG on page 234. In case of doubt you should follow the recommen-
dations given by the semiconductor manufacturer.

You may take any female header following the specifications of DIN 41651.
For example:

15 RESET I/O
Target CPU reset signal. Typically connected to the RESET
pin of the target CPU, which is typically called "nRST",
"nRESET" or "RESET".

17 DBGRQ NC

This pin is not connected in J-Link. It is reserved for com-
patibility with other equipment to be used as a debug
request signal to the target system. Typically connected to
DBGRQ if available, otherwise left open.

19 5V-Sup-
ply Output

This pin can be used to supply power to the target hard-
ware. Older J-Links may not be able to supply power on this
pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on
page 236.

Harting part-no. 09185206803
Molex part-no. 90635-1202
Tyco Electronics part-no. 2-215882-0

PIN SIGNAL TYPE Description

Table 10.1: J-Link / J-Trace pinout
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

236 CHAPTER 10 Target interfaces and adapters
10.1.1.2 Pull-up/pull-down resistors
Unless otherwise specified by developer�s manual, pull-ups/pull-downs are recom-
mended to 100 kOhms.

10.1.1.3 Target power supply
Pin 19 of the connector can be used to supply power to the target hardware. Supply
voltage is 5V, max. current is 300mA. The output current is monitored and protected
against overload and short-circuit. Power can be controlled via the J-Link com-
mander. The following commands are available to control power:

Command Explanation

power on Switch target power on
power off Switch target power off
power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"

Table 10.2: Command List

Typical target connection for JTAG

JTAG connector Target board

nTRST

TDI

TMS

TCK

RTCK

TDO

RESET

CPU

nTRST

TDI

TMS

TCK

RTCK

TDO

nRST GND

Voltage
Regulator VCC

VCC

5V supply

VTref

GND

3*

5

7

9

11*

13

15

* NTRST and RTCK may not be available on some CPUs.
** Optional to supply the target board from J-Link.

1

19**

3

5

7

9

11

13

15

1

19

J-Link

20 20
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

237
10.1.2 Pinout for SWD
The J-Link and J-Trace JTAG connector is also com-
patible to ARM�s Serial Wire Debug (SWD).

*On later J-Link products like the J-Link Ultra, these
pins are reserved for firmware extension purposes.
They can be left open or connected to GND in nor-
mal debug environment. They are not essential for
JTAG/SWD in general.

The following table lists the J-Link / J-Trace SWD
pinout.

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They
should also be connected to GND in the target system.

PIN SIGNAL TYPE Description

 1 VTref Input

This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference for
the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board
and must not have a series resistor.

 2 Not con-
nected NC This pin is not connected in J-Link.

 3 Not Used NC
This pin is not used by J-Link. If the device may also be
accessed via JTAG, this pin may be connected to nTRST,
otherwise leave open.

 5 Not used NC
This pin is not used by J-Link. If the device may also be
accessed via JTAG, this pin may be connected to TDI, other-
wise leave open.

 7 SWDIO I/O Single bi-directional data pin. A pull-up resistor is required.
ARM recommends 100 kOhms.

 9 SWCLK Output

Clock signal to target CPU.
It is recommended that this pin is pulled to a defined state
on the target board. Typically connected to TCK of target
CPU.

11 Not used NC
This pin is not used by J-Link when operating in SWD mode.
If the device may also be accessed via JTAG, this pin may
be connected to RTCK, otherwise leave open.

13 SWO Output Serial Wire Output trace port. (Optional, not required for
SWD communication.)

15 RESET I/O
Target CPU reset signal. Typically connected to the RESET
pin of the target CPU, which is typically called "nRST",
"nRESET" or "RESET".

17 Not used NC This pin is not connected in J-Link.

19 5V-Sup-
ply Output

This pin can be used to supply power to the target hard-
ware. Older J-Links may not be able to supply power on this
pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on
page 238.

Table 10.3: J-Link / J-Trace SWD pinout

1 2

3 4
5 6

7 8
9 10

11 12

13 14
15 16

17 18
19 20

VTref

Not used
Not used

SWDIO
SWCLK

Not used

SWO
RESET

Not used
5V-Supply

NC

GND

GND
GND

GND

GND*
GND*

GND*
GND*

GND
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

238 CHAPTER 10 Target interfaces and adapters
10.1.2.1 Target board design
We strongly advise following the recommendations given by the chip manufacturer.
These recommendations are normally in line with the recommendations given in the
table Pinout for SWD on page 237. In case of doubt you should follow the recommen-
dations given by the semiconductor manufacturer.

10.1.2.2 Pull-up/pull-down resistors
A pull-up resistor is required on SWDIO on the target board. ARM recommends 100
kOhms.
In case of doubt you should follow the recommendations given by the semiconductor
manufacturer.

10.1.2.3 Target power supply
Pin 19 of the connector can be used to supply power to the target hardware. Supply
voltage is 5V, max. current is 300mA. The output current is monitored and protected
against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are
available to control power:

Command Explanation

power on Switch target power on
power off Switch target power off
power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"

Table 10.4: Command List

Typical target connection for SWD

JTAG connector Target board

SWDIO

SWCLK

SWO

RESET

CPU

SWDIO

SWCLK

SWO

nRST
GND

Voltage
Regulator VCC

VCC

5V supply

VTref

GND

7

9

13

15

* Optional to supply the target board from J-Link.

1

19*

7

9

13

15

1

19

J-Link

20 20

1
0
0
 k
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

239
10.2 38-pin Mictor JTAG and Trace connector
J-Trace provides a JTAG+Trace connector. This connector is a 38-pin mictor plug. It
connects to the target via a 1-1 cable.

The connector on the target board should be "TYCO type 5767054-1" or a compatible
receptacle. J-Trace supports 4, 8, and 16-bit data port widths with the high density
target connector described below.

Target board trace connector

J-Trace can capture the state of signals PIPESTAT[2:0], TRACESYNC and
TRACEPKT[n:0] at each rising edge of each TRACECLK or on each alternate rising or
falling edge.

10.2.1 Connecting the target board
J-Trace connects to the target board via a 38-pin trace cable. This cable has a recep-
tacle on the one side, and a plug on the other side. Alternatively J-Trace can be con-
nected with a 20-pin JTAG cable.

Warning: Never connect trace cable and JTAG cable at the same time because
this may harm your J-Trace and/or your target.

12

38 37

Target
system

Pin 1
chamfer

J-Trace

JTAG
+

Trace JTAG

Target board
Trace

connector

Target board

ARM

Trace cable

Target board
JTAG

connector

J-Trace

JTAG
+

Trace JTAG

Target board
Trace

connector

Target board

ARM

JTA
G

 cable

Target board
JTAG

connector

J-Trace

JTAG
+

Trace JTAG

Target board
Trace

connector

Target board

ARM

JTA
G

 cable

Target board
JTAG

connector

Trace cable
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

240 CHAPTER 10 Target interfaces and adapters
10.2.2 Pinout
The following table lists the JTAG+Trace connector pinout. It is compatible to the
"Trace Port Physical Interface" described in [ETM], 8.2.2 "Single target connector
pinout".

PIN SIGNAL Description

 1 NC No connected.
 2 NC No connected.
 3 NC No connected.
 4 NC No connected.
 5 GND Signal ground.
 6 TRACECLK Clocks trace data on rising edge or both edges.
 7 DBGRQ Debug request.

 8 DBGACK Debug acknowledge from the test chip, high when in
debug state.

 9 RESET Open-collector output from the run control to the target
system reset.

10 EXTTRIG Optional external trigger signal to the Embedded trace
Macrocell (ETM). Not used. Leave open on target system.

