
- � -

YETI

© AREXX - THE NETHERLANDS V01082006

Manual: Model YT-3000

Walking robot

- � -

NOTICE!

YETI ROBOT KIT is a trademarks of AREXX, The Netherlands and JAMA, Taiwan.
AREXX and JAMA are registered trademarks

All rights reserved.
Reprinting any of this instruction manual without our permission is prohibited.
The specifications, form, and contents of this product are subject to change without prior notice.
�We are not liable for disadvantage or damage caused by improper use or assembly.

Technical support:

WWW.AREXX.COM

WWW.ROBOTERNETZ.DEManufacturer:
AREXX Engineering
JAMA Oriental

European Importer:
AREXX Engineering
ZWOLLE, HOLLAND

© Arexx Holland en JAMA Taiwan

	 1. 	 Produkt description YETI	 	 	 3		
	2 .	 YETI general information				 4
	 3. 	 Who or what is YETI?				11
	 4.	 Hardware					1 3
	 6. 	 Assembly instructions electronics		1 7
	 7.	 Partlist mechanics				2 6
	 8.	 Mechanical assembly instructions		2 9
	 9. 	 Charching YETI batteries				 41
	1 0.	 Software installation and initial steps		 48
	11 .	 Preparation for operation			 63
	12 .	 YETI Calibration					 66
	1 3.	 YETI Programming				 69
	1 4. 	 Extensions and upgrade modules		 85

	 xx.	 APPENDIX					1 04
			 A.	 Overview of Yeti functions	1 05
			 B.	 Diagram YETI			1 09
			 C. 	 Diagram Display module		11 0
			 D.	 Diagram US module		111
			 E. 	 Diagram RS232 IR		112
			 F-	 Diagram USB IR			11 3
			 G.	 Flatcable connections		11 4
			 H.	 Error tracking			11 5
			 I.	 Installing upgrade kits		11 7
			 J. Calibration- and test program	11 8
			 K. Akku ADC values		121

CONTENT

- � -

1. PRODUCT DESCRIPTION YETI

1.1.	 What kind of robot is the YETI?

YETI is a walking robot man, named after “the abominable
snowman”, a hairy giant, who is supposed to live in the
Himalayan Mountains. Just like the legendary giant, our robot
is walking on two big feet.

Our YETI however is supplied with a microprocessor brain and
a computer program, controlling a number of servomotors to
move its legs and feet.

1.2.	 Specifications:

YETI ROBOT

Motor:				 2 servo motors (5 Volt)
Processor type:		 ATmega8L
Programming 	
language:			 C
Power source:		 4 pcs. AA Accu
				 4.8 - 6 Volt
Power consumption:	 10 mA minimum
				 600 mA maximum
Communication:		 Infrared and I2C bus
Extensions: 			 Possibility for two extensions by a
	 	 	 	 flatcable
Height				 278 mm
Width				 155 mm
Depth				 100 mm

- � -

2. YETI GENERAL INFORMATION
2.1. 	 Who or what is YETI?

As already mentioned YETI is a walking robot, named after
“the abo-minable snowman”, a hairy giant, who is supposed to live in
the Himalayan Mountains.

Just like the legendary giant, our robot is walking high on his two big
feet. Our YETI however is supplied with a microprocessor brain and
a computer program, controlling a number of servomotors to move its
legs and feet. So it can walk forwards and backwards and even make
left and right turns.

For each step YETI must move one feet followed by he other just like
humans do. Therefore he needs two servomotors controlled by a brain
(microprocessor). A servomotor has an internal gearbox and because
of this it is a very powerful motor.

To control the motor rotation and speed, the servomotor also contains
an electronic circuit which is a Puls Width Modulation (PWM) control.
This PWM control allows the servomotor to make a very accurate
rotation step.

YETI has a front servo and a bottom servo. The servo at the front puls
moves the feet upwards. The forward and backward move is made by
the bottom servo. In this manual another name for bottom servo may
also be leg servo!

- � -

2.2. 	 How can we use the YETI robot?

•	 Load different example programs into the YETI.
•	 Load self-made programs into the YETI.
•	 Add assembled electronic extension units to enable the YETI to
 	 avoid obstacles or to measure distances.
•	 Add self-made electronic extension units.
•	 Let YETI communicate with your computer by wireless infrared 	
	 signals.
•	 Control YETI by wireless infrared signals from your computer or 	
	 from your remote TV-control set.
•	 Let YETI play melodies or make sounds
•	 Switch off and on his LED-eyes.
•	 Modify the YETI hardware and YETI’s face, for example by a
	 display or a LED mouth.

- � -

2.3. 	 YETI may be activated by 3 simple steps

1.	 Assemble the mechanic and electronic modules of YETI
	 following the instructions in the manual.
2.	 If you use accumulator-packs, charge the rechargeable devices
	 to 100 %.
3.	 Activate the main YETI switch at the bottom of the robot.

A few seconds later YETI will stretch his legs and proceed by giving a
demonstration of his abilities, following a standard example program in
the processor’s memory.

Now this does not seem to be so difficult and it looks like we are ready
by now. But the real work is still to come and this is just an ouverture.

We may now concentrate on writing our own programs and modify the
robot’s abilities and looks in a more creative phase.

- � -

2.4.	 Loading an example program into the YETI memory

We will be using harmless invisible infrared light signals to load an
example program into the YETI memory. In fact, the supplied COM-port
adapter contains a RS232-infrared transceiver, which must be
connected to the COM-port of your PC. The YETI robot contains a
built-in infrared transceiver, being located behind both small openings
at the robot’s back. The computer COM-port adapter is available as an
USB-module as well. The ASURO robot, another programmable robot
in our robotic range, is using the same IR-transceiver system.

Loading a program into the YETI memory will overwrite the
existing program in YETI’s memory. The default example
program in the memory will be deleted. This however is no pro-
blem, as it may be reloaded from the PC into the memory at any
time.

- � -

2.5. 	 Loading a YETI program into the robot

•	 Connect the COM-port adapter (or the USB adapter) to
	 your PC.
•	 Start the Flash program at the computer.
•	 Select the COM-port for the COM-port adapter in the
	 Flash program at the computer.
•	 Select the YETI program in the Flash program.
•	 Allow the holes in the YETI’s back to be directed to the
	 upper side of the COM-port adapter.
•	 Switch off YETI’s main switch.
•	 Press the button “Programming” in the Flash program.
•	 Switch on YETI’s main switch (within 10 seconds).
•	 Now the YETI program will be transferred into the YETI
	 processor memory.
•	 Wait until the YETI program has been loaded.
•	 Switch the YETI off and then on again.
•	 Wait for 3 seconds.

If everything is OK, YETI will now start executing its new program.

- � -

2.6.	 Add-on kits

You may easily add extra (but non included) modules to the YETI
robot, to allow YETI to do much more. How about adding an ultrasonic
transceiver, allowing YETI to sense the distance to obstacles and avoid
these objects while walking around?

You also may add a display to YETI’s body to show output messages
or data. Add-on kits usually contain a printed circuit board (PCB) and
may be supplied with or without electronic components. The add-on
kits are made to fit into the robot’s head and will be attached to the
skull just above his eyes.

Of course you may also design your own PCB’s by using the experi-
mental PCB-set. This module will be attached to YETI’s head and will
be located at the tiny roof.

A flat cable is used to connect the add-on modules to the main PCB
(and to the microprocessor’s I2C bus in the robot’s skull as well), using
an I2C-bus system.

- 10 -

2.7.	 The communication between YETI and PC

Pressing the “Programming”-Button in the Flash Program will activate
the Flash program to contact the YETI robot for 10 seconds. If YETI
responds, the YETI program will be transferred. YETI however will only
respond to the PC if the contact is tried within a 3 seconds period fol-
lowing YETI’s switch on. If YETI is not being contacted within the 3
seconds period, the robot will proceed by starting the program in its
memory. In case the YETI does not respond, the Flash program will
output an error message after 10 seconds.

Reports from ASURO-users describe potential problems in data
transfers. Especially the RS-232 adapter may be causing difficulties by
generating error messages.

These problems may be avoided by:
•	 Providing a good visible contact between IR-transmitter
	 and -receiver.
•	 Using the latest Flash software release.
•	 Using fully charged battery packs.
•	 Screening the systems from artificial light sources (especially 	
	 fluorescent lamps).
•	 Using an USB-adapter (especially in case the
	 RS-232 voltage is low).

- 11 -

4. WHO OR WHAT IS YETI?

4.1. 	 Summary

As discussed in the first chapter the YETI is a mythical figure,
the abominable snowman, living in the Himalya Mountains and clumsily
walking on two big feet.

Our YETI is a tall, upright standing robot, equally walking on two big
feet and being able to move forward or backward or make a left or a
right turn.

Every step forward or backward will start by balancing on one foot and
moving the opposite foot. Basically two servos will be executing these
movements. A servo is a special motor type, including a gear. Gears
are used to reduce speed, but will equally increase the motor’s torque.
Additionally the servo is equipped with impulse-controlled electronics,
allowing an exact positioning of the servo’s rotation angle.

The YETI is equipped with two servomotors, located at the frontside
and at the bottom side. The servo at the frontside rises YETI’s feet in
order to move them (and is named the “feet-servo”) and the servo at
the bottomside moves the legs (including the feet) one by one (the
“legs-servo”).

4.2.	 The basics of walking

YETI is balancing on one foot and is moving the opposite foot. To do so
YETI pulls the outer side of the “balancing” foot upwards and simulta-
neously presses the outer side of its “moving” foot downwards. These
movements will bend YETI’s body over to the “balancing” foot, which is
now carrying the main part of the robot’s weight. In a next phase YETI
will shift its “moving” foot forward, completing the movement process.
The “moving” foot is now turning into a “balancing” foot and vice versa.

In the walking process these movement are constantly being repeated.

- 12 -

Detailed explanation

Starting from stillstand, the YETI starts rotating the feet servo clockwise
as seen from the front side. These rotations will result in two move-
ments:

In a first phase the rigth side of the feet servo is rising, pulling the outer
side of the right foot upwards. This action might bend the body to the
right, but this movement is impossible as long as the main part of the
weight is still resting on the inner side of the right leg.

At the same time the left side of the feet servo is lowering, pressing the
outer side of the left foot downwards. This action is lifting the left leg
upwards, bending the body to the right and transferring the main part of
the weight to the right foot.

If YETI raises his right foot a little bit too much, the left foot will bend
YETI’s body over the equilibrium point, causing the robot to fall down to
the right side. YETI must raise his right foot just high enough to prevent
the left leg from pushing him beyond the equilibrium. The closer the
body reaches the equilibrium, the greater percentage of the weight is
resting on the right foot and the easier the robot is able to move his left
foot.

At this point the legs servo is activated. The legs servo moves YETI’s
left leg forward as far as possible. While moving the left foot forward
from behind, the body will also be bended up to a position halfway the
left foot, but still following the line of the right foot. YETI is still balancing
on his right foot. As soon as the left foot has reached its ultimate
position, the robot raises the outer side of the left foot and
simultaneously presses the outer side of the right foot downwards.
These actions will move the body and its weight as well (including the
equilibrium point) from the right foot to the left one. Again we must be
careful to prevent YETI to move too far to the left, which would result in
falling down.

The movement phases will symmetrically be repeated for each
single leg.

- 13 -

4. HARDWARE
4.1. 	 YETI main PCB

YETI’s main printed circuit board (PCB) is equipped with an Atmega8L
microcontroller chip. The microcontroller is connected to a big, round
beeper and to both red LED’s at the front side. A great number of other
microcontroller pin connections, e.g. the I2C bus, are routed to the
20-pin connector at the rear side directly. This connector provides an
extension port to other hardware by a flat cable. Both black connec-
tors next to the red LED provide the connections to both servos. Three
white connectors serve the connectors for the main switch and for both
battery packs.

4.2.	 Flat cable connections

The designers reserved four of the twenty flat cable connections.
Pin 19 is used for VCC and pin 7, 8 and 20 for GND.

All remaining flat cable connections are connected to a dedicated
microcontroller pin. The pin numbers are listed with the assigned
microcontroller pin functions.

Microcontroller pins may be used in several modes, depending on the
programming mode. Please check the microcontroller’s datasheet or
manual for details.

