FEN LOGIC LTD.

Gertboard User Manual

Gert van Loo and Myra Vanlnwegen

Revision 2.0

The Gertboard is an add-on GPIO expansion board for the Raspberry Pi computer. It comes with a
large variety of components, including buttons, LEDs, A/D and D/A converters, a motor controller,
and an Atmel AVR microcontroller. There are test programs for the Gertboard written in C and
Python, which are freely available on the Web. This manual explains both how to set up the
Gertboard for various control experiments and also explains at a high level how the test code works.

Copyright 2012 by Fen Logic Ltd. All rights reserved.

Contents

GEIDOAIT OVEIVIEW. ...tttk bbbt b bbbt b et b e 5
LaDEIS 8N0 DIAGIAIMS.eeuiitiitiitiie ettt h b et b e et e bt b nn e r e n e 7
POWET 0N the GEIDOANTc..ouiieiiiiii e 9
L o [o ST TRP 10
SCNEIMALICS ...ttt bbb bbb bbb bbb bbb e r e 11

TESE PrOGIamS OVEIVIEW.........ciuiiiiitiiieteeeiteeee ettt sttt ettt b b e b et b e e bbb nnenn e 11
€ 008 OVEIVIBW. ...ttt bbb e bbb bbbt bbb bbbt nas 11

IVTBCTOS. ...t 12
PYLNON COUE OVEIVIBW ...ttt ettt 13
Downloading the SOFtWAIE.........cccvciuiii ettt sbe b et sreeseesre e 13
Why Different Program VEISIONS?ccocuiiiiiiieiieieie sttt 14

Buffered 1/0O, LEDS, aNd PUSHDULIONSoovveeeiitiiee e st e sttt e e teeee e s setaeeessetaeeesseseeeessesaeeessarseeessarneeessns 14
PUSIDULLONS ... bbbttt b bt 15
Locating the 1/0 Ports on the Gertboard.............ccoov i 16
Testing the PUSNDULIONSooiiiiiii e 17

BULTONS TESEIN € ..ot bbb bbbt 19
BULEONS TESEIN PYINON.....cviiii ettt et st s re e e 19
TESHING TNE LEDS ...ttt bbbttt st b 20
LEDS TESEIN C..ee ettt bbb nas 21
LEDS TESt N PYINON ...ttt 22
QIS0 N 1L TSSO ST PSRRPTRORRIN 23
BULIEA TESE N C ..t bbbttt bbb e s e 24
BUtled TESE IN PYLNON.......iiiicce e ettt s re e re e 24

OPEN COIIECION DIV ...ttt bbb bttt ettt st b e enes 24

Testing the Open COlECION DIIVELScvciiiieece ettt st st esbe e sresre e b sre s 25
(@] oLt @fo] | I=Tod (o] g I =T A 1o I ST PRRST 26
Open Collector TESE iN PYTNON........coiiiiicis s 26

MOTOT CONEIOTIEE ...ttt n e n e 27

Testing the MOtOr CONIOIIET ..o 28
IMIOTOT TESEIN €.ttt n e 29
IMOTOE TESES TN PYENON ...ttt ettt b 30

Digital to Analogue and Analogue to Digital CONVEIEIScccviieiieeeie e 32
Digital t0 ANAIOGUE CONVEITETcviteieieiieisiesie sttt bbbttt sttt 32
ANalogue t0 DIgital CONVEITENoieee ettt ettt sre e steeeeseeenes 33
TeStiNG the DIA NG A/D ...t 33

(D AN g Lo I AV B (= 3 [I ORI 35

D/A and A/D teStS iN PYLNON.......cooiiii ettt s re e 36
COMDINEU TESES ...ttt et b bbbt b e e ettt b b e nen e 38
A/D and MOotor CONIOIIETocooiiiiiiii s 38
POLMOT TESEIN € .ottt n e nen e 39
POLMOL EST IN PYENON ...t 39
DIBCOTET ...ttt bbb bRt 40
DECOAET TESE IN € ..ttt bbbttt b b n e nen e 40
ATMEGA DEVICE ...ttt st et e b e st e e te e be s ae e e e s be e st e sbesteenbesbeereebesaeeneenreans 41
Programming the ATIMEGA.coveiiiiiiiie ittt sttt b enes 41
Arduino Pins on the Gerthoardccoiiiiiiiicc s 42

A Few SKetChes 10 Gt YOU GOINGcviiiiriiiiiieieiisie sttt 42
Uploading Sketches USiNg the SPIBUS ..o s 43
BIINK SKEICN ...t 43
BULEON SKETCN ...ttt nn e 44
ANAIOGINPUL SKEIC ..o st be s e be e et e s be e e sreenes 46
AnalogReadSerial Sketch USing MINICOMcooiiiiiiiiiiiiie e 47
LEDMELEr SKEICN ...t 48
GOING FOMWAIT ...ttt bbbttt ettt sttt ne s n e 50

FOr MOTE INFOIMEALION ...ttt anes 50
APPENTIX AL SCNEIMALICS. ...ttt bbbttt ettt n e 50

Gertboard Overview

MR

i
m

out

n the U
L] I %

g;a.;: Hade 1
; 3K _.-..mmnuu“ <

Figure 1: Gertboard and Raspberry Pi

The Gertboard is an input/output (1/O) extension board for the Raspberry Pi computer. It fits onto the
GPIO (general purpose 1/0) pins of the Raspberry Pi (the double row of pins on the upper left corner)
via a socket on the back of the Gertboard. A bit of care is required when putting the two devices
together. It is easy to insert just one row of pins into the socket, but all of the pins need to be
connected. The Gertboard gets its power from those GP1O pins, so you will need a power supply for
the Raspberry Pi (RPi) that is capable of supplying a current of at least 1A.

The Gertboard has collection of functional blocks (the major capabilities of the board) which can be
connected together in a myriad of ways using header pins. The functional blocks are:

e 12x buffered I/0

e 3X pushbuttons

e 6x open collector drivers (50V, 0.5A)

e 18V, 2A motor controller

e 28-pin dual in line ATmega microcontroller

e 2-channel 8, 10, or 12 bit Digital to Analogue converter
e 2-channel 10 bit Analogue to Digital converter

The location of these blocks on the Gertboard is shown in Figure 2.

S Tal TN gt
i ‘R[uﬁ‘ (1N In-------ﬁm@

iy f G4 hia 10‘

=
g
A
A
]

T K1 O] R LT G oloolo o el
‘""J'—"""'"""s; S L Bg%w
X 39 oyt !.U.,__EK‘ 00 lo.ol:]
l]C*E" X oXe) PXeXe)
:' 39-UHHQDQQ mm@m
v 0 0lo 0jo © Ol
b 222 oy
- SgUouonoonoew
. B, i o of 3l sl L
e B o ~ o2 o a7 . ,-,
3 v 4 o[m w) Em :
N e Ty
v o Eil“ ﬂ—i!
3 v :
S »r =
. Q
|:] buffered 1/O (+ switches and LEDs) ' | Atmel ATmega chip
open collector driver |:| GPIO pins
I: motor controller i A to D and D to A converters

Figure 2: Functional blocks diagram: the key blocks are identified by coloured boundary marking. Please note that
the appearance of some components can vary.

This annotated photo of a populated (fully assembled) Gertboard shows where the functional blocks
are located. Some of the blocks have two areas marked. For example, the turquoise lines showing the
Atmel ATmega chip not only surround the chip itself and the header pins next to it (on the lower left)
but also surround two header pins near the bottom of the board, in the middle. These two pins are
connected to the Atmel chip and provide an easy way to interface the GP1O signals from the
Raspberry Pi (which are in the black box) with the Atmel chip.

There is no connection (other than power and ground) between the different functional blocks on the
Gertboard. The many headers (the rows of pins sticking up from the board) allow you to make these
connections, using straps and jumpers. See Figure 11 on page 18 for an example of how these are
used to connect the various blocks together.

Figure 3: Photograph showing straps (the coloured wires) above, and jumpers below. Straps connect two parts of
Gertboard together, whilst jumpers conveniently connect two adjacent pins together.

Labels and Diagrams

As you get to know the Gertboard and make connections between the various blocks, you will be
guided extensively by the white labels on the circuit board. At this point, we would like to introduce
the diagram, shown in Figure 5, which we will use to show you how to wire up your Gertboard for the
test programs.

‘ o= MOTA IOTB lOT y
S.Lg.Lg.LgJ.;.Lg.L‘ @ D 793

R201.R212->{Tm

JZBT th
="

B 3020 { ! 3 - ml-—l—-‘]

DAY 1 aah----lﬂfuﬂ
DAC ° Lo =1 SR L “
PBE ~ | A i 4

04

PBE - VOO O O w

pas - ' S EGA00aS ’EEIE]

PB:
PBY * ‘ 4 pe Iff 8781

PBE gy LLAY 1 mE] o' a e ¥

PD? =
PDE - - 28 u.aoﬁcog

D) © B
PO - | v " mEzEaEIjmow
PD4 |
PD?
PD?
PD!
POC
PCE v
PC/4 C|5 C
Pg.‘ : Ras
PC’ Gertboord
PC1 ; ,. 21 Oct. 2012
PCC =

18 1 14
.uu "mal 3V3 F@get;?gg;r

G uo

Figure 4: Photograph of the Gertboard

E o2 g P ez 2 E B L MOTA MOTB MOT+
Vi Bl LlELELalalazlalalEladlal F1__ Fuse max. 2A
iss) | o]
R201.R212->[@ B[o]0 5] 5[0 5] o[5]e 5] of¢ 5]c S[c SR212 4
o0 elelelelelolelolelololololololololelolelolelole]
J28 ¢ LMHD-ZIEULB%W;DJ? UuU‘S R113D6 R114D7R115IW|R11SD9R121%7!D11W4 |_|
AD1 2] . . o o out |a| .
ADO [@e]° o[° o] N
C20 ‘—ﬁ ‘—ﬁ ‘—ﬁ u7
DA1 I: :I Rﬁ R126 R127
0A0l® [O] 1] A [e]) | 3v3|:| ut2
PB5]]
PB4 us U4
PB3 c9 Bl _B2outB3 B4RI0 Ri12
PB2 2 o E3[° o]0 oo o[° 9] coco oo BGNDD
PB1 el 85 86 I'-' ;7
t
PBO U3| | ou
PD7 1= co[@ T)e o0 ofe o]
PD6 .
PD5 O] Ri01[S TS T)[E I:|R10"u5| | .
o 0 0P ofe o o] B
JNi < (= E]
PD3 B1 B2 in B3 B4 T I_zl]
o o| o |], EEESEE Tk v A
i] " pBessel
p— = 15 <
oojo o| L 1o] B S RIE8aBBREs ~x ssoyoelol, £
PC5 19]19] cdagd 2 EE2E & x|
EFEIN=ESITOo 0 Eaxocanx JBE]
PC4) Cis Cl6 . waE o o oo 8 124 D20
PC3 283 Rospberry Pi | |J2 | [T]r2 &IU_T :(I)S
PC2 e Gertboard TEmN-ERESsSes -5 oK
PC1 g2 210ct. 2012 E5555555555556868585 5V
PO 238 mi " '_‘ | t
€3]
o 7 ol®l [CO13 t7 [c

Figure 5: Diagram representing a bare Gertboard circuit board. The blue elements correspond to the white lines and
text, and the gray elements correspond to the silver coloured pads.

The diagram in Figure 5 is created from the files that were used to design the Gertboard circuit board.
The blue in the diagram is generated from the silkscreen file, which indicates where the white text and
lines on the circuit board will be. The grey in the diagram is generated from the solder mask file,
which roughly corresponds to where the silver conductive areas on the top of the circuit board will be.
We will be using this blue and grey diagram as a basis for our wiring diagrams, which show you the
pins that need to be connected together for each of the test programs. We use these diagrams because
they are much clearer than a photo of the fully assembled board.

Have a close look at the white text on the photo of the Gertboard in Figure 4 (or the white text on your
own board or the blue text in the diagram in Figure 5). These labels provide information that is
required in order to connect together the various blocks of the Gertboard. Almost all of the
components have labels, and more importantly, the pins in the headers have labels. It isn’t necessary
to be too concerned about many of the components, such as resistors and capacitors (labelled with Rn
and Cn, where n is some number). However the labels for headers, integrated circuits, diodes, and
switches are important.

Diodes are labelled Dn. The ones that you will be interested in are D1 through D12, the LEDs (light
emitting diodes). The LEDs are near the top of the board, on the left. The labels for them are a bit
crowded. Each LED has a resistor next to it and thus each label Dn has an Rm next to it. The LEDs
are easy to find when you have the board powered up, as they are a row of bright red lights. See
below, in the section Power on the GertboardPower (page 9) for information on how to provide
power to the Gertboard.

Pushbutton switches are labelled S1, S2, and S3 (they are located just beneath the LEDs).

8 7 6 5 20 19 18 17 16 15 14 13 12 11

o000 Oo0oo00o0o000do
D D

oo oao Oooo0oo0ooooooad

1 2 3 4 1 2 3 4 5 6 7 8 910

Figure 6: Two examples of ICs — an 8-pin and a 20-pin dual-inline package (DIP). In this package style, pin 1 is always
identified as the first pin anticlockwise from the package notch marking.

Integrated circuits (also known as ICs or chips), are marked Un. For example the I/O buffer chips are
U3, U4, and U5 (these are near the middle of the board), while the Atmel microcontroller is U8 (this
is below and to the left of U3 to U5). It is important to understand IC pin numbering. If the chip is
orientated so that the end with the semi-circle notch is to the left, then pin 1 is the leftmost pin in the
bottom row. Pin numbers increase in an anti-clockwise direction from there, as shown in Figure 6.
Knowing this means that the schematics in Appendix A can always be related to the pins on the ICs
on the Gertboard.

Headers (the rows of pins sticking up from the board) will be a frequently used component on the
Gertboard. They are labelled Jn. For example, there is a collection of headers along the left edge of
the board. They allow you to access the three chips on the left side of the board: J28 on top for the
analogue to digital chip, J29 below that for the digital to analogue chip, and J25 below that for the
Atmel microcontroller. It is a bit difficult to see the boundary between these headers on a fully
assembled board; it’s much clearer on the blue and grey diagram in Figure 5. On the Gertboard circuit
board, each header with more than two pins has pin 1 marked with a square around it and a dot next to
it. The dot is most useful on the assembled board, but these dots don’t appear in the blue and grey
diagram, so you can use the squares to find pin 1 there.

Not everything labelled Jn is a collection of pins. J1, at the bottom of the board, is the location of the
socket that connects the Gertboard to the Raspberry Pi. J19, at the top of the board (right of centre) is
a block of screw terminals that allow you to easily connect wires from a power supply and a motor.

Power on the Gertboard

Power pins are marked with their voltage, e.g. 5V or 3V3 (this means 3.3V). A 5V power supply
comes onto the board from the Raspberry Pi, and if you need this voltage it can be accessed from the
lower pin (marked 5V) on header J24 on the lower right-hand corner of the board. Ground is marked
with GND or a L symbol.

The supply voltage (the voltage that acts as high or logical 1 on the board) is 3.3V. This is generated
from the 5V power pin in the J1 header by the components in the lower right corner of the board. To
send the 3.3V power supply to the components on the Gertboard, you need to install a jumper over the
top two pins of the header J7. It is near the lower right corner of the board; see the photo and diagram
in Figure 7. The open collector and motor controllers can handle higher voltages and have points to
attach external power supplies.

Figure 7: Power jumper installed in header J7: photo on left, diagram on right

The diagram on the right of Figure 7 above is our first example of a wiring diagram based on the blue
and grey circuit board diagram. These diagrams indicate pins via black circles around the locations of
pins on the board, and show connections as black lines between the circles. The diagram does not
indicate directly whether the two pins should be joined by straps (wires) or jumpers. Generally, if the
two pins are right next to each other, use a jumper, and if they are further apart, use a strap.