11 TDO Test data output from target JTAG port.

12 VTRef Signal level reference. It is normally fed from Vdd of the
target board and must not have a series resistor.

13 RTCK Return test clock from the target JTAG port.

14 VSupply Supply voltage. It is normally fed from Vdd of the target
board and must not have a series resistor.

15 TCK Test clock to the run control unit from the JTAG port.

16 Trace signal 12
Trace signal. For more information, please refer to
Assignment of trace information pins between ETM archi-
tecture versions on page 242.

17 TMS Test mode select from run control to the JTAG port.

18 Trace signal 11
Trace signal. For more information, please refer to
Assignment of trace information pins between ETM archi-
tecture versions on page 242.

19 TDI Test data input from run control to the JTAG port.

20 Trace signal 10
Trace signal. For more information, please refer to
Assignment of trace information pins between ETM archi-
tecture versions on page 242.

21 nTRST Active-low JTAG reset
Table 10.5: JTAG+Trace connector pinout
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

241
22 Trace signal 9

Trace signals. For more information, please refer to
Assignment of trace information pins between ETM archi-
tecture versions on page 242.

23 Trace signal 20
24 Trace signal 8
25 Trace signal 19
26 Trace signal 7
27 Trace signal 18
28 Trace signal 6
29 Trace signal 17
30 Trace signal 5
31 Trace signal 16
32 Trace signal 4
33 Trace signal 15
34 Trace signal 3
35 Trace signal 14
36 Trace signal 2
37 Trace signal 13
38 Trace signal 1

PIN SIGNAL Description

Table 10.5: JTAG+Trace connector pinout
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

242 CHAPTER 10 Target interfaces and adapters
10.2.3 Assignment of trace information pins between ETM
architecture versions

The following table show different names for the trace signals depending on the ETM
architecture version.

10.2.4 Trace signals
Data transfer is synchronized by TRACECLK.

10.2.4.1 Signal levels
The maximum capacitance presented by J-Trace at the trace port connector,

including the connector and interfacing logic, is less than 6pF. The trace port lines
have a matched impedance of 50.

The J-Trace unit will operate with a target board that has a supply voltage range of
3.0V-3.6V.

10.2.4.2 Clock frequency
For capturing trace port signals synchronous to TRACECLK, J-Trace supports

a TRACECLK frequency of up to 200MHz. The following table shows the TRACECLK
frequencies and the setup and hold timing of the trace signals with respect to TRACE-
CLK.

Trace signal ETMv1 ETMv2 ETMv3

Trace signal 1 PIPESTAT[0] PIPESTAT[0] TRACEDATA[0]
Trace signal 2 PIPESTAT[1] PIPESTAT[1] TRACECTL
Trace signal 3 PIPESTAT[2] PIPESTAT[2] Logic 1
Trace signal 4 TRACESYNC PIPESTAT[3] Logic 0
Trace signal 5 TRACEPKT[0] TRACEPKT[0] Logic 0
Trace signal 6 TRACEPKT[1] TRACEPKT[1] TRACEDATA[1]
Trace signal 7 TRACEPKT[2] TRACEPKT[2] TRACEDATA[2]
Trace signal 8 TRACEPKT[3] TRACEPKT[3] TRACEDATA[3]
Trace signal 9 TRACEPKT[4] TRACEPKT[4] TRACEDATA[4]
Trace signal 10 TRACEPKT[5] TRACEPKT[5] TRACEDATA[5]
Trace signal 11 TRACEPKT[6] TRACEPKT[6] TRACEDATA[6]
Trace signal 12 TRACEPKT[7] TRACEPKT[7] TRACEDATA[7]
Trace signal 13 TRACEPKT[8] TRACEPKT[8] TRACEDATA[8]
Trace signal 14 TRACEPKT[9] TRACEPKT[9] TRACEDATA[9]
Trace signal 15 TRACEPKT[10] TRACEPKT[10] TRACEDATA[10]
Trace signal 16 TRACEPKT[11] TRACEPKT[11] TRACEDATA[11]
Trace signal 17 TRACEPKT[12] TRACEPKT[12] TRACEDATA[12]
Trace signal 18 TRACEPKT[13] TRACEPKT[13] TRACEDATA[13]
Trace signal 19 TRACEPKT[14] TRACEPKT[14] TRACEDATA[14]
Trace signal 20 TRACEPKT[15] TRACEPKT[15] TRACEDATA[15]

Table 10.6: Assignment of trace information pins between ETM architecture versions

Parameter Min. Max. Explanation

Tperiod 5ns 1000ns Clock period
Fmax 1MHz 200MHz Maximum trace frequency
Tch 2.5ns - High pulse width
Tcl 2.5ns - Low pulse width

Table 10.7: Clock frequency
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

243
The diagram below shows the TRACECLK frequencies and the setup and hold timing
of the trace signals with respect to TRACECLK.

Note: J-Trace supports half-rate clocking mode. Data is output on each edge of
the TRACECLK signal and TRACECLK (max) <= 100MHz. For half-rate clocking, the
setup and hold times at the JTAG+Trace connector must be observed.

Tsh 2.5ns - Data setup high
Thh 1.5ns - Data hold high
Tsl 2.5ns - Data setup low
Thl 1.5ns - Data hold low

Parameter Min. Max. Explanation

Table 10.7: Clock frequency

Tperiod

Tch Tcl

Tsh Thh Tsl Thl

Full
TRACECLK

Half-rate
TRACECLK

DATA
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

244 CHAPTER 10 Target interfaces and adapters
10.3 19-pin JTAG/SWD and Trace connector
J-Trace provides a JTAG/SWD+Trace connector. This
connector is a 19-pin connector. It connects to the
target via an 1-1 cable.

The following table lists the J-Link / J-Trace SWD pinout.

PIN SIGNAL TYPE Description

 1 VTref Input

This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference
for the input comparators and to control the output logic
levels to the target. It is normally fed from Vdd of the
target board and must not have a series resistor.

 2 SWDIO/
TMS

I/O /
output

JTAG mode set input of target CPU. This pin should be
pulled up on the target. Typically connected to TMS of the
target CPU.

 4 SWCLK/TCK Output
JTAG clock signal to target CPU. It is recommended that
this pin is pulled to a defined state of the target board.
Typically connected to TCK of the target CPU.

 6 SWO/TDO Input

JTAG data output from target CPU. Typically connected to
TDO of the target CPU. When using SWD, this pin is used
as Serial Wire Output trace port. (Optional, not required
for SWD communication)

 --- --- --- This pin (normally pin 7) is not existent on the 19-pin
JTAG/SWD and Trace connector.

8 TDI Output

JTAG data input of target CPU.- It is recommended that
this pin is pulled to a defined state on the target board.
Typically connected to TDI of the target CPU. For CPUs
which do not provide TDI (SWD-only devices), this pin is
not used. J-Link will ignore the signal on this pin when
using SWD.

9 NC NC Not connected inside J-Link. Leave open on target hard-
ware.

10 nRESET I/O
Target CPU reset signal. Typically connected to the RESET
pin of the target CPU, which is typically called "nRST",
"nRESET" or "RESET".

11 5V-Supply Output

This pin can be used to supply power to the target hard-
ware. For more information about how to enable/disable
the power supply, please refer to Target power supply on
page 245.

12 TRACECLK Input Input trace clock. Trace clock = 1/2 CPU clock.

13 5V-Supply Output

This pin can be used to supply power to the target hard-
ware. For more information about how to enable/disable
the power supply, please refer to Target power supply on
page 245.