- 14 -

4.3.	 Flat cable connections

More info about flat cable connections: (see page. 20)

Pin 1	 SCL		
Pin 2	 SDA		
Pin 3	 PC3(ADC3)	
Pin 4	 PC2(ADC2) 				
Pin 5	 PC1(ADC1) 	
Pin 6	 PC0(ADC0) 	
Pin 7	 GND					
Pin 8	 GND		
Pin 9	 AVCC		
Pin 10	 PC6(RESET)	
Pin 11	 PB5(SCK)	
Pin 12	 PB4(MISO)	
Pin 13	 PB3(MOSI/OC2) 	
Pin 14	 PD3(INT1)	
Pin 15	 PD6(AIN0)	
Pin 16	 D7(AIN1)	
Pin 17	 PD0(RXD)	
Pin 18	 PD1(TXD)	
Pin 19	 VCC		
Pin 20	 GND		
			

4.4. 	 YETI experimental extension set

Summary
The experimental extension set has been designed to set up your own
electronic designs and connect the experimental modules to the micro-
controller.

- 15 -

4.5.	 Flat cable connections

The designers reserved four of twenty flat cable connections.
Pin 19 is used for VCC and pin 7, 8 and 20 for GND.

All remaining flat cable connections are connected to a dedicated micro-
controller pin. The pin numbers are listed with the assigned microcon-
troller pin functions. Microcontroller pins may be used in several modes,
depending on the programming mode. Please check the microcontrol-
ler’s datasheet or manual for details.

Pin 1	 SCL		 	 Serial Clock (for I2C communication)
Pin 2	 SDA			 Serial Data (voor I2C communication)
Pin 3	 PC3(ADC3)		 Digital input/output or analog monitor input
Pin 4	 PC2(ADC2) 		 Digital input/output or analog monitor input
Pin 5	 PC1(ADC1) 		 Digital input/output or analog monitor input
Pin 6	 PC0(ADC0) 		 Digital input/output or analog monitor input
Pin 7	 GND			 GND (several connectors to prevent signal noise)
Pin 8	 GND			 GND (several connectors to prevent signal noise)
Pin 9	 AVCC			 Analog reference-voltage for AD-converters
Pin 10	 PC6(RESET)		 Microcontroller reset pin
Pin 11	 PB5(SCK)		 Digital input/output
Pin 12	 PB4(MISO)		 Digital input/output or I2C function pin
Pin 13	 PB3(MOSI/OC2)	 Digital input/output or I2C function pin or Timer2 pin
Pin 14	 PD3(INT1)		 Digital input/output or external interrupt
Pin 15	 PD6(AIN0)		 Digital input/output or analog testinput
Pin 16	 D7(AIN1)		 Digital input/output or analog testinput
Pin 17	 PD0(RXD)		 Digital input/output or RS232 input
Pin 18	 PD1(TXD)		 Digital input/output or RS232 input
Pin 19	 VCC			 VCC
Pin 20	 GND			 GND (several connectors to prevent signal noise)

- 16 -

- 17 -

5. ASSEMBLY INSTRUCTIONS ELECTRONICS

First of all please check if all parts in the kit are complete.

5.1.	 Soldering job
The layout on the PCB clearly shows where to mount each component.

When you want to see more detailed information, please study the
diagram, pictures and drawings for extra help and information.

When we assemble a PCB we always start with the lowest passive
components. Normally these are the resistors followed by the capaci-
tors. After soldering, cut the wire ends of the components directly, so
you always keep enough space for the soldering of the other compo-
nents on the PCB.

Before you start soldering, we always advise to insert the active com-
ponents (transistor, IC, diode) so you already can align their pins when
they do not fit properly. Often the legs of such components need some
extra bending to make them fit. At last you solder the IC sockets or the
active components.

IMPORTANT
The Elco and IC have a polarity so you should be careful to solder
them in the correct position.

WARNING
NEVER start with the soldering of an IC and when possible always use
a IC socket to avoid mistakes. When an IC is soldered, it is very dificult
to remove it again.

TIP
The IC-pins can be bend and aligned very simple on a hard flat
surface like a table! Just put all pins inline on the table and bend the IC
carefully to the correct alignment.

Technical questions see; www.arexx.com --> Forum
www.roboternetz.de --> Forum

- 18 -

1. Preheat the solder area which
must be soldered AND the com-
ponent wire with the tip of the
iron. Do NOT overheat it!

2. Add some solder to the
soldering area and
component wre but NOT
TO MUCH!

3. Ziehe den Lötdraht zurück
und lasse das Lötzinn richtig
fließen.

4. Take away the soldering iron
and DO NOT MOVE the
component or PCB!

5. Cut away the long component
wire just above the soldering spot.

The END RESULT is a nice and
shinny soldering spot which is
attached to the PCB copper and
component wire.

long-nose plier

Solder
0,8- bis 1mm

Soldering iron
(15 to 30W)

Diagonal cutter

Soldering iron
stand

5.2.Necessary tools

CAUTION
• Read this manual carefully in advance to fully understand how to assemble this product.
• Children below 14 should can only assemble this product with the help of adults.
• Be careful about tools. Especially be careful about sharp tools such as nippers or cutter knife
 to prevent any injuries or accidents.
• Never assemble the kit when a younger child is around. The child might touch sharp tools or
 swallow parts and a vinyl bag.
• Be careful about sharp edges of parts.
* Do not mix old and new or recharchable and non rechargeble batteries.
• Take out the batteries when you do not use the YETI for more than a week
• The specification, shape and size of the product are be subject to change without prior notice.

Screwdriver set

Necessary Batteries:
AA Batteries, 3 Pieces
(not included)

5.3. Soldering techniques:

Hold the iron like
a pencil

Only add a little solder each time

Correct position for professional soldering

5.4. Troubleshoot soldering mistakes:

PERFECT SOLDERING

The soldering surface
looks nice and shinny

Not enough solder

Solder did not flow

Solder bridge

Two seperate solder spots are
connected to each other

Cold PCB

Solder is attached to
comonent wire but not to
the PCB copper

Only use lead free ROSIN CORE solder!
Never use any liquid- or paste flux!

PASTE

- 19 -

5.4. 	 Assembly main PCB

IMPORTANT see 5.5 (Diagram) and 5.6 (Pictures)

YETI parts list
 	 	 	 	 	
Nr.	 	 Name					 Pcs.		

PCB1		 Main PCB				1
IC1		 ATmega8-l 		 (polarity!)	1
IC2		 SFH5110 IR-receiver-IC (polarity!)	1
R1		1 0K / 0.25W / 5% (Brn, blk, or, gld)	1
R2		12 0K / 0.25W / 1% (Brn, red, blk, or, brn)	1
R3		1 00K / 0.25W / 1% (Brn, blk, blk, or, brn)	1
R4		22 0R / 0.25W / 5% (Red, red, brn, gld)	1
R5		22 0R / 0.25W / 5% (Red, red, brn, gld)	1
R6		 470R / 0.25W / 5% (Ylw, vio, brn, gld)	1
R7		 470R / 0.25W / 5% (Ylw, vio, brn, gld)	1
R8		 4K7 / 0.25W / 5% (Ylw, vio, red, gld)	1
L1		1 0uH (Brn, blk, blk, silver)			1	 		
C1		22 0uF/16V (polarity!)			1 	
C2		1 0nF (103)				1 	
C3		1 00nF 	(104)				1 	
C4		1 00nF 	(104)				1 	
C5		22 0uF/16V (polarity!)			1 	
C6		1 00nF 	(104)				1 	
D1		 SFH415-U IR-LED	 (polarity!)	1	
D2		 LED Red, 5MM 	 (polarity!) 	1	
D3		 LED Red, 5MM 	 (polarity!)	1 	
Q1		 Quarz, 8Mhz / 3 PIN			1 	
SP1		 Beeper, 5V, (KC1206)	 (polarity!)	1 	
IC socket	2 8 PIN, IC socket	 (polarity!)	1 	
JP1	 	 3 PIN, PCB type, black			1 	
JP2		 3 PIN, PCB type, black			1 	
JP3		 3 PIN, PCB type, white 		1 	
JP4		 3 PIN, PCB type, white			1 	
JP5		 3 PIN, PCB type, white			1 	
CON1_PCB	 Connector, male, 20 pins, 		
	 	 for flat cable/ 90 degree angle		 1

	

- 20 -

6.3. 	 Diagram YETI

- 21 -

5.6. 	 Hauptplatine

+

IC Marking

Marking with color stripes.

The side with the flat marking is
the Cathode.

The long leg is the e Anode.

No polarity
Condensator

LED & IR-LED

Resistor & Coil

IC

ELCO (Elektrolyt Condensator)
 The long leg is the

 The white line marking on the housing is the

+

- 22 -

5.7.	 Assembling the RS232-Infrared-Transceiver

• 	 IC1: Initially insert the 8-pole socket. The polarity mark of the 	
	 (slightly asymmetrical) socket must correspond with the mark in
	 the accompanying symbol on the PC.
• 	 D1, D2, D3: 1N4148, pay attention to polarity! Read the imprints
	 of the parts and take care not to interchange with ZPD5.1 or
	 BZX55-C5V1!
•	 D4: ZPD5.1 or BZX55-C5V1, pay attention to polarity! Read the
	 imprints of the parts and take care not to interchange with
	 1N4148!
•	 D5: SFH-415-U IR LED (Black LED) pay attention to polarity,
	 press downwards to the PCB
•	 C1: 100µF at least 16 Volt, pay attention to polarity!
•	 C2, C4: 100nF ceramic capacitor, imprint: 104
•	 C3: 680pF ceramic capacitor, imprint: 681
• 	 Q1: BC547 (A,B or C) or BC548 (A,B or C)
•	 R1, R5: 20kΩ_ (red, black, orange, gold)
•	 R2: 4.7kΩ (yellow, violet, red, gold)
•	 R3: 470Ω (yellow, violet, black, gold)
•	 R4: Does not exist
• 	 R6: 10kΩ (brown, black, orange, gold)
•	 R7: 220Ω (red, red, brown, gold)
•	 TR1: 10KΩ variable resistor
•	 IC2: SFH5110-36 Infrared receiver IC, bend the legs with
	 appropriate tongs! Pay attention to polarity (the curvature must
	 be positioned to the outside)!
	 Caution: electrostatic discharge (ESD) and excessive soldering
	 or heating may damage the part!
•	 X1: 9pol. SUB-D connector, case must be settled close to PCB.
	 Attachment strips must be soldered as well!
•	 IC1: insert the NE555P, pay attention to polarity!

- 23 -

5.8. 	 Diagram RS-232 IR-Transceiver

- 24 -

Fig. 5.1.: Layout RS232- Infrared-Transceiver

Finally check the board for short circuits or polarity errors.
Check the soldering quality intensively and re-solder bad contacts.	

5.9.	 Layout RS232-Infraread-Transceiver PCB

- 25 -

5.10.	 Info assembled USB-Infrared-Transceiver

The USB-IR-Transceiver is also available already assembled.

Fig 5.2.: USB Infrared-Transceiver

Fig. 5.4.: Bottom layout USB-Infrared-Transceiver

Fig. 5.3.: Component layout USB-Infrared-Transceiver

- 26 -

6. PARTS LIST MECHANICS

Nut M3

O 8 pcs.

RivetSpacer	

Collar
big

Flathead screw
M3x8mm

Collar
screw

O 8 pcs. O 4 pcs. O 10 pcs.

Nut M2

O 10 pcs.

O 4 pcs. O 4 pcs.

Screw-rod
connector

O 2 pcs.

Servo
Screw

O 2 pcs.

Ball-end
screw

Ball adjuster Ballhead
screw

O 4 pcs.O 4 pcs.O 4 pcs.

Thread end rod
long

HEX-tool

O 4 pcs.O 2 pcs.

O 1 pc.

Thread end rod
short

Colar
small

O 4 pcs.

- 27 -

Foot

O 2 pcs. O 2 pcs.O 2 pcs.

Feet joint panelRod
5 x 80mm

Servo arm pushrodRear legFront leg

O 2 pcs. O 2 pcs.O 2 pcs.