GPIO Pins

The header J2, to the right of the text ‘Raspberry Pi Gertboard” on the board, provides access to all the
I/0O pins on the GPIO header. There are 26 pins in J1 (the socket which connects the Gertboard to the
Raspberry Pi) but only 17 pins in J2: 3 of the pins in J1 are power (3.3V and 5V) and ground, and 6
are DNC (do not connect). The labels on these pins, GP0, GP1, GP4, GP7, etc, may initially seem a
little arbitrary, as there are some obvious gaps, and the numbers do not correspond with the pin
numbers on the GPIO header J1. These labels are important however: they correspond with the signal
names used by the BCM2835, the processor on the Raspberry Pi (RPi). Signal GP1On on the
BCM2835 datasheet corresponds to the pin labelled GPn on header J2. At least, this was true of the
first version of the Raspberry Pi (“rev1”). Starting in September 2012, revision 2 Raspberry Pis
(“rev2”) were starting to be shipped. On the rev2 RPis, some of the GPIO pins have been changed.
The GPIO port that used to be controlled by GP1021 is now controlled by GP1027, and the ports that
used to be controlled by GPIO0 and GPIO1 are now controlled by GP102 and GPIO3. The rest have
remained the same. The first three columns of Table 1 below summarize the current situation.

Some of the GPIO pins have an alternate function that are made use of in some of the test programs.
These are also shown in Table 1, in the last two columns. The ports that have nothing in the “Alt
function” column are only used as general purpose input/output in the code. In the C test programs,
we use macros to gain access to the alternative functions of the GPIO ports. This is explained in the
section on analogue to digital and digital to analogue converts (D/A and A/D tests in C, page 35). In
Python, we use packages to provide access to the alternative functions.

We mention the I1°C bus use of GP100 and GPIO1 (or GPIO2 and GPIO3 for rev2 RPis) in Table 1
not because the 1°C bus is used in the test programs, but because each of them has a 1800Q pull-up
resistor on the Raspberry Pi, and this prevents them from being used with the pushbuttons (see the
section on Buffered I/O, LEDs, and Pushbuttons for more information).

10

Label on GB | Port on RPil | Port on RPi2 | Alt function (which alt) Purpose
GPO GPIO0 GPI102 SDA PC bus
GP1 GPIO1 GPIO3 SCL
GP4 GPIO4 GPIO4
GP7 GPIO7 GPIO7 SPI_CE1_N (alt 0)

GP8 GPIO8 GPIO8 SP1_CEO_N (alt 0)

GP9 GPIO9 GPIO9 SPI_MISO (alt 0) SPI bus
GP10 GPIO10 GPIO10 SP1_MOSI (alt 0)

GP11 GPIO11 GPIO11 SP1_SCLK (alt 0)

GP14 GPI1O14 GPIO14 TXDO (alt 0) UART
GP15 GPIO15 GPIO15 RXDO (alt 0)

GP17 GPI10O17 GPIO17

GP18 GPIO18 GPIO18 PWMO (alt 5) pulse width modulation
GP21 GPIO21 GPI0O27

GP22 GPI022 GPI1022

GP23 GP1023 GPIO23

GP24 GPI1024 GP1024

GP25 GPI1025 GPI025

Table 1: GPIO ports corresponding to “GP” labels, and alternative functions of GPIO ports
(GB means Gertboard, RPi1 means Raspberry Pi revl, RPi2 means Raspberry Pi rev2)

Schematics

Whilst there are some circuit diagrams, or schematics, in the main body of the manual for some of the
functional blocks of the board, they are simplifications of the actual circuits. While these simplified
diagrams and the explanations in the text will be good enough for most uses of the Gertboard, there
will occasionally be questions that can only answered by knowing exactly what is on the board. Thus
we have attached the full schematics at the end of this manual as Appendix A. These pages are in
landscape format. The page numbers A-1, A-2, etc, are in the lower left corner of the pages (if you
hold them so that the writing is the right way up).

Test Programs Overview

There are test programs for the Gertboard written in C and in Python. C provides the most direct
access to the Gertboard functionality, but it is not a language that is very accessible to the beginner
programmer. Several packages have been written to allow Python code to access the Raspberry Pi
GPIO pins and alternative functions of these pins such as Serial Peripheral Interface (SPI) bus and
pulse width modulation (PWM). Using these packages, you can access most of the functionality of the
Gertboard with Python. At the time of writing, the only major functional block that (to our
knowledge) cannot be programmed with Python is the Atmel microcontroller.

C Code Overview

To download the Gertboard C software, goto http://www.elementl14.com and search for
“Gertboard” using the box at the top of the screen. The link you want will probably be called
something like “Application Library for Gertboard”. From there you can download the file containing
the C code; it will have a name like gertboard sw 20120725.zip. Asyou can tell by the file
extension . zip, this is a zip file, which means that it is a compressed collection of different files, all
packed together into a single file.

11

http://www.element14.com/

To retrieve the original software, put the file where you want your Gertboard software to end up on
your Raspberry Pi computer, then extract the files by typing the following in one of the terminal
windows on your RPi (substituting the name of the actual file you have downloaded for the file name
we are using in this example):

unzip gertboard sw 20120725.zip

A new directory, gertboard sw, will be created. Change to this directory (by typing cd
gertboard sw) and list the contents (1s). You will see a set of C files and a makefile. C files are
software files, but they need to be compiled to run on the processor on your system. In the case of
Raspberry Pi, this is an ARM11. The makefile tells the computer how to compile the code, so all
you need to do it type:

make all

This compiles the C code into executable programs. To run a program (for example the program
leds which tests the LEDs), type:

sudo ./leds

The sudo is there because accessing the GPIO ports requires special privileges, and so you need to
make an extra effort (by typing sudo) to execute it. The . / before 1eds means that the program
leds isinthe current directory.

Each functional block has at least one test program that goes with it. Each test program is compiled
from two or more C files. The file gb_common . ¢ (which has an associated header file

gb common . h) contains code used by all of the functional blocks on the board. Each test hasa C

file that contains code specific to that test (thus you will find the main function here). Some of the
tests use a special interface (for example the SPI bus), and these tests have an additional C file that

provides code specific to that interface (these files are gb _spi . c for the SPI bus and gb_pwm for
the pulse width modulator).

In each of the sections about the individual functional blocks, the code specific to the tests for that
block is explained. Since all of the tests share the code in gb_common. ¢, an overview of that code
will be given here. In order to use the Gertboard via the GPIO, the test code first needs to call
setup_io. This function allocates various arrays and then calls mmap to associate the arrays with
the devices that it wants to control, such as the GP10O, SPI bus, PWM (pulse width modulator) etc.
The result of this is that it writes to these arrays control the devices or sends data to them, and reads
from these arrays get status bits or data from the devices. At the end of a test program, restore io
should be called, which undoes the memory map and frees the allocated memory.

Macros

Ingb _common.h, gb spi.h,and gb_ pwm.h there are a number of macros that give a more
intuitive name to various parts of the arrays that have been mapped. These macros are used to do
everything from setting whether a GPIO is used as input or output to controlling the clock speed of
the pulse width modulator.

12

Macro name T Explanation Page no.
INP_GPIO (n) E activates GPIO pin number n (for input) 13
OUT GPIO (n) E used after above, sets pin n for output 13
SET_GPIO_ALT (n, a) | E | used after INP_GPIO, select alternate function for pin 29
GPIO PULL W set pull code 19
GPIO_PULLCCLKO w select which pins pull code is applied to 19
GPIO INO R get input values 19
GPIO SETO w select which pins are set high 21
GPIO CLRO w select which pins are set low 21

Table 2: Commonly used macros, their type, purpose, and location within this manual.

Table 2 shows a summary of the more commonly used macros and gives the page number on which
its use is explained in more detail. The T column below gives the ‘type’ of the macro. This shows how
the macro is used. ‘E’ means that the command is executed, as in:

INP _GPIO(17);

‘W’ means that that the command is written to (assigned), as in:
GPIO_PULL = 2;

‘R’ means that that the command is read from, as in:
data = GPIO_INO;

The macro INP_GPIO (n) must be called for a pin number n to allow this pin to be used. By default
its mode is set up as an input. If it is required that the pin is used for an output, OUT GPIO (n) must
be called after INP_ GPIO (n).

Python Code Overview

The Python software (along with the bits of this manual describing the Python programs) was written
by Alex Eames of Raspi.TV. We are very grateful to him for his help.

This software is written in Python 2.7 and is compatible with all current revisions of the Raspberry Pi
computer and Gertboard. It requires sudo user privileges to use the SPI and GPIO ports.

The Python code relies on several packages to access the various functions of the Gertboard. To use
the GPIO ports you need to have either RPi.GPIO or WiringPi for Python installed (or both). To use
the digital to analogue and analogue to digital converters, which use the SPI bus, you need to install a
module called py-spidev. Instructions for how to do this are included with the Python programs.

Downloading the Software

To obtain the Python Gertboard software with a browser or on a computer other than your Raspberry
Pi, visit http://raspi.tv/downloads. To get it directly on your internet-connected Raspberry Pi, first
change directory to where you want the programs installed, then from the command line type:

wget http://raspi.tv/download/GB Python.zip

This should download the small file GB_ Python. zip. Then type:

13

http://raspi.tv/downloads

unzip GB Python.zip
cd GB Python
1ls

The 1s lists all the files in the directory. Most of them end in . py and are Python programs. The file
README . txt contains (amongst other info) instructions on how to install the packages you need to
run the Python programs.

Once you have the necessary packages installed, you can run the programs. For example, if want to
run the program leds-rg.py, Which tests the LEDs (using the RPi.GPIO package, see below) type:

sudo python leds-rg.py

Why Different Program Versions?

There are two General Purpose Input Output (GP10) packages for Python: RPi.GPIO and WiringPi
for Python. The programs that come in two versions (like leds-rg.py and leds-wp.py) are
using these different packages.

It is desirable to have the both these packages because neither of them yet offers a fully finished set of
capabilities (but most of the capabilities are covered between them). RPi.GPIO’s weakness is the lack
of hardware PWM (pulse width modulation) used with the motor program. WiringPi’s weakness is the
lack of pull-up facility required to use the buttons. If you want to use the full functionality of the
board you will need to install both. For some of the programs (for example, 1eds and ocol) no
special features are used, and you can use either package. The programs using the RPi.GPIO package
are the ones called rilename-rg.py, whilst the ones using the WiringPi for Python package are
the ones called £i lename-wp.py.

Here is a list of all the Python test programs (at time of writing):

buttons-rg.py — buttons program using RPi.GPIO

leds-rg.py — leds program using RPi.GPIO

leds-wp.py — leds program using WiringPi

butled-rg.py — button and LED program using RPi.GPIO
motor-rg.py — motor program using software PWM and RPi.GPIO
motor-wp.py — motor program using hardware PWM and WiringPi
ocol-rg.py — relay switching program using RPi.GPIO
ocol-wp.py — relay switching program using WiringPi

atod.py — test for analogue to digital converter using SPI with spidev
dtoa.py — test for digital to analogue converter using SPI with spidev
dad.py — test for both D/A and A/D using SPI with spidev

potmot . py — test using A/D and motor using WiringPi and spidev

Buffered 1/0, LEDs, and Pushbuttons

There are 12 pins which can be used as input or output ports. Each can be set to behave either as an
input or an output, using a jumper. Note that the terms ‘input’ and ‘output’ here are always with
respect to the Raspberry Pi: in input mode, the pin inputs data to the RPi; in output mode it acts as

14

output from the RPi. It is important to keep this in mind as the Gertboard is set up: an output from the
Gertboard is an input to the Raspberry Pi, and so the input jumper must be installed.

Raspi O I 3.3V

input I: é) 74xx244 (!) :loutput 10k
i«ﬁ | 0 1/0
rZ

Figure 8: The circuit diagram for 1/O ports 4-12.

The triangle symbols in the diagram above represent buffers; they propagate logical values (low and
high) in the direction the triangle is pointing. The rectangles are resistors, the black triangle and line
with arrows coming out is an LED, and the hollow circles are header pins. In order to make the port
function as an input to the Raspberry Pi you install the input jumper (shown in the diagram as a staple
shape labelled ‘input’): then the data flows from the ‘I/O’ point to the ‘Raspi’ point. To make the port
function as an output, the output jumper must be installed: then the data flows from the ‘Raspi’ point
to the ‘I/O’ point. If both jumpers are installed, it won’t harm the board, but the port won’t do
anything sensible.

In both the input and output mode the LED will indicate what the logic level is on the ‘I/O’ pin. The

LED will be on when the level is high and it will be off when the level is low. There is a third option
for using this port: if neither the input nor output jumper is placed the 1/O pin can be used as a simple
logic detector. The 1/O pin can be connected to some other logic point (i.e. one that is either at OV or
3.3V) and the LED will show if the connect point is high or low.

The resistor on the right side of Figure 8 is a pull-up. If it were not there, the LED would turn off and
on with the smallest of electronic changes, for example, when the board is simply touched. Turning
the LED on when it is not being driven prevents this seemingly random behaviour and also serves as
an indicator that your Gertboard is receiving power properly. Note that if the output jumper is
installed but the ‘Raspi’ point is not driven, the random behaviour will return.

There is a series resistor between the input buffer (the left-pointing triangle) and the ‘Raspi’ point.
This is to protect the BCM2835 (the processor on the Raspberry Pi) in case the user programs the
GPIO as output but leaves the input jumper in place. The BCM2835 input is a high impedance input
and thus a 1K series resistor will not produce a noticeable change in behaviour when it is used as
input.

Pushbuttons

The Gertboard has three pushbuttons; these are connected to ports 1, 2, and 3. The circuit for these
ports is shown in Figure 9. This circuit is essentially the same as that in Figure 8 with the addition of a
pushbutton switch and resistor on the left side. When the button is pressed, the ‘Raspi’ point is
connected to ground (through a resistor) and so reads low.

15

3.3V

input |: 74xx244 :loutput 10k

1k 1k ? O 1/0

5

=3

o
O_

Figure 9: The circuit diagram for 1/0O ports 1, 2, and 3 (with pushbutton).

In order to use a pushbutton, the input jumper must not be installed, even if the intention is to use this
as an input to the Raspberry Pi. If it is installed, the output of the lower buffer prevents the pushbutton
from working properly. To make clear what state each button is in, the output jumper can be
installed, and then the LED will now show the button state (LED on means button up, LED off means
button down). To use the pushbuttons, a pull-up must be set on the Raspberry Pi GP1O pins used
(described below, page 19) so that they are read as high (logical 1) when the buttons are not pressed.

Locating the 1/O Ports on the Gertboard

In the functional blocks location diagram (Figure 2 on page 6), the components implementing the
buffered 1/O are outlined in red. The ICs containing the buffers are U3, U4, and U5 near the centre of
the board. The LEDs are labelled D1 to D12; D1 is driven by port 1, D2 by port 2, etc. The
pushbutton switches (the silver rectangular devices with black circles) are labelled S1 to S3; S1 is
connected to port 1 and so on.

The pins corresponding to ‘Raspi’ in Figure 8 and Figure 9 above are B1 to B12 on the J3 header
above and to the right of the words ‘Raspberry Pi’ on the board (B1 to B3 correspond to the ‘Raspi’
points in Figure 9, and B4 to B12 correspond to the ‘Raspi’ points in Figure 8). They are called
‘Raspi’ because these are the ones that are usually connected to the pins in header J2, which are
directly connected to the pins in J1, and which are then finally connected to the GPIO pins on the
Raspberry Pi. The pins corresponding to the ‘I/O’ point on the right of the circuit diagrams above are
BUF1 to BUF12 in the (unlabeled) single row header at the top of the Gertboard.

