

Embedded Display Module

EDM6070AR-01
Atmel AT91SAM9X35 Based Single Board Computer

BY

User Manual
Version 1.0

Dated: 3rd December 2013

Revision History:

Version Date Description

1.0 03/12/2013 Original Version

Table of Contents
Chapter 1: Product Overview... 1

1.1 Introduction ... 1

1.2 Kit Contents ... 3

1.3 Expansion Board Interfaces .. 4

1.4 Core Board Interfaces .. 4

1.5 System Block Diagram ... 6

1.6 Physical Dimensions (mm) ... 7

Chapter 2: Hardware Features .. 8

2.1 Processor ... 8

2.2 On-Board Memory ... 8

2.3 On-Board Interfaces .. 8

2.4 Others ... 9

2.5 Operational Parameters.. 9

Chapter 3: Software Features .. 10

3.1 BSP Package... 10

3.2 Example Applications ... 11

3.3 API Functions ... 12

Chapter 4: Demonstration and Test Functions 16

4.1 Smart Home Automation Demo................................. 16

4.1.1 Demo Features .. 17

4.1.2 Programming the demo 21

4.2 System Setup ... 23

4.3 Testing Features .. 24

4.3.1 Touchscreen Test ... 24

4.3.2 LCD Colour Test ... 24

4.3.3 LCD Backlight Test ... 25

4.3.4 Ethernet Test .. 25

4.3.5 Serial Interface (RS232) Test 26

4.3.6 CAN Bus Test .. 27

4.3.7 RS485 Bus Test ... 28

4.3.8 USB Test ... 29

4.3.9 RTC Test ... 30

4.3.10 TF Card Test .. 31

4.3.11 LED Test ... 32

4.3.12 Buzzer Test ... 32

4.3.13 GPIO Test.. 32

4.3.14 Button Test ... 33

4.3.15 Screen Capture Test 34

4.3.16 Audio Test ... 34

4.3.17 Watchdog Test ... 35

4.3.18 Telnet Test .. 35

4.3.19 Mounting NFS (Network File System) 38

4.4 Transferring Files Using SecureCRT 39

4.5 Transferring Files Using Network Protocol 40

4.6 Linux QT Demonstration... 42

Chapter 5: Development Environment and System

Compilation……………… ... 44

5.1 Building a Cross Compilation Environment 44

5.2 System Compilation .. 45

5.3 Uncompressing Files .. 45

5.4 Making a Bootstrap ... 46

5.5 Making a U-boot ... 47

5.6 Making a Kernel .. 47

5.7 Making a File system Image 48

Chapter 6: System Customization 49

6.1 Kernel Customisation ... 49

6.2 File system Customisation .. 51

6.3 Simple Driver Modules in Kernel 52

6.4 Using Makefile to Associate Drivers with Kernel 55

6.5 Compiling and Downloading Drivers........................... 55

6.6 Brief Introduction to Applications 56

6.7 Compiling and Running Applications 57

6.8 Common Functions .. 58

6.9 Linux Multi-Thread Programming 59

6.10 Linux Network Programming 61

6.11 Compiling Server .. 64

6.12 Compiling Client .. 64

6.13 Running Server and Client .. 65

Chapter 7: Updating the Linux System 66

7.1 Images and the Programming Tool 66

7.1.1 Programming System Image Automatically 67

7.1.2 Programming System Image Manually 69

7.2 Preparations ... 69

7.3 Programming Image Files ... 71

Chapter 8: Appendix A: Common u-boot Instructions 76

Page | 1

Chapter 1: Product Overview

1.1 Introduction

 The EDM6070AR-01 is an ARM based Single Board Computer (SBC),

designed & developed by element14. It comprises of a 7” LCD display and

touch screen assembly, integrated with multi-functional embedded

hardware based on Atmel’s ARM9 AT91SAM9X35 industrial processor.

The EDM6070AR-01 is a fully integrated Embedded Display Module solution

for a variety of embedded control HMI applications, ready to drop into your

product with negligible integration effort, OR to just wrap an enclosure

around, add a software application and become your finished product.

The EDM6070 is designed to fulfil the different requirements of various HMI

applications including:

 Industrial control terminals

 Intelligent instruments

 Data acquisition and analysis

 Medical products

 Network terminals.

The EDM6070AR-01 consists of three parts: a MINI6935 CPU core module,

an expansion board, and a 7” TFT LCD (800×480) with resistive touch

screen.

 MINI6935 CPU module is an ARM embedded board,

integrated with the ATMEL ARM926EJ-S-based processor

AT91SAM9X35, operating at 400MHz frequency. The board has

128MB DDR2 SDRAM, 256MB NAND Flash, 4MB DataFlash, 4KB

Two-wire EEPROM.

http://microcontrollershop.com/product_info.php?products_id=6061&osCsid=ppvn5e6o1u609u45i987v5vt13

Page | 2

 The Base Board expands the rich set of connectivity and user

interface peripherals of the Atmel AT91SAM9X35 including Ethernet

and CAN interface. The board also has a TFT touch screen LCD

interface, USB hosts/device, Buzzer, RS232, RS485, Audio, GPIOs

and an SD card interface to allow for large storage capabilities.

 LCD Touch screen Display is a 4-wire resistive touch screen

TFT LCD display with a display resolution of up to 800x480 with

24-bit colour depth.

The EDM6070AR-01 includes Linux BSP and supports the Linux QT GUI

(Graphical User Interface) and multiple file systems like, FAT, NTFS etc. It is

also supplied with a Smart Home demo application (include smart-led

controller, weather controller, video) and a number of example applications

to give you a quick and easy start.

Page | 3

1.2 Kit Contents

 The EDM6070AR-01 SBC is packed with the items listed below:

 MINI6935 CPU Process Board based on AT91SAM9X35 MCU

 Expansion Base Board

 7” Touchscreen LCD Display

 Product DVD/CD includes BSP, demo application & technical

documentation.

Optional Accessories (must be purchased separately):

 Serial Cable (Cross Over Female-to-Female)

 Ethernet Cable

 MicroUSB Cable

 Serial Interface Adapter

 Power Adapter (12V@1.25A)

Page | 4

1.3 Expansion Board Interfaces

Figure 1: Base Board Interface with Mounted CPU Module

1.4 Core Board Interfaces

Figure 2: MINI6935 CPU Module (Front View)

Page | 5

Figure 3: MINI6935 CPU Module (Rear View)

Page | 6

1.5 System Block Diagram

MAC DM916

Data

AT25DF321 32MB

NAND K9F2G08U0

TWI AT24C04BN

 AT91SAM9X35

RTC
Watchdog
Key
Reset

SD CARD

USB Device

USB Host

GPIO ISO

LCD 800x480 RGB 7

Audio

RS232

Debug Port

CAN 2.0 ISO

RS485 ISO

DDR2

MT47H64M16HR

Figure 4: System Block Diagram

Page | 7

1.6 Physical Dimensions (mm)

Figure 5: Mini6935 Dimensions

Figure 6: Expansion Board Dimensions

Page | 8

Chapter 2: Hardware Features

2.1 Processor

 Atmel AT91SAM9X35 ARM9 32-bit processor, 400MHz

 16KB data cache, 16KB instruction cache, memory management

unit

 64KB internal ROM and 32KB internal SRAM

2.2 On-Board Memory

 128MB DDR2 SDRAM

 256MB NAND Flash

 4MB DataFlash

2.3 On-Board Interfaces

 7” TFT LCD display, resolution of 800x480 with 24-bit colour depth

 10/100Mbps Ethernet interface, using a DM9161CIEP chip,

extendable via expansion board

 RS232 interface, 1 RS485 interface, 1 CAN interface

 USB Host high-speed interface

 USB Device interface

 Three GPIO Input interfaces

 Four GPIO Output interfaces

 Audio output interface, supporting MP3 playback

 Debugging Interface, extendable via expansion board

 TF card slot

Page | 9

2.4 Others

 I/O interface LED indicator, 2 LED power indicators

 Buzzer

 I/O button

 Reset button

 RTC (no battery by default)

 Watchdog

2.5 Operational Parameters

 Operating Temperature: -10 °C ~ 70 °C

 Operating Humidity: 0% ~ 90% (Non-condensing)

 Power Supply: 12V@1.25A

 Electrical Standards: CE, FCC and CCC

 Product Dimensions: 181mm x 120mm

Page | 10

Chapter 3: Software Features
This chapter will briefly introduce the BSP package in the CD-ROM, example

applications installed in the product and the API functions called by these

applications.