Top panelTop cover panel

O 1 pc. O 1 pc.

Head panel Back panel

O 1 pc. O 1 pc.

- 28 -

O 1 pc.

Bottom panel

IR/Transceiver PCB
(assembled)

YETI main PCB
(assembled)

O 1 pc.

O 1 pc.

Velgro-tape

O 2 pcs. Male
O 2 pcs. Female
Pre-assembled

RS-232 Cable

O 1 pc.

Servo motor Servo arm

7.1.	 Important electronic parts

Switch DC-connector

Battery holder

O 1 pc.

O 2 pcs.

O 1 pc. 1mm
O 1 pc. 2mm

O 2 pcs.

O 1 pc.

Cable set, Pre-assembled

Flat cable

O 1 pc.O 1 Pc.

Pre assembled with cableset

- 29 -

7. INSTRUCTIONS MECHANICAL
 ASSEMBLY

For this assembly you need;

Installing the head servo:

1 pc. Head panel
1 pc. Servo
4 pcs. Flathead screw
4 pcs. Nut M3
1 pc. Servo arm 2mm holes
1 pc. Servo arm screw

Assemble the servo as shown in the drawings.

Assemble the servo arm to the servo, see the detailed drawing!

Servo Arm
with 2mm
holes

Servo screw

Servo

Flathead screw

M3 Nut

- 30 -

Installing the bottom servo:

For this assembly you need; 1 pc. Bottom panel
1 pc. Servo
4 pcs. Flathead screw
4 pcs. Nut M3
1 pc. Servo arm
1 pc. Servo arm screw

Assemble the servo as shown in the drawings.

Assemble the servo arm to the servo, see the detailed drawing!

Servo Arm
with 1mm
holes

M3 Nut

Flathead screw

Servo

Servo arm screw

Servo Arm
with 1 mm holes

- 31 -

End assembly bottom panel:

For this end assembly you need; 1 pc. Assembled bottom panel
1 pc. Switch
1 pc. DC connector
2 pcs. Battery holder
4 pcs. AA accu
2 pcs. Velgro-tape male
2 pcs. Velgro-tape female

Assemble the bottom plate as descriped in the drawings.

IMPORTANT!
Do not forget to insert the batteries
before you close the YETI back panel!

Battery holder

Switch
DC connector

Installing Velgro-tape
(normally Pre-installed)

- 32 -

Assembly YETI head:
For this final assembly you need; 1 pc. Assembled bottom panel

1 pc. Assembled head panel
1 pc. Assembled main PCB
1 pc. Back panel

IMPORTANT!
FIRST, before closing the head, you have to install all the wiring and
cable sets! See page 33 and 34

Main PCB

- 33 -

Installing the wires:

1 pc. Assembled bottom panel
1 pc. Assembled head panel
1 pc. Assembled main PCB
Assembled cable set with:
1 pc. Wire back
1 pc. Wire blue
1 pc. Wire yellow
1 pc. Wire red

For the wire assembly you need;

Install all wiring as shown in the
drawings.

Assembled wire set
Normally pre-assembled

Assembled
battery holder

- 34 -

JP1 = Bottom servo
JP4 = Accu set 2

JP5 = Cable set

JP2 = Front servo

JP3 = Accu set 1

Cable connections main PCB:

JP1 & JP2 Servo Connections

1. White
2. Red
3. Black

1. = White

- 35 -

Mechanical end assembly YETI head:

For this final head assembly you need; 1 pc. Assembled YETI head
1 pc. Top panel
1 pc. Top cover panel
4 pcs. Thread end rod, short
4 pcs. M2 Nut
4 pcs. Spacer
4 pcs. Ballhead nut

M2 Nut

Thread end rod short

Ballhead nut

Spacer

Top cover panel

Top panel

Long thread end on top

Optional extra
M2 nut to fix the
top panel

- 36 -

Legs and Feet assembly:

2 pcs. Foot
2 pcs. Front leg
2 pcs. Back leg
2 pcs. Feet joint shaft
2 pcs. Rivet
2 pcs. Collar, small

For the legs and feet assembly you need;

Assemble the feet and legs exacty as
shown in the drawings

Rearleg
with joint strip

Rearleg
with joint strip

Collar
small

Rivet

Feet

Feet joint shaft

Frontleg

Frontleg

- 37 -

Assemble the legs as shown in the drawings

YETI Leg Assembly part I:

1 pc. Assembled Chassis
1 pc. Assembled legs right
1 pc. Assembled legs left
2 pcs. Rod 5 x 80mm
4 pcs. Collar big

For part I of the leg assembly you need;

Collar
big

- 38 -

YETI Leg Assembly part II:
1 pc. Assembled Chassis
4 pcs. Ball-end screw
4 pcs. Ball adjuster
2 pcs. Thread end rod long
4 pcs. Nut M2

For part II of the leg assembly you need;

Assemble the servo rods exactly as
shown in the drawings

Middle hole of
servo arm

Ball-end screwBall adjuster

Thread end rod long

M2 Mut

M2 Nut

- 39 -

Assemble the servo to the rod as
shown on the drawings

Final assembly YETI legs:

1 pc. Assembled Chassis
2 pcs. Nut M2
2 pcs. Servo arm pushrod
2 pcs. Screw-rod connector

For the final leg assembly you need;

Screw-rod connector
M2 Nut

Servo arm pushrod

- 40 -

YOUR YETI IS READY !

- 41 -

8. CHARGING THE YETI BATTERIES

The YETI power voltage is 4.8 Volt supplied by 4 NiCd (1,2V) batteries.

IMPORTANT:
The batteries are not protected by a fuse or series resistor!

Be sure that you are using a good quality battery charger. Best is a
microprocessor controlled type!

Or use a stabilized power adaptor with a very small loading current,
for example 5 Volt / 300 mA.

DC connector
Middle = +

Switch

Charching YETI batteries:

1.	 Connect the charger to the DC connector.
2.	 Put the switch in the off position!

See also APPENDIX K

- 42 -

9. SOFTWARE
9.1. 	 Designing and writing your own YETI program

The following chapter will give all non-experienced programmers a
hand and a little help, providing some background information and
details in the field of programming.

The chapter is rather difficult and is containing a number of new
definitions and words, but will certainly have a positive effect.
A common basic knowledge will help you in asking questions, reading
documents from the Internet user clubs and asking experts for help or
information.

Of course you will be able to load a self-written program into the YETI
robot, but how?
•	 You write a program in a language called “C” (example 		
	 given: “test.c”)
•	 You compile the program, converting it into a hex file
	 (example given: “test.hex”)
•	 Transfer the hex file to the YETI

You will need just three steps to write the program. In fact experienced
programmers are using this simple procedure regularly. But we first
need to help the beginners by explaining the method step by step.

- 43 -

9.2.	 Step 1 Writing a “C”-program

Normally you will be designing and writing a YETI program for a de-
dicated programming language. For this purpose we choose a very
popular programming language called “C”. You will need a special word
processor (an editor) to write the YETI program. The preferred editor is
called “Programmers Notepad 2” (PN2).

Of course you might also be able to write programs by using “Notepad”
or a standard word processor like MS Word but we strongly advise not
to use a word processor for this, because the editing procedure will be
much more complicated.

In fact the PN2-program is providing some features to help you in edi-
ting and trouble shooting in various programming languages. You will
just need to select the language, e.g. “C”, “Visual Basic” or “HTML” in
your PN2-setup and the PN2-editor will help you by highlighting all
special commands, comments, functions and variables in various
colors. These features will be a great help in programming.

PN2 also allows you to add self-defined commands to the menu
structure. A standard word processor will not allow you to add these
commands. In any case the first step in writing your own programm will
result in a simple text file.

- 44 -

9.3.	 Step 2 Compiling a “C”-program

A self-designed YETI program, also being called a “source” or a
“source program”, basically is a simple text document, example given
the file: “test.c”.

Executing a so called “compiler”, which is called GCC.exe in our
system, will transform our source code “test.c” into an object file, called
“test.o”. An object file is a readable text file, containing a set of
“assembler”-instructions. The YETI will be able to understand and
execute this list of “assembler”-instructions, but first they need to be
processed into another code by a final step.

An “.o” (object)-file obviously contains your “C”-source code and
additionally a list of processor instructions (for the specific processor
type you will be using).

In a final step, a so-called “linker” will transform these instructions into
the processor’s executable instructions (in hexadecimal code), which
will be stored in a hex-file, e.g. “test.hex”.

Basically any program modification will have to be followed by a
compiler and linker process, but we are able to simplify things by using
automatic batch processing and using a “makefile”-process.

Batch processing allows you to chain a great number of different jobs
and serialize the process. A makefile allows you how and which files
are to be compiled and linked. See the website
http://www.gnu.org/software/make for help in using batch jobs and
http://www.gnu.org/software/make/manual for help in using makefiles.

These methods imply a great number of new file types and file names,
which seems to be complicated and difficult, but working in a standard
developing system we normally may ignore these details and leave
them to the experts. We will simplify the process radically.

How do we simplify things ... Well, we just start a batch job, which in
turn calls a prepared makefile. Starting the job by pressing a button in
the standard PN2-menu will allow us to provide an automatic the
compiler and linker process in our editor system.

- 45 -

Compiling and linking now turns out to be reduced to activating a
button in a PN2-menu or activating a special key in the PN2-keyboard.
A one-click-solution!
Imagine a great number of jobs, being processed in a background
queue and resulting in a HEX-file, to be loaded in the YETI-processor.

The PN2-editor is a universal programming system, designed to be
used for a great number of different compiler and linker systems, which
results in a complex interface between the PN2-program and the
compiler- / linker-programs.

This looks somewhat complicated. Well, in fact it is rather complicated.
But there is no need to learn these complex methods to start writing
“C”-programs.

The interface and its configuration will be explained step by step in this
manual.

- 46 -

Why did we choose to use this GCC compiler anyway?

The main advantage is the “gnu”-public license and high quality level of
the GCC compiler system, which is developed and maintained by the
“gnu”-organisation. See: http://www.gnu.org/

But the MOST important reason to choose GCC is, because it is free
open source software!

Some enthousiast programmers developed a dedicated free software
package, named WINAVR (pronounced as whenever), especially de-
signed to program the Atmega processor types, which are also being
used in the YETI robot.

The WINAVR package contains the compiler program AVR-GCC, the
linker, PN2 and a great number of microprocessor files. The WINAVR
software is delivered as a single installation file, which may be found on
the CD, included in the robot set. The latest version however may also
directly be downloaded from the website:
http://www.sourceforge.net/ (and search for WINAVR)

The installation procedure creates hundreds of files, from which only a
few files will be used.

- 47 -

9.4.	 Step 3 Transferring a YETI-program

DLR (German Centre for Aerospace and Space Technology) developed
a tool called Flash, which has been developed to transfer a YETI-
program to the YETI robot by the dedicated COM-port, included in the
robot set. The Flash tool takes care of all actions needed to download
the selected YETI HEX program, e.g. “test.hex”, from the PC into the
YETI microprocessor.

The YETI contains a small built-in, hidden communication tool, called
“bootloader”, which cannot be accessed or deleted by user actions.

Switching on the YETI will always start the bootloader first. The hidden
communication tool listens for 3 seconds, waiting for infrared signals
from the computer’s Flash program. On reception of a Flash signal the
YETI starts reception of the program and writes the program into its
memory. If no signal is found, the YETI will proceed by processing the
program, which previously had been loaded in the memory.

YETI is equipped with a special memory type preserving data after
switching off the robot. This type of memory is called “Flash”-memory
and of course “Flash” may also be a suitable name for an uploading
tool for this type of memory.

- 48 -

10. SOFTWARE INSTALLATION AND
 INITIAL STEPS
Insert the YETI CD. When all is OK it will start automatically, otherwise open
it with windows explorer. After the language selection you will find all the
programs you need for the YETI under the software menu. Before you can
work with them you have to install the program on your hard drive first. To
install programs on your hard drive, you need administrator rights. When you
are not logged in as administrator, log out and log on again as administrator.

During the software installation the following will take place:
1.	 Flash-Tool, a program to transmit your own program to YETI, will be

installed.
2.	 A program editor (Programmers Notepad 2, PN2) and a Compiler

(WinAVR) will be installed.
3.	 An example program(s) will be copied from CDRom to your hard disk.
4.	 In program editor (PN2), a menu input for Make and Clean files, will

be created.