14 TRACE-
DATA[0] Input Input Trace data pin 0.

Table 10.8: 19-pin JTAG/SWD and Trace pinout

1 2

3 4
5 6

7 8
9 10

11 12

13 14
15 16

17 18
19 20

VTref

GND
GND

- - -
NC

5V-Supply

5V-Supply
GND

GND
GND

SWDIO/TMS

SWO/TDO

TDI
nRESET

TRACECLK

TRACEDATA[0]
TRACEDATA[1]

TRACEDATA[2]
TRACEDATA[3]

SWCLK/TCK
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

245
Pins 3, 5, 15, 17, 19 are GND pins connected to GND in J-Trace CM3. They should
also be connected to GND in the target system.

10.3.1 Target power supply
Pins 11 and 13 of the connector can be used to supply power to the target hardware.
Supply voltage is 5V, max. current is 300mA. The output current is monitored and
protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are
available to control power:

16 TRACE-
DATA[1] Input Input Trace data pin 0.

18 TRACE-
DATA[2] Input Input Trace data pin 0.

20 TRACE-
DATA[3] Input Input Trace data pin 0.

Command Explanation

power on Switch target power on
power off Switch target power off
power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"

Table 10.9: Command List

PIN SIGNAL TYPE Description

Table 10.8: 19-pin JTAG/SWD and Trace pinout
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

246 CHAPTER 10 Target interfaces and adapters
10.4 9-pin JTAG/SWD connector
Some target boards only provide a 9-pin JTAG/
SWD connector for Cortex-M. For these devices
SEGGER provides a 20-pin -> 9-pin Cortex-M
adapter.

The following table lists the output of the 9-pin Cortex-M connector.

Pins 3 and 5 are GND pins connected to GND on the Cortex-M adapter. They should
also be connected to GND in the target system.

PIN SIGNAL TYPE Description

 1 VTref Input

This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference
for the input comparators and to control the output logic
levels to the target. It is normally fed from Vdd of the
target board and must not have a series resistor.

 2 SWDIO/
TMS

I/O /
output

JTAG mode set input of target CPU. This pin should be
pulled up on the target. Typically connected to TMS of the
target CPU. When using SWD, this pin is used as Serial
Wire Output trace port. (Optional, not required for SWD
communication)

 4 SWCLK/TCK Output
JTAG clock signal to target CPU. It is recommended that
this pin is pulled to a defined state of the target board.
Typically connected to TCK of the target CPU.

 6 SWO/TDO Input JTAG data output from target CPU. Typically connected to
TDO of the target CPU.

 --- --- --- This pin (normally pin 7) is not existent on the 19-pin
JTAG/SWD and Trace connector.

8 TDI Output

JTAG data input of target CPU.- It is recommended that
this pin is pulled to a defined state on the target board.
Typically connected to TDI of the target CPU. For CPUs
which do not provide TDI (SWD-only devices), this pin is
not used. J-Link will ignore the signal on this pin when
using SWD.

9 NC NC Not connected inside J-Link. Leave open on target hard-
ware.

Table 10.10: 9-pin JTAG/SWD pinout

1 2

3 4
5 6

7 8
9 10

VTref

GND
GND

NC

SWDIO / TMS

SWO / TDO

TDI
nRESET

SWCLK / TCK
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

247
10.5 Adapters
There are various adapters available for J-Link as for example the JTAG isolator, the
J-Link RX adapter or the J-Link Cortex-M adapter.

For more information about the different adapters, please refer to
http://www.segger.com/jlink-adapters.html.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

248 CHAPTER 10 Target interfaces and adapters
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

249
Chapter 11

Background information
This chapter provides background information about JTAG and ARM. The ARM7 and
ARM9 architecture is based on Reduced Instruction Set Computer (RISC) principles.
The instruction set and the related decode mechanism are greatly simplified com-
pared with microprogrammed Complex Instruction Set Computer (CISC).
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

250 CHAPTER 11 Background information
11.1 JTAG
JTAG is the acronym for Joint Test Action Group. In the scope of this document,
"the JTAG standard" means compliance with IEEE Standard 1149.1-2001.

11.1.1 Test access port (TAP)
JTAG defines a TAP (Test access port). The TAP is a general-purpose port that can
provide access to many test support functions built into a component. It is composed
as a minimum of the three input connections (TDI, TCK, TMS) and one output con-
nection (TDO). An optional fourth input connection (nTRST) provides for asynchro-
nous initialization of the test logic.

11.1.2 Data registers
JTAG requires at least two data registers to be present: the bypass and the bound-
ary-scan register. Other registers are allowed but are not obligatory.

Bypass data register

A single-bit register that passes information from TDI to TDO.

Boundary-scan data register

A test data register which allows the testing of board interconnections, access to
input and output of components when testing their system logic and so on.

11.1.3 Instruction register
The instruction register holds the current instruction and its content is used by the
TAP controller to decide which test to perform or which data register to access. It
consist of at least two shift-register cells.

PIN Type Explanation

TCK Input The test clock input (TCK) provides the clock for the test
logic.

TDI Input Serial test instructions and data are received by the test
logic at test data input (TDI).

TMS Input The signal received at test mode select (TMS) is
decoded by the TAP controller to control test operations.

TDO Output Test data output (TDO) is the serial output for test
instructions and data from the test logic.

nTRST Input
(optional)

The optional test reset (nTRST) input provides for asyn-
chronous initialization of the TAP controller.

Table 11.1: Test access port
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

251
11.1.4 The TAP controller
The TAP controller is a synchronous finite state machine that responds to changes at
the TMS and TCK signals of the TAP and controls the sequence of operations of the
circuitry.

TAP controller state diagram

11.1.4.1 State descriptions
Reset

The test logic is disabled so that normal operation of the chip logic can continue
unhindered. No matter in which state the TAP controller currently is, it can change
into Reset state if TMS is high for at least 5 clock cycles. As long as TMS is high, the
TAP controller remains in Reset state.

Idle

Idle is a TAP controller state between scan (DR or IR) operations. Once entered, this
state remains active as long as TMS is low.

DR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the selected
data registers is initiated.

IR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the instruction
register is initiated.

Capture-DR

Data may be loaded in parallel to the selected test data registers.

Shift-DR

The test data register connected between TDI and TDO shifts data one stage towards
the serial output with each clock.

Capture-DR

Reset

Update-DR

Exit2-DR

Pause-DR

Exit1-DR

Shift-DR

DR-ScanIdle

Update-IR

Exit2-IR

Pause-IR

Exit1-IR

Shift-IR

Capture-IR

IR-Scan

tms=1

tms=0

tms=1

tms=0

tms=1 tms=1

tms=0 tms=0

tms=0 tms=0

tms=1 tms=1

tms=0 tms=0tms=1 tms=1

tms=0 tms=0
tms=1 tms=1

tms=0 tms=0tms=1 tms=1

tms=1 tms=1

tms=0 tms=0

tms=1 tms=1tms=0 tms=0
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

252 CHAPTER 11 Background information
Exit1-DR

Temporary controller state.

Pause-DR

The shifting of the test data register between TDI and TDO is temporarily halted.

Exit2-DR

Temporary controller state. Allows to either go back into Shift-DR state or go on to
Update-DR.

Update-DR

Data contained in the currently selected data register is loaded into a latched parallel
output (for registers that have such a latch). The parallel latch prevents changes at
the parallel output of these registers from occurring during the shifting process.

Capture-IR

Instructions may be loaded in parallel into the instruction register.

Shift-IR

The instruction register shifts the values in the instruction register towards TDO with
each clock.