On the Gertboard schematic, I/O buffers are on page A-2. The buffer chips U3, U4, and U5 are clearly
labelled. It should be clear that ports 1 to 4 are handled by chip U3, ports 5 to 8 by chip U4, and ports
9 to 12 by chip U5. The ‘Raspi’ points in the circuit diagrams above are shown as the signals BUF_1
to BUF 12 on the left side of the page, and the ‘I/O’ points are BUF1 to BUF12 to the right of the
buffer chips. The input jumper locations are the blue rectangles labelled P1, P3, P5, P7, etc to the left
of the buffer chips, and the output jumper locations are the blue rectangles labelled P2, P4, P6, P8,
etc, to the right of the buffer chips. The pushbutton switches S1, S2, and S3 are shown separately, on
the right side of the page near the middle. Below the pushbuttons, the pull-up resistors are shown.

The buffered 1/O ports can be used with (almost) any of the GPIO pins; they just have to be connected
using straps. So for example, if you want to use port 1 with GP1O17 a strap is placed between the B1
pin in J3 and the GP17 pin in J2. Beware that the pushbuttons cannot be used with GP100 or GPIO1
(GPO and GP1 in header J2 on the board) as those two pins have a 1800Q pull-up resistor on the
Raspberry Pi. When the button is pressed the voltage on the input will be

16

3.3V x 10000 =12V
' 1000Q + 1800Q

This is not an 1/0O voltage which can be reliably seen as low.

The output and input jumper locations are above and below the U3, U4, and U5 buffer chips. The
input jumpers need to be placed on the headers below the chips (shown on the board with the ‘in’ text;
they are separated from the chip they go with by four small resistors), and the ‘output’ jumpers need
to be placed on the headers above the chips (with the ‘out’ text). If viewed closely (it is clearer on the
blue and grey diagram), it is possible to see that each row of 8 header pins above and below the buffer
chips is divided up into 4 pairs of pins. The pairs on U3 are labelled B1 to B4, the ones on U4 are B5
to B8, and the ones on U5 are B9 to B12. The B1 pins are for port 1, B2 for port 2, etc.

To use port n as an input (but not when using the pushbutton, if nis 1, 2, or 3), a jumper is installed
over the pair of pins in Bn in the row marked ‘in” (below the appropriate buffer chip). To use port n as
an output, a jumper is installed over the pair of pins in Bn in the row marked ‘out’ (above the
appropriate buffer chip).

| a8 050 it |,
L A
() LT L

], e o
co Bl Baoutps a4R1otIIIjR1
[-looooioo |- Pecno[
55 F‘L
U3 cio[@ 7] | | [

Ri01[@ D@ 2][@ T[@ T]r104 5
a1 (2. 2]0 o]e e]e 9]

Bl B2 in B3 B4

e Lo [715 75 75 o

E] [, 0000 1,

J— 5 —aNMTONO o =N
B9 BW jp BN B2 OOomMO@O@OO@O O Hna

-
~
<

8

!:igure 10: Example of port configuration where ports 1 to 3 are set to be outputs and ports 10 and 11 are set to be
inputs.

As a concrete example, in Figure 10 ports 1, 2, and 3 are configured for output (because of the
jumpers across B1, B2, and B3 on the ‘out’ side of chip U3). Ports 10 and 11 are configured for input
(because of the jumpers across B10 and B11 on the ‘in’ side of US5). Figure 10 also demonstrates why
we use diagrams instead of photos to show you how to wire up your Gertboard. The input jumper on
B10 is almost impossible to see because it is shorter than the others.

In the test programs, the required connections are printed out before the tests are started. The input
and output jumpers are referred to in the following way: U3-out-B1 means that there is a jumper

across the B1 pins on the ‘out’ side of the U3 buffer chip. So the 5 jumpers in the picture above would
be referred to as U3-out-B1, U3-out-B2, U3-out-B3, U5-in-B10, and U5-in-B11.

Testing the Pushbuttons

There are test programs for the buttons in both C and Python. The C version is called buttons, and
the Python version is called buttons-rg.py. To run these tests, the Gertboard must be set up as in
the photo in Figure 11. (The wiring diagram in Figure 12 shows the same thing more clearly.) There
are straps connecting pins B1, B2, and B3 in header J3 to pins GP25, GP24, and GP23 in header J2
(respectively). Thus GP1025 will read the leftmost pushbutton, GP1024 will read the middle one, and

17

GP1023 will read the rightmost pushbutton. The jumpers on the ‘out” area of U3 (U3-out-B1, U3-out-
B2, U3-out-B3) are optional: if they are installed, the leftmost 3 LEDs will light up to indicate the
state of the switches.

.1.‘5 .Lg .L. L MOTA MOTB MOT+

7 U

{
¢

|
4

a3

(L9
LY n2272 4 'I'.
| 4 E n
= RN

ui2 >

o >

o e

g4

goepOOE
S)

B =

Figure 11: Photo showing connections for the buttons test. Whilst the image above is clear, it isn’t very good at
showing exactly how the straps and jumpers are placed.

T 22 e e e g & EE L MOTA MOTB MOT+
VI FlRllialilelilidladlElidladl F1 Fuse max. 2A
R201.R212->[@ ©f© :II: I oe I :ll: I I oe I :ll: :|R212 19
[l [ol
Am E LDTHWLTO!D}%IW;MUJWDG R114D7R11508rlﬁgwllu7lilﬂﬂ‘!lb'ﬁllﬂ%2lm] D
o o s3 I_as_l_an_l_w_l_an_l = -
32? £ S Rﬁ’ R126 R127 v o
DAO_EJZCPJ Jﬁ [l L D L | | SVSEI vz
PB5 —03
PB4 us = m .
PB3 BI___B2out B3 B4R10| RI12 5
o o| = E5l00000r] E T G,
PBI ﬁauw o
B6
o) | oo A .
PD7 L @] e
PD6
PD5 B w01 [E TE TIE :IE:|R'°4U5| | g
PD4 Xt [—
J i o) Iﬁl E
PD3 B1 B2 in B3 B4
e l— RSE 8 4 o i e = I
PD1
2] , 5 [0[6 06 006] S
s R“C'ﬁl B EExgmox sepyR Ol c|4::|
hr S 588885 8=p d@@daz [o)ir]
0 o O
PC3 2gs Raspberry Pi oo d64 1S O = SIJZI [E TR D21 :Ic6
B0 R1
pot Bs50| 570202 SOSDSESEESEEESEsE ey |
= - . E53535SSSTST SO0 S
PCO_JTJ: 338 mi J1|_| | 8]
% A0
GNTD us D19u |:|3V3 ©7 [C

Figure 12: Wiring diagram for buttons test. This type of diagram is much more effective at showing the connections
that need to be made, so from now on, we will use these diagrams to show wiring arrangements.

18

In the diagram in Figure 12, black circles show which pins are being connected, and black lines
between two pins indicate that jumpers (if they are adjacent) or straps (if they are further apart) are
used to connect them.

Buttons Test in C

The code specific to the buttons testis buttons.c. Inthe main routine, the connections
required for this test are firstly printed to the terminal (a text description of the wiring diagram above).
When the user verifies that the connections are correct, setup_io (described on page 12) is called
to get everything ready.

setup gpio is then called, which gets GPIO pins 1 to 3 ready to be used as pushbutton inputs. It
does this by first using the macro INP_GPIO (n) (where n isthe GPIO pin number) to select these 3
pins for input.

Then pins are required to be pulled high: the buttons work by dropping the voltage down to 0V when
the button is pressed, so it needs to be high when the button is not pressed. This is done by setting
GPIO PULL to 2, the code for pull-up. Should it ever be required, the code for pull-down is 1. The
code for no pull is 0; this will allows this pin to be used for output after it has been used as a
pushbutton input. To apply this code to the desired pins, set GPIO PULLCCLK0 = 0xX03800000.
This hexadecimal number has bits 23, 24, and 25 set to 1 and all the rest set to 0. This means that the
pull code is applied to GPIO pins 23, 24, and 25. A short_wait allows time for this to take effect,
and then GPTO PULL and GPIO PULLCLKO are set back to 0.

Back in the main routine, a loop is entered in which the button states are read (using macro

GPIO INO), grabbing bits 23, 24, and 25 using a shift and mask logical operations, and, if the button
state is different from before, it is printed out in binary: up (high) is printed as ‘1’ and down (low) is
printed as ‘0’. This loop executes until a sufficient number of button state changes have occurred.

After the loop, unpull pins iscalled, which undoes the pull-up on the pins, then call
restore ioingb common.c to clean up.

Buttons Test in Python

This program (buttons-rg.py) is only available using the RPi.GPIO package at the moment
because the pull-up facility in WiringPi for Python is not yet available. The buttons cannot be used
without this facility.

First the program imports the RPi.GP1O module it needs to handle GPIO control. Then the command
GPIO.setmode (GPIO.BCM) sets up the BCM numbering scheme for the pins. The result of this is
that the pin numbers in the Python code are the numbers that the BCM2835 (the Raspberry Pi
processor) uses to refer to the pins. Otherwise, the numbers in the Python code will refer to the pin
numbers in the J1 header (which is the same as their placement in the P1 header on the RPi).

The next two lines set up ports 23-25 with pull-up:

for i in range(23,26):
GPIO.setup (i, GPIO.IN, pull up down=GPIO.PUD UP)

19

Note that because of the way Python for loops work, the end point of the loop must be set to one
beyond the last item in the range that you want to cover. So in order to set port 25, the end point of the
loop command must be set to 26.

Next, the wiring instructions appear on the screen. Once the user confirms that the wiring is ok, the
initial values for variables button press and previous_ status are set.

Next a while loop runs until 19 button presses/releases have occurred. For each iteration of this
loop, the status of each button is read and, if pressed, a 1 is stored in a list variable called
status_list. If not pressed, a 0 is stored.

Thenthe status_1ist values are all checked against the previous status. Ifthere’s a
change, this line

if current status != previous status:

executes a small section of the program that displays the new values on the screen, increments the
value of the iterator button_press, and the loop starts again from the top. Now it’s one button
press closer to the end-point of 19.

The while loop is enclosed in a try block:

try:
<while block>
except KeyboardInterrupt:

This enables the program to reset the ports if CTRL+C is pressed to terminate the program early.

If the program ends normally, after 19 button presses, the ports will be reset anyway. If we hadn’t
included the try: except: block, a keyboard interrupt (ctrl-c) would close the program but leave
the ports open. This would give errors if you tried to use the ports again.

Suggested tweaks to experiment with. Try changing these one at a time and see what they do...

e while button press < 20: —change the 20 to some other number
e Dbutton press += 1-change the 1tosome other number

Testing the LEDs

The C test program for the LEDs is called 1eds. The Python versions are 1eds-rg.py and
leds-wp.py. To set up the Gertboard to run this test, see the wiring diagram in Figure 13. Every
1/O port is connected up as an output, so all the ‘out’ jumpers (those above the buffer chips) are
installed. Straps are used to connect the following (where all the ‘GP’ pins are in header J2 and all the
‘B’ pins are in header J3): GP25 to B1, GP24 to B2, GP23 to B3, GP22 to B4, GP21 to B5, GP18 to
B6, GP17 to B7, GP11 to B8, GP10 to B9, GP9 to B10, GP8 to B11, and GP7 to B12. In other words,
the leftmost 12 ‘GP’ pins are connected to the ‘B’ pins, except that GP14 and GP15 are missed out:
they are already set to UART mode by Linux, so it’s best if they are not touched.

20

If there aren’t enough jumpers or straps to wire these connections all up at once, don’t worry. Just
wire up as many as possible and run the test. Once it’s finished the straps/jumpers can be moved and
the test can be run again. Nothing bad will happen if you write to an unconnected pin.

™ (=4 - o~

LT 2 g T B2 2 E T L MOTA MOTB MOT+
VI RlRlalalalalidladladladlaladl F1 Fuse max. 2A

0ol [el6oc69099¢699090292909099¢909 9]
RotLR22->S oo cfecfesfecfe ofe Sfe ofe ofc Ofc Ofc SRz 4
lelelslelolelelelolelolelslslelslslslelolslore]

UF
UF2

.

—

P == Llolclelclelolclololelelolejofololofelolololele) @]
J28 D1R105D2R106D5R107D R113D6 R114D7R115 D8R116DIR121D10R122D11 12R124 |_|
AD1 - ag OUt R Ra
51 52 53 6= 00000 ct 2
32? — [E2e20 g R127 22100090000 v 3
R126
DAO|© [0 g D B | o 3v3|: U2
PB5 [[=
PB4 e us -
PB3 c9 B B2outB3 B4RID) R112 S
e 000000000 - - - | .
Egz) I—la BS i B9 p10 outn B h
R T . o[~ Z/00I00/0000)
PD6
PD5] R101[© S[C T][C SIS SR04 5 B
PD4 X
PD3
e
PD1
9] @1
e I B R
PC4 . Ci5 C16 A
PC3 2= Raspberry Pi
PC2 322 Gertboard
PC1 e85 21 Oct. 2012
PCO I: 238 @l
GND s o2l EEBV

Figure 13: The wiring diagram for the LED test program

LEDs Test in C

The test code in 1eds. c first calls setup_io to get everything ready. Then setup gpio is
called, which prepares 12 GPIO pins to be used as outputs (as all 12 1/0 ports will require
controlling). All of the GPIO signals except GPIO 0, 1, 4, 14, and 15 are used. To set them up for
output, first call INP_GPIO (n) (where n is the GPIO pin number) for each of the 12 pins to activate
them. This also sets them up for input, so then call OUT _GPIO (n) afterwards for each of the 12 pins
to put them in output mode.

LEDs are switched on using the macro GPIO SETO: the value assigned to GPIO SETO will set
GPIO pin n to high if bit n is set in that value. When a GPIO pin is set high, the I/O port connected to
that pin goes high, and the LED for that port turns on. Thus, the line of code “GPIO_SET0 =
0x180;” will set GPIO pins 7 and 8 high (since bits 7 and 8 are set in the hexadecimal number
0x180). Given the wiring setup above, ports 11 and 12 will go high (because these are the ports
connected to GP7 and GP8), and thus the rightmost two LEDs will turn on.

To turn LEDs off, use macro GPIO CLRO. This works in a similar way to GPIO_SETO, but here the
bits that are high in the value assigned to GPTO_CLRO specify which GPIO ports will be set low (and
hence which ports will be set low, and which LEDs will turn off). So for example, given the wiring
above, the command “GPIO_CLRO = 0x100;” will set GPIO8 pin low, and thus turn off the LED
for port 11, which is the port connected to GP8. (In 1eds . c the LEDs are always all turned off
together, but they don’t have to be used this way.)

21

The test program flashes the LEDs in three patterns. The patterns are specified by a collection of
global arrays given values using an initializer. The number in each of the arrays says which LEDs will
be turned on at that point in the pattern — so, pattern value is submitted sequentially to produce the
changing pattern, switching all the LEDs off between successive pattern values. Each pattern is run
through twice. The first pattern lights the LEDs one at a time in sequence, left to right. The second
pattern does the same but when it reaches the rightmost LED, it then reverses direction and lights
them in sequence right to left. The third pattern starts at the left end and at each step switches on one
more LED until they are all lit up, then starting at the left it switches them off one by one until they
are all off.

Finally, the test program switches off all the LEDs and then finally calls restore io to clean up all
the LEDs to a predictable final state.

LEDs Test in Python

This test is available for both RPi.GPIO and WiringPi for Python. The only differences between the
leds-rg.pyand leds-wp.py programs are the ways the GPIO ports are driven and cleaned up,
and the Raspberry Pi board revision checker.

In the programs, first the Raspberry Pi board revision is checked and, based on the result, the correct
ports for the LEDs are defined in a list called ports. Since we need to go both forwards and
backwards, we then make a copy of the list, name it ports rev and reverse it. Then we set up the
ports for output by iterating through the list ports.

After that, we define the main "engine" of this script, the function 1ed drive (), which requires
three arguments (reps, multiple, direction).