10.1 Windows

10.1.1 Flash-Tool

Copy the flash program in a folder on your hard drive for example C:\
programs\flash.
It is also possible to run the flash program directly from the CD.
In all cases, it is wise to make a link for the flash program on your desktop.

10.1.2 Installation of the program editor and compiler

For the installation of the compiler you must be the administrator of your
computer (during the installation the registry will be changed). When you
are not registered as the administrator, restart the computer and start up as
administrator!

Click on the install symbol to install.

		
		 COMPILER WinAVR (20060421)

WINDOWS is the trade mark of Microsoft Corporation.

- 49 -

Now this screen will appear:

Click OK [I Agree]

This screen appears:

Click continue [Next]

- 50 -

This screen appears:

Click accept [Agree]

This screen appears:

Click Continue [Next]

- 51 -

This screen appears:

Nun das Fenster ‘Programmers Notepad 2’ schließen.

Click Install [install]

This screen appears:

Wait:

- 52 -

This screen appears:

Click safe [safe]

This screen appears:

Close this screen

- 53 -

On the DESKTOP the ‘programmers notepad 2’ Symbol appears:

The program editor and the compiler are installed now.

10.1.3. Copying the example programs from CD to the harddisk.

Copy the folder ‘YETI_src’ from the YETI CD to the hard disk (put it in a folder
something like this: ‘C:\YETI_src’).

10.1.4. Compiling a ‘C’ file

Just for try we will open the file ’C:\YETI_src\FirstTry\test.c’ :

Open Programmers Notepad 2’ (click the notepad symbol on your desktop
twice):

This screen appears:

- 54 -

Select: Open Project(s)...

Find the data:
C:\YETI_scr\Firsttry\YETI.pnproj

This screen appears:

Click Open

- 55 -

This screen appears:

Doubleclick ’test.c’:

- 56 -

This screen appears:

Compile Program:

Wait till...

…Errors: ’none’ and ’Process Exit Code: 0’ will show.

Now the compiled data is ready and a file ’test.hex’ is generated.

- 57 -

…and when the program does not contain any mistakes (what can be
expected, because we just loaded an example program), on the bottom this
message will appear: Errors: none.

What happened?
From the file test.c (and YETI.c) a new file test.hex was generated. This file
contains the in machine code converted program. This machine code program
can be loaded (flashed) in YETI’s memory. This program does not have a
function. Later on, for trial, we will upload it in the YETI memory with the Flash
tool.

How did it work?
The menu input file calls the batch file Test-all.bat (this batch file contains a list
with command lines which are executed line after line).

In Test-all.bat the command ‘make all’ will be executed. ‘make’ will create a
make file which will be located (when we program YETI) in the same file as
Test-all.bat.

A make file is a text file, which defines how to compile one or more programs.
During programming, when it is only one file, you still will have a good
overview. Later, when a complex system is written and the programming data
contains more files, which all must be converted in the correct way step by
step and also connected (linked) with each other in a proper way, then also
the make file will be very complex.

The “all” calls for all the input in the make file means, that a complete project
and not only the separate inputs will be converted.

The make file in our example program is written in a way that a file with the
name test.c will be compiled together with YETI.c (which contains some pre
defined functions) and create a new .hex-file. This file can be loaded (flashed)
into the YETI memory.

Attention! This means that - as long as you do not change the make file
and you only copy it - you should always name your own
program test.c .

When you want to know all about make files (This is not absolutely necessary
for operating the YETI) you can find more background information
at http://www.gnu.org

The basics about ASURO-programming will be explained in chapter 9.

- 58 -

When you compile a program, some extra data is generated. This data is only
necessary during the conversion, after that it is useless. These data files can
be removed with the clean tool.

With ’File -> Open’ you can see the generated data. We have marked the new
data. You can see new data e.g. ’test.hex’

With ’Tools -> [WinAVR] Make Clean’ you can delete the marked data.

 READY
MORE WINAVR information see;

http://www.avrfreaks.net
http://winavr.sourceforge.net
http://www.kreatives-chaos.com --> software

- 59 -

10.2. LINUX

For the software installation you need root rights. If you do not have these, log
out and log in again as root or open a shell and demand the root with ‘su’.

10.2.1 Flash-Tool

Start the program from the CD software menu and copy the two flash tools
“yetiflash” and “yeticon” from the folder “/linux/tools” into the folder “usr/local/
bin”. After this, you must allow the execution of the program with “chmod a+x
/usr/local/bin yeticon yetiflash”

Wird ein in einer Shell eingetipptes “yetiflash” nicht gefunden, muss der Pfad
“/usr/local/bin” noch der %PATH-Variable hinzugefügt oder das Programm mit
vollem Pfad aufgerufen werden.

- 60 -

10.2.2 Compiler

To install the Gnu-Compilers for AVR-Processors, insert the YETI CD-ROM
and choose the following from the folder “/Linux/Compiler/” :

1. avr-binutils-... .rpm
2. avr-gcc-... .rpm
3. avr-libc-... .rpm

The installation is quite simple!
Just give the command: rpm -i <paket>.rpm in your root directory.

Ready!

For Editors you can use Exmacs, Kate or Kedit. For trial you can copy the
demo programs from the CD. You can find these in the folder “/YETI_src/
FirstTry/”. Then you can open a Shell, change the folder and enter “make”.
When all is OK you will see the following window; (see fig. 10.1)

Fig 10.1.: Make all

- 61 -

10.3. Flash - The YETI-programming-tool

In this step we will need the Flash program (see fig. 10.2).

Start the program and select the interface in which you have plugged the IR-
Transceiver. Select Test.hex from directory C:\Own files\YETI_src\FirstTry.

Place the completely assembled and tested YETI near the IR-Transceiver, at
a distance of max. 50 cm. The component sides of both PCBs must be facing
and “seeing” each other. Click the Program button at the Flash-Tool. Now
switch S1 to ON-position, before the status-indicator reaches the right end of
the status-area. If you have failed to react fast enough or communication has
been disturbed, just switch YETI off , press Programm and switch S1 to ON-
position again.

As soon as communication is succesful, you may observe in the status-
indicator and display how the file Test.hex is being transferred to YETI. The
program file will be stored in the Flash-memory inside the processor, where
the program remains available even after switching off the supply voltage.
After loading the program, YETI will have to be switched OFF and ON again in
order to start the program. This sequence will execute the loaded program and
the green LED will lit up brightly.

10.3.1. What is happening while flashing?

As soon as the Flash program has been executed, the PC will try to
communicate with YETI. By switching on YETI, the system will be booted,
indicated by the Status-LED lighting for one second. YETI is checking to
see, if new software has been prepared to be loaded. If a new program has
been found, it will be loaded. After loading, the program can be executed by
switching OFF and ON once again.

Fig. 10.2.:
Flash-Tools for
Windows and LINUX

- 62 -

10.4. Flash failures

The following errors may occor while flashing:

“c” 	 Checksum Error. YETI has received some irregular signals. Signals may have been
 	 disturbed by other optical sources, such as fluorescent lights, or have been interrupted
 	 shortly by movements.
“t” 	 Timeout. The line-of-sight between YETI and the IR-Transceiver has been interrupted
 	 completely.
“v” 	 Verify Error. YETI wrote invalid data into its Flash-memory. This is a most unusual
 	 situation, indicating the non-volatile programming memory (Flash-EPROM) has
	 reached the end of its lifetime, according to specifications after approximately 10.000
	 programming cycles.

Error correction can be retried ten times. In case of failure the flash-procedure
will be aborted.

		

	

		 If Checksum Errors are being indicated regularly while Flashing,
		 you may switch off or dim some lights in the room, especially
	 	 fluorescent lights.

	 	 Remember:
	 	 Always press the Program-button, before switching ON the YETI.
	 	 Otherwise the download procedure will not be started.

- 63 -

11. TEST AND OPERATION
After completing the assembly, we will start moving the robot. But first we have to find
and eliminate the errors we could have made in the previous phase, without destroying
any parts.

11.1. RS232-Infrared-Transceiver

The following operational check is limited to the RS232-Infrared-Tranceiver.
First of all the IR-Transceiver must be checked, as it will be needed for the next step:
the selftest of the system. For this test connect the IR-Transceiver to a free serial
interface of your PC with the supplied 9-pole serial extension cable and start the
Windows terminal program “Hyperterminal” (or for a Linux-system eg. “Minicom”).
Normally you will find this program in Windows in the category Addons -->
Communication --> Hyperterminal. If the program is not available, you can install it
from the Windows-CD.

After starting the Hyperterminal program you will be asked to define a name for the
connection. You may choose YETI or any other symbol. In the next window you choose
“connect by” and the COM-interface by which the transceiver has been connected in the
previous step.

Then press “OK” and choose the following settings:
	

•	 Bits pro Second: 2400
•	 Databits: 8
•	 Parity: none
•	 Stopbits: 1
•	 Flowcontrol: none

Press “OK” again for confirmation

Hold the IR-Transceiver at the distance of 10 cm over a white sheet of paper. The
component side must be directed towards the paper sheet.

Press a few keys at your computer terminal.

The terminal program normally should display the key-symbols. The IR-Transceiver
transmits the key-symbols by IR-Diode (D5), the transmitted signal reflects at the paper
surface and is send back to receiver-IC (IC2), from which it is being returned to the
computer. If no symbols or wrong symbols are being displayed, you may carefully turn
the trimmer between its extreme left and right position. Use a miniature screwdriver and
strike a few keys at each position of the trimmer until the correct symbols are displayed.

If you do not have any success in this procedure, we do have a problem with the circuit,
which should be solved. (see Appendix H or www.arexx.com for help).
Just to be sure you should remove the IR-Transceiver after this test and hit a few keys.
This time the display is expected to show no symbols any more.

- 64 -

11.2. USB-Infrared-Tranceiver

This operation is only for the USB IR-Transceiver.
WARNING! The USB IR-Transceiver does not have a housing and therefore it is very
sensitive for electrostatic discharge. Before you use it, discharge your body by touch-
ing a metal computer housing or other earth point. An other option is to build the USB
IR-Transceiver in a transparant housing for further protection.

11.2.1 Windows

The following operational check is limited to the USB Infrared-Tranceiver.
First of all the IR-Transceiver must be checked, as it will be needed for the next step:
the selftest of the system. For this test connect the IR-Transceiver to a free USB port of
your PC by the USB extension cable.

Now a message will apear “NEW HARWARE WAS FOUND”;
AREXX ASURO/YETI USB-IR-TRANSCEIVER

Now you can install the USB driver from the YETI CD. When the driver is not detected
automatically, you can select it manually from CD\windows\USB Driver (Administrator
rights are necessary for this operation). When the driver is installed you can approach
the USB Transceiver like a normal serial port. After starting the Hyperterminal program,
you will be asked to define a name for the connection. You may choose YETIUSB or
any other symbol. In the next window you choose “connect by” and the COM-interface
by which the transceiver has been connected in the previous step.

Then press “OK” and choose the following settings:

•	 Bits pro Second: 2400
•	 Databits: 8
•	 Parity: none
•	 Stopbits: 1
•	 Flowcontrol: none

Press “OK” again for confirmation

Hold the IR-Transceiver at the distance of 10 cm over a white sheet of paper. The
component side must be directed towards the paper sheet. Press a few keys at your
computer terminal. The terminal program normally should display the key-symbols.
The IR-Transceiver transmits the key-symbols by IR-Diode (D5), the transmitted signal
reflects at the paper surface and is send back to receiver-IC (IC2), from which it is
being returned to the computer.

If you do not have any success in this procedure, we do have a problem with the
circuit, which should be solved. (see Appendix H or www.arexx.com for help).
Just to be sure you should remove the IR-Transceiver after this test and hit a few keys.
This time the display is expected to show no symbols any more.