Exit1-IR

Temporary controller state.

Pause-IR

Wait state that temporarily halts the instruction shifting.

Exit2-IR

Temporary controller state. Allows to either go back into Shift-IR state or go on to
Update-IR.

Update-IR

The values contained in the instruction register are loaded into a latched parallel out-
put from the shift-register path. Once latched, this new instruction becomes the cur-
rent one. The parallel latch prevents changes at the parallel output of the instruction
register from occurring during the shifting process.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

253
11.2 Embedded Trace Macrocell (ETM)
Embedded Trace Macrocell (ETM) provides comprehensive debug and trace facilities
for ARM processors. ETM allows to capture information on the processor's state with-
out affecting the processor's performance. The trace information is exported immedi-
ately after it has been captured, through a special trace port.

Microcontrollers that include an ETM allow detailed program execution to be recorded
and saved in real time. This information can be used to analyze program flow and
execution time, perform profiling and locate software bugs that are otherwise very
hard to locate. A typical situation in which code trace is extremely valuable, is to find
out how and why a "program crash" occurred in case of a runaway program count.

A debugger provides the user interface to J-Trace and the stored trace data. The
debugger enables all the ETM facilities and displays the trace information that has
been captured. J-Trace is seamlessly integrated into the IAR Embedded Workbench®
IDE. The advanced trace debugging features can be used with the IAR C-SPY debug-
ger.

11.2.1 Trigger condition
The ETM can be configured in software to store trace information only after a specific
sequence of conditions. When the trigger condition occurs the trace capture stops
after a programmable period.

11.2.2 Code tracing and data tracing
Code trace

Code tracing means that the processor outputs trace data which contain information
about the instructions that have been executed at last.

Data trace

Data tracing means that the processor outputs trace data about memory accesses
(read / write access to which address and which data has been read / stored). In
general, J-Trace supports data tracing, but it depends on the debugger if this option
is available or not. Note that when using data trace, the amount of trace data to be
captured rises enormously.

11.2.3 J-Trace integration example - IAR Embedded Work-
bench for ARM

In the following a sample integration of J-Trace and the trace functionality on the
debugger side is shown. The sample is based on IAR�s Embedded Workbench for ARM
integration of J-Trace.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

254 CHAPTER 11 Background information
11.2.3.1 Code coverage - Disassembly tracing
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

255
11.2.3.2 Code coverage - Source code tracing
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

256 CHAPTER 11 Background information
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

257
11.3 Embedded Trace Buffer (ETB)
The ETB is a small, circular on-chip memory area where trace information is stored
during capture. It contains the data which is normally exported immediately after it
has been captured from the ETM. The buffer can be read out through the JTAG port of
the device once capture has been completed. No additional special trace port is
required, so that the ETB can be read via J-Link. The trace functionality via J-Link is
limited by the size of the ETB. While capturing runs, the trace information in the
buffer will be overwritten every time the buffer size has been reached.

The result of the limited buffer size is that not more data can be traced than the
buffer can hold. Through this limitation is an ETB not in every case an fully-fledged
alternative to the direct access to an ETM via J-Trace.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

258 CHAPTER 11 Background information
11.4 Flash programming
J-Link / J-Trace comes with a DLL, which allows - amongst other functionalities -
reading and writing RAM, CPU registers, starting and stopping the CPU, and setting
breakpoints. The standard DLL does not have API functions for flash programming.
However, the functionality offered can be used to program the flash. In that case, a
flashloader is required.

11.4.1 How does flash programming via J-Link / J-Trace work?
This requires extra code. This extra code typically downloads a program into the RAM
of the target system, which is able to erase and program the flash. This program is
called RAM code and "knows" how to program the flash; it contains an implementa-
tion of the flash programming algorithm for the particular flash. Different flash chips
have different programming algorithms; the programming algorithm also depends on
other things such as endianess of the target system and organization of the flash
memory (for example 1 * 8 bits, 1 * 16 bits, 2 * 16 bits or 32 bits). The RAM code
requires data to be programmed into the flash memory. There are 2 ways of supply-
ing this data: Data download to RAM or data download via DCC.

11.4.2 Data download to RAM
The data (or part of it) is downloaded to an other part of the RAM of the target sys-
tem. The Instruction pointer (R15) of the CPU is then set to the start address of the
Ram code, the CPU is started, executing the RAM code. The RAM code, which con-
tains the programming algorithm for the flash chip, copies the data into the flash
chip. The CPU is stopped after this. This process may have to be repeated until the
entire data is programmed into the flash.

11.4.3 Data download via DCC
In this case, the RAM code is started as described above before downloading any
data. The RAM code then communicates with the host computer (via DCC, JTAG and
J-Link / J-Trace), transferring data to the target. The RAM code then programs the
data into flash and waits for new data from the host. The WriteMemory functions of J-
Link / J-Trace are used to transfer the RAM code only, but not to transfer the data.
The CPU is started and stopped only once. Using DCC for communication is typically
faster than using WriteMemory for RAM download because the overhead is lower.

11.4.4 Available options for flash programming
There are different solutions available to program internal or external flashes con-
nected to ARM cores using J-Link / J-Trace. The different solutions have different
fields of application, but of course also some overlap.

11.4.4.1 J-Flash - Complete flash programming solution
J-Flash is a stand-alone Windows application, which can read / write data files and
program the flash in almost any ARM system. J-Flash requires an extra license from
SEGGER.

11.4.4.2 RDI flash loader: Allows flash download from any RDI-compliant
tool chain

RDI, (Remote debug interface) is a standard for "debug transfer agents" such as J-
Link. It allows using J-Link from any RDI compliant debugger. RDI by itself does not
include download to flash. To debug in flash, you need to somehow program your
application program (debuggee) into the flash. You can use J-Flash for this purpose,
use the flash loader supplied by the debugger company (if they supply a matching
flash loader) or use the flash loader integrated in the J-Link RDI software. The RDI
software as well as the RDI flash loader require licenses from SEGGER.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

259
11.4.4.3 Flash loader of compiler / debugger vendor such as IAR
A lot of debuggers (some of them integrated into an IDE) come with their own flash
loaders. The flash loaders can of course be used if they match your flash configura-
tion, which is something that needs to be checked with the vendor of the debugger.

11.4.4.4 Write your own flash loader
Implement your own flash loader using the functionality of the JLinkARM.dll as
described above. This can be a time consuming process and requires in-depth knowl-
edge of the flash programming algorithm used as well as of the target system.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

260 CHAPTER 11 Background information
11.5 J-Link / J-Trace firmware
The heart of J-Link / J-Trace is a microcontroller. The firmware is the software exe-
cuted by the microcontroller inside of the J-Link / J-Trace. The J-Link / J-Trace firm-
ware sometimes needs to be updated. This firmware update is performed
automatically as necessary by the JLinkARM.dll.

11.5.1 Firmware update
Every time you connect to J-Link / J-Trace, JLinkARM.dll checks if its embedded firm-
ware is newer than the one used the J-Link / J-Trace. The DLL will then update the
firmware automatically. This process takes less than 3 seconds and does not require
a reboot.

It is recommended that you always use the latest version of JLinkARM.dll.

In the screenshot:

� The red box identifies the new firmware.
� The green box identifies the old firmware which has been replaced.

11.5.2 Invalidating the firmware
Downdating J-Link / J-Trace is not performed automatically through an old
JLinkARM.dll. J-Link / J-Trace will continue using its current, newer firmware when
using older versions of the JLinkARM.dll.

Note: Downdating J-Link / J-Trace is not recommended, you do it at your own
risk!