1. reps defines how many times to run the process (1 or 3 in this demo)

2. multiple defines whether or not to switch an led off before switching on the next one (1 =
leave it on, i.e. multiple LEDs lit)

3. direction defines whether to use the forward or reverse ports list (ports for forwards,
ports_rev for reverse)

There are eight calls to the 1ed drive () function, so we've saved a lot of program lines by reusing
the same code multiple times. All the calls to the 1ed drive () function are enclosed ina try:
except: block. This ensures that if you exit via CTRL-C, the GPIO ports will be reset or "cleaned
up". This avoids false warnings, the next time you want to use them, that the ports are already in use
by another program.

Suggested tweaks to experiment with. Try changing these one at a time and see what they do...

e led drive(3, 0, ports) — changethe3
e led drive(3, 0, ports) — changeportstoports rev
e led drive(3, 0, ports) — changetheOtoal

22

Testing 1/0

Our two examples so far have only used the ports to access the pushbuttons and LEDs. The next
example, called butled (for BUTton LED) in C, or butled-rg.py (in Python), will show one of
the ports serving just as an input port. The idea is that one port (along with its button) is used to
generate a signal, and software then sends that signal to another port which it is used as just an input.
We read both ports in and print them on the screen.

[=3 -— o~
e

L & L2 e & L B 2 L I L L MOTA MOTB MOT+
W BlRlBlIlalalalalalidlalal F1__ Fuse max. 2A
R201.R212->[@ o]0 oo oo oo oo oo oo oo o]c ofc o212 ue
- [elelelelololelelelslNlelslelelslololololslolorel
1 1] I_I_II_II_II_I_II_I_%ﬁ,m%JR_I @l —

428 DIRTOSDZRIOED3RT0/D RT15D6 \TT4D7RTi5 DBRTI6 DIRT2 DTORIZ 24 Lol L
ADT st o c8 l_nﬁ_l_aﬁ_mlliw_'_na_l i «[© [RPWR
ADOJo [0] [ETJc20 gyps [T T €9 u7 o “ |RLY1
DA1 O] \ |Ree| \ [Rz 7|© |RPWR
DAO |_ 29 2] (o] [l 3V3|: U2 O [RLY2
PB5 [[=l [RPWR
PB4 v =[O [rLy3
PB3 co B BaoNB3 B4 mt SEaEE ™ 2 R
PB2 g Ui I: :I I b I GND|: 9_ RLY4
B e * o (Rt

t —
gg; C2] 7|© |RPWR
RLY6

PD5 J Ri01 I: I :": :“: :I R104 5 |Q| = RPWR
s 8 0o oo ool E

an 1= B E 7
PD3 Bl B2 in B3 B4 T T
pozlo of | | EIEEaE T T
potjo o [[ra_Q 5o ole o ; B oo ojo 988

-— N M [7=) 0 N -—
FDo R34CIF| - BRBBEED xxxpox SeRIR L0 g
pes iy SS38288=¢ 222228 0|0
PC4 . w® C16b pi s oo oo 8y =g 24 W el
oF aspberry Pi R2
s 253 Gertboard o)e] o] 2,
P2 2% eriboar NRESoF-sgerF¥ze N
PC1 - gz3 21 Oct. 2012 5855555555555 585868 5V
PCO 238 mi a u
Ea] s:|
GN?) U8 ool |:|3V3 2 c7 |:c

Figure 14: The wiring diagram for test program butled which detects a button press, and then displays that button
state on the screen and on an LED.

The wiring for this test is shown above. Pin GP1023 controls 1/0 port 3, and GP1022 controls 1/0
port 6, so GP23 in header J2 is connected to pin B3 in header J3, and GP22 is connected to B6. Now
for the interesting part. The pushbutton on port 3 is going to be used here, but the LED for port 3
should not be used, so therefore the output jumper for port 3 (which would be placed at U3-out-B3) is
not installed.

Looking at the schematic on page A-2, it is clear that the output buffer for port 3 goes to pin 14 of
buffer chip U3. This is connected to pin 1 of U3-out-B3 (shown as P6 in the schematic). It is not
obvious which header pin on the board is pin 1, but as it’s connected (on the circuit board) to pin 14
of the chip, we can guess that it’s the one right above pin 14. A simple experiment shows that this is
indeed the right pin, so we connect this pin to the BUF6 pin at the top of the board. This allows the
switch to generate a signal which is then sent to port 6. A jumper is installed across U4-in-B6 to allow
that signal to be input from the board. The value of the switch from port 3 is also read in, and these
two should be the same (most of the time).

23

Butled Testin C

Inbutled.c weuse INP_GPIO toset GPIO22 and GP1023 to input and GPIO PULL and

GPIO PULLCLKO to set the pull-up on GP1O23. This is described in more detail on page 19, in the
buttons test. Then the GPIO values are repeatedly read in, and the binary values of GP1022 and
GP1023 are printed out (with GP1023 first), if they have changed since the last cycle. So if ‘01” is
displayed on the monitor, we can see that GPIO23 is low and GP1022 is high. (Note that the LED for
port 6, labelled D6, should be off when switch 3 is pressed and on when switch 3 is up.)

Now, if the values for GPIO22 and GPIO23 are always the same, ‘00’ and ‘11’ will only ever be
printed out. But occasionally we see ‘01’ or ‘10’. Note that when this occurs, the first digit changes to
the new value, and then immediately afterwards the second digit changes. But the values of both
GP1022 and GP1023 are read out simultaneously, so why do we ever have different values on the two
GPIO pins? The answer is that signal from the pushbutton (which is connected to GP1023) takes a
small amount of time to propagate through the buffers to get to GP1022. Sometimes we take a reading
after GP1023 has changed, but insufficient time has passed for GP1022 to change state and follow it!

Butled Test in Python

This program (but led-rg.py) also only works with RPi.GPIO at the moment. It is a very similar
program to buttons, but with two less buttons in use and an LED wired into the circuit, which lights
on button press.

Two GPIO ports are used. One (23) is pulled HIGH for the button and the other (22) is configured as
a regular input. In the main whi 1e loop, the program polls both ports and, if there is a change,
increments the variable button press and displays the new values on the screen. The strap from
U3-out-B3 pin 1 to BUF6 in the top header connects the LED to the button, causing it to light and the
other input port (22) to go HIGH when the button is pressed. The values are displayed on the screen
as with the buttons program.

Now, if the values for GP1022 and GP1O23 are always the same, ‘00’ and ‘11’ will only ever be
printed out. But occasionally we see ‘01” or ‘10°. Note that when this occurs, the second digit changes
to the new value, and then immediately afterwards the first digit changes. This is opposite of the
behaviour of the C program, where the first digit sometimes changes before the second. Why is it
acting differently? In the Python code, the values are read in by this line of code:

status list = [str(GPIO.input(23)),str(GPIO.input(22))]

This causes GP1023 to be read before GP1022. If the button is pressed or released between these two
reads, GP1023 will still have the old value, but the new value will be read from GP1022. The new
value won’t be read from GP1023 until the next time through the while loop.

Open Collector Driver

The Gertboard uses six ports of a ULN2803a to provide open collector drivers. These are used to turn
off and on devices, especially those that are powered by an external power supply and need a different
voltage or higher current than that available on the Gertboard. Basically, an open collector connects
the ground side of an external circuit to ground on the board, thus giving the circuit power. The
ULN2803A can withstand up to 50V and drive 500mA on each of its ports. Each driver has an
integrated protection diode (the uppermost diode in the circuit diagram in Figure 15).

24

r@common
ouT
RaspiO— @

—H

i<

Figure 15: Circuit diagram of each open collector driver.

The ‘common’ pin is, as the name states, common for all open collector drivers. It is not connected to
anything else on the Gertboard. As with all devices the control for the open collector drivers (the
‘Raspi’ point) can also be connected to the ATmega controller to, for example, drive relays or motors.

The open collector drivers are in the schematics on page A-3.

In the Gertboard functional block diagram (Figure 2 on page 6), the area containing the components
for the open collector drivers are outlined in yellow. The pins corresponding to ‘Raspi’ in Figure 15
are RLY1 to RLY®6 pins in the J4 header; the pins corresponding to ‘common’ are the ones marked
RPWR in the headers on the right edge of the board; and the pins corresponding to ‘OUT’ are the
RLY1 to RLY®6 pins in the headers J12 to J17. How these are then used is demonstrated by the test
wiring and code examples.

Testing the Open Collector Drivers

The C program oco1l (for open collector) allows the functional testing of the open collector drivers.
The Python version comes in two flavours, ocol-rg.py and ocol-wp.py.

We needed something for the driver to switch on and off, so we created a little circuit consisting of
two large LEDs and a resistor in series. (This is the small circuit to the right of the Gertboard in
Figure 16.) Once connected, the forward voltage across each of these LEDs is a little above 3V, so we
used a 9V battery as a power supply and calculated a series resistance of around about 90 to set a
suitable current flow through the LEDs. You can of course use any circuit you like to test this; just
make sure that the voltage of your power supply is appropriate for your circuit (and that it is within
the 50V, 500mA limit of the driver).

To turn the circuit off and on using the open collector driver (say you want to use driver 1), first check
that your circuit works with the external power supply you are using. Then, leave the positive side of
your circuit attached to the positive terminal of the power supply, but in addition connect it to one of
the RPWR pins in the headers on the right edge of the board (they are all connected together).
Disconnect the ground side of the circuit from the power supply and connect it instead to RLY1 in
header J12 on the right of the board. Attach the ground terminal of the power supply to any GND or L
pin on the board. Now, we need a signal to control the driver. For the ocol test we use GPIO4 to
control the open collector (you could of course use any logic signal), so connect GP4 in header J2 to
RLY1 in J4. (To test a different driver, say n, connect the ground side of the circuit up to RLYn in the
headers on the right of the board and connect GP4 in header J2 to RLYn in J4.)

25

Now, when RLY1 in J4 is set low, the circuit doesn’t receive any power and thus is off. When RLY1
in J4 goes high, the open collector driver uses transistors to connect the ‘ground’ side of the circuit to
the ground on the board, and since this is connected to the ground terminal on the power supply, the
power supply powers your circuit: it is just turned off and on by the open collector driver.

T 22 e ez ez EE L MOTA MOTB MOT+
VM RlalalalalalialIlaldlalzal Ft__ Fuse max. 2A
R201..R212—% S[e S[C O] 9]¢ oJ¢ 9]¢ 9]¢ o]0 of¢ o] Tlra12 m’ ‘ ‘ | |/\/| |
GND ferererereretererereletereraratetererarererel
e = %h!m%a&%ﬂmkﬂ#m&n%!ﬁ%%‘m&m%ﬁhwﬁ o
ou
L oo ofe [o o] i :
00O} Tl ps (7| [[T £d v o |
i 2or T T |
DA0|2 [0 12| el [el 3vﬂ v /* ™
PB5 19| [| 7. i
PB4/ ue . u4 < /; ____
PB3 c9 B B20ut B3 B4RID, III RI12 B -V ~
PB2 g uto E:l:l:]:]:] t::l;:jbfm)ﬂ w0l E
Eg:] [Eli] C ot N
PD6 N
Po¢ 9 [0 9]0 oo o0 o] | e
Jnt i 1] lfﬁ © 9] your circuit
PD3 Bl B2 in B3 B4 i
D2 s | s EEEEEE R v % goes here
PD1 D @] I_II I I . ﬂ E:rj)v' your power
— =
E(D:g R5“c‘7’ Dumszzgggsggggﬁéﬁmgg csereelol g source
PC4 Cl5 OB S28SS88zy EEEEED s[5 j%' goes here
oS Raspberry Pi 464 4110 O =2 [Tk 021[7]
PC3 233 [S T6
PC2| 308 Gertboard T M NEEETE s oo @O
PC1 588 21 Oct. 2012 EER88555555555888 5V
Pooloe] 838 ml o ‘ vl
Ji
o o oul®l £ 2133 €7 EC

Figure 16: Wiring diagram to test the open collector drivers. On the right is a small test circuit made up of two LEDs
in series with a 90 Q resistor, and a 9V battery acting as power supply.

You may wonder why you need to connect the positive terminal of the power supply to the open
collector driver (via the RPWR pin). The reason for this is that if the circuit happens to contain an
component that has electrical inductance, for example a motor or a relay, when the power is turned off
this inductance can cause the voltage on RLYn pin on the right of the board to quickly rise to a higher
voltage than the positive terminal of the power supply, dropping quickly afterwards. The chip itself
has an internal diode connecting the RLYn pin to RPWR (this is the diode at the top of Figure 15).
This allows current to flow to the top (positive side) of your circuit, allowing the energy to dissipate
and preventing damage.

Open Collector Test in C

The ocol test is very simple. First, it prints out the connections required on the board (and with your
external circuit and power supply), and then it calls setup io to get the GPIO interface ready to use
and setup_gpio to set pin GP104 to be used as an output (using the commands INP_GPIO (4) ;
OUT_GPIO (4) ; as described on page 13). Then in it uses GPIO_SETO0 and GPIO CLRO
(described on page 21) to set GP104 high then low 10 times. Note: the test asks which driver should
be tested, but it only uses this information to print out the connections that need to be made.
Otherwise it ignores your response.

Open Collector Test in Python

The two open collector programs ocol-wp.py and ocol-rp.py are identical apart from the
GPIO system used. In the programs, the function which channel () handles the user channel
selection. Once a suitable input is obtained, correct wiring instructions are displayed. Once enter is
pressed, to confirm the wiring is done, the program switches the chosen open collector port on and off

26

ten times with a 0.4 second delay between each change. At the end, or on (CTRL-C) keyboard
interrupt, the GPIO ports are reset.

Suggested safe tweaks to experiment with. Try changing these one at a time and see what they do...

o varythe0.4insleep(0.4)
e changethe 10in for i in range (10):
e see what happens if you try to tell it you want to use driver 7 (when using the program)

e change the error message displayed when choosing the wrong port number to an “alternative”
one of your choice

Motor Controller
The Gertboard has a ROHM BD6222HFP motor controller. The motor controller is for brushed DC
motors and can handle a maximum voltage of 18V and max current of 2A.

The controller has two input pins, A and B (labelled MOTA and MOTB on the board). The pins can
be driven high or low, and the motor responds according to the table below. The speed of the motor
can be controlled by applying a pulse-width-modulated (PWM) signal to either the A or B pin.

A | B Motor action
0[O no movement
0 1 rotate one way
110 rotate opposite way from above
1 |1 no movement

Table 3: Truth table showing the behaviour of the motor controller under different logic combinations.

The motor controller IC has internal temperature protection. Current protection is provided by a fuse
on the Gertboard. The motor controller is in the schematics on page A-4.

On the Gertboard functional block diagram (Figure 2 on page 6), the area containing the components
for the motor controller are outlined in purple. The motor controller and screw terminals are near the
top of the board, and there are two pins for the control signals in J5, a small header just above GP4
and GP1 in header J2. The MOTA and MOTB pins in J5 are the inputs to the motor controller — these
are digital signals (low and high). The screw terminals at the top of the board labelled MOTA and
MOTB are the outputs of the motor controller: they actually provide the power to the motor. The
motor will probably need more power (a higher voltage or current) than that provided by the
Gertboard. The screw terminals at the top labelled MOT+ and L allow the connection of an external
power supply to provide this: the motor controller directs this power to the MOTA and MOTB screw
terminals, modulating it according to the MOTA and MOTB inputs in J5.

If you just want to turn the motor off and on, in either direction, this is achieved by simply choosing
two of the GPIO pins and installing straps between them to the MOTA and MOTB motor controller
inputs. Then, to control the motor, the pins are set high or low as in Table 3. To control the speed of
the motor however, pulse width modulation (PWM) is required. This is a device that outputs a square
wave that flips back and forth from on to off very rapidly, as shown in Figure 17.

27

1

0

Figure 17: An example of a PWM output. Here the output is on for 50% of the time, so it has a duty cycle of 50%.

