High Voltage Transistor

Pin Configuration

- 1. Emitter
- 2. Base
- 3. Collector

Features:

- · NPN High Voltage Silicon Transistor
- High Voltage Silicon Planar Transistors used in High Voltage and High Power Amplifier Applications

Absolute Maximum Ratings:

(T_a = 25°C unless otherwise specified)

Characteristic	Symbol	Value	Unit	
Collector Base Voltage	V _{CBO}	300		
Collector-Emitter Voltage	V _{CES}	250	V	
Emitter-Base Voltage	V_{EBO}	7		
Collector Current Continuous	I _c	1	_	
Base Current	I _B	0.5	A	
Power Dissipation at T _a = 25°C Derate above 25°C	Б	1 5.7	W	
Power Dissipation at T _C = 25°C Derate above 25°C	P _D	5 28.6	mW/°C	
Operating Temperature	T _J 200		°C	
Storage Temperature Range	T _{stq}	-65 to +200	°C	

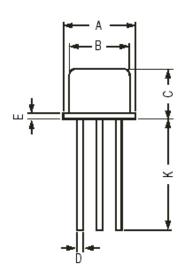
Thermal Resistance

Junction to Ambient	R _{th(j-a)}	175	°C/W
Junction to Case	R _{th(j-c)}	35	C/VV

High Voltage Transistor multicomp

Electrical Characteristics:

 $(T_a = +25^{\circ}C \text{ unless otherwise specified})$


Parameter	Symbol	Test Condition		Unit
Collector-Emitter Voltage	V _{CEO(sus)} *	I _C = 50mA, I _B = 0	250	V
	I _{CBO}	V _{CB} = 250V, I _E = 0	<20	
Collector-Cut off Current	I _{CEO}	$V_{CE} = 200V, I_{B} = 0$	<50	
	I _{CEX}	V _{CE} = 300V, V _{BE} = 1.5V	<500	μA
Emitter-Cut off Current	I _{EBO}	$V_{EB} = 6V, I_{C} = 0$	<20	
DC Current Gain	h _{FE} *	I _C = 20mA, V _{CE} = 10V	40 - 160	-
Collector Emitter Saturation Voltage	V _{CE(sat)} *	$I_{\rm C} = 0.05 A, I_{\rm B} = 4 {\rm mA}$	<0.5	V
Base Emitter Saturation Voltage	V _{BE(Sat)} *	I _C = 50mA, I _B = 4mA	<1.3	V


Small Signal Characteristics

Small Signal Current Gain	h _{fe}	$I_C = 5mA$, $V_{CE} = 10V$, $f = 1kHz$	>25	-
Output Capacitance	Cob	$V_{CB} = 10V, I_{E} = 0, f = 1MHz$	<10	pF
Input Capacitance	Cib	$V_{EB} = 5V, I_{C} = 0, f = 1MHz$	<75	ρΓ
Current Gain-Bandwidth Product	f _t	I _C = 10mA, V _{CE} = 10V, f = 5MHz	>15	MHz
Real Part of Input impedance	R _{e(hie)}	V _{CE} = 10V, I _C = 5mA, f = 1MHz	<300	Ω

^{*}Pulse Test: Pulse Width = 300µs, Duty Cycle = 2%

TO-39 Metal Can Package

Pin Configuration

- 1. Emitter
- 2. Base
- 3. Collector

Dim.	Min.	Max.
Α	8.5	9.39
В	7.74	8.5
С	6.09	6.6
D	0.4	0.53
Е	-	0.88
F	2.41	2.66
G	4.82	5.33
Н	0.71	0.86
J	0.73	1.02
K	12.7	-
L	42°	48°

Dimensions: Millimetres

Part Number Table

Description	Part Number	
Transistor, NPN, TO-39	2N3440	

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any windout notice and the spaces are spaces. The information supplied to be accurate but the spaces and the spaces are spaces and the spaces are spaces. The spaces are spaces are spaces are spaces and the spaces are spaces and the spaces are spaces and the spaces are spaces. The spaces are spaces are spaces are spaces and the spaces are spaces and the spaces are spaces and the spaces are spaces. The spaces are spaces are spaces are spaces are spaces and the spaces are spaces and the spaces are spaces. The spaces are spaces are spaces are spaces are spaces and the spaces are spaces and the spaces are spaces. The spaces are spaces are spaces are spaces are spaces are spaces are spaces. The spaces are spaces are spaces are spaces are spaces are spaces are spaces. The spaces are spaces are spaces are spaces are spaces are spaces are spaces. The spaces are spaces are spaces are spaces are spaces are spaces are spaces. The spaces are spaces are spaces are spaces are spaces are spaces are spaces. The spaces are spaces are spaces are spaces are spaces are spaces are spaces. The spaces are spaces are spaces are spaces are spaces are spaces are spaces. The spaces are spaces. The spaces are spaces are spaces are spaces are spaces are spaces are spaces. The spaces are spaces. The spaces are spaces. The spaces are spaces. The spaces are spaces. The spaces are spaces. The spaces are s

www.element14.com www.farnell.com www.newark.com