Note: Note also the firmware embedded in older versions of JLinkARM.dll might
not execute properly with newer hardware versions.

To downdate J-Link / J-Trace, you need to invalidate the current J-Link / J-Trace firm-
ware, using the command exec InvalidateFW.

In the screenshot, the red box contains information about the formerly used J-Link /
J-Trace firmware version.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

261
Use an application (for example JLink.exe) which uses the desired version of
JLinkARM.dll. This automatically replaces the invalidated firmware with its embedded
firmware.

In the screenshot:

� The red box identifies the new firmware.
� The green box identifies the old firmware which has been replaced.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

262 CHAPTER 11 Background information
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

263
Chapter 12

Designing the target board for
trace
This chapter describes the hardware requirements which have to be met by the tar-
get board.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

264 CHAPTER 12 Designing the target board for trace
12.1 Overview of high-speed board design
Failure to observe high-speed design rules when designing a target system contain-
ing an ARM Embedded Trace Macrocell (ETM) trace port can result in incorrect data
being captured by J-Trace.You must give serious consideration to high-speed signals
when designing the target system.

The signals coming from an ARM ETM trace port can have very fast rise and fall
times, even at relatively low frequencies.

Note: These principles apply to all of the trace port signals (TRACEPKT[0:15],
PIPESTAT[0:2], TRACESYNC), but special care must be taken with TRACECLK.

12.1.1 Avoiding stubs
Stubs are short pieces of track that tee off from the main track carrying the signal to,
for example, a test point or a connection to an intermediate device. Stubs cause
impedance discontinuities that affect signal quality and must be avoided.

Special care must therefore be taken when ETM signals are multiplexed with other
pin functions and where the PCB is designed to support both functions with differing
tracking requirements.

12.1.2 Minimizing Signal Skew (Balancing PCB Track Lengths)
You must attempt to match the lengths of the PCB tracks carrying all of TRACECLK,
PIPESTAT, TRACESYNC, and TRACEPKT from the ASIC to the mictor connector to
within approximately 0.5 inches (12.5mm) of each other. Any greater differences
directly impact the setup and hold time requirements.

12.1.3 Minimizing Crosstalk
Normal high-speed design rules must be observed. For example, do not run dynamic
signals parallel to each other for any significant distance, keep them spaced well
apart, and use a ground plane and so forth. Particular attention must be paid to the
TRACECLK signal. If in any doubt, place grounds or static signals between the
TRACECLK and any other dynamic signals.

12.1.4 Using impedance matching and termination
Termination is almost certainly necessary, but there are some circumstances where it
is not required. The decision is related to track length between the ASIC and the
JTAG+Trace connector, see Terminating the trace signal on page 265 for further ref-
erence.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

265
12.2 Terminating the trace signal
To terminate the trace signal, you can choose between three termination options:

� Matched impedance
� Series (source) termination
� DC parallel termination.

Matched impedance

Where available, the best termination scheme is to have the ASIC manufacturer
match the output impedance of the driver to the impedance of the PCB track on your
board. This produces the best possible signal.

Series (source) termination

This method requires a resistor fitted in series with signal. The resistor value plus the
output impedance of the driver must be equal to the PCB track impedance.

DC parallel termination

This requires either a single resistor to ground, or a pull-up/pull-down combination of
resistors (Thevenin termination), fitted at the end of each signal and as close as pos-
sible to the JTAG+Trace connector. If a single resistor is used, its value must be set
equal to the PCB track impedance. If the pull-up/pull-down combination is used, their
resistance values must be selected so that their parallel combination equals the PCB
track impedance.

Caution:

At lower frequencies, parallel termination requires considerably more drive capability
from the ASIC than series termination and so, in practice, DC parallel termination is
rarely used.

12.2.1 Rules for series terminators
Series (source) termination is the most commonly used method. The basic rules are:

1. The series resistor must be placed as close as possible to the ASIC pin (less than
0.5 inches).

2. The value of the resistor must equal the impedance of the track minus the output
impedance of the output driver. So for example, a 50 PCB track driven by an out-
put with a 17 impedance, requires a resistor value of 33.

3. A source terminated signal is only valid at the end of the signal path. At any point
between the source and the end of the track, the signal appears distorted
because of reflections. Any device connected between the source and the end of
the signal path therefore sees the distorted signal and might not operate cor-
rectly. Care must be taken not to connect devices in this way, unless the distor-
tion does not affect device operation.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

266 CHAPTER 12 Designing the target board for trace
12.3 Signal requirements
The table below lists the specifications that apply to the signals as seen at the
JTAG+Trace connector.

Signal Value

Fmax 200MHz
Ts setup time (min.) 2.0ns
Th hold time (min.) 1.0ns
TRACECLK high pulse width (min.) 1.5ns
TRACECLK high pulse width (min.) 1.5ns

Table 12.1: Signal requirements
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

267
Chapter 13

Support and FAQs
This chapter contains troubleshooting tips together with solutions for common prob-
lems which might occur when using J-Link / J-Trace. There are several steps you can
take before contacting support. Performing these steps can solve many problems and
often eliminates the need for assistance. This chapter also contains a collection of
frequently asked questions (FAQs) with answers.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

268 CHAPTER 13 Support and FAQs
13.1 Measuring download speed

13.1.1 Test environment
JLink.exe has been used for measurement performance. The hardware consisted of:

� PC with 2.6 GHz Pentium 4, running Win2K
� USB 2.0 port
� USB 2.0 hub
� J-Link
� Target with ARM7 running at 50MHz.

Below is a screenshot of JLink.exe after the measurement has been performed.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

269
13.2 Troubleshooting

13.2.1 General procedure
If you experience problems with J-Link / J-Trace, you should follow the steps below to
solve these problems:

1. Close all running applications on your host system.
2. Disconnect the J-Link / J-Trace device from USB.
3. Disable power supply on the target.
4. Re-connect J-Link / J-Trace with the host system (attach USB cable).
5. Enable power supply on the target.
6. Try your target application again. If the problem remains continue the following

procedure.
7. Close all running applications on your host system again.
8. Disconnect the J-Link / J-Trace device from USB.
9. Disable power supply on the target.
10. Re-connect J-Link / J-Trace with the host system (attach the USB cable).
11. Enable power supply on the target.
12. Start JLink.exe.
13. If JLink.exe displays the J-Link / J-Trace serial number and the target proces-

sor�s core ID, the J-Link / J-Trace is working properly and cannot be the cause of
your problem.

14. If the problem persists and you own an original product (not an OEM version),
see section Contacting support on page 271.

13.2.2 Typical problem scenarios
J-Link / J-Trace LED is off

Meaning:

The USB connection does not work.

Remedy:

Check the USB connection. Try to re-initialize J-Link / J-Trace by disconnecting and
reconnecting it. Make sure that the connectors are firmly attached. Check the cable
connections on your J-Link / J-Trace and the host computer. If this does not solve the
problem, check if your cable is defect. If the USB cable is ok, try a different host
computer.

J-Link / J-Trace LED is flashing at a high frequency

Meaning:

J-Link / J-Trace could not be enumerated by the USB controller.

Most likely reasons:

a.) Another program is already using J-Link / J-Trace.
b.) The J-Link USB driver does not work correctly.

Remedy:

a.) Close all running applications and try to reinitialize J-Link / J-Trace by disconnect-
ing and reconnecting it.
b.) If the LED blinks permanently, check the correct installation of the J-Link USB
driver. Deinstall and reinstall the driver as shown in chapter Setup on page 83.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

270 CHAPTER 13 Support and FAQs
J-Link/J-Trace does not get any connection to the target

Most likely reasons:

a.) The JTAG cable is defective.
b.) The target hardware is defective.