With a PWM, you can control the amount of time the output is high vs. when it is low. This is called
the duty cycle and is expressed as a percentage. Figure 17 above shows a 50% duty cycle; the one in
Figure 18 below is 25%.

Figure 18: In this PWM example, the duty cycle is 25%.

There is a PWM in the BCM2835 (the Raspberry Pi processor), and its output can be accessed via
GP1018 (it is alternate function 5). If this is connected to one of the motor controller inputs (MOTA
has been used in our motor test), and the other motor controller input (MOTB in our test) is set to a
steady high or low, the speed and direction of the motor can be controlled.

1 1
MOTA MOTB

0 0

Figure 19: The motor direction is set by MOTB. Whilst MOTA has a duty cycle of 25%, the motor receives power
whenever MOTA and MOTB are different, thus it receives power for 75% of the time.

For example, in Figure 19 above we are alternating between A low/B high and A high/B high (the
second and fourth lines of the table above). When A is low, the motor will receive power making it
turn one way; when A is high it will not receive power. The end result for the 25% duty cycle shown
here is that the motor will turn one way at roughly % speed.

1 1
MOTA MOTB
0

0

Figure 20: In this example, the motor will run in the opposite direction at around 25% speed.

If on the other hand you set MOTB low, as in Figure 20 above, then when A is high the motor will
receive power making it turn in the other direction, and when A is low the motor will not receive
power. The result for the 25% duty cycle is that it will turn in the other direction at about % speed.

Testing the Motor Controller

The C test program for the motor controller is called motor. In Python there are two versions,
motor-rg.py and motor-wp.py. To set up Gertboard for this, connect GP17 in J2 to the MOTB
pin (the MOTB pin in J5, not the one at the top of the board), and GP18 to MOTA in J5. The motor
leads need to be connected to the MOTA and MOTB screw terminals at the top of the board, and the
power supply for the motor needs to be connected to the MOT+ and L screw terminals. This is shown
in Figure 21.

28

your power I
] —
source /i —
goes here POT-
(=] -— o~
T R T2 2 T 2 2L o 4] mofa MofB Mo+
VI BlRLRLRAlALlRALlAlalalElalal Fi Fuse max. 2A
o %III | L/ N1
R201.R22-5{8 o]0 o5 o0) i) i ol i T
GND fererel
ws 4 El mmosnz»'aT&T!lW!Nl‘Wkslenws R114D7R115|ﬁlﬁgﬁum|wia|v!%zkﬁl4 D
AD1
ADO st s2 s3 ra'r‘—r“—r”—r“j e
20 = 4 = 7
DA1 c3 R|@| R126 R127
DA0[© [0 uﬁﬁ HLHL 3v3|:| -
PB5 2] [o=
PB4 Us U4 .
PB3 c9g Bl _B2outp3s B4RID Ri12 2
PB2 g o I: | | tIII:‘ GND|:|
PBI @] 85 B |:| ;7 I o
o) |coE S S S e
PD7 = co[@ T
PD6
PO w1 [£ 25 S1[E TS ot | &
PD4 Xt o] @
PD3 Bl B2 in B3 B4]
P2 23 RSE EIESEaE T |, il
o o) o)1 Sl EEE ; (o000 :
PDO Bl M seezegs88gsg B, Oni_ seproeloly £
PC5 C17 58538 & P R I P G
=SS0 - oo JBE]:]
PC4 . c5 C16 . ot i 5S 24
PC3 g% Raspberry Pi 2 [ETR i&]
PC2 328 Gertboard l&“@‘m‘ﬁa—l—' ?-e?:,u_::,-:,c_ww [© Tr e
o §23 210ct. 2012 E55555555565585585 5V
174: 832 m a I_I |
©3
GNTD s ol [©olva ¢7 [c

Figure 21: The wiring diagram for the test program motor.

Motor Test in C

The PWM is controlled by a memory map, like the GPIO and SPI bus. This memory map is part of
the setup_io function in gb common. c, so that is whether the PWM is used or not. Further setup
code is found in, gb_pwm. c, with an associated header file gb_pwm. h. The function setup pwn
in gb_pwm. c sets the speed of the PWM clock, and sets the maximum value of the PWM to 1024:
this is the value at which the duty cycle of the PWM will be 100%. It also makes sure that the PWM is
off. The two routines set pwmO and force pwmO set the value that controls the duty cycle for the
PWM. set pwm0 sets the value (first checking that it is between 0 and 1024), but as there are only
certain points in the PWM cycle where a new value is picked up, if a second value is written again
quickly the first will have no effect. The force pwm0 routine takes two arguments, a new value and
a new mode. It disables the PWM, then sets the value, then re-enables it with the given mode setting,
with delays in strategic places to allow the new values to be picked up. The pwm_of £ routine simply
disables the PWM.

The code for the motor programisin motor.c. Inthe main routine, first the connections that must
be made on the board to run this program are printed out, then call setup_io to get the GP1O
interface ready for use. setup gpio is then called to set GP1018 up for use as the PWM output and
GP1017 up for normal output. For the latter, both INP_ GPTO and OUT GPIO are used, see page 13
for more info. To set up GPIO18, first use INP_GPIO (18) to activate the pin. One of the alternate
functions for GPIO18 is to act as the output for the PWM; this is alternative 5. Thus use the macro
SET GPIO ALT (18, 5) to select this alternate use of the pin. (See table Table 6-31 from the
BCM2835 datasheet, or the online version at http://elinux.org/RPi_ BCM2835 GPIOs, for more

29

http://elinux.org/RPi_BCM2835_GPIOs

details about alternative functions of the GPIO pins. For a summary of the alternate function of GP1O
pins used on the Gertboard, see Table 1 on page 11.)

We set the output of GPIO17 low (to make sure that the motor doesn’t turn) and then initialize the
PWM by calling setup pwm. We enable the PWM by setting the mode to PWMO ENABLE using
force pwmO. Since GP10O17 (motor controller B input) is set low, when the duty cycle on the PWM
(motor controller A input) is high enough, the motor will turn the ‘opposite way’ as described in the
motor table on page 27.

A loop now starts where the PWM is started, first with a very low duty cycle (because the value
passed to set pwm0 is low), then gradually increasing this to the maximum (which is set to 0x400 —
1024 —in setup_pwm). Then the value sent to the PWM is decreased to slow the motor down. Then
GPIO17 is set high, so that the motor will get power on the low phase of the PWM signal. The PWM
is re-enabled with the mode PWMO ENABLE | PWMO REVPOLAR. The reverse polarization flag flips
the PWM signal, so that a low value sent to the PWM results in a signal that is high most of the time
(rather than low most of the time). That way the same code can be used to slowly ramp up the speed
of the motor (but in the ‘one way’ direction as in the table on page 27), then slow it down again.
Finally the PWM is switched off, and the GPIO interface is closed down.

Motor Tests in Python

The motor-rg.py and motor-wp . py programs are rather different because the RPi.GPIO
package does not yet support hardware pulse-width modulation (PWM), but WiringPi for Python does
(it works, although it's still undocumented). Thus motor-rg.py (the RPi.GPIO version) uses
software PWM, which is found in the function run_motor (). If you try both programs, you'll
probably get smoother results with motor-wp . py (the WiringPi for Python version).

Both versions use the Python 3 print () function, which is imported like this
from future import print function

Without this function, it would be difficult to prevent line-breaks and spaces in the on-screen output.
It means that all print statements need to be written as print () instead of just print because they
are now function calls and not statements.

motor-rg.py (software PWM)

After importing the required modules, we define which ports to use (18 and 17), how many times to
run each loop (Reps), PWM cycle time (Hertz), frequency for motor loop time period (Freq).
Then the ports are set up as outputs and set to OFF (0).

Next the function

run_motor (Reps, pulse width, port num, time period)

is defined. This controls the GPIO port switching on and off for precise periods of time. The port
port num is switched on for time pulse width, then switched off for time time period, and
all of that is repeated Reps times (400 in this case). The main loop in run_motor () is inside a
try: except: block. Thisis an important safety precaution to ensure the motor is switched off on
keyboard interrupt. (This is even more important with hardware PWM in the other version). The
run_motor () function is called many times from the run_loop () function. Each loop of 400

30

repetitions is just one step up or down in motor speed: 400 repetitions at 2000 Hertz represents just
0.2 seconds.

Then we define the run loop () function

run_loop (startloop, endloop, step, port num, printchar)

The arguments startloop and endloop are the % time for the switched port to be ON at the start
and end of the loop. step is the size of the increment for each successive loop. port num is the
port we’re switching (17 or 18). printchar is the acceleration/deceleration indication character
("+'or'-').The run_loop () function handles the repeated calls to the run _motor () function
causing it to run its 400 cycles for each set of values defined.

After the functions are defined, wiring instructions are printed out and the computer waits for a key
press of enter to confirm the user is ready. Then the run loop () function is called four times to
drive the motor speed from 5% to 95% and back again in each direction. After this, both ports are set
to OFF (False) and then reset.

Suggested safe tweaks to experiment with. Try changing these one at a time and see what they do...

e run loop(5, 95, 1, 18,'+') — change + to something else

e run loop(5, 95, 1, 18,'+"') — change5 to a higher number < 95

e run loop(5, 95, 1, 18,'+") — change 95 toa lower number (but still greater than
what you changed the 5 to)

motor-wp.py (hardware PWM)
The Raspberry Pi has one available hardware PWM port (GP1018). We will use port 17 to control
motor direction and port 18 to handle the pulsing.

The first part of the program imports the required modules, including the Python 3 print () function
(explained above in the section on motor-rg.py). After initialising WiringPi, port 18 is set to
PWM mode with wiringpi.pinMode (18, 2) and port 17 is set up for normal output. Then both
ports are set to 0 (OFF). Wiring instructions are then printed out and the computer waits for user
confirmation. When the user is ready, the program defines three functions that are used repeatedly.

display (printchar) handles the correct display of the motor acceleration/deceleration
indicators using the imported Python 3 print () function.

reset ports () handles the resetting of the ports on program exit. This is not built into WiringPi
for Python so it needs to be defined here. This is particularly important in the motor program as it
avoids an uncontrollable “motor running” situation on program exit. This is an important safety
consideration if you’re going to run things with propellers etc.

loop (start pwm, stop pwm, step, printchar) handles the main PWM control loop.
As before, this is called in four different ways (increasing speed then decreasing speed with motor
going one way, then increasing and decreasing speed with motor going the other way). start pwm
is the 0-1024 PWM value to start the loop with. stop pwm is the 0-1024 PWM value to end the loop

31

with. step is the incremental/decremental PWM value for each successive loop. printchar is the
character to denote motor accelerating or decelerating.

The main body of the program contains four calls to 1oop () to demonstrate acceleration and
deceleration in each of two different rotational directions, with a short “aesthetic” pause in between
each loop, defined by rest = 0.013 (0.013s). When port 17 is 0, the motor rotates in one
direction. When port 17 is 1, it rotates the other way. As usual, the main body is contained ina try:
except: block to enable safe port reset, before exit, on keyboard interrupt.

Suggested safe tweaks to experiment with. Try changing these one at a time and see what they do...

e rest = 0.013-change 0.013 to 0 and see why it’s there

e loop (140, 1024, 1, '+') —change 140 to a positive number nearer 0
e loop (140, 1024, 1, '+') —change 1024 to a lower number > 140

e loop(140, 1024, 1, '+') — change +to another character

Digital to Analogue and Analogue to Digital Converters

In the Gertboard functional blocks diagram (Figure 2 on page 6), the components implementing the
converters are outlined in orange. Both the digital to analogue converter (D/A) and analogue to digital
converter (A/D) are 8-pin chips from Microchip, although oddly they are in different sorts of
packages. The A/D (labelled U6 on the circuit board) is in a dual in-line package whilst the A/D
(U10) is surface mounted. Each supports 2 channels.

Both use the SPI bus to communicate with the Raspberry Pi. The SPI pins on the two chips are
connected to the pins labelled SCLK, MOSI, MISO, CSnA, and CSnB in the header just above J2 on
the board (thus in the functional blocks diagram, these pins are also outlined in orange). SCLK is the
clock, MOSI is the output from the RPi, and MISO is the input to the RPi. CSnA is the chip select for
the A/D, and CSnB is the chip select signal for the D/A (the ‘n’ in the signal name means that the
signal is ‘negative’, thus the chip is only selected when the pin is low). Both A/D and D/A chips have
a 10K pull-up resistor on their chip-select pins, so the devices will not be accessed if the chip-select
pins are not connected.

The SPI pins are conveniently located just above GP7 to GP11 in header J2, because one of the
alternate functions of these pins is to drive the SPI signals. For example, the ‘ALTO0’ (alternative 0)
function of GP109 is SP10_MISO, which is why the pin labelled MISO is just about the pin labelled
GP9. Thus to use the A/D and D/A, simply put jumpers connecting pins GP7 to GP11 to the SPI pins
directly about them (although technically you only need CSnA for the A/D and CSnB for the D/A).

In the schematics, the D/A and A/D converters are on the upper left of page A-6.

Digital to Analogue Converter

The Gertboard uses an MCP48x2 digital to analogue converter (D/A) from Microchip. The device
comes in three different types: 8, 10 or 12 bits. The one you get on your board is determined by
availability of parts. To see which one you have, look very closely at the small chip in location U10. It
should have a number 48x2 stamped on it, where x is either 0, 1, or 2.If x is 0, you have the 8-bit
version. If it’s 1 you have the 10 bit version, and if it’s 2 you have the 12-bit one. These chips are all
pin-compatible and are written to in the same way. In particular, the routine that writes to the D/A

32

assumes that writes are in 12 bits, so it is important that the value is selected appropriately (details are
below in the section “Testing the D/A and A/D”). The maximum output voltage of the D/A — the
output voltage when you send an input of all 1s —is 2.04V.

The analogue outputs of the two channels go to pins labelled DAO (for channel 0) and DAL (for
channel 1) in the J29 header on the left edge of the board. Just next to these pins are ground pins
(GND) to provide a reference.

Analogue to Digital Converter

The Gertboard uses a MCP3002 10-bit analogue to digital converter from Microchip. It supports 2
channels with a sampling rate of ~72k samples per second (sps). The maximum value (1023) is
returned when the input voltage is 3.3V.

The analogue inputs for these two channels are ADO (for channel 0) and AD1 (for channel 1) in the
J28 header. Just next to these pins are ground pins (GND) to provide a reference.

Testing the D/A and A/D

According to the data sheet for the D/A, the value on the output pin, Vout, is given by the following
formula (assuming the 8-bit MCP4802):

Din
Vout =
Ut =256

Vout for channel 0 is DAO in J29; for channel 1 it’s DAL,

t 22 e e i EL L MOTA MOTB MOT+
3v3 IEIJ.EJ.EJ. 2Ll2LALBLRLILA LI anJ.l Fi__ Fuse max. 2A
R201. R212->EIIIIIIIIIII:IR2T2 m’ I/\/I |
+ - GND HH”! ololelol e
O o R107 R1131 RWT4D7RTT§D8RTTSD9RTZT‘#}‘%‘%}%§| ‘F.
:g:] o] 35 ps Oute7 gg <|® RPWR
c20 v 0 [RLY1
DAY |_, | 3V3D w2 JlRLY2
Egi ﬁ# RPWR
PB3 c9 B Booutps wmtIII:Im 3 RR',‘;T,,JR
i . [0 o[ofo oo o] cm[} oL
@15] 85 e o |RPWR
Egz s i 719 |rRPWR
RLYG
PD5 T m‘”l::l::ll::l::lm‘”us| | 8 Ho |rewR
Pos 9 B o[oo oo o] -
J] e
PD3 Bl B2 jnp B3 B4 H Tl
G r— |Pu EaEsEaE R vl 2%
Poi PEosool
PDO Il o) @ asg;gggggsmﬁ” in J5_.m,moﬂ ar
PS5 Rkerr 12l1e] nE® EE=BgZ So5Snn e
288282887y EE2E &= 80 2]
b3 23 Raspberry Pi s 220 Eal D%zw[__fj
32 Gertboard ETk =z s
PC2) ges N Y N NRRCOI-oom~¥ -0
PCt £23 21 Oct. 2012 55 5855555555555585 5V
PCO 238 m it H ‘]
Ea
cNg ol o t7 [C

Figure 22: The wiring diagram for the dtoa test.