3.1 BSP Package

The CD-ROM provided with the EDM6070 contains a BSP (Board Support

package) which is used for building custom Linux systems. The table shown

below lists the contents of the BSP with corresponding descriptions.

Types Names Description

BIOS

Bootstrap Serial Flash

U-Boot

Serial Flash

Supports kernel and file system programming through
SAM-BA or USB flash drive (USB flash drive is
recommended)

Device
Drivers

Serial Debugging and COM2 serial interface on CPU

RTC Internal RTC of AT91SAM9X35

Ethernet 10/100M Ethernet driver

Flash NAND Flash and DataFlash driver

LCD LCD driver, 800x480 resolution

Touch
Screen

Touchscreen controller on CPU

USB Host USB Host driver

Watchdog Built-in watchdog driver

SD Card SD card driver

CAN Bus CAN bus

RS-485 RS-485 bus

LED System status LED

BEEP Buzzer driver

Audio WM8731EDS audio output driver

Button Custom user button driver

GPIO GPIO driver, 3 input channels, 4 output channels

Kernel Linux-2.6.39 ROM/CRAM/EXT2/EXT3/FAT/NFS/JFFS2/YAFFS2/UBIFS

Page | 11

Types Names Description

file systems

Root File
System

UBIFS
Readable and writeable file system, supporting
compression storage

3.2 Example Applications

The Linux system installed in EDM6070 contains multiple example

applications under /home/app. Users can use those applications to

implement, test or demonstrate various product functionalities. The

following block diagram clearly shows the location of each example

application in the system.

Figure 7: Example Applications (Directory Structure)

/home/app

COM UART Test

EVTEST Event Devices
Test

GPIO GPIO Test

LED LED Test

BEEP Buzzer Test

CAN

CAN Test

CAN Receiver
Test

CAN Transmitter
Test

Page | 12

3.3 API Functions

Before you start to test the product, it is necessary to learn about the API

functions used by the example applications. If you need to understand the

working principle of an application in detail, read the source code stored

under “\02 Linux 2.6 Kit\01 Source Code\app\” in the CD-ROM

provided along with EDM6070.

The tables listed below will show you the API functions called by some of

applications and the relevant information.

LED API Function

LED_API int led_ctrl (char *name, int onoff);

Source ledlib.h

Functionalities Turn on or off LEDs

Parameters
Name (LED’s name such asD6, D9 or D13)

onoff (0 for off, 1 for on)

Returned Values 0 for success, otherwise failure

Examples led_ctrl ("D9", 1);

Buzzer API
Function

BEEP_API int beep_ctrl (char *name, int onoff);

Source beeplib.h

Functionalities Controls the buzzer to make sound or stop

Parameters

Name (buzzer name, normally there is only

one buzzer which is called “beep”)

onoff (0 for off, 1 for on)

Returned Values 0 for success, otherwise failure

Examples beep_ctrl ("beep", 1); beep_ctrl ("beep", 0);

Serial Interface
API Function

int OpenDev(char *Dev);

Source com_example.c

Functionalities Enable serial devices and acquire descriptors

Page | 13

Parameters

dev (character string of serial devices, e.g.

“/dev/ttySAC0”)

Values more than 0 is a serial file descriptor,

less than 0 stands for failure

Returned Values com_example.c

void set_speed(int fd, int speed);

Source com_example.c

Functionalities Set the bitrate of serial interfaces

Parameters
fd (serial file descriptor)

speed (bitrate, e.g. 15200)

Returned Values None

int set_Parity(int fd,int databits,int stopbits,int parity,int
flowctrl);

Source com_example.c

Functionalities
Set serial interface data bits, stop bits, parity

check and data flow control

Parameters

fd (serial file descriptor)

databits (length of data bits)

stopbits (length of stop bits)

parity (check type, N for no check, O for odd

check, E for even check)

flowctrl (switch of hardware data follow

control, 1 for enable, 0 for disable)

Returned Values 0 for success, otherwise failure

size_t read(int fd, const void *buf, size_t nbytes);

Source unistd.h

Functionalities
Called by system to acquire data received on

the serial interfaces

Parameters

fd (serial file descriptor)

buf (pointer to the received data)

nbytes (data length about to be read, Byte)

Returned Values
Values less than 0 stands for error, more than

0 stands for received data length (Byte)

size_t write(int fd, const void *buf, size_t nbytes);

Source unistd.h

Functionalities
Called by system to send data through the

serial interfaces

Parameters fd (serial file descriptor)

Page | 14

buf (pointer to the data about to be sent)

nbytes (length of data about to be sent, Byte)

Returned Values
Value of less than 0 stands for an error, more

than 0 stands for a data length being sent

(Byte)

int close(int fd);

Source unistd.h

Functionalities
Called by system to disable the serial

interfaces

Parameters fd (serial file descriptor)

Returned Values 0 for success, less than 0 stands for error

GPIO API Function

int open(const char *path, int oflags);

Source gpio_example.c

Functionalities Initialize the GPIO device node

Parameters Path: /dev/gpio.0 oflags: O_RDWR

Returned Values 0 for success, otherwise failure

int close(int fildes);

Source gpio_example.c

Functionalities Release GPIO

Parameters fildes: open returned file descriptor

Returned Values 0 for success, otherwise failure

ioctl(fd, GPIO_GET_VALUE, pin);

Source gpio_example.c

Functionalities Read the logic level of the input pin

Parameters
Pin (GPIO pin name, such as GPIO_PB15)

fd (GPIO device descriptor)

Returned Values Return level value in digit 0 or 1

ioctl(fd, GPIO_SET_PIN, pin);

Source gpio_example.c

Functionalities
Allow the output pin provide a high level

output

Parameters Pin (GPIO pin name, such as GPIO_PD18)

Returned Values None

Page | 15

ioctl(fd, GPIO_CLR_PIN, pin);

Source gpio_example.c

Functionalities
Allow the output pin to provide a low level

output

Parameters Pin (GPIO pin name, such as GPIO_PD18）

Returned Values None

Page | 16

Chapter 4: Demonstration and Test
Functions

This chapter will introduce to the Smart Home Automation demo application

and how to use the example applications contained in the system to

implement functionality tests of the EDM6070, as well as a demonstration of

the LinuxQT graphics interface.

