SG01L-A18 UVA-only SiC based UV photodiode A = 1,0 mm²

General Features

Properties of the SG01L-A18 UV photodiode

- UVA-only sensitivity, PTB tested high chip stability
- Active Area $A = 1.0 \text{ mm}^2$
- TO18 hermetically sealed housing
- 10µmW/cm² radiation at 335nm results a current of approx. 6nA

About the material Silicon Carbide (SiC)

SiC provides the unique property of extreme radiation hardness, near-perfect visible blindness, low dark current, high speed and low noise. These features make SiC the best available material for visible blind semiconductor UV detectors. The SiC detectors can be permanently operated at up to 170°C. The temperature coefficient of signal (responsivity) is also low, <0,1%/K. Because of the low noise (dark current, in the fA range), very low UV radiation intensities can be measured reliably. Please note that this device needs an appropriate amplifier (see circuit on following page). SiC photodiodes are available as unfiltered broadband devices or with optical filters providing UV-A, UV-B, or UV-C-only sensitivity, or erythemal action curve compliance.

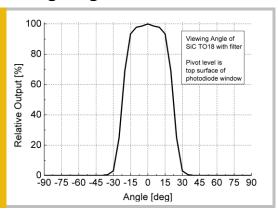
Specifications

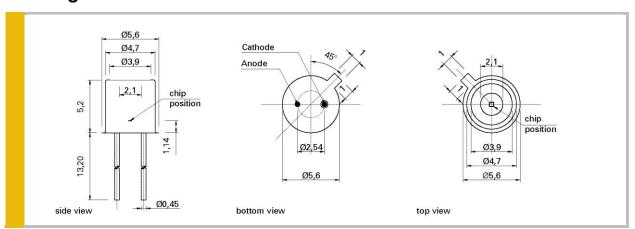
Parameter	Symbol	Value	Unit
Maximum Ratings			
Operating Temperature Range	\mathcal{T}_{opt}	-55 + 170	$^{\circ}$ C
Storage Temperature Range	\mathcal{T}_{stor}	-55 + 170	$^{\circ}$ C
Soldering Temperature (3s)	\mathcal{T}_{sold}	260	$^{\circ}$ C
Reverse voltage	V_{Rmax}	20	V
General Characteristics (T=25°C)			
Active Area	Α	1,0	mm^2
Dark current (1V reverse bias)	I_{d}	3,4	fA
Capacitance	С	250	pF
Short circuit (10µW/cm² at peak)	I_0	6	nA
Temperature coefficient	Тс	<+0,1	%/K
Spectral Characteristics (T=25°C)			
Max. spectral responsivity	S_{max}	0,060	AW^1
Wavelength of max. spectral resp.	$\lambda_{\sf max}$	335	nm
Responsivity range (S=0,1*S _{max})	-	310 370	nm
Visible blindness (S _{max} / S _{>405nm})	VB	>10 ¹⁰	-

Rev. 5.1 specifications subject to change without notice

Page 1 [3]

SG01L-A18UVA-only SiC based UV photodiode *A* = 1,0 mm²


Spectral Response


Circuit

+U 2.5V ... 5.5V $C_F = 0.01s...0.1s$ $R_F = U - 50 \text{ mV}$ $I_{max} = maximum \text{ of expected diode}$ V = supply voltage

Viewing Angle

Drawing

Rev. 5.1 specifications subject to change without notice

Page 2 [3]

Application Note for Photodiodes

For correct reading of the photodiode the current (and NOT the voltage) must be analyzed. This requires a short circuiting of the photodiode. Usual approaches are using a **Picoamperemeter** or a **transimpedance amplifier** circuit.

To make the photodiode running reliably, in particular in harsh environment, EMC compatibility and protection against dust, water and mechanical influences is needed. Below listed modules base on a SiC photodiode and guarantee this protection and safety.

TOCONs = UV Sensors with integrated amplifier

- SiC based UV hybrid detector with pre-amplifier (0-15V output), no additional amplifier needed, direct connection to controller, voltmeter, etc.
- Measures intensities from 3,6 pW/cm2 up to 54 W/cm2
- UV broadband, UVA, UVB, UVC or Erythema measurements
- Upgrade to M12x1 housing with Hirschmann connector available

Industrial UV probes

- Different housings e.g. with cosine response, water pressure proof or Sapphire windows
- Different electronic outputs configurable (voltage, current, USB, CAN, LAN)

Laboratory Equipment & Calibration

The below listed sglux products & services are helpful if you like to learn more about the UV radiation generated by your UV source:

- UV Radiometers for intensity check
- UV Dosimeters for dose control, e.g. curing applications
- UV Controllers to control lamps, valves etc.
- NIST and PTB traceable calibration for all sglux sensors

Rev. 5.1 specifications subject to change without notice

Page 3 [3]