To test the D/A, a multi meter is required. The C test program for this is dtoa. The Python version is
dtoa.py. To set up Gertboard for this test, jumpers are placed on the pins GP11, GP10, GP9, and
GP7 connecting them to the SPI bus pins above them. Attach the multi meter as follows: the black
lead needs to be connected to ground. You can use any of the pins marked with L or GND for this.

33

The red lead needs to be connected to DAO (to test the D/A channel 0 which is shown below) or DAL
(for channel 1). Switch the multimeter on, and set it to measure voltages from 0 to around 5V. All
this is shown in Figure 22.

The C test program for the A/D is called atod; the Python version is atod.py. To run this test a
voltage source on the analogue input is required. This is most easily provided by a potentiometer (a
variable resistor). The two ends of the potentiometer are connected, one side to high (3.3V, which you
can access from any pin labelled 3V3) and the other to low (GND or 1), and the middle (wiper) part
to ADO (for channel 0 as shown below) or AD1 (for channel 1). To use the SPI bus jumpers should be
installed on the pins GP11, GP10, GP9, and GP8 connecting them to the SPI bus pins above them.
This is shown in Figure 23.

r 82 g gz e g EE L WOTA MOTB MOT+
WVS EJ.EJ.EJ.%J.%J.EJ.%J.BJ.EJ.::J.EJ.EJ. F1_ Fuse max. 24
™
R201.R2125{E 7] EIIIIIIIIIZIE TR m| | | | I/\/l |
— GND I BE 1219
N o E LUMD‘ZEG&TSIRW;INEUMUJRHM R114D7R11508R11609R121|m|€17'!|)'ﬁ'<’ﬂ'!6|2!ﬂ§] D
AD1
— —lb_ o S5 I_as_l_nu_l_a]_l_n_l <
ADO
C20 u7
DA o gl R1Z6 Ri27
DAO o] Jﬁ o1 L T8 L 3V3D viz_
PB5, 1] 1
PB4 v vt
B Baout B3 B4RID)
s s e e e e e | O S S B
PB2 S paun
Eg:} Bli] B5 56 o
C [o 610 616 8[0'9]
PD7 L | |°‘°|::|
PD6 c3
PDS w1 [21 T[S 2 Tty | B
PD4 X 9] [
PD3 Bl B2 jn B3 B4 T
o0 - 123 | | 3 CoES[E T Slro Wis el
PDI @l = I [cfo oo 0 0]
u — N M < 1D ~ © =N i 45 -
ggg R34CI% Ml =Bz 28E88255 XxE=g o SSEsE S 7CI"::|
B2 SS8R32 8488 22 R JBE]:]
PC4 . e o pi w4010 T[OJ0O00 |F S R
po3 g3 aspberry Pi 0080 5 €3 :IIU_T
PC2 308 Gertboard TS NNSECET- oo - ¥ O© [© Te
o ges 210ct. 202 £S5 55655255005558 5V
832 m “I_l | T3
OND 5 ol [o Olsvs “ [05]

Figure 23: Wiring diagram for the test program atod.

Even without a multi meter or a potentiometer, it is still possible to test the A/D and D/A by sending
the output of the D/A to the input of the A/D. The test that does this is called dad, for digital-
analogue-digital. To set the Gertboard up for this test, hook up all the SPI bus pins (connecting GP11
though GP7 with jumpers to the pins above them) and put a jumper between pins DAL and ADQO, as in
the diagram below.

34

T 22 e e pe g EE L MOTA MOTB MOT+
WV RlRLRLBLRLRLRLRLRLBLRLRL F1__ Fuse max 2A
[00] [0/0000000000000000000000 0]
R201.R212->[@ O]© oJ0 o] o]0 o o]e o]¢ o] o]@ oo oo SR212 19
- [elelelelelolololelelololelolelololelelolololelel
1 I_II_II_II_I_II_II_II_I_II_I_LEI%I_I m
J28 D1 D2R106D3R107D: R113D6 R114D7R115 D8R116 DIR121DIOR122D11 12R124 L
AD1 |_ s o S5 c8 out Ia! «|© [RPWR
ADO|O)! @e]o oo o] -

C20 u7 RLY1
om[®s] = o] R126 Ri27 RPWR
DA0|© [0 |1p¢ 1] L D L D L avz[ui2 RLY?
PB5 RPWR
PB4 s u4 RLY3
PB3 c9 B Booutps B4 R1ot e 7= ol af™ RPWR
e . @[ofo olo oo o] LEH s
PBI] - RPWR

out
e ol us ol o N N i
PD6 RLY6
PD5 O] Ri01 [© S]S T[S T[S Drios 5 & RPWR
o 1, [0 olo o[o o] >
J71 I— E]
PD3 B BZin B3 B4 I |ﬂ| |
- 123 | e, EE[ES[E T Slrao VIS .
poifo of 21191 El II , PBooGol 3
Pbo R34clﬁ| [l =8 RIR285R82&a X xxoo < sopFee J7CI4::|
PC5 S 2838288z p 22222 2 w[0 0]
Eg; 202 Cﬁsaggberry Pi Jod J"’_@Wﬁ E:IRZJ“ :Jf,‘z’, 0
PC2 3oe Gertboard e 00000 [| ET oz ce
PC1 - £33 21 Oct. 2012 B8 558555555585 865588 5V
PCO 338 =l Ji L
Y 23]
GND G o2l 033 o] t7 [c

Figure 24: The wiring diagram for the dad test, which allows you to test the A/D and D/A converters together,
without the aid of a multimeter or potentiometer.

D/A and A/D tests in C

Since the D/A and A/D converters both use the SPI bus, the common SPI bus code has been placed
into a separate file, gb_spi.c. There is also an associated header file, gb_spi . h, which contains
many macros and constants needed for interacting with the SPI bus, as well as the declarations for the
functions in gb_spi . c. These functions are setup spi, read adc,and write dac.
setup_spi sets the clock speed for the bus and clears status bits. read adc takes an argument
specifying the channel (should be 0 or 1) and returns an integer with the value read from the A/D
converter. The value returned will be between 0 and 1023 (i.e. only the least significant 10 bits are
set), with O returned when the input pin for that channel is 0V and 1023 returned for 3.3V.

The write dac routine takes two arguments, a channel number (0 or 1) and a value to write. The
value written requires some explanation. The MCP48xx family of digital to analogue converters all
accept a 12 bit value. The MCP4822 uses all the bits; the MCP4812 ignores the last two; and the
MCP4802 ignores the last four. Since any of those chips might appear on the Gertboard (depending
on availability), write dac is written in so that it will work with all three, so it simply sends to the
D/A the value it was given. If Gertboard is fitted with the MCP4802, it can only handle values
between 0 and 255, but these must be in bits 4 through 11 (assuming the least significant bit is bit 0)
of the bit string it is sent. Thus if the desired number to be sent to the D/A is between 0 and 255, it
must be multiplied by 16 (which effectively shifts the information 4 bits to the left) before sending
this value to write dac.

dtoa

To test the D/A, the dtoa program first asks which channel to use and prints out the connections
needed to make on Gertboard to run the program. Then it calls setup 1io to get the GPIO ready to

35

use, then calls setup gpio to choose which pins to use and how to use them. In setup gpio, as
usual INP_GPIO (n) (where n is the pin number) is used to activate the pins. This also sets them up
to be used as inputs. They should however, be used as an SPI bus, which is one of the alternative
functions for these pins (it is alternate 0). Thus we use SET GPIO ALT (n, a) (where n isthe pin
number and a is the alternate number, in this case 0) to select this alternate use of the pins. Then the
program sends different values to the D/A and asks for real verification, using the multimeter, that the
D/A converter is generating the correct output voltage.

atod

To test the A/D, the atod program first asks which channel should be used and prints out the
connections required on Gertboard to run the program. Then it calls setup_io to get the GPIO
ready, then calls setup gpio to choose which pins will be used, and how they will be used. The
setup gpio usedin atod works the same way as the one in dtoa (except for activating GPIO8
instead of GPI10O7).

Then atod repeatedly reads the 10 bit value from the A/D converter and prints out the value on the
terminal, both as an absolute number and as a bar graph (the value read is divided by 16, and the
quotient is represented as a string of ‘#’ characters). One thing to be aware of is that even if the
potentiometer is not moved, exactly the same result may not appear on successive reads. With 10 bits
of accuracy, it is very sensitive, and even the smallest changes, such as house current running in
nearby wires, can affect the value read.

dad

To test both the D/A and A/D at the same time, the dad test sends 17 different digital values to the
D/A (0 to 255 in even jumps, then back down to 0). The resulting values are then read in from the
A/D. Both the original digital values sent and the values read back are printed out, as is a bar graph
representing the value read back (divided by 16 as in atod). The bar graph printed out should be a
triangle shape: the lines will start out very short, then get longer and longer as larger digital values are
read back, then will get shorter again.

D/A and A/D tests in Python
The analogue to digital and digital to analogue converters are connected to the (SPI) ports on the
Raspberry Pi. These are the alternative functions of GPIO ports 7 and 8.

In order to make use of atod.py, dtoa.py and dad.py you must have SPI enabled, and you must
install a Python module called py-spidev. Instructions on how to do this are in the README . txt
included with the Python programs that you downloaded.

atod.py

The user chooses which channel to use on the analogue to digital converter (A/D), then wiring
instructions are printed out. The function get adc (channel) uses spidev to read the A/D. It
receives three bytes of data and extracts the result —a number between 0 and 1023, where 0 means 0V
and 1023 means 3.3V.

The main loop runs 600 times with a “sleep” of 0.05s, so the program takes about 30 seconds (600 *
0.05) to run. During each iteration of the loop, the program reads the A/D and displays this reading
and a number of # symbols proportional to the value read, which depends on the position of the

36

potentiometer. It uses the display (char, reps, adc value, spaces) functionto
achieve this.

Moving the potentiometer while the program is running changes both the numerical readout and the
number of # characters displayed.

Suggested tweaks to experiment with. Try changing these one at a time and see what they do...

e char = '#'— change value of char from # to a symbol of your choice (line 30)
e sleep(0.05) — change the 0.05 and see what happens (line 56)

dtoa.py

The digital to analogue converter (D/A) is controlled by writing 2 binary bytes (16 bits in total) to it
via the SPI interface. The program uses a Python module called spidev to handle the SPI
communication. We have to give spidev two base 10 numbers, which it converts into 8-bit binary
bytes, which it sends to the D/A. The D/A outputs a voltage according to the value given to it. An
input of 0 gives OV, 255 gives 2.048V, and it’s linear in between, so 128 should give 1.02V.

The pre-determined values we send to the D/A are stored in two list variables...

e num list[] — holds the first byte (different for each channel).
e common [] — holds the second byte of data (same for each channel).

The user chooses the channel and then the main loop takes the first number from each list and
combines bytel with byte2. Then it sends them to the D/A, which immediately outputs the desired
voltage until enter is pressed. It iterates through all five values, setting the D/A and waiting for a key
press. Both channels are reset to zero at the end of the program.

Suggested tweaks to experiment with.

¢ None this time. If you change the numbers in the lists you will break the program (the voltage
output will no longer agree with the numbers that the test program prints out). If you want to
see how they are derived, you can look in the dad . py program in the dac_write function

dad.py
This program uses spidev to control the A/D and the D/A using both of the SPI ports on the Raspberry
Pi. First the wiring instructions are printed out on the screen. Then the main loops (one for each
direction) iterate from 0 to 256 and back again in increments of 32. This value is sent to the D/A using
dac_write (DAC value), and the appropriate voltage appears on the ouput pin DA1.This
voltage goes by a jumper to ADO, an input of the A/D, and the get adc (adc_channel) function
is called to read this voltage using the A/D, returning a number between 0 and 1023. Both numbers
are then printed out along with a bar chart (using the # character) representing the A/DC.

Suggested safe tweaks to experiment with.

e Change the 32 in both loops for DAC_value in range(0,257,32) and for
DAC value in range(224,-1,-32)

37

Changethe 4inadc string = "{0:04d}"
Changethe3inprint "%s %s %s" % ("{0:03d}"™)
Remove the jumper between ADO and DAL and see what happens

Combined Tests
This section shows some examples of using more than one functional block at a time.

A/D and Motor Controller

In the potmot (for potentiometer-motor) test we use a potentiometer (“pot”) connected to the
analogue to digital converter (A/D) to get an input value, and this value is used to control the speed
and direction of the motor. It is set up so that at one extreme, the motor is going at top speed in one
direction, as you move the wiper towards the middle it slows, at the middle the motor stops, and as
you continue to move the wiper along, the motor speeds up again but in the other direction.

To wire up the Gertboard for this example, you combine the wiring for the A/D and motor tests.
Jumpers connect GP8 to GP11 to the pins directly above them to allow us to control the SPI bus using
GP108 to GPIO11. You must attach your potentiometer to the ADO input. GPIO17 controls the motor
B input and GP1018 controls the motor A input using the pulse width modulator (PWM). Thus GP17
must be connected via a strap to MOTB, and GP18 must be connected to MOTA. The motor and its
power source must be connected to the screw terminals in J19 at the top of the board. See the wiring
diagram below.

your power i
source =
goes here T-
T 2 P TR e E EE 4 wopa vofB Mo+
TI 2lElZlBlElalalaladldLaladl F1__ Fuse max. 24
3 | e/~ 1¢|
RoLR2EZ>(E S[E S[E S[E S[E S[E o[e [s S S[E T[T SR e
. [elelololelelolololololololeliolelolololololalal
UIJI_I_!BSLI_‘H;MLLLLUI_LLUI_LL%AJ_I_I @]
DIRI05D2RTOBDIRT07D R11306 RTI4D7RTT5 DB RTI6 DIRT2DTRIZDTRIZDIZRT24 o
% 20 930 930 FRiers) :
C20 gips [T T T w7
R126 R127
e Beges | 4] g
113 u U4
N I:cg Bl B2outBs B4 R10t e aE e :|R"(;2ND|:|
S Ui :l:l;l:h”
1] B5 66 out
1o | | oS SIs 5o 616 S5 E]
R‘O‘E]E]EI]R1°4U5| | B
X &l &
i i il € 3]
B B2in B3 B - [EZ]
- | S EIETEaE T vt %
El " Ehooool
|_| '_| -— N M w0 I~ 1 BID i B B ©
R“C% D ERRIBBER _:m Egg;gg 704]:]
) Ct5 Cl6 . = S X EE = o 20
s Raspberry Pi - 2% [Zlre %E:I
2 Gertboard TN EETE oo LM “
ses 21 Oct. 2012 5555555555555 5553 5V U
23s @l s | "B
55— onldl [©Jsvs <7 [c

Figure 25: Wiring diagram for the potmot test.

38

Potmot Test in C

The main routine for this is in potmot . c. Functions from gb_spi.cand gb pwm. c are used to
control the SPI bus (for reading the A/D) and the pulse width modulator (for controlling the speed of
the motor).

In the main routine for potmot, first we print to the terminal the connections that need to be made
on the Gertboard to run this example, then we call setup_io to set up the GPIO ready for use. Then
we call setup_gpio to set the GPIO pins the way we want them. In this, we set up GPIO8 to
GPIO11 to use the SPI bus using INP_GPIO and SET GPIO ALT as described in the section on the
converters (D/A and A/D tests in C, page 35). GPIO17 is set up as an output (using INP_GPIO and
OUT GPIO), and GP1O18 is set up as a PWM using as INP_GPIO and SET GPIO ALT as
described in the section on the motor controller (Motor Test in C, page 29). Back in main, we call
setup spi and setup pwm to get the SPI bus and PWM ready for use and get the motor ready to

go.