4.1 Smart Home Automation Demo

A Smart Home System demo application has been provided with the

EDM6070. This demo application enables EDM developers to quickly and

easily jumpstart their embedded Linux application development — without

first having to set up their development environment. Smart Home

automation demo features a QT GUI application with several custom widgets,

including:

 Climate Control

 Light control

 Thermostat control

Page | 17

 Video player

4.1.1 Demo Features

This demo showcases the control of various house functions including

heating, lighting, security and a media player. The major functions are

expounded upon below:

4.1.1.1 Climate Control

This application allows the user to control the temperature and humidity

throughout the house on a room by room basis. There is also a display

indicating the current weather which can be activated to display extra

information:

Page | 18

 5 day forecast

 Detailed current weather information

Page | 19

 Pulse-doppler radar weather display

The weather information is updated via the internet and as such the

EDM6070 requires an internet connection in order to provide this

functionality

4.1.1.2 Lighting Control

Page | 20

The lighting application allows the user to set the light levels in each room

independently. The application emulates a standard dimmer switch making

the software both intuitive and user friendly

4.1.1.3 Security

The security application allows the EDM6070 to connect to cameras and door

locks at any user defined entrance. This allows the user to monitor the

entrance and either allow or deny access to the property

Page | 21

4.1.1.4 Media Player

The Media application will allow the user to play audio into any connected

room. The audio files can be streamed from internet radio, terrestrial /

satellite radio or a local media server such as a PC or networked storage.

4.1.2 Programming the demo

Follow the steps below to program the demo onto the EDM6070

1） Set up a HyperTerminal as shown in 4.2 System Setup.

2） Copy the demo files from:

\02 Linux 2.6 kit\00 image\

on the CD to the root directory of a MicroSD card

Figure 8: Demo Files

Page | 22

3） Enable NAND Flash and disable Serial Flash according to the switch

settings shown below: (refer to Figure 2: MINI6935 CPU Module

(Front View) for the switch location)

Figure 9: Switch Settings 1

4） Insert a MicroSD card into the MicroSD slot of the board, then power

it up. The booting information in the HyperTerminal window is shown

below:

 RomBOOT

 Start AT91Bootstrap...

 Init DDR... Done!

 Downloading image...

 *** f_open, File name: [logo]: error!

When you hear a beep and see the information below, the programming has

completed.

NAND write: device 0 offset 0x0, size 0x260000

 [nand_write_skip_bad] return rval

 2490368 bytes written: OK

 NAND erase: device 0 offset 0xc00000, size 0x6e00000

 Erasing at 0x79e0000 -- 100% complete.

 OK

 NAND write: device 0 offset 0xc00000, size 0x5540000

 89391104 bytes written: OK

5） Turn OFF the board and enable NAND Flash using the switch settings

shown below:

Figure 10: Switch Settings 2

Page | 23

6） Turn the board on again and wait a few moments. The smart home

demo UI should be displayed on the screen

4.2 System Setup

Prior to commencing various features tests for EDM6070, you should first

configure a HyperTerminal according to the parameters shown in the figure

below;

Figure 11: Configuring HyperTerminal

After setting up the HyperTerminal, connect EDM6070 to your PC via a serial

interface adapter and a serial cable, and then power on the board. You can

see boot-up information in the HyperTerminal window.

Page | 24

4.3 Testing Features

Note:
 Each instruction has been proceeded by a pencil “” to prevent confusion

caused by any long instructions that occupy more than one line in the context.
 Please note that there are SPACES in some of the following instructions; Missing

any SPACE will lead to failure when running an application.

4.3.1 Touchscreen Test

7） Execute the following instruction to run the touch screen calibration

program;

 [root@Mini69X5:/]# ts_calibrate

And then press the “+” symbols that appear on the screen with your

fingers or a compatible stylus to complete calibration;

8） Execute the following instruction to test the touchscreen;

 [root@Mini69X5:/]# ts_test

Select Drag or Draw on the screen to test the dragging and drawing

functionalities.

You can exit the example application by pressing Ctrl+C on your PC’s

keyboard.

4.3.2 LCD Colour Test

Upon execution of the following instruction the LCD will display the 3

elementary RGB colours separately and together.

 [root@Mini69X5:/]# /home/app/lcd

Page | 25

4.3.3 LCD Backlight Test

1） Execute the following instruction to adjust the backlight. The

brightness value can be any integer from 1 to 10 inclusive. In this

example the brightness has been set to 5

 [root@Mini69X5:/]# bl_adjust SET 5

2） Execute the following instruction to turn off the backlight;

 [root@Mini69X5:/]# bl_adjust OFF

3） Execute the following instruction to turn on the backlight;

 [root@Mini69X5:/]# bl_adjust ON

4.3.4 Ethernet Test

1） Execute the following instruction to set the IP address of the

EDM6070 to 192.192.192.200;

 [root@Mini69X5:/]# ifconfig eth0 192.192.192.200

2） Execute the following instruction to test network connection;

 [root@Mini69X5:/]# ping 192.192.192.105

3） Execute the following instruction to set the gateway address;

 [root@Mini69X5:/]# route add default gw <Your_GateWay_Addr>

For example:

 [root@Mini69X5:/]#route add default gw 192.192.192.101

4） Execute the following instruction to set DNS address；

 [root@Mini69X5:/]# echo “nameserver <Your_DNS_Addr>” >

/etc/resolv.conf

For example:

 [root@Mini69X5:/]# echo "nameserver

202.96.128.166" >/etc/resolv.conf

Page | 26

Note:
 The IP addresses above are only examples. Make sure the IP address of the

EDM6070 is in the same network range as your PC.

After all the settings are complete, execute a PING command to test the

network connection. The HyperTerminal window will show similar

information to that which follows:

PING 192.192.192.105 (192.192.192.105): 56 data bytes

64 bytes from 192.192.192.105: icmp_seq=0 ttl=64 time=0.5 ms

64 bytes from 192.192.192.105: icmp_seq=1 ttl=64 time=0.3 ms

64 bytes from 192.192.192.105: icmp_seq=2 ttl=64 time=0.3 ms

64 bytes from 192.192.192.105: icmp_seq=3 ttl=64 time=0.3 ms

--- 192.192.192.105 ping statistics ---

7 packets transmitted, 7 packets received, 0% packet loss

round-trip min/avg/max = 0.3/0.3/0.5 ms

~ $

To terminate the Ethernet test, press Ctrl+C on your keyboard.

4.3.5 Serial Interface (RS232) Test

EDM6070 provides 3 serial interfaces - ttyS2（RS232）, ttyS0（RS485）

and ttyS6 （ RS232 ） as debugging interfaces. Execute the following

instruction to test these serial interfaces.

 [root@Mini69X5:/home/app]# ./com -d /dev/ttyS2 -s 1234567890 -b

115200

Table 1: Parameters Used in Instructions

Parameters Descriptions
-d Serial device node used to specify a serial interface

-s Character string to be sent

-b Set bitrate

-f Enable hardware flow control

Page | 27

4.3.6 CAN Bus Test

Connect your EDM6070 to another EDM6070 or a device with a CAN bus

according to the figure shown below;

Figure 12: CAN Bus Connection

Note:
 The jumper JP13 in the figure shown above is shorted in order to enable 120R

terminal resistor.

