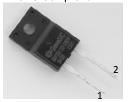
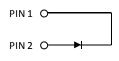


GAP3SLT33-220FP

Silicon Carbide Power Schottky Diode


 V_{RRM} = 3300 V V_{F} = 1.7 V I_{F} = 0.3 A Q_{C} = 52 nC


Features

- 3300 V Schottky rectifier
- 175 °C maximum operating temperature
- Electrically isolated base-plate
- Positive temperature coefficient of V_F
- · Fast switching speeds
- Superior figure of merit Q_C/I_F

Package

RoHS Compliant

TO - 220FP (Isolated Base-plate Package)

Applications

- Down Hole Oil Drilling, Geothermal Instrumentation
- High Voltage Multipliers
- Military Power Supplies

Advantages

- Improved circuit efficiency (Lower overall cost)
- Significantly reduced switching losses compare to Si PiN diodes
- Ease of paralleling devices without thermal runaway
- Smaller heat sink requirements
- Low reverse recovery current
- · Low device capacitance

Maximum Ratings at T_j = 175 °C, unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Repetitive peak reverse voltage	V_{RRM}		3300	V
Continuous forward current	I _F	T _C ≤ 125 °C	0.3	Α
RMS forward current	I _{F(RMS)}	T _C ≤ 125 °C	0.35	Α
Surge non-repetitive forward current, Half Sine	1	$T_{\rm C}$ = 25 °C, $t_{\rm P}$ = 10 ms	tbd	۸
Wave	I _{F,SM}	T_C = 125 °C, t_P = 10 ms	tbd	Α
Non-repetitive peak forward current	$I_{F,max}$	T_C = 25 °C, t_P = 10 μ s	tbd	Α
l ² t value	∫i² dt	T_C = 25 °C, t_P = 10 ms	tbd	A^2S
Power dissipation	P _{tot}	T _C = 25 °C	25	W
Operating and storage temperature	T_j , T_stg	·	-55 to 175	°C

Electrical Characteristics at T_j = 175 °C, unless otherwise specified

Parameter	Cumbal	Conditions min.		Values		11	
	Symbol			min.	typ.	max.	Unit
Diode forward voltage	V _F	I _F = 0.3 A, T _j = 25 °C		1.7		V	
	٧F	$I_F = 0.3 \text{ A}, T_j = 175 ^{\circ}\text{C}$		3.9			
Reverse current	1	$V_R = 3300 \text{ V}, T_j$	= 25 °C		1.3	5	
	I _R	$V_R = 3300 \text{ V}, T_j = 175 ^{\circ}\text{C}$		14	20	μA	
Total capacitive charge	Q_{C}	$ I_F \le I_{F,MAX} $	V _R = 1500 V		52		nC
Switching time	ts	dl _ε /dt = 35 A/μs Τ _i = 175 °C	V _R = 1500 V		< 60		ns
Total capacitance		$V_R = 1 \text{ V, } f = 1 \text{ MHz, } T_j = 25 ^{\circ}\text{C}$		42			
	С	$V_R = 400 \text{ V}, f = 1 \text{ MH}$	lz, T _j = 25 °C		8		pF
		$V_R = 1000 \text{ V}, f = 1 \text{ MH}$	Hz, T _i = 25 °C		7		

Thermal Characteristics

The war all was into many in wasting. On least frames

rnermai resistance, junction – Cu lead fra	irrie R _{thJC}	1.42	C/VV
Mechanical Properties			
Mounting torque, M3 screw	M	0.6	Nm

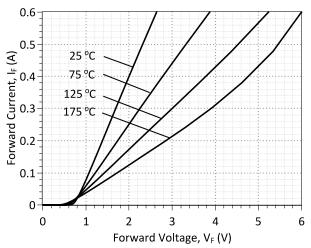


Figure 1: Typical Forward Characteristics

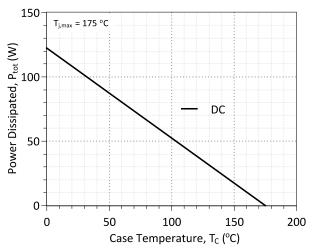


Figure 3: Power Derating Curve

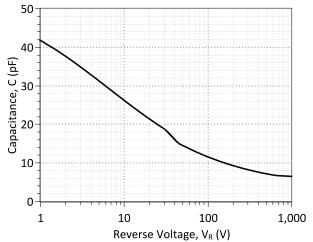


Figure 5: Typical Junction Capacitance vs Reverse Voltage Characteristics

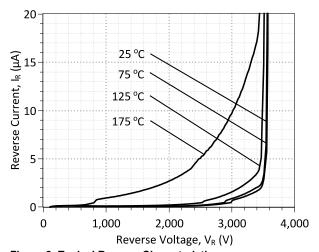


Figure 2: Typical Reverse Characteristics

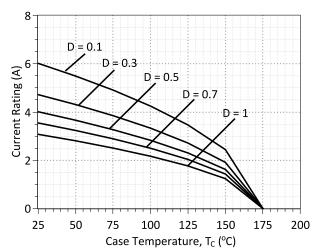


Figure 4: Current Derating Curves (D = t_p/T , t_p = 400 μ s) (Considering worst case Zth conditions)

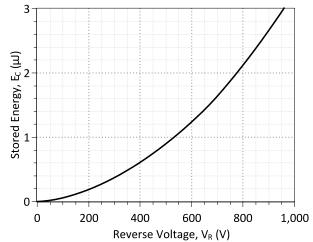
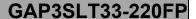



Figure 6: Typical Switching Energy vs Reverse Voltage Characteristics

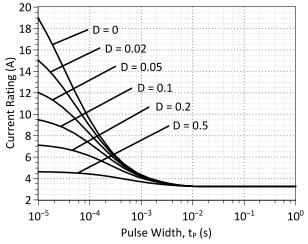


Figure 7: Current vs Pulse Duration Curves at T_C = 150 °C

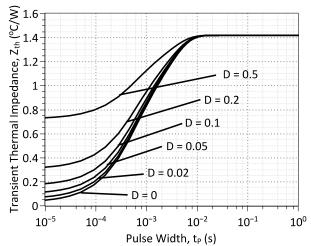
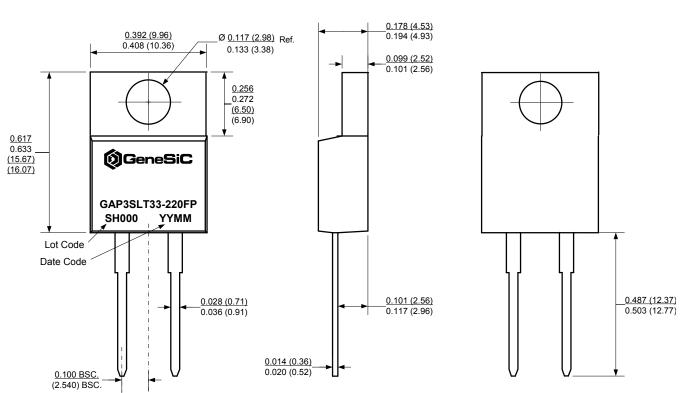



Figure 8: Transient Thermal Impedance

Package Dimensions:

TO-220FP

PACKAGE OUTLINE

NOTE

1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.

GAP3SLT33-220FP

- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS 3. CONTROLLED LEAD COPLANARITY <D> $0.004\ \mbox{INCH}$ MAXIMUM

Revision History					
Date	Revision	Comments	Supersedes		
2013/03/22	1	Added Thermal Characteristics			
2013/01/23	0	Initial Release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.