Then we repeatedly read the A/D and set the direction and speed of the motor depending on the value
we read. Lower A/D values (up to 511 — recall that the A/D chip used returns a 10 bit value so the
maximum will be 1023) result in the motor B input being set high, and thus the motor goes in the
“rotate one way” as in the motor controller table (Table 3, page 27). Confusingly, this motor direction
is called “backwards” in the comments of the program! Higher A/D values (512 to 1023) result in the
motor B input being set low, and the motor goes in the “rotate opposite way” direction. This is called
“forwards” in the comments of the program. Simple arithmetic is used to translate A/D values near
511 to slow motor speeds and A/D values near the endpoints of the range (0 and 1023) to fast motor
speeds by varying the value sent to the PWM.

Potmot test in Python

This program, potmot-wp . py, uses spidev to control the A/D and WiringPi for Python to control
the motor with the hardware PWM. Essentially potmot is a simplified combination of the atod.py
and motor-wp.py programs. It is simplified in that there is no on-screen display of the A/D reading
or motor direction.

The potentiometer position (read by the ADC) determines motor direction and speed (PWM value) as
follows: middle value (511) results in no movement, 1023 results in max speed one way, 0 results in
max speed the other way.

First the program imports the required modules, spidev and wiringpi, then sets up GPIO ports 17 and
18 as digital output and PWM output respectively. Then two functions are defined; get adc ()
reads the voltage at the potentiometer using the A/D; reset _ports () ensures we can safely exit
the program with the ports switched off. Then the initial values of variables are set and the wiring
instructions are printed out on the screen. The program then waits for user input before proceeding.

Once the user hits enter, the SPI port is opened to read the potentiometer voltage using the A/D. The
AJD value is read and if above 511 we set port 17 to 0, which sets motor direction one way. Otherwise
direction is set the other way. Then the PWM value sent to port 18 is calculated, based on the value
read from the ADC. This determines how fast the motor will spin. After the PWM value is written to
port 18, the program waits 0.05 seconds and then repeats the main loop, reading the A/D value again.
This occurs 600 times, so the program runs for about 30 seconds.

39

The main loop is wrapped ina try: except: block to enable safe resetting of the ports in the
event of a CTRL+C keyboard interrupt.

Suggested safe tweaks to experiment with.
e none this time

Decoder

The decoder implemented by the decoder program takes the three pushbuttons as input and turns on
one of 8 LEDs to indicate the number with the binary encoding given by the state of the buttons.
Switch S1 gives the most significant bit of the number, S2 the middle bit, and S3 the least significant
bit. For output, the LED D5 represents the number 0, D6 represents 1, and so on, so D12 represents 7.
Recall that the pushbuttons are high (1) when up and low (0) when pushed, so LED D12 is lit up when
no buttons are pressed (giving binary 111 or 7), D6 is lit up when S1 and S2 are pressed (giving
binary 001), etc.

There is quite a bit of wiring for this one, as we are using all but one of the 1/0 ports.GP1025 to
GP1023 are reading the pushbuttons, so you need to connect GP25 to B1, GP24 to B2, and GP23 to
B3. The 8 lowest-numbered GPIO pins are used with 1/0 ports 5 to 12, so you need to connect GP11
to B5, GP10 to B6, GP9 to B7, GP8 to B8, GP7 to B9, GP4 to B10, GP1to B11, and GPO to B12. In
addition, since we are using 1/0 ports 5 to 12 for output, you need to install all the out jumpers for
buffer chips U4 and U5 (recall that the out jumpers are those above the chips).

I 2P TR e -2 EE L MOTA MOTB MOT+
WV BLRLBLRBLRLBLRLRALBLBLBLAL F1__ Fuse max. 2A
D o i T S TN SEZAANZE
R201.R212->[© oo o] OR212 19
- PrelerRleRRRIeleRIRR Rl IoIele T
w2 4 LUD1R105LU02R1OGIIBI—|R107|7LWMUSUD R113|_LIDS R114|_|_|D7R115|_L|08R116|_L|09R121|_Ll—ll17k|—|010?122011 T2RT24 D —|_|.
AD1 ng Out g an RPWR
st s2 s3 C8 cit s
ADO—E |: :‘CZO R125 ‘—ﬁ ‘—ﬁ ‘—ﬁ I: m[’}‘j u7 o @ IRLY1
DA1 o]) [Rzs| y R Ho [rwr
DAO_I:JZ 2] [@l] [el | | JVE U2 o[O1RLY2
PB5 o] 1] ={o |RPWR
b " B Baout p3 : BeRIOpS % [RLYs
Pes c SEIEIE T o [RewR
Pe2 @e[o oo oo oo o] ‘::mscmﬂ oA TRLre
PB1 m ~|© |RPWR
PBO |_|EI u3| |0 [RLY5
PD7 ~|© |RPWR
PD6 BIERG
PD5 E| R101[@ 22 2] 2@ 2]r04 U5| | :Ql = P
PD4 X1 el 4T
a1 i = |£2| E 9]
PD3 B1 B2 in B3 B4 T T
P2 23 | [EIETE = T e h
PD1 R =
[cfo o o 0 o] S
PDO 2] |9 @l B0 i BB SR T ET
R34017 =>=>>= >0 ¢z
PC5 222 s .0 9|
PC4) Cl5 C16 24 .
PC3 z5% Raspberry 3 [© Tk 7
PC2 328 Gertboard AR R AR DYV Eak
PCI ge3 21 Oct. 2012 5585555555555 5588 5V
PCO) 335 mi i I_I | L
£33
GNE us Dlgu |:|3V3 c7 |:C

Figure 26: Wiring diagram for the decoder test.

Decoder Test in C

In the main routine for decoder, as always we start out by printing out to the terminal the
connections that need to be made on the Gertboard. Then we call setup 1o to set up the GPIO
ready for use. Then we call setup gpio to set GPIO25 to 23 for use with the pushbuttons (by

40

selecting them for input and enabling a pull-up, as described on page 19) and to set GPIO11 to GP7,
GP104, GPI01, and GPIOO0 up as outputs (as described on page 13). Then we enter a loop where we
read the state of the pushbuttons and light up the LED corresponding to this number (after turning off
the LED previously set). We turn the LEDs on and off using GPIO_ SETO0 and GPIO CLRO as
described on page 21.

At the time of writing, there is no decoder test in Python.

ATmega Device

The Gertboard can hold an Atmel AVR microcontroller, a 28-pin ATmega device, at location U8 on
the lower left of the board. This can be any of the following: ATmegad48A/PA, 88A/PA, 168A/PA or
328/P in a 28-pin DIP package. Usually the 168 or 328 is fitted. The device has a 12MHz ceramic
resonator attached to pins 9 and 10. All input/output pins are brought out to header J25 on the left
edge of the board. There is a separate 6-pin header (J23 on the left side of the board) that can be used
to program the device.

The PDO/PD1 pins (ATmega UART TX and RX) are brought out to pins placed adjacent to the
Raspberry Pi UART pins so you only need to place two jumpers to connect the two devices.

Note that the ATmega device on the Gertboard operates at 3.3Volts. That is in contrast to the
‘Arduino’ system which runs at 5V. (This is the reason why the device does not have a 16MHz clock.
In fact at 3V3 the maximum operating frequency according to the specification is just under 122MHz.)
Warning: many of the Arduino example sketches (programs) mention +5V as part of the circuit.
Because we are running at 3.3V, you must use 3.3V instead of 5V wherever the latter is mentioned. If
you use 5V you risk damaging the chip.

The ATmega device and the headers connected to it are in the schematics on page A-6.

Programming the ATmega

Programming the ATmega microcontroller is straightforward once you have all the infrastructure set
up, but it requires a fair bit of software to be installed on your Raspberry Pi. We are very grateful to
Gordon Henderson, of Drogon Systems, for working out what needed to be done and providing the
customized software. Using his system, you can use the Arduino IDE (Integrated Development
Environment) on the Raspberry Pi to develop and upload code for the ATmega chip on the Gertboard.
All the software needed, along with instructions, is available at

https://projects.drogon.net/raspberry-pi/gertboard/

For the rest of this section, we assume that you have downloaded and successfully installed and
configured the Arduino IDE, as described at Gordon’s website, and we proceed from there.

To get going with the ATmega chip, start up the Arduino IDE. This should be easy: if the installation
of the Arduino package was successful, you will have a new item “Arduino IDE” in your start menu,
under “Electronics”. The exact version of the IDE you get with depends on the operating system you
are using. The vast majority of Raspberry Pi users are using Raspbian, which is based on Debian
wheezy, so from now on we’ll assume that you’re running this. The version number is given in the
title bar; for wheezy it’s 1.0.1. First you will need to configure the IDE to work with the Gertboard.
Go to the Tools > Board menu and choose the Gertboard option with the chip you are using (there are

41

https://projects.drogon.net/raspberry-pi/gertboard/

options for the ATmegal68 and ATmega328, the ones most commonly used on the Gertboard). Then
go to the Tools > Programmer menu and choose “Raspberry Pi GPIO”.

Arduino Pins on the Gertboard

All the input and output pins of the ATmega chip are brought out to header J25 on the left edge of the
board. They are labelled PCn, PDn, and PBn, where n is a number. These labels correspond to the
pinout diagrams of the ATmegal68/328 chips. However, in the Arduino world, the pin numbers of the
chips are not referred to directly. Instead there is an abstract notion of digital and analogue pin
numbers, which is independent of the physical devices. This allows code written for one Arduino
board to be easily used with another Arduino board, which may have a chip with a different pinout.
Thus, in order to use your Gertboard with the Arduino IDE, you need to know how the Arduino pin
number relates to the labels on your Gertboard. The table below shows this correspondence (“GB”
means Gertboard).

Arduino Pin GB pin ArduinoPin GB pin Arduino Pin GB pin

0 PDO 7 PD7 A0 PCO
1 PD1 8 PBO Al PC1
2 PD2 9 PB1 A2 PC2
3 PD3 10 PB2 A3 PC3
4 PD4 11 PB3 A4 PC4
5 PD5 12 PB4 A5 PC5
6 PD6 13 PB5

Table 4: The relationship between Arduino pin numbering and pins on the Gertboard.

In sketches digital pins are referred to with just a number. For example
digitalWrite (13, HIGH);

will set pin 13 (PB5 on the Gertboard) to logical 1. (In the Arduino world, 1.0w refers to logical 0, and
HIGH refers to logical 1.)

The analogue pins are referred to as A0 to A5. So to read from analogue pin 0 (PCO on the Gertboard)
you would use the command

value = analogRead (AQ) ;

A Few Sketches to Get You Going

A sketch is the name that Arduino uses for a program. It's the unit of code that is uploaded to and run
on an Arduino board (or, in our case, an ATmega microcontroller on a Gertboard). Let’s have a look
at a simple one, B1 ink, which makes an LED turn on and off. This is accessible from the Arduino
IDE from the File > Examples > Basics menu. When you select this, a new window pops up with the
Blink code. There are only two functions in the code, setup and 1oop. These are required for all
Arduino programs: setup is executed once at the very beginning, and 1oop is called repeatedly, as
long as the chip has power. Note that you do not need to provide any code to call these functions; this
is added automatically as part of the compilation and uploading process. The language used in these
sketches is based on C, so the syntax in programs should look familiar if you have been looking at the
C test programs for the Gertboard.

42

Uploading Sketches using the SPI Bus

In order to get your sketch running on the ATmega chip on the Gertboard, it has to be transferred over
to the chip somehow (this is called uploading the sketch). There are various methods used to program
ATmega chips, but we are going to use the SPI bus available on GPIO pins 8 through 11. This is
possible because your Arduino IDE is using the special downloader/uploader (avrdude) that you got
from projects.drogon.net. To set this up you need to connect the GPIO pins used for the SPI bus to the
6-pin header J23, as in the diagram below. Here you are simply connecting the SPI pins in the GP10O
to the corresponding SPI pins in the header. The arrangement of the pins in J23 is shown in the
schematics, on page A-6.

o P (=3 - o~

<L MOTA MOTB MOT+

PD4
PD3

2]
i T, - e mﬂw_I[

| L—I J9
PD1 I " PEooool 5
PDO M s sss8es8asss PPl 2 sopsoslo), L0
PC5 [O119] S S &G 2@ a0 0]
PC4] c15 C16 . B4 1t § 'é 124 D20
Raspberry Pi 2 @R &l;:l
I::lm H Cé

~— o~ ~ A w © ~ = b
L L L L L L [L L L L L
W RLlRLILBLBLALRLRLB LA LBLAL F1__ Fuse max. 2A
[Glooo0cc00000000200000000909 9]
S S o I) (o (o (o o e Coe o o
P = Llelelelslelolofco] |_|_|_|_||_|_||_|_||_|_|$ﬁ%4r| @]
AD1J28 { D2R10603R107D: R113D6 R114D7R115 DBR116 DIR121D10R12 1] —I.L
onors] = 0u0 050 0u0 SRR i o
DA1 il R126 Ri27 o |RPWR
DAO I_JzT:u L D A D A MD o JoRLY2
PBS 71© [RPWR
PB4 us . u4 *“RLYs
Bl B20Ut B3 _ B4R10 =
oo g S e xS0 O B CE S
5] U10
PB1 |_|:1:] 85 B6 RPWR
o] g e exaexaexa ex e
Eg; — c3 RPWR
3 RLY6

PD5 O RW—E@*&'— | RPWR

O/OL

E3

or——
pryy g |

2
51

PC3
PC2 Gertboard TYMNSEEE $2%9,9
21 Oct. 2012 EE 885555555588

PCI
pcolo [0]

-
"o 5 oeltl EE 1 oa [c

Developed by
G.J. van Loo
Fen Logic Ltd.

Figure 27: The wiring diagram for uploading sketches to the ATmega microprocessor.

To upload your sketch to the chip in Arduino IDE choose File > Upload Using Programmer. It will
take a bit of time to compile and upload, and then your sketch is running on the microcontroller.

Blink Sketch

The B11ink sketch is under the File > Examples > Basics menu. Bring it up and upload it to the
ATmega chip using the instructions above. The sketch is now running, but nothing is happening! On
most Arduino boards, pin 13 (the digital pin used by this sketch) has an LED attached to it, but not the
Gertboard. You have to wire up the LED yourself. Looking at Table 4 above, we see that digital pin
13 is labelled PB5 on the Gertboard, so you need to connect PB5 to one of the 1/0 ports. In the section
on Buffered 1/0, LEDs, and Pushbuttons, we explained that you can make an LED show the value of
a signal by connecting that signal to one of the pins labelled BUF1 to BUF12 in the (unlabeled) single
row header at the top of the Gertboard. So if you connect PB5 to BUF1, as below, the first LED will
start to blink.