After connection is complete, execute the following instructions to test the

CAN bus;

 [root@Mini69X5:/]# cd /home/app/can/

 [root@Mini69X5:/]# ifconfig can0 down

 [root@Mini69X5:/]# ip link set can0 type can bitrate 800000 (Set

bitrate to 800k）

 [root@Mini69X5:/]# ip -details link show can0 (View can0

configurations)

 [root@Mini69X5:/]# ifconfig can0 up (Enable can0)

 [root@Mini69X5: /home/app/can/]# ./candump can0 (Receiving mode)

 [root@Mini69X5: /home/app/can/]# ./cansend can0

"5A1#1122334455667788" (Send standard frames)

 [root@Mini69X5: /home/app/can/]# ./cansend can0

"1F334455#1122334455667788" (Send extended frames)

To terminate the CAN bus test, press Ctrl+C on your keyboard.

Page | 28

4.3.7 RS485 Bus Test

The device corresponding to RS485 interface is /dev/ttyS0. Similar to the

CAN bus test, the transceiving test over this bus needs another EDM6070 or

RS485-enabled device; connect them according to the figure shown below;

Figure 13: RS485 Bus Connection

Note:
 For long-distance transmission, the jumper JP12 needs to be shorted.

Execute the following instruction to test the RS485 bus connection;

 [root@Mini69X5: /home/app/]# ./com -d /dev/ttyS0

To terminate the RS485 bus test, press Ctrl+C on your keyboard.

Page | 29

4.3.8 USB Test

EDM6070 has a USB host interface. Upon inserting an USB flash drive into

the EDM6070 USB port the HyperTerminal window will show information as

follows;

usb 1-1: USB disconnect, address 2

usb 1-1: new full speed USB device using at91_ohci and address

3

usb 1-1: configuration #1 chosen from 1 choice

scsi2 : SCSI emulation for USB Mass Storage devices

scsi 2:0:0:0: Direct-Access Generic USB SD Reader 0.00

PQ: 0 ANSI: 2

sd 2:0:0:0: [sda] 7744512 512-byte hardware sectors (3965 MB)

sd 2:0:0:0: [sda] Write Protect is off

sd 2:0:0:0: [sda] Assuming drive cache: write through

sd 2:0:0:0: [sda] 7744512 512-byte hardware sectors (3965 MB)

sd 2:0:0:0: [sda] Write Protect is off

sd 2:0:0:0: [sda] Assuming drive cache: write through

 sda: sda1

sd 2:0:0:0: [sda] Attached SCSI removable disk

sd 2:0:0:0: Attached scsi generic sg1 type 0

The above information indicates that the USB flash drive has been identified

as sda1 device by the system. Follow the steps listed below to implement

the test;

1） Execute the following instruction to mount the USB flash drive to

/mnt and specify the format as VFAT;

 mount –t vfat /dev/sda1 /mnt

Note:
 By default, USB flash drive is mounted automatically to /media under the root

file system. If automatic mounting fails, you need to mount the device manually
by using the above instructions.

Page | 30

2） Execute the following instruction to view the contents of the USB

flash drive;

 root@Mini69X5:/mnt/usbhd-sda1]# ls

3） Execute the following instructions to un-mount the USB flash drive;

 [root@Mini69X5:/mnt/usbhd-sda1]# cd ..

 [root@Mini69X5:/mnt]# umount usbhd-sda1

4.3.9 RTC Test

RTC is used to store and recover the system clock. Follow the steps listed

below to test the RTC;

1） Execute the following instruction to view the current system clock;

 [root@ Mini69X5:/]# date

The system clock readout is shown below;

Thu Nov 27 11:48:02 UTC 2013

2） Execute the following instructions to set system clock to 16:43, Nov.

29th, 2013;

 [root@Mini69X5:/]# date –s 112916432013

The HyperTerminal shows information as follows;

Thu Nov 29 16:43:00 UTC 2013

3） Execute the following instruction to write system clock into RTC;

 [root@ Mini69X5:/]# hwclock –w

4） Execute the following instruction to view RTC clock;

 [root@ Mini69X5:/]# hwclock -r

The HyperTerminal shows information as follows;

Thu Nov 29 16:43:00 UTC 2013

Page | 31

5） Execute the following instructions to update system clock with the

clock information stored in RTC, and them view the system clock;

 [root@ Mini69X5:/]# hwclock -s

 [root@ Mini69X5:/]# date

The updated system clock is shown below;
Thu Nov 29 16:43:45 UTC 2013

Note:
 RTC can work properly as long as there is always a battery supplying power;

Ensure an R1220 battery is installed.

4.3.10 TF Card Test

Insert a microSD card into the microSD card slot of EDM6070, the

HyperTerminal shows information as follows;
 [root@Mini69X5:/]# mmc1: new SD card at address 0002
mmcblk0: mmc1:0002 N/A 489 MB

mmcblk0: p1

The above information indicates that card has been defined as mmcblk0p1

device. Follow the steps listed below to implement the test;

1） Execute the following instruction to mount the card to /mnt and

specify the format as VFAT;

 [root@Mini69X5:/]# mount -t vfat /dev/mmcblk0p1 /mnt/

2） Execute the following instructions to view the contents of the card;

 [root@Mini69X5:/]# cd /mnt/

 [root@Mini69X5:/mnt]# ls

3） Execute the following instructions to un-mount the card;

 root@Mini69X5:/mnt]# cd /

 [root@Mini69X5:/]# umount /mnt/

Page | 32

4.3.11 LED Test

EDM6070 has 2 LED indicators, among them the D2 is a system status LED.

The following steps are the test for D1 (PB18) LED;

1） Execute the following instruction to test LED D1 by running an

application;

 [root@Mini69X5:/]# /home/app/led

D1 will be blinking alternately at two different frequencies;

2） Execute the following instruction to turn OFF a single LED;

 [root@Mini69X5:/]# echo '0' >/sys/class/leds/d1/brightness

3） Execute the following instruction to turn ON a single LED;

 [root@Mini69X5:/]# echo '1' >/sys/class/leds/d1/brightness

4.3.12 Buzzer Test

1） Test by running an application;

 [root@Mini69X5:/]# /home/app/beep

The buzzer will make a single sound;

2） Instruct the buzzer to make continues sound;

 [root@Mini69X5:/]# echo '1' >/sys/class/leds/beep/brightness

3） Instruct the buzzer to stop making sound;

 [root@Mini69X5:/]# echo '0' >/sys/class/leds/beep/brightness

4.3.13 GPIO Test

The GPIO test program constantly reads the input interface at a 500ms

interval and control the data receiving on output interface. Execute the

following instruction to implement the test;

Page | 33

 [root@Mini69X5:/]# /home/app/gpio

If the test is successful, the HyperTerminal window shows information as

follows;

* MINI69X5 GPIO Demo *

GPIO_PB15 INPUT 1

GPIO_PD16 INPUT 1

GPIO_PD17 INPUT 1

GPIO_PD18 OUTPUT 0

GPIO_PD18 OUTPUT 0

GPIO_PD18 OUTPUT 0

GPIO_PD18 OUTPUT 0

4.3.14 Button Test

Execute the following instruction to test the button SW1 on the EDM6070;

 [root@Mini69X5:/]# /home/app/evtest /dev/event0

The HyperTerminal window shows information as follows;

Input driver evdev: (EVIOCGBIT): Suspicious buffer size

511, limiting output to 64 bytes. See

http://userweb.kernel.org/~dtor/eviocgbit-bug.html

version is 1.0.0

Input device ID: bus 0x19 vendor 0x1 product 0x1 version

0x100

Input device name: "gpio-keys"

Supported events:

 Event type 0 (Sync)

 Event type 1 (Key)

 Event code 278 (BackBtn)

Press SW1, the HyperTerminal window shows information as follows;

Page | 34

Event: time 1167614678.630509, type 1 (Key), code 278

(BackBtn), value 1

Event: time 1167614678.630529, -------------- Report Sync

Event: time 1167614678.826399, type 1 (Key), code 278

(BackBtn), value 0

Event: time 1167614678.826412, -------------- Report Sync

Event: time 1167614679.430801, type 1 (Key), code 278

(BackBtn), value 1

Event: time 1167614679.430817, -------------- Report Sync

Event: time 1167614679.668320, type 1 (Key), code 278

(BackBtn), value 0

To terminate the button test, press Ctrl+C on your keyboard.