- 65 -

11.2.2 Linux

The following operational check is limited to the USB Infrared-Tranceiver and LINUX
software. First of all the IR-Transceiver must be checked, as it will be needed for the
next step: the selftest of the system. For this test connect the IR-Transceiver to a free
USB port of your PC by a USB extension cable. A short beep will confirm that the
transceiver was detected by the LINUX software. To be sure please check in the proc-
declaration if the following message is displayed.

foo@bar:/>cat /proc/tty/driver/usb-serial

There is also an entry with the following (‘0’ in our example can also be ‘1’ or ‘2’ etc.):

usbserinfo:1.0 driver:v1.4
0: module:ftdi_sio name:”FTDI 8U232AM Compatible” vendor:0403 product:6001
num_ports:1 port:1 path:usb-00:11.2-1

For the test you have to configure the Minicom at the interface /dev/ttyUSB0 (oder 1, 2
usw...) with the following settings:

	 •	 Bits pro Second: 2400
	 •	 Databits: 8
	 •	 Parity: none
	 •	 Stopbits: 1

	 •	 Flowcontrol: none

Press “OK” again for confirmation

It is possible that root rights are necesary.

Maybe you need to declare read and write rights for the user or groups for the new
device /dev/ttyUSB?. You can do this with chmod u+rw /dev/ttyUSB0 (oder 1, 2...) or
chmod g+rw /dev/ttyUSB0 (of course again you need the root.rights).

Hold the IR-Transceiver at the distance of 10 cm over a white sheet of paper. The
component side must be directed towards the paper sheet.

Press a few keys at your computer terminal.

The terminal program normally should display the key-symbols. The IR-Transceiver
transmits the key-symbols by IR-Diode (D5), the transmitted signal reflects at the paper
surface and is send back to receiver-IC (IC2), from which it is being returned to the
computer. If no symbols or wrong symbols are being displayed you may carefully turn
the trimmer between its extreme left and right position.

When it does not work 100% OK, please visit www.arexx.com --> Forum or
www.roboternetz.de --> Forum.

- 66 -

12. CALIBRATION
For a stable walking process a correct calibration procedure is necessary,
which needs to be executed only once. A software calibration is necessary so
we can adjust the servomotors to the middle position with our software.
A hardware calibration also needs to be executed so we can align the legs and
feet in accordance with the middle position of the servomotors

12.1.	 Software calibration
For a stable walking process a correct calibration procedure is necessary,
which needs to be executed only once. To do so we need the program Hyper-
terminal, for which version 6.3 can be downloaded from the Internet.

Start Hyperterminal. Setup your Hyperterminal program for COM (X),
2400baud, 8-bits, no parity and no hardware control.

Connect the RS232 or USB-adapter to your computer.

Turn YETI around with his face to the floor in order to allow a visible
contact and infrared data communication between the USB-adapter and
YETI’s rear head.

Switch on the YETI.
Ca. 3 seconds later a series of beeps may be heard.
Now press any key at the PC terminal within 1 second.

The keys listed in table 1 are now available to calibrate the YETI.

Start by pressing [-]. Both servos will move to their electrical zero
position. Now adjust the “fore”-servo-arm to a crosswise position.

Adjust the arm as exactly as possible without altering the servos shaft posi-
tion. Adjust the “fore”-servo to an exact crosswise position by pressing keys [7]
and [9].

Press key [1] to calibrate the system for this position.

As a testing procedure move the servo to another position by pressing key [7]
or [9] and press key [8] to return the servo to the previously calibrated mecha-
nical zero position.

SEE. APPENDIX J for more information

- 67 -

Repeat the calibration procedure for the “lower” servo with keys [4], [5], [6] and
[2].

The [+]-key has been defined as a simultaneous combination of [8] and [5].

Pressing the [ENTER] will close the calibration procedure.

At restart, theYeti will start by returning to the calibrated mechanical zero
position.

IMPORTANT!
In YETI’s standard supplied programs you will find a function
‘vCalibrateServos()’ to do the calibration process with.
		 	

SEE ALSO APPENDIX J for more information

			

 YETI calibration keys
 [-]

 [7]
‘Front’
Servomotor
to the left	

 [8]
‘‘Front’
Servomotor
Calibrated
position

 [9]
‘Front’
Servomotor
to the right

	 [+]

Return both Servos
to their calibrated
zero-position
(Identical to
[8] & [5])

 [ENTER]

Terminate
calibration

 [4]
‘Botom’
Servomotor
to the left
	

 [5]
‘Bottom’
Servomotor
Calibrated
position

 [6]
‘‘Bottom’
Servomotor
to the right

 [1] [2]

- 68 -

12.2.	 Hardware calibration

Having calibrated the servo systems, we shall now adjust the legs:

•	 Loosen the bolts, which are holding YETI’s “muscles” to the
	 legs. Take care both “muscles” may move freely inside their
	 sliding hole.
•	 Lay YETI on his back, while is body is resting on a CD-box.
	 The rear sides of his feet are to extend somewhat (the heigth of
	 the CD-box) lower compared to his back. See fig. 12.1.
•	 Stick some adhesive tape accross YETI’s body and his legs to fix
	 the legs firmly into their position.
•	 Start Hyperterminal.
•	 Turn YETI around with his face to the floor in order to allow a visible
	 contact and infrared data communication between the USB-adapter
	 and YETI’s rear head.
•	 Switch YETI on and wait for a series of beeps. The YETI will now
	 return the servos to zero position.
•	 Now press any key at the PC terminal within 3 seconds. YETI beeps 	
	 once and it will stay in the calibration function now. This way the
	 servos will stay activated.
•	 Using an imbus spanner to tighten the bolts fixing the leg muscles
	 to the rear legs.
•	 Switch YETI off.
•	 Remove the adhesive tape.

And yes, YETI is ready for a walk.

		
Fig. 12.1 YETI hardware calibration position

- 69 -

13. YETI PROGRAMMING

What’s next?
Now you completed theYeti and the robot is working fine. Are we ready now?

No, you are not ready yet. You just completed the ouverture. The real job ist
still waiting!

Experienced C-programmers may directly proceed writing software. Beginners
may feel more comfortable reading the following chapter completely, even if
some parts of the story may seem to be an ancient history.

YETI’s brains
We will start a short overview in a summary. The main printed circuit board in
the YETI contains a miniature computer, usually named ‘microcontroller’. The
microcontroller is an integrated circuit (abbreviated IC) and you may easily
identify this chip as a small, black 28-legged box. Electric wiring connects the
microcontroller directly to the red LED-eyes, to the loudspeaker, to the infrared
communication system and to the servomotors, controlling YETI’s movements.

This is a short summary indeed, but we will proceed with a step by step ex-
planation for beginners. Just relax for a moment. Soon you will be writing your
first programming lines...

YETI’s RED EYE LEDS
We will start a short overview in a summary. The main printed circuit board in
the YETI contains a miniature computer, usually named ‘microcontroller’. The
microcontroller is an integrated circuit (abbreviated IC) and you may easily
identify this chip as a small, black 28-legged box. Electric wiring connects the
microcontroller directly to the red LED-eyes, to the loudspeaker, to the infrared
sommunication system and to the servomotors, controlling the YETI’s move-
ments.
This is a short summary indeed, but we will proceed with a step by step ex-
planation for beginners. Just relax for a moment. Soon you will be writing your
first programming lines...

- 70 -

Servo-motors
We provide the YETI with two special motors, housed in small
compartments and containing a few cog wheels and some control
electronics. The output axle is provided with a single cog wheel.
Electronic engineers call these devices servos. The internal cog wheels
make up a gear-system. In fact the gear slows down the number of
revolutions and compared to the motor axle the output cog wheel will
be turning rather slowly. In fact the output axle will not complete a full
rotation, but instead will cover an angle range up to around 220
degrees. The slow speed however implies a considerable torque or
force to the output axle.

Microcontrollers and programming
A microcontroller accepts a set of 120 basic instructions and a great
amount of combinations of these instructions. A series of instructions
is named a program. In order to process a program, the computer will
have to load the program into its internal memory. The microcontroller
fetches the instruction from the memory and processes the operation.
Having completed the instruction the processor will fetch the next
instruction and processes this one equally, repeating the process in a
continues loop.

Flash-memory
In a standard PC you will have to ‘start’ a program, e.g. a game, before
you are able to play the game. ‘Starting’ a program implies copying the
program from your hard disc into the processor’s memory. Switching
off your PC will remove the program from the processor’s memory and
restarting the PC requires a ‘restart’ for the game-program to play the
game.

A microcontroller however is provided with a special memory device,
called ‘Flash’-memory, in which the program is stored permanently.
Switching off the supply power for the microcontroller will not remove
the program from the ‘Flash’-memory and to remove or modify a
program, you will even have to switch on your microcontroller’s power
supply.
In fact a microcontroller uses ‘Flash’-memory as a permanent proces-
sor memory, storing the program at any time until you decide to delete
the program.

- 71 -

Loading a program

How do we load a program into the microcontroller’s ‘Flash’-memory?
Normally you would need a special programming device, equipped with
an IC-socket, in which you would insert the microcontroller-chip. The
programming device allows you to transfer the program directly into the
microcontroller’s ‘Flash’-memory. The programming device is named
‘programmer’.

Using the ‘programmer’ normally implies providing the YETI with some
connector and cabling system and connecting the YETI with the ‘pro-
grammer’ to load a new program or program version. However a few
clever engineers at DLR (www.dlr.de) were able to develop and provide
us with a smart programming tool.

This smart tool does provide a permanent small piece of software in
the microcontroller’s ‘Flash’-memory, called the ‘Bootloader’.
Immediately after switching on the microcontroller’s power supply the
microcontroller will always check whether a ‘Bootloader’-program is
available in the ‘Flash’-memory. If the program is available, the micro-
controller will execute this ‘Bootloader’-program.

Now pay attention:
The ‘Bootloader’-program has been designed to communicate with the
YETI by infrared transmitter and receiver modules. Communications
require special software at a PC. This software is called ‘Flash’ and
may remind you of the name of the microcontroller’s memory. Of
course the PC will have to be equipped with equivalent infrared trans-
mitter and receiver modules.

The bootloader and the ‘Flash’-program will start communicating and
the ‘Flash’-program will now start sending a YETI-program to the
‘Bootloader’ instruction by instruction. The bootloader will receive the
instructions one by one and will put them into its ‘Flash’-memory. Of
course the storing process will not overwrite the memory area, in which
the ‘Bootloader’ is stored. Instead the received program will be stored
in the memory area next to the ‘Bootloader’-program.

- 72 -

After the transmission of a program the microcontroller stops execu-
ting the bootloader and starts the execution of the received and newly
stored program.
The bootloader occupies a permanent and protected area in the
normal microcontroller ‘Flash’-memory and cannot be altered or de-
leted without special tools. The area is protected against erasure and
modifications and you will feel safe at programming the system.

Developing programs

How do I start developing a program?
In fact we will use the following method:
You will ‘write’ a YETI-program in a text editor, using a special ‘langu-
age’. Having completed the text file you will translate the text file to
another file containing instructions, which may be understood by the
microcontroller system and is called a ‘hex’-file. And finally we will use
the previously described ‘Flash’-program to transfer the ‘hex’-file to the
YETI.

We might even consider writing a program for the microcontroller by
editing ‘hex’-instructions! Although you may succesfully complete small
programs, you will soon consider this method being too complicated
and return to the standard programming method.

- 73 -

Writing programs

Programmers are used to name the developing proces ‘Writing
programs’, because a program basically must be considered to be
plain text and sometimes may be compared to a simple letter or a short
story. For program writing we will use a special texteditor, called
‘Programmers Notepad2’ or PN2 in short. To write a YETI-
program you might even use any other editor, such as Notepad or
Microsoft Word, but we strongly advise to use PN2. Programmers
Notepad2 is a special tool for writing computer programs, providing
color-coding as a helpful aid in the programming process.

A program consists of a number of plain text lines, which of course
must satisfy some prerequisites to be translatable into processor
instructions. Another name for the plain text program is ‘source code’.
The prerequisites and conditions for translation into processor
instructions make up the programming ‘language’. And comparable to
dictionaries in human languages, we use special translation programs
to translate a plain text file, containing our ‘source code’, into a ‘hex’-file
with instructions for the microcontroller.

We can choose several languages for programming, but the most po-
pular language for writing microprocessor software is a language with
a short name: ‘C’. This is the language we choose to write the YETI’s
software.