Remedy:

Follow the steps described in General procedure on page 269.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

271
13.3 Contacting support
Before contacting support, make sure you tried to solve your problem by following
the steps outlined in section General procedure on page 269. You may also try your
J-Link / J-Trace with another PC and if possible with another target system to see if it
works there. If the device functions correctly, the USB setup on the original machine
or your target hardware is the source of the problem, not J-Link / J-Trace.

If you need to contact support, send the following information to
support@segger.com:

� A detailed description of the problem
� J-Link/J-Trace serial number
� Output of JLink.exe if available
� Your findings of the signal analysis
� Information about your target hardware (processor, board, etc.).

J-Link / J-Trace is sold directly by SEGGER or as OEM-product by other vendors. We
can support only official SEGGER products.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

272 CHAPTER 13 Support and FAQs
13.4 Frequently Asked Questions
Supported CPUs

Q: Which CPUs are supported?
A: J-Link / J-Trace should work with any ARM7/9 and Cortex-M3 core. For a list of

supported cores, see section Supported CPU cores on page 39.

Converting data files
Q: I want to download my application into flash memory using J-Link Commander but

my application is a *.hex data file and J-Link Commander supports *.bin files only.
How do I download it?

A: Please use the J-Flash (which is part of the J-Link software and documentation
package) software to convert your *.hex/*.mot/... file to a *.bin file. For data file
conversion, no J-Flash license is necessary.

Using J-Link in my application
Q: I want to write my own application and use J-Link / J-Trace. Is this possible?
A: Yes. We offer a dedicated Software Developer Kit (SDK). See section J-Link Soft-

ware Developer Kit (SDK) on page 80 for further information.

Using DCC with J-Link
Q: Can I use J-Link / J-Trace to communicate with a running target via DCC?
A: Yes. The DLL includes functions to communicate via DCC on cores which support

DCC, such as ARM7/9/11, Cortex A/R series.

Read status of JTAG pins
Q: Can J-Link / J-Trace read back the status of the JTAG pins?
A: Yes, the status of all pins can be read. This includes the outputs of J-Link / J-Trace

as well as the supply voltage, which can be useful to detect hardware problems on
the target system.

J-Link support of ETM
Q: Does J-Link support the Embedded Trace Macrocell (ETM)?
A: No. ETM requires another connection to the ARM chip and a CPU with built-in ETM.

Most current ARM7 / ARM9 chips do not have ETM built-in.

J-Link support of ETB
Q: Does J-Link support the Embedded Trace Buffer (ETB)?
A: Yes. J-Link supports ETB. Most current ARM7 / ARM9 chips do not have ETB built-

in.

Registers on ARM 7 / ARM 9 targets
Q: I�m running J-Link.exe in parallel to my debugger, on an ARM 7 target. I can read

memory okay, but the processor registers are different. Is this normal?
A: If memory on an ARM 7/9 target is read or written the processor registers are

modified. When memory read or write operations are performed, J-Link preserves
the register values before they are modified. The register values shown in the
debugger�s register window are the preserved ones. If now a second instance, in
this case J-Link.exe, reads the processor registers, it reads the values from the
hardware, which are the modified ones. This is why it shows different register val-
ues.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

273
Chapter 14

Glossary
This chapter describes important terms used throughout this manual.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

274 CHAPTER 14 Glossary
Adaptive clocking

A technique in which a clock signal is sent out by J-Link / J-Trace. J-Link / J-Trace
waits for the returned clock before generating the next clock pulse. The technique
allows the J-Link / J-Trace interface unit to adapt to differing signal drive capabilities
and differing cable lengths.

Application Program Interface

A specification of a set of procedures, functions, data structures, and constants that
are used to interface two or more software components together.

Big-endian

Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See Little-endian.

Cache cleaning

The process of writing dirty data in a cache to main memory.

Coprocessor

An additional processor that is used for certain operations, for example, for floating-
point math calculations, signal processing, or memory management.

Dirty data

When referring to a processor data cache, data that has been written to the cache
but has not been written to main memory is referred to as dirty data. Only write-back
caches can have dirty data because a write-through cache writes data to the cache
and to main memory simultaneously. See also cache cleaning.

Dynamic Linked Library (DLL)

A collection of programs, any of which can be called when needed by an executing
program. A small program that helps a larger program communicate with a device
such as a printer or keyboard is often packaged as a DLL.

Embedded Trace Macrocell (ETM)

ETM is additional hardware provided by debuggable ARM processors to aid debugging
with trace functionality.

Embedded Trace Buffer (ETB)

ETB is a small, circular on-chip memory area where trace information is stored during
capture.

EmbeddedICE

The additional hardware provided by debuggable ARM processors to aid debugging.

Halfword

A 16-bit unit of information. Contents are taken as being an unsigned integer
unless otherwise stated.

Host

A computer which provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

ICache

Instruction cache.

ICE Extension Unit

A hardware extension to the EmbeddedICE logic that provides more breakpoint units.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

275
ID

Identifier.

IEEE 1149.1

The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as
JTAG.

Image

An executable file that has been loaded onto a processor for execution.

In-Circuit Emulator (ICE)

A device enabling access to and modification of the signals of a circuit while that cir-
cuit is operating.

Instruction Register

When referring to a TAP controller, a register that controls the operation of the TAP.

IR

See Instruction Register.

Joint Test Action Group (JTAG)

The name of the standards group which created the IEEE 1149.1 specification.

Little-endian

Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Memory coherency

A memory is coherent if the value read by a data read or instruction fetch is the
value that was most recently written to that location. Obtaining memory coherency is
difficult when there are multiple possible physical locations that are involved, such as
a system that has main memory, a write buffer, and a cache.

Memory management unit (MMU)

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. Unlike an MMU, an
MPU does not translate virtual addresses to physical addresses.

Multi-ICE

Multi-processor EmbeddedICE interface. ARM registered trademark.

RESET

Abbreviation of System Reset. The electronic signal which causes the target system
other than the TAP controller to be reset. This signal is also known as "nSRST"
"nSYSRST", "nRST", or "nRESET" in some other manuals. See also nTRST.

nTRST

Abbreviation of TAP Reset. The electronic signal that causes the target system TAP
controller to be reset. This signal is known as nICERST in some other manuals. See
also nSRST.

Open collector

A signal that may be actively driven LOW by one or more drivers, and is otherwise
passively pulled HIGH. Also known as a "wired AND" signal.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

276 CHAPTER 14 Glossary
Processor Core

The part of a microprocessor that reads instructions from memory and executes
them, including the instruction fetch unit, arithmetic and logic unit, and the register
bank. It excludes optional coprocessors, caches, and the memory management unit.

Program Status Register (PSR)

Contains some information about the current program and some information about
the current processor state. Often, therefore, also referred to as Processor Status
Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction to the Saved
PSR (SPSR). The SPSR holds the value the PSR had when the current function was
called, and which will be restored when control is returned.

Remapping

Changing the address of physical memory or devices after the application has started

executing. This is typically done to make RAM replace ROM once the initialization has
been done.

Remote Debug Interface (RDI)

RDI is an open ARM standard procedural interface between a debugger and the
debug agent. The widest possible adoption of this standard is encouraged.

RTCK

Returned TCK. The signal which enables Adaptive Clocking.

RTOS

Real Time Operating System.

Scan Chain

A group of one or more registers from one or more TAP controllers connected
between TDI and TDO, through which test data is shifted.

Semihosting

A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather than attempting to support the I/O itself.