4.3.15 Screen Capture Test

Execute the following instruction to capture the contents displayed on the

LCD and save it as a jpg image;

 [root@Mini69X5:/]# fbcat /dev/fb0 Figure.jpg

The captured images will be saved automatically under the system’s root

directory.

4.3.16 Audio Test

The system contains an open-source audio player “madplay” by default

which supports MP3 playback. Insert headphones into the 3.5mm audio

output jack on EDM6070, and then execute the following instruction to

implement a test;

 [root@Mini69X5:/]# madplay /home/mp3/music.mp3

If you hear music, the audio functionality is working properly.

To view help information, execute instruction “madplay –h”.

Page | 35

4.3.17 Watchdog Test

Execute the following instruction to run the watchdog test program;

 [root@Mini69X5:/]# /home/app/watchdog

The HyperTerminal window shows information as follows;

Watchdog open success

usage:

 [a] -- Feed dog

 [q] -- Quit without stop watchdog

 [e] -- Quit and stop watchdog

4.3.18 Telnet Test

Connect EDM6070 to your LAN by using a RJ45 network cable, and then

follow the steps listed below to implement the test;

1） Open a command prompt, the method for doing this can vary

depending on your version of windows.

Note:
 For Windows XP: click start, then run and in the dialogue box that appears

type “cmd” and hit enter on your keyboard.
 For Windows 7: click start then enter “cmd” into the search box then hit enter

on your keyboard.

You will then be presented with a window as follows.

Page | 36

Figure 14: Command Prompt Window

2） Type “ping 192.192.192.211” to test the network connection (the

default IP address of the EDM6070 is 192.192.192.211) as shown

below;

Figure 15: Network Test After Completion

3） Type “telnet 192.192.192.211” to initiate a telnet session as

shown below;

Page | 37

Figure 16: Telnet Session Initialization

4） Type the default username “root” and leave the password blank as

shown below;

Figure 17: Telnet Log In

Now you have logged in to the telnet session successfully, to exit the session,

type “exit”.

Note:
 By default, telnet service is disabled under Windows 7. To enable the service

select Control Panel > Programs > Programs and Features > Turn Windows
features on or off, and then check “Telnet Client”.

 The default IP address of EDM6070 is 192.192.192.211. Ensure that the board
and your PC are set in the same network segment.

Page | 38

4.3.19 Mounting NFS (Network File System)

By mounting the NFS (Network File System), users can access the shared

directory remotely under a Linux environment. Follow the steps listed below

to test the NFS network file system;

1） Log in to the Linux system on your PC as a root user;

2） Add the following line at the end of the file /etc/exports, and then

save the changes；

/home/nfs *(rw,sync,no_root_squash)

 /home/nfs: Shared directory on NFS server; mountable by all

client terminals

 no_root_squash：Allow the client terminals which mount the

directory to operate as a root user;

3） Execute the following instruction to enable the NFS server;

 [root@:/]# /etc/init.d/nfs-kernel-server start

4） Check if the NFS server is enabled successfully;

 [root@:/]# mount -o nolock localhost:/home/nfs /tmp

If there is no error reported by system and the information obtained

by executing “ls /tmp” is consistent with the contents under the

shared directory of the NFS server, the server is functioning properly.

5） Power on EDM6070 and connect it to a PC with a network cable, and

then set the IP address for the board in the HyperTerminal window;

Make sure the communication between the board and your PC’s

Linux system is working properly by executing a PING command;

Page | 39

6） Execute the following instruction in the HyperTerminal window to

mount the shared directory /home/nfs to /mnt

 [root@Mini69X5:/]# mount -o nolock 192.192.192.105:/home/nfs /mnt

After mounting successfully, you can see the contents of the shared

directory under /mnt.

Note:
 EDM6070 has write permission to the shared directory, and therefore any

changes will be saved.

4.4 Transferring Files Using SecureCRT

Follow the steps listed below to test data transfer via serial interfaces by

using Windows-based software SecureCRT;

1） Open a SecureCRT software window as shown below;

Figure 18: SecureCRT Window

Execute the following instructions in the window;

 [root@Mini69X5:/]# cd /tmp

 [root@Mini69X5:/tmp]# rx recvfile

2） Click Transfer > Send XModem on the menu bar to open the

following window;

Page | 40

Figure 19: File Selection

Select a file to be sent and then click send; The HyperTerminal

window shows information as follows;

Starting xmodem transfer. Press Ctrl+C to cancel.

Transferring dataflash_at91sam9g45ekes.bin...

 100% 4 KB 0 KB/s 00:00:05 0 Errors

[root@Mini69X5:/tmp]#

The above information indicates that the file has been received

successfully.

Note:
 Serial interfaces work at a relatively low speed, so it is recommended to choose

a small file when transferring.

4.5 Transferring Files Using Network Protocol

Follow the steps listed below to transfer a large file using the TFTP protocol;

Page | 41

1） Put the file to be sent in the HOME directory (e.g. G:\data.bin) and

run tftpd.exe (this program can be found under “\02 Linux2.6

Kit\02 Tools\” in the CD-ROM) on your PC; Select Tftp >

Configure on the menu bar of the program window, and set the

path to Home Directory, and then select Tftp > Start on the menu

bar to start TFTP service;

2） Execute the following instruction in the HyperTerminal window to

download data.bin file;

 [root@Mini69X5:/tmp]# tftp -g 192.192.192.71 -r data.bin

3） Execute the following instruction to view the downloaded file;

 [root@Mini69X5:/tmp]# ls -l

The HyperTerminal window shows information as follows;
-rw-r--r-- 1 root root 4420 Jan 1 00:44 data.bin

The above information indicates that the file has been

downloaded successfully.

4） Execute the following instruction to rename the downloaded file as

data_send.bin;

 [root@Mini69X5:/tmp]# mv data.bin data_send.bin

5） Execute the following instruction to upload the file to the HOME

directory of your PC;

 [root@Mini69X5:/tmp]# tftp -p 192.192.192.71 -l data_send.bin

6） Enter the shared directory to view the uploaded file as shown below;

Page | 42

Figure 20: Uploaded File

The image shown above indicates a successful uploading.

4.6 Linux QT Demonstration

When the system is under the shell interactive mode, you can start the

Qtopia application by entering the command “qpe”. Then follow the steps

listed below;

1） Execute the following instruction in the HyperTerminal window to

begin calibration of the touch screen;

 [root@Mini69X5:/]# ts_calibrate

Follow the instructions as they appear on the screen to

implement calibration;

2） Execute qpe command to run Qtopia applications; (the file system

has to have a QT installed)

 [root@Mini69X5:/]# qpe

Page | 43

The QT interface and system information are shown below;

Figure 21: Main QT Interface

Figure 22: QT Interface Showing System Information

Page | 44

Chapter 5: Development
Environment and System
Compilation

Before getting started with the development on the board, an ARM Linux

cross development environment is required. This chapter will take Ubuntu as

the example operating system to show you how to build a cross

development environment and accomplish system compilation.