- 74 -

Compiling a program

A microcontroller is unable to understand the ‘C’-language in the
source code file and we will need a translator program to generate
the instructions for the microcontroller. The translator program is just
an ordinary program, translating one file into another. In information
technology this kind of program is named ‘Compiler’. So we will need a
‘C’-compiler to create YETI-programs and consequently we choose the
program ‘gcc.exe’. The compiler will need an input file with a name ex-
tension dot and a letter ‘c’. For this reason the compiler will be unable
to translate a source file named ‘test.txt’, but it will process a file ‘test.c’
with the same contents.

Having customized the Programmers Notepad2 correctly you may
press a button in the Tools->Make menue and wait patiently for the
‘C’-compiler completing the translation of your source file into a
‘hex’-file.

‘Uploading’ a program

Imagine the compiler has just completed the translation of a ‘C’ pro-
gram ‘test.c’ into a file with microcontroller instructions called ‘test.hex’.
As a final step you may start the flash program to transfer the ‘hex’-file
by infrared communication to the YETI microcontroller. This final step,
in which the flash program transfers the ‘hex’-file to the YETI, is called
‘Uploading’ a program.

Customizing a compiler system

If you plan to buy a ‘C’-compiler, you will normally have to invest a few
hundred Euros, Dollars or Pounds. However a group of professional
programmers invested a lot of time and effort to develop an extremely
versatile ‘C’-compiler system, which is even free of charge!

- 75 -

The WINAVR programmers prepared the compiler system and the
Programmers Notepad2 for a standard default configuration.
The user however may vary the default configuration ad lib.

The default configuration requires the input source file has to be called
‘test.c’. Parallel to the source file we will need a file ‘YETI.c’ optionally
containing additional functions and allowing separating the source
codes for the main program and additional function coding.
As a programmer all you need to do is press a button and the
Programmers Notepad2 will take care of compiling all required source
files.

You may think: ‘Seen it and been there’. Yes, you may have read these
lines before. But it may be much clearer now than before.

Writing a YETI ‘C’ -program

Is it difficult to write a YETI ‘C’ –program?
Well the answer may be negative or positive as well. It is rather easy,
because a YETI-control program is rather simple. However we can also
create quite complex programs for the YETI.

If you start working with ‘C’ things may seem to be magic, but soon you
will learn the magic is quite simple. You don’t have to understand all
individual steps in order to use them. Keep on reading and in the end
you will be seeing things clearly.

- 76 -

Basic structure for a ‘C’-program

Basically a ‘C’-program minimally requires the following structure:
int main(void){
 return 0;
}
‘int’		 is the type for the main function
‘main’		 is the name for the main function
‘void’		 indicating ‘no entry’
‘return 0’	 is the return value for the ‘main’-function.

As a general rule each ‘C’-instruction has to be terminated by a semi-
colon, except a block terminator (terminating bracket).

Programmers Notepad2 will automatically display the source code in
predefined colors according to some special categories. Syntax or spe-
cific ‘C’-keywords will be colored green, wheras numbers are displayed
in red and comments will be written in blue.

You may insert comments virtually anywhere, following ‘//’ or between
‘/*’ and ‘*/’
int main/*intermediate text line*/(void){ /*any text lines*/
 //one line of text
 /* text lines
 */
 return 0; //any text
/*
some more text lines
*/
}

- 77 -

The following program source will generate a compiler error
message, if we write ‘Main’ with a capital letter. The ‘C’-language
does not allow us to write the keyword ‘main’ to be written with a
capital letter.

int Main(void){
 return 0;
}

On the other hand the compiler allows us to concatenate all instructi-
ons in one single line, but this will not improve the readability:
int main(void){return 0;}

#Comments can be appended at the end of line:
int main(void){			 //main function entry
 return 0;			 //terminating the main function and
				 returning a value 0
}				 //end of the main function

#Comments can also be inserted above the program lines:
// main function entry
int main(void){
// terminating the main function and returning a value 0
 return 0;		
// end of the main function
}

- 78 -

‘C’-language always requires one single main function named
‘main’. Additional functions may be inserted ad lib.

The following program, containing merely one main function ‘main’,
will not be processing any instruction and may be seen as a simple
frame:

int main(void){			 // main function entry
 return 0;			 // terminating the main function and retur-
ning a value 0
}				 // end of the main function

‘C’-Course

As already stated, we would be glad to present a complete ‘C’-course
in this manual. However a lot of excellent books and a great number
of websites explain basics and details in the ‘C’-language already. For
this reason we will restrict our descriptions to functions, which will be
needed for the YETI.

Having understood the basics we can start programming now. We will
proceed by explaining the sample programs included in the kit’s CD.
Our explanations will be a fine practical training course for beginners
and a retraining course for others.

- 79 -

IMPORTANT HINT

The letter v at the beginning of YETI function names is a valuable
programmer’s hint, indicating a function, which will not be retur-
ning a value!

YETI will switch on its right ‘eye’
#This program will swich on YETI’s right ‘eye’
#include “YETI.h”	 	 //load definitions and functions
int main(void){			 //main function entry
 vInitYeti();			 //initialize all microprocessor modules in
			 	 //the YETI
 vFrontLEDs(RIGHT);	 //swich on YETI’s right ‘eye’-LED
 return 0;			 //terminating the main function and
				 //returning a value 0
}				 //end of the main function

#include “YETI.h”
At this location the compiler will insert file ‘YETI’h’, containing all defi-
nitions for functions, e.g. function ‘vYetiInit()’. Coding lines for functions
will be found in file ‘YETI.c’.

vInitYeti();
This is a special function, initiating all microcontroller and YETI modu-
les. The function may be called by a statement ‘vInitYeti();’ at the very
beginning in YETI programs and its coding is to be found in file ‘YETI.
c’.

- 80 -

vFrontLEDs(LEFT);
This function will activate YETI’s left eye LED.

Equivalent functions are:

vFrontLEDs(RIGHT);
Activating YETI’s right eye.

vFrontLEDs(OFF);
Switches off both eyes.

vFrontLEDs(BOTH);
Switches on both eyes

Blinking YETI’s right eye LED 5 times

#This program will activate YETI’s right eye LED 5 times at one
second intervals
#include “YETI.h”	 	 	 //load definitions and
					 //functions
int main(void){				 //main function entry
 int i;	 	 	 	 	 //define variable ‘i’ as an integer
 vInitYeti();				 //initialize all microprocessor
					 //modules in the YETI
 for(i=0 ;i<5 ;i++){			 //repeat for-loop (5 times)
 vFrontLEDs(RIGHT);		 //activate YETI’s right eye LED
 vWaitMilliseconds(500);		 //wait half a second
 vFrontLEDs(OFF);			 //deactivate YETI’s right eye LED
 vWaitMilliseconds(500);		 //wait half a second
 }					 //terminate for-loop (5 times)
 return 0;				 //terminating the main function
}					 //end of the main function

- 81 -

for(…){
}
The program module enclosed in ‘for’-brackets ‘{‘ respectively ‘}’ will be
called a ‘loop’.

int i;
This statement defines a Variable with a free chosen name ‘i’.

for(i=0 ;i<5 ;i++){
Initiate variable ‘i’ with value 0 and repeat all program coding between
the opening bracket ‘{‘ and the corresponding closing bracket ‘}’, as
long as variable ‘i’ is less than 5. Any time the program meets the ‘for’-
line in the source coding the value in ‘i’ is incremented by 1. The very
first time the program meets the ‘for’-line in the source coding the value
in ‘i’ is 0.

At the 6e passage ‘i’ reaches the value 5 and no longer meets the con-
dition i<5, which will force the program to continue at the next coding
line, following the closing bracket ‘}’ at the ‘for’-loop. In our example
this line reads: return 0;

The program executed the ‘for’-loop 5 times, which is exactly what we
wanted to be done.

- 82 -

vWaitMilliseconds(500);
Calling function vWaitMilliSeconds and insert a variable 500.
This function can be found in file ‘YETI.c’, which can be opened for
reading in Programmers Notepad2. The function will be using an inter-
nal microcontroller counter, to wait for a prescribed number of milli-
seconds and then return to the calling program. The function will
accept a number of milliseconds (1/1000th second) and the above
calling sequence will generate a waiting cycle of half a second.

YETI’s acoustic signals

#The following program will generate a sample of YETI’s
acoustic signals.
#include “YETI.h”	 	 //load definitions and functions
int main(void){		 //main function entry
 vInitYeti();			 //initialize all microprocessor 		
				 //modules in the YETI
 vBeep(400,80);		 //make YETI generate a beep sound
 vBeep(520,120);		 //make YETI generate a beep sound
vBeep(360,80);		 //make YETI generate a beep sound
 vBeep(580,160);		 //make YETI generate a beep sound
 return 0;			 //terminating the main function
}				 //end of the main function

vBeep(400,80);
will call function ‘vBeep’ at a pitch of 400 and a duration of 8 x 10
= 80 milliseconds.

- 83 -

Move the servomotor for YETI’s legs and feet.

#This program will make YETI jump for joy.
#include “YETI.h”	 	 //load definitions and functions
#include “yetimove.c”		 //insert YETI’s servo functions
int main(void){			 //main function entry
 int i;	 	 	 	 //define variable ‘i’ as an integer
 vInitYeti();			 //initialize all microprocessor modules in
				 //the YETI
 for(i=0 ;i<3 ;i++){		 //do for-loop 3 times
 vMoveBody(16,10);		 //move body to the left
 vMoveBody(-16,10);	 //move body to the right
 }				 //terminate for-loop (3 times)
 vMoveBody(0,10);		 //move body to the centre position
 return 0;			 //terminating the main function
}				 //end of the main function

#include “yetimove.c”
This include-line will insert the YETI servo functions.

vMoveBody(16,10);
Move YETI’s feet servomotor 16 steps to the left, reserving 10 milli-
seconds for each step.

vMoveBody(-16,10);
Move YETI’s feet servomotor 16 steps to the right, reserving 10
milliseconds for each step.

You may choose step positions between –58 and +58. The delay time
period will always be rounded up to the next higher multiple value of
milliseconds, resulting in a delay of 10 milliseconds/step for each para-
meter value between 1-10 milliseconds and a delay of 20 milliseconds/
step for each parameter value between 11-20 milliseconds

- 84 -

vMoveBody(0,10);
Reset the feet-servo for the YETI body to an inital position, resulting in
an upright body position for the robot.

A similar function ‘vMoveLegs()’ will activate YETI’s legs forward and/or
backward.

YETI starts walking

#This program will activate YETI to walk 3 steps forward.

#include “YETI.h”	 	 //load definitions and functions
#include “yetimove.c”		 //insert YETI’s servo functions
int main(void){			 //main function entry
 vInitYeti();			 //initialize all microprocessor modules in 	
				 //the YETI
 vMoveForwardXSteps(3);	 //YETI will march forward 3 steps
 vStandUpright();		 //makes YETI stand upright
 return 0;			 //terminating the main function
}				 //end of the main function

vMoveForwardXSteps(3);
YETI will march forward 3 steps. Whenever YETI starts from an upright
position, it will always start putting its right foot forward.

vStandUpright();
Makes YETI stand upright

- 85 -

14. YETI EXTENSION SETS

General overview
All extension sets will be connected to YETI’s main PCB using a single
20-pole flat cable. The flat cable will also provide supply power to the
sets and the I2C datatransfer to and from the extension sets.

14.1. 	YETI Experimental set YT-EXP1

The experimental extension set has been designed to set up your own
electronic designs and connect the experimental modules to the
microcontroller.

14.1.2. Partlist Experiment KIT YT-EXP1

PCB-DSP			 YETI Experiment PCB
CON1-PCB			 PCB connector, male, 20 pins,
	 	 	 	 for flatcable
CON1-FC	 (2 pcs.)	 Flatcable connector, 20-pins
F1				 Flatcable, 20-ires, 10cm

- 86 -

INSTALLING THE UPGRADE KITS

Flatcable

Ultrasound PCB

Top cover
(inside cover)

Installing Ultrasound PCB

Installing experiment PCB

Installing
Display PCB

Ultrasound PCB

Main PCB

Accu Set

SERVO

- 87 -

14.2.	 YETI Display kit YT-DSP2

General overview
The additional display module provides four 8-segment symbol dis-
plays. The display module also contains a 24-pin I2C driver chip for
symbol display control.