43

E 2P e e pepe g EE L MOTA MOTB MOT+
Vi BlimlBLRlBlBlzlzldzldlalal F1__ Fuse max. 2A
i i o T T T o]
R201.R212-{ I: :II: oloole :II: olesfe :II: :II: I :II:]Rm J19
GND [m
2 4 [/ LMH—I—'MR10(;BLLJ€TUJJD'5L|R107D RT306 R114D7R115osRnsnsR121|—Jl'17!D'1MD1 12‘?1? 1] —I.L
ADI 4 st 53 rji—rﬂi—T—Bl—rjl—1 o | RPWR
ADO am 52 w7 o[|RLY1
DA1 ﬁgﬁ | [Rzs| \ Rer) Slo [rRPwR
DAO b2 1] [o] [l 3V3|:| U2 O [RLY2
PB5 2] 1= [[RPWR
PB4 U6 u4 ={“|rRLY3
PB3 I:CQ B1 p2out 3 B4 R10t I :II: I :|R11(§ND ;_ RPWR
PB2 & mauto S efe o ¢ 8 O |RLY4
PB1 HE B5 B6 | [RPWR
t —
o e S o
Eg; 2] co[@] o |Rewr
RLY6
PD5 J R101 I: I :": I :I R104 U5| | g‘ = RPWR
PO Xtz [0 96 o6 of6 9] SR
71 1] [3]
PD3 Bl B2in B3 B T [—Zl o
pozlo of | EI} EIEEIETR el o, 2%
P El " QXX 5
PDO 12 ORSEEEF R in B s pso e 9
e R34CI7 uummmmmmmmmmmm EEE@EE EEEEE: J87(;.4,:|
PC4 5 Ci6, =Z=N==299858 124 D20
< H 464 1 | = =) R2 D21 :I
PC3 g% Raspberry Pi | a | Iillu_’[1
PC2 3l Gertboard TEmNE—BEEETrsss o LN
o £33 210ct. 2012 F58555555555555558 5V
H,J: 338 @ a i_\ | o
o i ole] 2 07 [C

Figure 28: Wiring diagram for the sketch Blink.

Note that in this diagram we have not shown the connections to the SPI pins. Once you have uploaded
the code, you no longer need them and can remove the straps. On the other hand, if you want you can
leave them in place, and this is a good idea if you are planning on uploading some other sketches
later.

Button Sketch
Let’s look at another fairly simple sketch called But ton, located under File > Examples > Digital
menu in both 0018 and 1.0.1. The comments at the beginning of the sketch read

The circuit:

* LED attached from pin 13 to ground

* pushbutton attached to pin 2 from +5V

* 10K resistor attached to pin 2 from ground

Assuming that you have B1 ink working, your LED is already wired up, but what about the button?
As mentioned above, since the ATmega chip on the Gertboard runs at 3.3V, we must replace the 5V
with 3.3V. So they suggest using a circuit like the one below, where the value read at pin 2 is logical 0
if the button is not pressed (due to the 10K pull-down resistor) and logical 1 if the button is pressed.

pin 2

3.3v—O0 O—'—l:—GND

Figure 29: Suggested switch circuit for use with Button sketch.

However, the buttons on the Gertboard are used like this:

44

value

1 1K pull-up
GND O O — }—3.3V
Raspi

Figure 30: Circuit in use on the Gertboard, showing an additional 1k resistor to protect the input to BCM2835.

The 1K resistor between the pushbutton and the ‘Raspi’ point is to protect the BCM2835 (the
processor on the Raspberry Pi) if you accidentally set the GPIO pin connected to ‘Raspi’ to output
instead of input. The circuit to the right of the ‘Raspi’ point happens on the Raspberry Pi: to use the
pushbutton we set a pull-up (shown as a resistor in the circuit above) on the pin so that the value read
is logical 1 when the button is not pressed (see page 19 for more info on the pull-up). The Gertboard
buttons are connected directly to ground so they cannot be made to read logic 1 when pressed. If you
want to use a Gertboard button with an Arduino sketch that assumes that the button reads 1 when
pressed, the best approach is to modify the sketch, if needed, so that it will invert the value it reads
from the button. For the pull-up, we can take advantage of the pull-ups in the ATmega chip. To do
this, find the lines below in the sketch

// initialize the pushbutton pin as an input:
pinMode (buttonPin, INPUT) ;

and insert the following two lines after them:

// set pullup on pushbutton pin
digitalWrite (buttonPin, HIGH) ;

To invert the value read from the button, find the line below:

buttonSate = digitalRead (buttonPin) ;

and insert a ! (the negation operator in C) as follows:

buttonSate = !digitalRead (buttonPin);

Now upload this modified sketch, as described for B1ink. We still need to attach Arduino digial pin

2 (PD2 on the Gertboard, as you can see from the table) to a button, say button 3.The ‘Raspi’ pin in
the circuit diagram above, which is where we want to read the value, is in the J3 header.

45

L 9P o e oD e g2 ¢ L MOTA MOTB MOT+
N BlRLlalalilialalalalalalad Fi__ Fuse mox. 2A
T N aaaw o]
R201.R212-> [@ 2] @ ol ole oo Ora12 11
- NEEEEEEE NN R
s 3 7 bbb bl shdsbe bl seboebi bbbk e
' 9]
AD1 out
s o s c8 I_ag_l_ag_l_az_l_aa_l i <
ADO Ea
c20 ;ﬁ ;ﬁ ;ﬁ u7
DA1 I:] R|Ei R126 R127
pao[of5 i 2] B) e JVJD u2
PB5]]
PB4 g us
PB3 co B B2out B3 B4RIO R112
Po2 2 o 0 O) e | SO S C CO-E
(&)
PB1 HE 3 B
t
s 5| |coETE 5 ol S
PD7 1% co[© 9]
PD6
PD5 E| RI01[©] T][E S T]rio4 u5| | ﬁ
PD4 Xt - 3
J71 s =t I: :l
PD3 Bl B2 in B3 B4 I_Zl |
e — [o]&as S0 o0 5 S - G
PDI ——O QXXX S
poojo | Lo o) M eses28s88gs8 P PP _PL 8 Corselo), 20
PC5 c17 |_”_| B eJ9n 3 e R I R
2882288z pe ez e xw[0 0|7
PC4 . ct5 Ci6 X maE o oo ol & 24 D20
PC3 253 Raspberry Pi 2 @R I%II;:I
PC2 38 Gertboard R O o @
Ss €N N N N QN TF 7= = o = oo oo o o
pei £5% 210ct. 2012 EFARSEE55L55855558 5 1
PCOTZJ: 838 mi) '_‘ | t
3
o 5 onl2l E2BV3 o7 [c

Figure 31: Wiring diagram for the sketch Button.

When you have done this, the first LED will be on when the third button is pressed, and off when the
third button is up.

Analoglnput Sketch

Now let’s try using an analogue pin. Find the AnalogInput sketch under File > Examples >
Analog. This reads in a value from analogue input O (which has already been converted by the internal
AJ/D to a value between 0 and 1023), then uses that number as a delay between turning an LED on and
off. Thus, the lower the voltage on the analogue pin, the faster the LED flashes. To run this example,
you’ll need a potentiometer. The one used to test the A/D will work fine here. The comments for
AnalogInput say to connect the potentiometer so that the wiper is on analogue pin 0 (PCO on the
Gertboard) and the outer pins are connected to +5V and ground. Remember, you must use 3.3V
instead of 5V as we’re running the chip at 3.3V here. The diagram below shows how to connect up
the Gertboard to make this sketch work after it is uploaded.

46

c e g zgeestEceeg i EB L MOTA MOTB MOT+
WV RLRLBRLRLBRLRLRLRLRALBLRALR F1__ Fuse max. 2A
R203A212- [j[IIj[j[IIj[IIij m| | | | I/\/I |
o0 1) [) [[[|
¢ lm%ﬁ'!ﬂfkﬂ&‘%wﬂﬁ’(UJA55R11355 R114D7R11508R116DQR121I|ﬂ17%ﬁ&V!ﬂ%ﬁ§| I—l
i)
50 050 058 iRtiaRY)
ADO
C20 u7
DA1 I: :| R125 R126 R127
DAO IJ et o] [[0 L svs[l u12
PB5 [2]
PB4 . u4
B1 B2 OuUt B3 B4R10
oo = SR S ojo oo o] (Sl SIS SIe T G,
o S U0 :I:I;I:P
Eg:}] B B8 o
. @ o o0 80’8]
PD7 = | |C10|::|
PD6
PD5 Ri101[© T[T T][E TJC T]ri04 u5| | B
;gg o J71 B2 in B3 B4 ia
P2 3 | s EEEaEaE TR W3
potjo o 1] ml I o] ;s D:fL o
—ONMET O~ N -
™ ggg R34c|f D mmmmmmmmmgaa.’:éf%"gﬁ SE8=8 S0 o
PC4 c15IHt|s SE5SS6S8FTE ErEER 8 [0 :“:1
< . 364 1[0 O] 2g, 2t 7
e 253 Raspberry Pi | a [Tr2 :]I; Iy
PC2 3o Gertboard ¥ MNCSER IS~ ¥oo [E Tr1
i |1 TZEE 21 Oct. 2012 2858855555 585586568 5V
rzcot>.r 838 m ul_l | “I::l[
GND v 0wl [© Slavs ¢7 —¢

Figure 32: Wiring diagram for the AnaloglInput sketch.

AnalogReadSerial Sketch Using Minicom

Some of the Arduino sketches involve reading or writing data via the serial port, or UART. An
example is AnalogReadSerial which is in File > Examples > Basics. This sketch sets the baud
rate to 9600, then repeatedly reads in a value from analogue pin 0 and prints this value to the serial
port (also called UART). The value read in is between 0 and 1023; 0 means that the input pin is at 0V
and 1023 means that it is at the supply voltage (3.3V for the Gertboard).

To set up your Gertboard for this sketch, you need the potentiometer attached to analogue input 0 as
for the AnalogInput sketch. In addition you need to connect the ATmega chip’s UART pins to the
Raspberry Pi. Digital pin 0 (PDO on the Gertboard) is RX (receive), and digital pin 1 (PD1 on the
Gertboard) is TX (transmit). These signals are also brought out to the pins labelled MCTX and
MCRX just above the GP15 and GP14 pins in header J2 on the Gertboard. Thus you can use two
jumpers to attach the ATmega’s TX to GP15 and RX to GP14, as shown below.

47

I 2P T Lo ez pp e g B L MOTA MOTB MOT+
W BlRlBlBlilzlilslilaélzlzd F1__ Fuse mox. 2A
o | el e,/ N 9]
R2044 212->|:]rI::||: x :II::II:II:II:II:IR212 19
el o o B ST CI TR %%M [e]
/ o s 4 E R107 RT3 R114D7R11508R11609R12101
ooofs] (L0, 0u0 020 0u0 GEPRGRS
DAY [£2 \G [| [Res| | fRer
DA0|2 [C |1 1] el oL, svs[l u2
meol] U5 pe s | |
PB4 U6 vt
t R10!
rp’gg R |:09 Bl B2 out B3 B4 tI:":IjR‘GNDD
S u1o
o B) C) R Lszlas:il;lj
mlo 0| (o) o | oo T
PD7
PD6 c3
PD5 Ri101[© T[T T][E TJC T]ri04 u5| | ol
PD4 X '
PD3 J Tin 85 B M
o of o | | EEEaEaE TR el
P] || . EEwso 9] 5
. rr:gg LSJ,'CI% ﬂnasg§ggagggggﬁ§5;’"°§ CEEEEE 7c|4::|
oo S ggaggeu._._ Ezzz2 x-w[o 0]Co]
~—|Pc3 253 Raspberry Pi = J"%OI 232 ok :IE]
N s Gertboard [o [©] E Tk &
PC2 S eriboar AN R T XY]
1 83 210ct. 2012 ELES5a5asban55558 5V
~ Trcoo! 538 m ul_l | L1|::|
GNE us ool |:|3V3 c7 [c

Figure 33: Wiring diagram for the sketch AnalogReadSerial.

GPI1014 and GPIO15 are the pins that the Raspberry Pi uses for the UART serial port. If you refer
back to the table of alternate functions (Table 1, page 11), you will see that GP1014 is listed as TX
and GPIO15 as RX. This is not a mistake! This swapping is necessary: the data that is transmitted by
the ATmega is received by the Raspberry Pi, and vice versa.

Now, how to we get the Raspberry Pi to read and show us the data that the ATmega is sending out on
the serial port? There is a button labelled Serial Monitor on the toolbar of the Arduino IDE, but it
doesn’t work on the Raspberry Pi. It assumes that you are talking to an Arduino board over USB, not
talking to a Gertboard over GPIO. The easiest way to retrieve this data is to use the minicom program.
You can install this easily by typing into a terminal this command:

sudo apt-get install minicom

You can use menus to configure minicom (by typing minicom -s). Alternatively, included with the
Gertboard software is a file minirc.ama0 with the settings you need to read from the GPIO UART
pins at 9600 baud. Copy this file (which was provided by Gordon Henderson) to /etc/minicom/
(you’ll probably need to sudo this) and invoke minicom by typing

sudo minicom amaO

Now if you upload the sketch to the ATmega chip, you should see the value from the potentiometer
displayed in your minicom monitor.

LEDmeter Sketch

This example is one that we created specifically for the Gertboard, based on the AnalogInput
sketch described above. Inthe gertboard sw directory, along with all the C files, is one called
LEDmeter. ino. Thisis an Arduino sketch that makes use of all 12 LEDs to create a bar graph

48

showing the voltage from an analogue input such as a potentiometer. First you need to put this sketch
in the right place. You should have a directory called sketchbook in your home directory. Make a
subdirectory beneath that called LEDmeter, and copy LEDmeter . ino into that directory. To do
this, you can type the following from your gertboard_sw directory:

mkdir ~/sketchbook/LEDmeter
cp LEDmeter.ino ~/sketchbook/LEDmeter

When that is done, the sketch will now be in the File > Sketchbook menu on the Arduino IDE. You
can bring it up to inspect the code. In this example, we created two extra functions, turn on leds
and turn_off leds, mostly to demonstrate that you can use ordinary C code (including functions)
in sketches. The pin numbers are stored in an array to make it easy to turn on or off a specific LED. If
you want to access LED 4, use Arduino pin 1ed pins[4]. In order to do this, we put a 0 into the
first location of the array, because there is no LED 0. One feature of C that you may not be familiar
with is the use of static in the definition:

static int old max led = 0;

The keyword static means that the value of the variable should be kept the same between function
calls. So if we assign it a value at the end of one call to 1oop (), the next time 1oop () is called

old max_ led will still have that value. The initial value, 0, is only assigned once, before 1oop ()
is called the first time, not every time loop () is called. The wiring diagram for LEDmeter is
below.

o~

e < MOTA MOTB MOT+

BUF10

T o2 g g - B2 E =
W RFlRlRlalalzlElilaladlzlal F1__ Fuse max. 2A
R20jM212- SR m| | | | I/\/I l
I,
GND lole]
428 i D, 10§89R1 D64 D 15 16 J@R121D10R122D11 12R124 r‘
AD1 g T out o
ADO @ 8° o]0 ofo 60 o]
C, u7
DA 2 Z 7. A Ef
DAO 3v3[|
PBS
PB4 . u4
PR3 5 Bt BooutB3 B4R Ri12
w2 S[o o ofo o o] t::mi LS ool7]
:g:} B B ot
g | com o 51 1 B
PD7 co[©T]
PD6
PD5 Ri01[© D€ T][C O[S Trio4 u5| |
PD4 X g [0 o[oo oo 9]
PD3 D B1 B2 in B3 B4
maig? | - | 5 EEEEEIE T |,
milo o 211l el [o 2P o , PBovo0l
o |0 o Bl s RER8ER 825 SRR
PC5 c17 ul_l 55380 5 [R R R R
PC4 ct5 Clh EEIo=IoosE FEEEY
-7 253 gast;%)errg Pi | 464 41O O] = =|J2| E%m
PC2 B2 ertooar ¥ NN - O R0 Y SO0 NS — O R1
N 151 £e3 210ct. 2012 SEES Eaacbasissss
PCOTO 238 m J,l_l | “I:j
A L ol 2013V ¢ [c

Figure 34: Wiring diagram for the LEDmeter sketch

Upload it the usual way, and the LEDs will respond to the position of the potentiometer.

49

Going Forward
These examples have only just scratched the surface of the wonderful world of Arduino. Check out
http://arduino.cc/en/Tutorial/HomePage for much, much more.

For More Information

For further information on the Raspberry Pi and its GP10O ports, the datasheet for the processor can be
found here:
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

Appendix A: Schematics
We have included the schematics for the Gertboard in the pages that follow. They are numbered A-1,
A-2, etc. The page number is located in the lower left hand of each page.

50

http://arduino.cc/en/Tutorial/HomePage
http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

51