5.1 Building a Cross Compilation Environment

The CD-ROM provided with the product contains a cross compilation tool

“arm-2007q1-10-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2”

under the directory “\02 Linux2.6 Kit\02 Tools\”. Install it step by step

as shown below.

1） Put the CD-ROM in your drive. Ubuntu will mount the CD to

/media/CD-ROM by default. Execute the following instructions to

install the cross compilation tool;

 mkdir /usr/local/arm

 tar –jxvf

arm-2007q1-10-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2 –C

/usr/local/arm

2） Execute the following instruction to add an environment variable

which specifies the path to the cross compilation tool in the system.

 export PATH=/usr/local/arm/arm-2007q1/bin/:$PATH

3） Execute the following instruction to check if the installation is done;

 arm-none-linux-gnueabi-gcc –v

Page | 45

The HyperTerminal window shows information as follows;

Using built-in specs.

Target: arm-none-linux-gnueabi

…

gcc version 4.2.0 20070413 (prerelease) (CodeSourcery

Sourcery G++ Lite 2007q1-10)

If the version number within the last line is correct, the cross compilation

environment has been built successfully.

Note:
 The instruction adding environment variables can be put into the file .bashrc

under user directory to allow the system load the variable automatically each
time when it boots up.

5.2 System Compilation

The compilation of the operating system can be accomplished in 5 steps –

uncompressing files, making a Bootstrap, making a U-boot, making a kernel

and making a file system image. This section will introduce these steps in

detail.

5.3 Uncompressing Files

The system source code can be found under \02 Linux 2.6 Kit\01 Source

Code\ in the CD-ROM. Execute the following instructions to uncompress it

under a Linux system.

 root@LINUXSERVER:~# mkdir embest

 root@LINUXSERVER:~# cd embest/

 root@LINUXSERVER:~/embest# cp /media/cdrom/02\ Linux\ 2.6\ Kit/01\

SourceCode/bootloader/ AT91Bootstrap-5series_1.2.tar.bz2 ./

 root@LINUXSERVER:~/embest# cp /media/cdrom/02\ Linux\ 2.6\ Kit/01\

Page | 46

SourceCode/bootloader/ u-boot-at91sam9x35.tar.bz2 ./

 root@LINUXSERVER:~/embest# cp /media/02\ Linux\ 2.6\ Kit/01\ Source

Code/kernel / linux-2.6.39.tar.bz2 ./

 root@LINUXSERVER:~/embest# cp /media/cdrom/02\ Linux\ 2.6\ Kit/01\

SourceCode/rfs/ rootfs.tar.bz2 ./

 root@LINUXSERVER:~/embest# tar jxvf /media/cdrom/02\ Linux\ 2.6\

Kit/02\ Tools/mkubifstools.tar.bz2 –C /usr/local/bin/

 root@LINUXSERVER:~/embest# cp /media/cdrom/02\ Linux\ 2.6\ Kit/02\

Tools/mkimage /usr/local/bin/

 root@LINUXSERVER:~/embest# chmod 755 /usr/local/bin/mkyaffs2image

/usr/local/bin/mkimage

 root@LINUXSERVER:~/embest# tar jxvf

AT91Bootstrap-5series_1.2.tar.bz2

 root@LINUXSERVER:~/embest# tar jxvf u-boot-at91sam9x35.tar.bz2

 root@LINUXSERVER:~/embest# tar jxvf linux-2.6.39.tar.bz2

 root@LINUXSERVER:~/embest# mkdir rfs; tar jxvf rootfs.tar.bz2 -C rfs

Four directories - linux-2.6.39, u-boot-1.3.4, Bootstrap-v1.14 and

rfs-qtopia have been generated under the current directory.

5.4 Making a Bootstrap

EDM6070 supports boot-up from DataFlash. Execute the following

instruction to generate a Bootstrap;

 root@LINUXSERVER:~/embest# cd AT91Bootstrap-5series_1.2

 root@LINUXSERVER:~/embest/ AT91Bootstrap-5series_1.2# make

sam9x35_defconfig; cp sam9x35_defconfig .config

 root@LINUXSERVER:~/embest/ AT91Bootstrap-5series_1.2 # make

A Bootstrap file at91sam9x5ek-dataflashcardboot-3.1.bin has been

generated under directory “binaries”.

Page | 47

5.5 Making a U-boot

Execute the following instructions to generate a u-boot;

 root@LINUXSERVER:~/embest/ u-boot-at91# make

at91sam9x5ek_spiflash_config

 root@LINUXSERVER:~/embest/ u-boot-at91# make

A file U-boot.bin has been generated under current directory.

Note:
 An error might occur when using

arm-2007q1-10-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2 to compile
u-boot; the use of
arm-2011.03-41-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2 is
recommended when encountering any errors.

5.6 Making a Kernel

Execute the following instructions;

 root@LINUXSERVER:~/embest/linux-2.6.39# make

at91sam9x5ek_defconfig

 root@LINUXSERVER:~/embest/linux-2.6.39# make menuconfig

 root@LINUXSERVER:~/embest/linux-2.6.39# make uImage

A kernel file named uImage has been generated under /arch/arm/boot/.

Note:
 If errors occur when executing “make menuconfig”, the most likely cause is the

lack of an ncurses library in your PC’s Linux system.
 Execute “sudo apt-get install libncurses5-dev” to install the library.

Page | 48

5.7 Making a File system Image

Use the tool mkyaffs2image under the directory \02 Linux 2.6 Kit\02

Tools\ of the CD-ROM to make a file system image by executing the

following instruction (suitable for Ubuntu systems only).

 root@LINUXSERVER:~/embest# mkubifsimage rfs rootfs.ubifs

Page | 49

Chapter 6: System Customization
In order to satisfy different application requirements of the customers,

designers need to make some customisation to the default configuration of

the Linux kernel. This chapter will introduce the process of system

customization by using some examples.

6.1 Kernel Customisation

By default, the kernel source code provides a configuration file saved under

arch/arm/configs/at91sam9x5ek_defconfig. Execute the following

instructions to enter the configuration menu and then select the drivers you

need according to the entries shown in the table below:

 root@LINUXSERVER:~/embest/linux-2.6.39# make

at91sam9x5ek_defconfig

 root@LINUXSERVER:~/embest/linux-2.6.39# make menuconfig

Page | 50

Drivers Paths

Serial

Interfaces

Device drivers > Character devices > Serial drivers > AT91 / AT32

on-chip serial port support

Buttons Device drivers > Input device support > Keyboards > GPIO Buttons

GPIO Device drivers > Misc devices > Device driver for Atmel GPIO devices

LED
Device drivers > LED Support > LED Class Support > LED Support for

GPIO connected LEDs

SD/MMC

Device drivers > MMC/SD/SDIO card support > MMC block device
driver > Atmel SD/MMC Driver (Atmel Multimedia Card Interface

support)

USB

Device drivers > USB support > Support for Host-side USB > EHCI HCD

(USB 2.0) support > OHCI HCD support > USB Mass Storage supportHCD

support > USB Mass Storage support

RTC Device drivers > Real Time Clock > AT91RM9200 or some AT91SAM9 RTC

Watchdog Device drivers > Watchdog Timer Support > AT91SAM9 watchdog

CAN Bus
Networking support > CAN bus subsystem support > CAN Device

Drivers > Atmel AT91 onchip CAN controller

MACB
Device drivers > Network device support > Ethernet(10 or 100Mbit) >

Atmel MACB support

Graphics
Device drivers > Graphics support > Support for frame buffer devices >

AT91/AT32 LCD Controller support

Page | 51

Drivers Paths

Touch-Screen Input device support > Touchscreens > Atmel Touchscreen Interface

Save the changes and execute the instruction below to compile the

customized kernel;

 root@LINUXSERVER:~/embest/linux-2.6.24# make uImage

6.2 File system Customisation

The table shown below lists the configuration files required for filesystem

customisation, applications’ paths and corresponding notes;