The YETI microcontroller controls the I2C driver chip. I2C is a standard
communication protocol between electronic components, using only
two signal wires SCL (serial clock) and SDA (serial data). We will need
just one pair of a total of 20 wires provided by the flat cable.

The digits allow us to display a number of messages or values. The
simple basic principle of the I2C chip allows us to create and display a
number of new symbols.

Hardware description
The display system provides four 8-segment displays, an I2C display
chip and a few supplementary components.

Using the I2C-signals the chip communicates with a control unit, which
will normally be a microcontroller. I2C is a standard communication
protocol between electronic components, using only two signal wires.
The chip will take care of all control signals for the displays and the
user merely needs to define which symbol needs to be displayed at
each of the display positions. Control signals of course will use the I2C-
bus system.

Display intensity can be controlled in 8 levels.
Each display provides 8
signal lines for control,
1 control line for each
segment. Seven data-lines
control the 7 segments
and one line controls the
decimal dot.
The 7 segments and
the dot each contain a
Light Emitting Diode (LED).

- 88 -

Additionally each display provides a common supply pin for the LED’s.
Four segments each share a common supply pin and both supply pins
3 and 14 are interconnected internally.

In order to provide control signals for 4 display units we normally would
need at least 8+2=10 signal lines for each symbol, requiring a 40-pin
IC. However we can use a tricky multiplex system, providing 2 sets of
8-segment pins: P1-P8 and P9-P16. Let’s first have a look at the first
set P1-P8, which is connected to display 1 and display 2 simultaneous-
ly. Feeding P1-P8 with a certain bit combination for a special display
symbol, e.g. “X”, the units 1 and 2 would both display the same symbol
“X”. Now we just need to activate display 1 and to deactivate display 2
with switching transistor Q1 and Q2, merely activating display 1.

In a next step the chip will switch off display 1 by deactivating transistor
Q2, provide a new bit combination for a new display symbol, e.g. “Y”,
feeding the combination to P1-P8, and switch on transistor Q1 to ac-
tivate display 2. The same procedure will be used for display 3 and 4.
Using a high switching rate, which is invisible to the human eye, we will
not be able to observe the 50% dark phases, in which the symbols are
switched off. The human eye will see the display symbols constantly at
a reduced intensity.

An alternative display method allows using two displays without multi-
plexing. These displays can be activated without switching on and off.
To do so one display (Display 1) must be using P1-P8, whereas the
other display (Display 3) will be using P9-P16. The software example
suggests the display units will be arranged in a special way:

Display arrangement:
Display 4	 Display 2	 Display 3	 Display 1

The basic idea of the arrangement for using two display units (display
units 1 and 3) in a static mode is the requirement these elements must
be neighbours.

- 89 -

14.4. Parts list YETI Display Kit YT-DSP2

PCB-DSP			 YETI DISPLAY PCB				
R1				 330R (Or, or, brn, gld)
R2				 330R (Or, or, brn, gld)
R3				 18K (Brn, grey, or, gld)
C1				 2,7nF (272)
C2				 100nF (104)
Q1				 BC547B/C (polarity!)
Q2				 BC547B/C (polarity!)
D1				 8-segment display common anode (polarity!)
D2				 8-segment display common anode (polarity!)
D3				 8-segment display common anode (polarity!)
D4				 8-segment display common anode (polarity!)
IC1				 SAA1064 (polarity!)
S1				 IC-socket, 24-pins, 600mil (polarity!)
CON2				 Pin header 13 -pins, PCB montage
CON, 3, 4 and 5 (3. pcs.)	 Pin header 2 -pins, PCB montage
CON1-PCB			 PCB connector, male, 20 pins,
	 	 	 	 for flat cable
CON1-FC	 (2 pcs.)	 Flat cable connector, 20-pins, female
F1				 Flat cable, 20-wires, 10cm

Display build on
Experiment PCB

Display build on orginal Display PCB YT-DSP2 KIT

- 90 -

- 91 -

14.5. Diagram Display set

- 92 -

14.6.	 YETI Ultrasonic kit YT-ULT3

General Overview
The ultrasonic extension kit contains ultrasonic transmitter and receiver
modules. Ultrasonic waves are soundwaves at relatively high frequen-
cies, which cannot be heard by human ears.

Hunting bats however use ultrasonic waves for orientation while fly-
ing in completely dark areas, avoiding all obstacles and catching their
preys. We call these ranging methods echoranging. Obstacles and
preys reflect the soundwaves and the bat’s ears detect the reflected
waves.

YETI instead uses a microphone for sound detection.

The transmitter will emit acoustic impulses (wave bursts) with frequen-
cies around 40.000Hz. The receiver will detect signals, reflected by
nearby objects, and also the delay between transmission and reception
events.

The delay between transmitted and received impulses allows us to
calculate the distance between transmitter/receiver and reflection area.
The ultrasonic module converts the delay period into an electronic
voltage level and a flat cable connects the delay signal to an A/D-con-
verter in the YETI processor, monitoring the voltage level.

A software module controls
the voltage monitoring and all
resulting robotic actions. We did
reserve sufficient room in YETI’s
head to install the ultrasonic
modules.

The transmitter and receiver
each will be hidden behind
an “eyebrow”-hole in the
forehead.

- 93 -

14.7. Hardware description

The ultrasonic module consists of 5 parts:
1.	 Transmitter
2.	 Receiver
3.	 Receiver amplifier
4.	 Fixed voltage reference
5.	 Variable voltage reference

The microcontroller generates the ultrasonic signal wave to be trans-
mitted by the transmitter loudspeaker (TX). The receiver microphone
(RX) receives reflected sound waves, which must be amplified in the
receiver amplifier. Resistor R10 allows you to manually control the am-
plification factor. The fixed voltage reference, which is exactly adjusted
to 50 % of the supply voltage, will be used for the transmitter and for
generating the variable voltage reference.

The variable voltage reference controls the hearing sensitivity. On
every transmission impulse the microcontroller will adjust its sensitivity,
increasing sensitivity with delay and distance. A growing distance will
result in weaker reflections signals and in growing delays as well.

The microcontroller generates the ultrasonic signal wave, entering the
ultrasonic module at pin CON1-13. The reflected signal, as monitored
in the microphone, is returned to the microcontroller by pin CON1-6. At
any transmitted impulse, pin CON1-15 will ramp down a voltage signal
for the microcontroller validation.

Of course the microcontroller will not generate an acoustic but an elec-
tronic signal. In fact the loudspeaker will generate the ultrasonic sound
waves from the electronic signal.
The generated ‘ultrasonic’ signal will leave the microcontroller and
enter the transmitter module by CON1-13 and resistor R3. The trans-
mitter consists of 2 individual amplifiers in a chip IC1 (IC = Integrated
Circuit), containing a total of 4 amplifiers. In electronics these amplifiers
are named Opamp (Operational Amplifier), containing a differential
amplifier stage using two input ports: a positive and a negative entry
port. The differential amplifier stage will process the voltage difference
between both ports and the opamp’s output voltage will be proportional
to the voltage difference between both ports.

- 94 -

The ultrasonic signal will now be applied to one entry port of two
opamps. The other entry ports of both opamps are supplied with a fixed
voltage reference of exactly 50% of the supply voltage. Both opamps
are needed to generate a maximal energy for the loudspeaker and to
regenerate the weak and distorted microphone signal. The ultrasonic
microphone (RX) detects the reflected signal and transforms it into an
electronic signal, which may be filtered and amplified in receiver am-
plifier Opamp IC1B. An adjustable resistor allows you to control the
amplification factor of the system.

As resistor R3 leads the ultrasonic output pulses to the loudspeaker,
the signal will also pass diode D1 and load capacitor C7 immediately to
a full suply voltage value VCC, leading to a sharp raise of a voltage at
pin CON1-15 at the beginning of transmission impulses. At the trailing
edge of the transmission impulse capacitor resistor R14 will discharge
C7.
The microcontroller contains an analogue comparator in order to com-
pare two voltage levels: the received signallevel at pin CON1-6 and
the decreasing voltage level at pin CON1-15.

If the received signal level exceeds the decreasing voltage level at pin
CON1-15, the microcontroller will accept the signal as a valid reflection
signal. Using the decreasing comparision level will result in high vali-
dation signal levels for fast response reflections and gradually lower
validation signal levels for retarded response reflections.

Of course the ultrasonic receiver system is extremely sensitive for
any reflected signals, especially for signals from nearby objects in the
transmitter’s vicinity.
In order to prevent reflections from the YETI’s head surrounding the ul-
trasonic transmitter and receiver, we will completely fill the robot’s head
with cotton wool, including the volume between the band cable and the
back of the head. See figure 1.

- 95 -

14.8. Preparation YETI Ultrasonic Set

The assembled ultrasonic PCB is mounted in the YETI head. However,
in this location the functioning of this ultrasonic set will be influenced
by:
1.	 Undesired reflections of the ultrasonic sound inside the YETI 	
	 head.
2.	 Undesired reflections of the ultrasonic sound by the outside of 	
	 YETI itself.

Below you find two important ultrasonic signals:

On this oscilloscope image you see two signals, measured on CON1-
13 and CON1-15.

The first signal blue (CON1-13) briefly shows 5 pulses of approx. 4.5
Volt. The signal comes from the microprocessor directly and goes to
the ultrasonic PCB.

- 96 -

The second signal red (CON1-15), an unloading curve, is a reference
signal coming from the ultrasonic PCB. It returns to the processor.

If a reflection finds itself above the reference signal, it will be seen as a
valid measurement.

On the above image you see two signals:
-	 the already mentioned red reference signal CON1-13 and
-	 the receiving blue signal CON1-6 (the signals received and 	
	 reflected by the ultrasonic PCB, then going to the
	 microprocessor through CON1-6).

We mark the reflected signal at a distance of 60 cm. All strongly
reflected signals are located above the reference line as a result
of undesired direct reflections of YETI. These signals therefore
cause an invalid measurement.

60 cm

- 97 -

As you can see in our description the US receiver reacts very
sensitive on all kind of reflected signals. This means it also reacts on
false reflections inside YETI’s head.

In order to avoid invalid measurements, we put cotton wool inside the
YETI head. This way the inside of the YETI head does no longer cause
undesired reflections. (see. fig.1)!

Step 1.
Yeti’s head, completely filled with cotton wool.

- 98 -

The image below shows this new situation:
It shows perfectly that there are clearly less undesired reflections now.
Reflections which are stronger than the reference signal cannot be
seen as valid measurements, they are error measuments.

				

Step 2.	
Filtering the outside reflections

60 cm

- 99 -

On the above image all reflected signals stay under the reference line.
Now you can measure distances accurately. The time between 5 trans-
mitted pulses and the reflected signal is calculated by the microproces-
sor and translated into an actual distance. This distance can be shown
on a display.

It is very important that during the preparation of the ultrasonic function
you take care that undesired reflections stay under the reference line.