SWI

Software Interrupt. An instruction that causes the processor to call a programer-
specified subroutine. Used by ARM to handle semihosting.

TAP Controller

Logic on a device which allows access to some or all of that device for test purposes.
The circuit functionality is defined in IEEE1149.1.

Target

The actual processor (real silicon or simulated) on which the application program is
running.

TCK

The electronic clock signal which times data on the TAP data lines TMS, TDI, and
TDO.

TDI

The electronic signal input to a TAP controller from the data source (upstream). Usu-
ally, this is seen connecting the J-Link / J-Trace Interface Unit to the first TAP control-
ler.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

277
TDO

The electronic signal output from a TAP controller to the data sink (downstream).
Usually, this is seen connecting the last TAP controller to the J-Link / J-Trace Inter-
face Unit.

Test Access Port (TAP)

The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO,
and nTRST (optional).

Transistor-transistor logic (TTL)

A type of logic design in which two bipolar transistors drive the logic output to one or
zero. LSI and VLSI logic often used TTL with HIGH logic level approaching +5V and
LOW approaching 0V.

Watchpoint

A location within the image that will be monitored and that will cause execution to
stop when it changes.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

278 CHAPTER 14 Glossary
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

279
Chapter 15

Literature and references
This chapter lists documents, which we think may be useful to gain deeper under-
standing of technical details.
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

280 CHAPTER 15 Literature and references
Reference Title Comments

[ETM]
Embedded Trace Macrocell�
Architecture Specification,
ARM IHI 0014J

This document defines the ETM
standard, including signal protocol
and physical interface.
It is publicly available from ARM
(www.arm.com).

[RVI]
RealView® ICE and RealView
Trace User Guide, ARM DUI
0155C

This document describes ARM�s
realview ice emulator and require-
ments on the target side.
It is publicly available from ARM
(www.arm.com).

Table 15.1: Literature and References
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

281
Index
A
Adaptive clocking 274
Application Program Interface 274

B
Big-endian .. 274

C
Cache cleaning 274
Coprocessor 274

D
Dirty data ... 274
Dynamic Linked Library (DLL) 274

E
Embedded Trace Buffer (ETB)257, 274
Embedded Trace Macrocell (ETM) ..253, 274
EmbeddedICE 274

H
Halfword ... 274
Host ... 274

I
ICache ... 274
ICE Extension Unit 274
ID ... 275
IEEE 1149.1 275
Image .. 275
In-Circuit Emulator 275
Instruction Register 275
IR .. 275

J
J-Flash ARM ..74
J-Link

Adapters .. 247
Developer Pack DLL80
Supported chips150�151, 164�165

J-Link ARM Flash DLL 80
J-Link Commander 64
J-Link GDB Server 76
J-Link RDI .. 75
J-Link STR9 Commander 70
J-Link TCP/IP Server 72
J-Mem Memory Viewer 73
Joint Test Action Group (JTAG)275
JTAG ..250

TAP controller251
JTAGLoad ... 80

L
Little-endian275

M
Memory coherency275
Memory management unit (MMU)275
Memory Protection Unit (MPU)275
Multi-ICE ..275

N
nTRST 234, 275

O
Open collector275

P
Processor Core276
Program Status Register (PSR)276

R
RDI Support 75
Remapping ..276
Remote Debug Interface (RDI)276
RESET ..275
RTCK ..276
RTOS ..276
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

282 Index
S
Scan Chain 276
Semihosting 276
SetDbgPowerDownOnClose 142
SetSysPowerDownOnIdle 143
Support 267, 273
Supported flash devices 152�153, 158, 166
SWI ... 276

T
Tabs .. 115
TAP Controller 276
Target .. 276
TCK .. 234, 276
TDI .. 234, 276
TDO ... 234, 277
Test Access Port (TAP) 277
Transistor-transistor logic (TTL) 277

W
Watchpoint 277
Word ... 277
J-Link / J-Trace (UM08001) © 2004-2012 SEGGER Microcontroller GmbH & Co. KG

	About this document
	Table of Contents
	Introduction
	1.1 Requirements
	1.2 Supported OS
	1.3 J-Link / J-Trace models
	1.3.1 Model comparison
	1.3.2 J-Link ARM
	1.3.3 J-Link Ultra
	1.3.4 J-Link ARM Pro
	1.3.5 J-Link ARM Lite
	1.3.6 J-Link Lite Cortex-M
	1.3.7 J-Trace ARM
	1.3.8 J-Trace for Cortex-M
	1.3.9 Flasher ARM
	1.3.10 J-Link ColdFire

	1.4 Common features of the J-Link product family
	1.5 Supported CPU cores
	1.6 Built-in intelligence for supported CPU-cores
	1.6.1 Intelligence in the J-Link firmware
	1.6.2 Intelligence on the PC-side (DLL)
	1.6.3 Firmware intelligence per model

	1.7 Supported IDEs

	Licensing
	2.1 Introduction
	2.2 Software components requiring a license
	2.3 License types
	2.3.1 Built-in license
	2.3.2 Key-based license
	2.3.3 Device-based license

	2.4 Legal use of SEGGER J-Link software
	2.4.1 Use of the software with 3rd party tools

	2.5 Original SEGGER products
	2.5.1 J-Link
	2.5.2 J-Link Ultra
	2.5.3 J-Link Pro
	2.5.4 J-Trace
	2.5.5 J-Trace for Cortex-M
	2.5.6 Flasher ARM

	2.6 J-Link OEM versions
	2.6.1 Analog Devices: mIDASLink
	2.6.2 Atmel: SAM-ICE
	2.6.3 Digi: JTAG Link
	2.6.4 IAR: J-Link / J-Link KS
	2.6.5 IAR: J-Link Lite
	2.6.6 IAR: J-Trace
	2.6.7 NXP: J-Link Lite LPC Edition
	2.6.8 SEGGER: J-Link Lite

	2.7 J-Link OBs
	2.8 Illegal Clones

	J-Link and J-Trace related software
	3.1 J-Link related software
	3.1.1 J-Link software and documentation package
	3.1.2 List of additional software packages

	3.2 J-Link software and documentation package in detail
	3.2.1 J-Link Commander (Command line tool)
	3.2.2 J-Link SWO Viewer
	3.2.3 SWO Analyzer
	3.2.4 J-Link STR91x Commander (Command line tool)
	3.2.5 J-Link STM32 Commander (Command line tool)
	3.2.6 J-Link TCP/IP Server (Remote J-Link / J-Trace use)
	3.2.7 J-Mem Memory Viewer
	3.2.8 J-Flash ARM (Program flash memory via JTAG)
	3.2.9 J-Link RDI (Remote Debug Interface)
	3.2.10 J-Link GDB Server

	3.3 Dedicated flash programming utilities for J-Link
	3.3.1 Introduction
	3.3.2 Supported Eval boards
	3.3.3 Supported flash memories
	3.3.4 How to use the dedicated flash programming utilities
	3.3.5 Using the dedicated flash programming utilities for production and commercial purposes
	3.3.6 F.A.Q.