Configuration List Paths Notes

Driver Modules /lib/modules/2.6.39/
Store driver module

ko

Driver Module Mounting /etc/init.d/S50modules

Network Address /etc/network/interfaces.eth0

Command Line Prompt Name /etc/hostname

User Program Auto Running /etc/init.d/S60evnset Add it to the end of file

Environment Variables /etc/profile

Touch-Screen Coordinate Files /etc/pointercal

udev Rules /etc/udev

Page | 52

LCD Backlight Brightness /etc/bl_adjust.conf

User Testing Applications /home/app

6.3 Simple Driver Modules in Kernel

Drivers are running under kernel mode and can drive hardware directly.

They provide a series of interfaces to be called by applications so as to

control devices. The table shown below is an example of driver modules that

are simple but include most of the interfaces.
/* File: device_drv.c */

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/init.h>

#include <linux/input.h>

#include <linux/miscdevice.h>

#include <asm/io.h>

#include <asm/uaccess.h> /* common head files used by driver */

#define DEVICE_NAME "demo" /* device names that generate nodes /dev/demo

after mounting successfully */

static int result = 0;

static int device_open(struct inode *inode, struct file *file) /*

implement open operation */

{

 result = 0; /* initiate result */

 return 0;

}

static ssize_t device_read(struct file *filp, char *buffer, size_t count, loff_t

Page | 53

ppos) / implement read operation */

{

 int ret = copy_to_user (buffer, (char *)&result, sizeof(result)); /*

copy the value of result to buffer */

 if (ret < 0) {

 printk (KERN_ERR "%s: copy_to_user error\n", DEVICE_NAME);

 return -1;

 }

 return sizeof(result); /* return the valid length of

buffer, i.e. the storage length of result */

}

static ssize_t device_write(struct file *filp, const char *buffer, size_t count,

loff_t *ppos) /* write operation*/

{

 int ret = copy_from_user ((char *)&result, buffer, sizeof(result));

/* copy the received data in buffer to result*/

 if (ret < 0) {

 printk (KERN_ERR "%s: copy_from_user error\n", DEVICE_NAME);

 return -1;

 }

 return sizeof(result);

}

static int device_release(struct inode *inode, struct file *filp) /*

close will trigger the function */

{

 return 0;

}

static struct file_operations device_fops = /* register interface

function for file operation */

{

 .owner = THIS_MODULE,

 .open = device_open,

 .read = device_read,

 .write = device_write,

 .release = device_release,

};

static struct miscdevice device_miscdev = /* register misc

device information */

{

 .minor = MISC_DYNAMIC_MINOR,

 .name = DEVICE_NAME,

 .fops = &device_fops,

};

static int __init device_init(void) /* insmod operation will

Page | 54

trigger the function */

{

 int ret;

 ret = misc_register(&device_miscdev); /*register device */

 if (ret) {

 printk(KERN_ERR "cannot register miscdev on minor=%d (%d)\n",

MISC_DYNAMIC_MINOR, ret);

 goto out;

 }

 printk(KERN_INFO DEVICE_NAME " initialized!\n");

 return 0;

out:

 return ret;

}

static void __exit device_exit(void) /* rmmod operation will

trigger the function */

{

 misc_deregister(&device_miscdev);

 printk(KERN_INFO DEVICE_NAME " removed!\n");

}

module_init(device_init);

module_exit(device_exit);

MODULE_LICENSE("GPL"); /* protocol used by

driver modules */

MODULE_DESCRIPTION("Linux Driver Demo"); /* driver module

description */

Page | 55

6.4 Using Makefile to Associate Drivers with Kernel

Driver files have to be associated with the kernel by a Makefile before they

can be compiled and loaded. The following table shows the source code of

the provided Makefile.
File: Makefile

ifneq ($(KERNELRELEASE),)

 obj-m := device_drv.o # driver file with extension name .o

other than .c; by default .c files will be searched and compiled

automatilly

else

 KERNELDIR ?= ~/embest/linux-2.6.39 # specify the path of kernel

source code, note that the path must be the location where you save the

code

 PWD := $(shell pwd)

all:

 $(MAKE) -C $(KERNELDIR) M=$(PWD) modules

clean:

 rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions

Module.symvers modules.order device_drv.ko

endif

6.5 Compiling and Downloading Drivers

Before you start to compile drivers using “make” command, the kernel

source code should be compiled first. After compiling successfully, you can

download the generated file device_drv.ko to the board, and then execute

the following instructions and see the feedback from the system.

 [root@Mini69X5:/]# insmod device_drv.ko

demo initialized!

 [root@Mini69X5:/]# ls /dev/demo

/dev/demo

 [root@Mini69X5:/]# rmmod device_drv.ko

Page | 56

demo removed!

6.6 Brief Introduction to Applications

The previous example shows the execution process of drivers. You might

notice that only two functions – device_init and device_exit have been

called, while others remain unused in the above process. The interfaces in

structure device_fops are intended for the application layer. The table

shown below will give you an example of the basic structure of a Linux

application.

/* File: demo.c */

#include <stdio.h>

#include <fcntl.h>

#include <string.h> /* head file being called */

#define dev "/dev/demo" /* demo file node */

int main (void)

{

 int fd;

 int err = 0;

 int value;

 fd = open (dev, O_RDWR); /* open file node, readable and writable

*/

 if (fd < 0) {

 fprintf (stderr, "open fail\n");

 err = 1;

 goto out;

 }

Page | 57

 if (read (fd, &value, sizeof(value)) < 0) { /* read function that

calls driver; the read value t is save in value */

 fprintf (stderr, "read error\n");

 err = 1;

 goto out;

 }

 printf ("read before write, value=%X\n", value); /* print read value

before writing */

 int writeValue = 0x5E7F;

 if (write (fd, &writeValue, sizeof(writeValue)) < 0) { /* writing

0x5E7F to driver module by calling write function */

 fprintf (stderr, "write error\n");

 err = 1;

 goto out;

 }

 if (read (fd, &value, sizeof(value)) < 0) { /* read again after

writing */

 fprintf (stderr, "read error\n");

 err = 1;

 goto out;

 }

 printf ("read after write, value=0x%X\n", value); /* print read value

after writing */

out:

 if (fd > 0) close (fd);

 return err;

}

6.7 Compiling and Running Applications

1） Execute the following instruction to compile the application;

 # arm-none-linux-gnueabi-gcc demo.c -o demo

Page | 58

The generated executable file named demo is the application we

need;

2） Execute the following instruction to download it to the board;

 [root@Mini69X5:/]# insmod device_drv.ko

System feedback is shown below;

demo initialized!