60 cm

- 100 -

14.9. Parts list YETI Ultrasonic set

PCB-UTS			 Ultrasonic PCB
R1				 10K	 (Brn, blk, or, gld)
R2				 10K	 (Brn, blk, or, gld)
R3				 1K (Brn, blk, red, gld)
R4				 10K (Brn, blk, or, gld)
R5				 100R	 (Brn, blk, brn, gld)
R6				 470K	 (Ylw, vio, ylw, gld)
R7				 10K 	 (Brn, blk, or, gld)
R8				 1K	 (Brn, blk, red, gld)
R9				 47K	 (Ylw, vio, or, gld)
R10 TRIMMER		 1M	 potentiometer
R11				 4K7	 (Ylw, vio, red, gld)
R12				 10K	 (Brn, blk, or, gld)
R13				 10K 	 (Brn, blk, or, gld)
R14				 22K	 (Red, red, or, gld)
C1				 220uF (polarity!)
C2				 100nF	 (104)
C3				 100nF	 (104)
C4				 100nF	 (104)	
C5				 100nF	 (104)
C6				 100nF	 (104)
C7				 100nF	 (104)
IC1				 TS924IN (Quad Opamp) (polarity!)
S1				 IC-socket, 14-pins (polarity!)
TX				 400ST100 (Ultrasonic transmitter) small 	
RX				 400SR100 (Ultrasonic receiver) small
T1				 BC547B/C or BC547B/C (polarity!)
D1				 1N4148 (polarity!)
CON1-PCB			 PCB connector, male, 20 pins,
	 	 	 	 for flat cable
CON1-FC (2 pcs.)		 Flat cable connector, 20-pins, female
F1				 Flat cable, 20-wires, 10cm

- 101 -

14.10. Diagram Ultrasonic set

- 102 -

- 103 -

Conclusion

We hope our robots ASURO and YETI may have helped you by
introducing you into the world of robotics. We believe the next
technological revolution will be a robotics revolution. Robots will
contribute to economic growth as well and in order to support
growth we must include robotics in technological education,

resulting in a mission statement for the development team of
ASURO and YETI:

TO TRAIN A SCIENTIFIC MIND

- 104 -

APPENDIX

- 105 -

A. OVERVIEW OF YETI FUNCTIONS
Basic functions.
The following overview describes YETI’s basic functions, to be found in
file ‘YETI.c’.

vInitYeti()
Initialize all YETI modules.

vFrontLEDs(x)
x = ON, LEFT, RIGHT, OFF
Activate the YETI’s eye-LED’s.
Example:
vFrontLEDs(LEFT);

vServo1ToPosition(x)
x = 0-65635
Set the front (body) servomotor into position x.
WARNING: This function may set the servomotor into any position,
including mechanical positions, which are unaccessible for the YETI
system. These commands may damage the YETI and we suggest you
to use the safer function ‘vMoveBody()’.
Example:
vServo1ToPosition(35);

vServo2ToPosition(x)
x = 0-65635
Set the front (legs) servomotor into position x.
WARNING: This function may set the servomotor into any position,
including mechanical positions, which are unaccessible for the YETI
system. These commands may damage the YETI and we suggest you
to use the safer function ‘vMoveLegs()’.
Voorbeeld:
vServo2ToPosition(35);

- 106 -

vRs232Write(x,y)
x = text
y = text length, 0-255
Example:
void vRs232Write(“Hello World”,11) ;

vRs232Read(x,y,z)
x = pointer to an array to store a text for reception
y = expected text length
z = timeout
Example:
char RxData[10] ;
vRs232Read(&RxData[0],4,0);
Having received 4 symbols the function will be terminated.

vWaitMilliseconds(x)
x = waiting time in milliseconds, 0 - 65635
This function will round up duration periods in ten milliseconds, e.g.
uprounding 23 to 30.
Example: wait 1 second.
vWaitMilliseconds(1000);

vBeep(x,y)
x = pitch number, 1-3906
y = duration in milliseconds.
Example:
vBeep(200,100);

Compound functions

The following functions are compound functions, containing an assem-
bly of one or more basic functions. Compound functions will be found in
the file ‘yetimove.c’.

vStandUpright()
Will make YETI to stand up in an upright position. Both ‘body’- and
‘legs’-servosystems will be reset to a zero position.

- 107 -

vMoveBody(x,y)
x = YETI’s body is inclining to the left or right position, from -58 (corres-
ponding to an extreme right inclination) up to and including -58 (corres-
ponding to an extreme left inclination)
y = execution speed in milliseconds / step, 0 – 65635.
This function will round up delay durations to tens of milliseconds, e.g.
uprounding 17 to 20.
Example:
vMoveBody(-25,20);
From an upright position the command vMoveBody(-25,20) will need
25*20=500ms= 0,5 seconds to incline YETI to the right side at a posi-
tion of –25.

vMoveLegs(x,y)
x = YETI’s right leg will be moved forward or backward (and the other
leg will be moved in the opposite direction), between -58 (right foot
forward) up to and including +58 (left foot forward)
execution speed in milliseconds / step, 0 – 65635.
This function will round up delay durations to tens of milliseconds, e.g.
uprounding 3 to 10.
Example:
vMoveLegs(-25,20);
From an upright position the command vMoveLegs(-25,20) will need
25*20=500ms= 0,5 seconds to move YETI’s right leg forward to posi-
tion –25 (while moving its left leg backward).

vMoveForwardXSteps(x)
x = number of steps forward, 0-255
Example:
vMoveForwardXSteps(3);
YETI will walk 3 steps in forward direction. From an upright position
YETI will always start by moving its right leg in a forward direction.

- 108 -

vMoveBackwardXSteps(x)
x = number of steps backward, 0-255
Example:
vMoveBackwardXSteps(4);
YETI will walk 3 steps in backward direction. From an upright position
YETI will always start by moving its right leg.

vTurnLeftXSteps(x,y)
x = number of steps, 0-255
y = ‘true’ respectivily ‘false’, true = moving forward, false = moving
forward.
Example:
vTurnLeftXSteps(2,false);
YETI will turn around backward, moving backward 2 steps in a left turn.

vTurnRightXSteps(x,y)
x = number of steps, 0-255
y = ‘true’ respectivily ‘false’, true = moving forward, false = moving
forward.
Example:
vTurnLeftXSteps(3,true);
YETI will turn around forward, moving forward 3 steps in a right turn.

vCalibrateServos()
In a combination with the free communication software Hyperterminal
this function will be needed to recalibrate the servo system each time
you adjust the mechanical positions of servomotors or servomotor-
limbs. The function may alse be used for remote controlling the YETI
by Hyperterminal keyboard, using keys ‘W’, ‘A’, ’S’ and ’D’.

Hint:

Having calibrated the YETI’s servos, you may remove this function
from the file, resulting in a considerable reduction of the program’s file
size.

- 109 -

B. DIAGRAM YETI

- 110 -

C. DIAGRAM DISPLAY MODULE

- 111 -

D. DIAGRAM ULTRASONIC MODULE

- 112 -

E. DIAGRAM RS-232 IR-TRANSCEIVER

- 113 -

F. DIAGRAM USB IR-TRANSCEIVER

- 114 -

G. FLAT CABLE CONNECTIONS

Pin 1	 SCL		 	 Serial Clock (for I2C communication)
Pin 2	 SDA			 Serial Data (voor I2C communication)
Pin 3	 PC3(ADC3)		 Digital input/output or analog monitor input
Pin 4	 PC2(ADC2) 		 Digital input/output or analog monitor input
Pin 5	 PC1(ADC1) 		 Digital input/output or analog monitor input
Pin 6	 PC0(ADC0) 		 Digital input/output or analog monitor input
Pin 7	 GND			 GND (several connectors to prevent signal noise)
Pin 8	 GND			 GND (several connectors to prevent signal noise)
Pin 9	 AVCC			 Analog reference-voltage for AD-converters
Pin 10	 PC6(RESET)		 Microcontroller reset pin
Pin 11	 PB5(SCK)		 Digital input/output
Pin 12	 PB4(MISO)		 Digital input/output or I2C function pin
Pin 13	 PB3(MOSI/OC2)	 Digital input/output or I2C function pin or Timer2 pin
Pin 14	 PD3(INT1)		 Digital input/output or external interrupt
Pin 15	 PD6(AIN0)		 Digital input/output or analog testinput
Pin 16	 D7(AIN1)		 Digital input/output or analog testinput
Pin 17	 PD0(RXD)		 Digital input/output or RS232 input
Pin 18	 PD1(TXD)		 Digital input/output or RS232 input
Pin 19	 VCC			 VCC
Pin 20	 GND			 GND (several connectors to prevent signal noise)

- 115 -

H. ERROR TRACING

H.1. GENERAL

Check all parts for correct polarisation and correct value. Check soldering connections
for short circuits and bad soldering. Has a soldering pad been disrupted ?

If all checks have been made without results, the bad part has to be traced with
the help of the schematic (see Appendix) and an adequate measurement device
(multimeter or oscilloscope).

H.2. Failure of the RS232-IR-transceiver

- Activated key and displayed symbol do not match

Calibrate Trimmer TR1 until activated key and displayed symbol do match.

- The terminal program does not display any symbol

Has the timer-IC (IC1) been inserted and has it been inserted correctly polarized (the
mark must point to the three diodes) ? Take any infrared remote control of a HIFI- or
video-equipment (videorecorder, TV, etc) and point it to the IR-transceiver, pressing a
few keys. If the terminal program displays irregular symbols, the receiver (IC2, R3, C4,
D4, T1) is operating. All other parts have to be checked.

Still not working

(In most cases one of the components IC1, IC2, Q1, D4 may have been damaged).

H.3. USB-infrared-tranceiver does not work

WINDOWS

Check if the drivers are installed correctly and if the correct com port is selected.

LINUX

Disconnect the USB transceiver... wait a minute and connect it again, this may solve
the problem.

An other option is to install a new kernel

- 116 -

H.4. IR-interface

H.4.1. YETI does not send symbols

Check polarity of IR-Diode D10.
Check resistor R16 220Ω (red, red, brown, gold)

H.4.2. YETI does not receive symbols

You will need a line of sight between IR-Transceiver and ASURO (at a distance of max.
50 cm) and the IR-Transceiver must be checked and OK (see chapter 6.1).
Check position and polarity of C2.
Check resistor R17 and C2.
	 470Ω (red,red, brown, gold)
	 100nF (imprint 104)

If you have not found the error yet, please remind the soldering of IC2. This component
is sensitive to overheating and may have been damaged while soldering. In this case
replace the component by a new IC (SFH 5110-36). When the transfer of data between
PC and ASURO is malfunctioning again and again, re-adjust trimmer TR1 in the
transceiver.

H.4.3. Things still do not work well
Check polarity of C8.
	 220µF/ at least 10V

If transfer of data between PC and YETI is malfunctioning again and again, re-adjust
trimmer TR1 in the transceiver.

- 117 -

I. INSTALLING THE UPGRADE KITS

Flatcable

Ultrasound PCB

Top cover
(inside cover)

Installing Ultrasound PCB

Installing experiment PCB

Installing
Display PCB

Ultrasound PCB

Main PCB

Accu Set

SERVO

- 118 -

J. CALIBRATION AND TEST SOFTWARE

We supply the YETI processor with a standard selftest and
calibration program called ‘test.hex’.

The Yeti ‘test.hex’ program contains:

 1. a calibration mode
 2. a walking mode

SELFTEST PROCEDURE

Switch Yeti on.

- -

YETI BOOTLOADER STARTS

- both leds will immediately light up

- both servo’s will turn clockwise a little bit

- after 3 seconds ...

#END OF BOOTLOADER PROGRAM

- -

		
 ’TEST.HEX’ PROGRAM STARTS

- 119 -

’TEST.HEX’ PROGRAM STARTS

- both leds go off

- both servos go to their (almost) centre position

- a series of beeps is heard

- the program now waits 3 seconds for any hyperterminal
 key to be pressed. If so, YETI goes into calibaration mode.
 With the first hyperterminal key being pressed, YETI lets
 a short beep being heard once.

This beep indicates:

 - that YETI now is in calibration mode

 - that YETI has received an infrared signal, so it’s
 infrared receiver is most probably okay.

- if any hyperterminal key was pressed, YETI is in calibration
 mode. Press the ENTER key in hyperterminal so YETI exits
 the calibration mode and starts with the walking mode.

- if no hyperterminal key is pressed, YETI will automatically
 exit the calibration mode after 3 seconds and continue with the
 walking mode

#END OF CALIBRATION MODE

- -

 YETI’S WALKING MODE PROGRAM STARTS

- 120 -

YETI’S WALKING MODE PROGRAM STARTS

- a single beep is heard

- YETI’s left LED turns on

- YETI leans to the LEFT and puts his RIGHT foot forward
 making 3 right/left steps

- YETI turns left, 4 steps

- YETI moves 3 steps backwards

- YETI turns right, 4 steps

- YETI shakes his body left/right 3 times

- YETI now keeps repeating above mentioned actions.
 Between each action Yeti beeps and another
 LED combination is switched on or off

#YETI WILL STAY IN THE WALKING MODE FOREVER NOW

- -

#REMARK ON ASSEMBLED YETI’S

It is important to check if YETI starts walking with his
right foot first. Otherwise both servo connections may be
connected to the wrong servo.

- 121 -

K. ACCU ADC VALUES