	3.4 Additional software packages in detail
	3.4.1 JTAGLoad (Command line tool)
	3.4.2 J-Link Software Developer Kit (SDK)
	3.4.3 J-Link Flash Software Developer Kit (SDK)

	3.5 Using the J-LinkARM.dll
	3.5.1 What is the JLinkARM.dll?
	3.5.2 Updating the DLL in third-party programs
	3.5.3 Determining the version of JLinkARM.dll
	3.5.4 Determining which DLL is used by a program

	Setup
	4.1 Installing the J-Link ARM software and documentation pack
	4.1.1 Setup procedure

	4.2 Setting up the USB interface
	4.2.1 Verifying correct driver installation
	4.2.2 Uninstalling the J-Link USB driver

	4.3 Setting up the IP interface
	4.3.1 Configuring J-Link using J-Link Configurator
	4.3.2 Configuring J-Link using the webinterface

	4.4 FAQs
	4.5 J-Link Configurator
	4.5.1 Configure J-Links using the J-Link Configurator

	4.6 J-Link USB identification
	4.6.1 Connecting to different J-Links connected to the same host PC via USB

	Working with J-Link and J-Trace
	5.1 Connecting the target system
	5.1.1 Power-on sequence
	5.1.2 Verifying target device connection
	5.1.3 Problems

	5.2 Indicators
	5.2.1 Main indicator
	5.2.2 Input indicator
	5.2.3 Output indicator

	5.3 JTAG interface
	5.3.1 Multiple devices in the scan chain
	5.3.2 Sample configuration dialog boxes
	5.3.3 Determining values for scan chain configuration
	5.3.4 JTAG Speed

	5.4 SWD interface
	5.4.1 SWD speed
	5.4.2 SWO

	5.5 Multi-core debugging
	5.5.1 How multi-core debugging works
	5.5.2 Using multi-core debugging in detail
	5.5.3 Things you should be aware of

	5.6 Connecting multiple J-Links / J-Traces to your PC
	5.6.1 How does it work?

	5.7 J-Link control panel
	5.7.1 Tabs

	5.8 Reset strategies
	5.8.1 Strategies for ARM 7/9 devices
	5.8.2 Strategies for Cortex-M devices

	5.9 Using DCC for memory access
	5.9.1 What is required?
	5.9.2 Target DCC handler
	5.9.3 Target DCC abort handler

	5.10 J-Link script files
	5.10.1 Actions that can be customized
	5.10.2 Script file API functions
	5.10.3 Global DLL variables
	5.10.4 Global DLL constants
	5.10.5 Script file language
	5.10.6 Script file writing example
	5.10.7 Executing J-Link script files

	5.11 Command strings
	5.11.1 List of available commands
	5.11.2 Using command strings

	5.12 Switching off CPU clock during debug
	5.13 Cache handling
	5.13.1 Cache coherency
	5.13.2 Cache clean area
	5.13.3 Cache handling of ARM7 cores
	5.13.4 Cache handling of ARM9 cores

	Flash download
	6.1 Introduction
	6.2 Licensing
	6.3 Supported devices
	6.4 Setup for various debuggers (internal flash)
	6.4.1 IAR Embedded Workbench
	6.4.2 Keil MDK
	6.4.3 J-Link GDB Server
	6.4.4 J-Link Commander
	6.4.5 J-Link RDI

	6.5 Setup for various debuggers (CFI flash)
	6.5.1 IAR Embedded Workbench / Keil MDK
	6.5.2 J-Link GDB Server
	6.5.3 J-Link commander

	6.6 Using the DLL flash loaders in custom applications

	Flash breakpoints
	7.1 Introduction
	7.2 Licensing
	7.2.1 24h flash breakpoint trial license

	7.3 Supported devices
	7.4 Setup & compatibility with various debuggers
	7.4.1 Setup
	7.4.2 Compatibility with various debuggers

	7.5 FAQ

	RDI
	8.1 Introduction
	8.1.1 Features

	8.2 Licensing
	8.3 Setup for various debuggers
	8.3.1 IAR Embedded Workbench IDE
	8.3.2 ARM AXD (ARM Developer Suite, ADS)
	8.3.3 ARM RVDS (RealView developer suite)
	8.3.4 GHS MULTI
	8.3.5 KEIL MDK (µVision IDE)

	8.4 Configuration
	8.4.1 Configuration file JLinkRDI.ini
	8.4.2 Using different configurations
	8.4.3 Using mutliple J-Links simulatenously
	8.4.4 Configuration dialog

	8.5 Semihosting
	8.5.1 Overview
	8.5.2 The SWI interface
	8.5.3 Implementation of semihosting in J-Link RDI
	8.5.4 Semihosting with AXD
	8.5.5 Unexpected / unhandled SWIs

	Device specifics
	9.1 Analog Devices
	9.1.1 ADuC7xxx

	9.2 ATMEL
	9.2.1 AT91SAM7
	9.2.2 AT91SAM9

	9.3 DSPGroup
	9.4 Ember
	9.5 Energy Micro
	9.6 Freescale
	9.6.1 Kinetis family
	9.6.2 Unlocking
	9.6.3 Tracing

	9.7 Fujitsu
	9.8 Itron
	9.9 Luminary Micro
	9.9.1 Unlocking LM3Sxxx devices

	9.10 NXP
	9.10.1 LPC ARM7-based devices
	9.10.2 Reset (Cortex-M3 based devices)
	9.10.3 LPC288x flash programming
	9.10.4 LPC43xx:

	9.11 OKI
	9.12 Renesas
	9.13 Samsung
	9.13.1 S3FN60D

	9.14 ST Microelectronics
	9.14.1 STR91x
	9.14.2 STM32F10xxx
	9.14.3 STM32F2xxx
	9.14.4 STM32F4xxx

	9.15 Texas Instruments
	9.15.1 AM335x
	9.15.2 AM35xx / AM37xx
	9.15.3 OMAP4430
	9.15.4 OMAP-L138
	9.15.5 TMS470M
	9.15.6 OMAP3530
	9.15.7 OMAP3550

	9.16 Toshiba

	Target interfaces and adapters
	10.1 20-pin JTAG/SWD connector
	10.1.1 Pinout for JTAG
	10.1.2 Pinout for SWD

	10.2 38-pin Mictor JTAG and Trace connector
	10.2.1 Connecting the target board
	10.2.2 Pinout
	10.2.3 Assignment of trace information pins between ETM architecture versions
	10.2.4 Trace signals

	10.3 19-pin JTAG/SWD and Trace connector
	10.3.1 Target power supply

	10.4 9-pin JTAG/SWD connector
	10.5 Adapters

	Background information
	11.1 JTAG
	11.1.1 Test access port (TAP)
	11.1.2 Data registers
	11.1.3 Instruction register
	11.1.4 The TAP controller

	11.2 Embedded Trace Macrocell (ETM)
	11.2.1 Trigger condition
	11.2.2 Code tracing and data tracing
	11.2.3 J-Trace integration example - IAR Embedded Workbench for ARM

	11.3 Embedded Trace Buffer (ETB)
	11.4 Flash programming
	11.4.1 How does flash programming via J-Link / J-Trace work?
	11.4.2 Data download to RAM
	11.4.3 Data download via DCC
	11.4.4 Available options for flash programming

	11.5 J-Link / J-Trace firmware
	11.5.1 Firmware update
	11.5.2 Invalidating the firmware

	Designing the target board for trace
	12.1 Overview of high-speed board design
	12.1.1 Avoiding stubs
	12.1.2 Minimizing Signal Skew (Balancing PCB Track Lengths)
	12.1.3 Minimizing Crosstalk
	12.1.4 Using impedance matching and termination

	12.2 Terminating the trace signal
	12.2.1 Rules for series terminators

	12.3 Signal requirements

	Support and FAQs
	13.1 Measuring download speed
	13.1.1 Test environment

	13.2 Troubleshooting
	13.2.1 General procedure
	13.2.2 Typical problem scenarios

	13.3 Contacting support
	13.4 Frequently Asked Questions

	Glossary
	Literature and references
	Index