3） Execute the following instruction to run the application;

 [root@Mini69X5:/]# ./demo

Running information is shown below;

read before write, value=0

read after write, value=0x5E7F

6.8 Common Functions

The following three functions are commonly used by the driver layer to

control the GPIO;

Functions Notes
int at91_set_gpio_input(unsigned pin, int

use_pullup)
set GPIO as input

int at91_get_gpio_value(unsigned pin)
acquire GPIO input

value
int at91_set_gpio_output(unsigned pin,

int value)
set GPIO as output

Adding the above GPIO code to the appropriate location in the drivers as

shown in the following table, can easily implement LED control;

Page | 59

Example functions Notes
at91_set_gpio_input (AT91_PIN_PC16,

0);

set PC16 as input, pull-up

disabled
at91_get_gpio_value

(AT91_PIN_PC16);
read the input value on PC16

at91_set_gpio_output(AT91_PIN_PC16,

1);

set PC16 to provide high-level

output

6.9 Linux Multi-Thread Programming

The threads here refer to the multiple tasks created in the user space. These

tasks share resources of the same process. It consumes much less cost than

common process and features fast context switching.

Since the resources are shared by processes, it is necessary to adopt

synchronizing measures in order to avoid competition when accessing

resources.

r/* File: pthread.c */

#include <stdio.h>

#include <unistd.h>

#include <pthread.h>

void read_func(void);

void write_func(void);

int buffer_has_item = 0; /* shared resource */

pthread_mutex_t mutex; /* mutex lock */

Page | 60

int main(void)

{

 pthread_t reader, writer; /* define process ID

*/

 pthread_mutex_init(&mutex, NULL); /* initiate mutex

lock */

 pthread_create(&reader, NULL, (void*)&read_func, NULL); /* create

process */

 pthread_create(&writer, NULL, (void*)&write_func, NULL);

 pthread_join(reader, NULL); /* wait for end of

process */

 pthread_join(writer, NULL);

 return 0;

}

void write_func(void)

{

 while (1) {

 pthread_mutex_lock(&mutex); /* enable lock, other

processes will be locked */

 if (buffer_has_item == 0) {

 printf("create a new item\n");

 buffer_has_item = 1;

 }

 pthread_mutex_unlock(&mutex); /* disable lock,

other process will be unlocked */

 }

}

void read_func(void)

{

 while (1) {

 pthread_mutex_lock(&mutex);
 if (buffer_has_item == 1) {

Page | 61

 printf ("destroy item\n");
 buffer_has_item = 0;
 }
 pthread_mutex_unlock(&mutex);
 }
}

Execute the following instruction to implement the compilation.

 # arm-none-linux-gnueabi-gcc pthread.c -o pthread_demo -lpthread

6.10 Linux Network Programming

Linux network programming generally can be implemented based on UDP

and TCP protocols. UDP is a connectionless transport protocol that provides

simple, unreliable and message-oriented services; TCP is a reliable,

connection-oriented and byte-stream-based transport protocol. The

following examples are a simple TCP server and a client.

Server: monitors the connection initiated by the client and sends

character string to the client when a connection is created.

/* File: server.c */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <sys/socket.h>

#include <sys/wait.h>

#define MYPORT 3490 /* the port users will be connecting to */

#define BACKLOG 10 /* how many pending connections queue will hold */

main()

{

 int sockfd, new_fd; /* listen on sock_fd, new connection on new_fd */

 struct sockaddr_in my_addr; /* local address information */

Page | 62

 struct sockaddr_in their_addr; /* connector's address information */

 int sin_size;

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

 perror (" socket ") ;

 exit(1) ;

 }

 my_addr.sin_family = AF_INET;

 my_addr.sin_port = htons(MYPORT);

 my_addr. sin_addr.s_addr = INADDR_ANY; /* auto-fill with local IP */

 if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof(struct sockaddr)) == -1)

{

 perror (" bind ") ;

 exit(1) ;

 }

 if (listen(sockfd, BACKLOG) == -1) {

 perror (" listen ") ;

 exit(1) ;

 }

 while(1) { /* main accept() loop */

 sin_size = sizeof(struct sockaddr_in);

 if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr,

 &sin_size)) == -1) {

 perror (" accept ") ;

 continue ;

 }

 printf("server: got connection from %s\n",

inet_ntoa(their_addr.sin_addr));

 if (!fork()) { /* this is the child process */

 if (send(new_fd, "Hello, world!\n", 14, 0) == -1)

 perror(" send ") ;

 close(new_fd) ;

 exit (0) ;

 }

 close(new_fd);

Page | 63

 while(waitpid(-1,NULL,WNOHANG) > 0); /* clean up child processes */

 }

}

Client: Initiates a connection to the server, receives and prints

information sent from the server.

/* File: client.c */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <netdb.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <sys/socket.h>

#define PORT 3490 /* the port client will be connecting to */

#define MAXDATASIZE 100 /* max number of bytes we can get at once */

int main(int argc, char *argv[])

{

 int sockfd, numbytes;

 char buf[MAXDATASIZE] ;

 struct hostent *he;

 struct sockaddr_in their_addr; /* connector's address information */

 if (argc != 2) {

 fprintf(stderr,"usage: client hostname\n");

 exit (1) ;

 }

 if ((he=gethostbyname(argv[1])) == NULL) { /* get the host info */

 herror(" gethostbyname ") ;

 exit (1);

 }

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {

 perror(" socket ");

 exit (1);

Page | 64

 }

 their_addr.sin_family = AF_INET;

 their_addr.sin_port = htons(PORT);

 their_addr.sin_addr = *((struct in_addr *)he->h_addr); //inet_addr

 if (connect(sockfd, (struct sockaddr *)&their_addr, sizeof(struct sockaddr))

== -1)

{

 perror(" connect ");

 exit (1);

 }

 if ((numbytes=recv(sockfd, buf, MAXDATASIZE, 0)) == -1) {

 perror (" recv ");

 exit (1);

 }

 buf[numbytes] = '\0';

 printf("Received: %s",buf);

 close(sockfd) ;

 return 0;

}

6.11 Compiling Server

 If you have two EDM6070s, you need to compile a server

program running on one EDM6070 by executing the following

instruction;

 # arm-none-linux-gnueabi-gcc server.c -o server

 If you have only one EDM6070, you need to compile a server

program running on a PC by executing the following instruction;

 # gcc server.c -o server

6.12 Compiling Client

 Execute the following instruction to compile a client program;

Page | 65

 # arm-none-linux-gnueabi-gcc client.c -o client

6.13 Running Server and Client

 In the event that two EDM6070s are to be run in a client/server

pair, download the EDM6070-based server and the client programs

to these boards respectively, and then run the server by executing

the following instruction;

 # ./server

Run the client by executing the following instructions

(192.192.192.105 is the server IP);

 [root@Mini69X5:/]# chmod 755 client

 [root@Mini69X5:/]# ./client 192.192.192.105

The feedback from the server is shown below;
Received: Hello, world!

The information at the server end is shown below;
server: got connection from 192.192.192.211

server: got connection from 192.192.192.211

server: got connection from 192.192.192.211

 Where there is only one EDM6070, you need to run the server

program on your PC and the client on the board respectively. The

feedback from the server and the information at the server end are

as the same as above.

Page | 66

Chapter 7: Updating the Linux
System

EDM6070 has a Serial Flash and a NAND Flash on board. But the Linux

system can only support boot-up from Serial Flash currently. This chapter

will introduce in detail how to update the Linux system stored in Serial Flash.

7.1 Images and the Programming Tool

The following two figures illustrate how the images are distributed in Serial

Flash and NAND Flash.

Figure 23: Images in Serial Flash

AT91BootStrap

U-boot Parameter

U-boot

Share

0x00000000

0x00005000

0x00008400

0x00058400

0x0014C600

Page | 67

Install SAM-BA_2.12.exe saved under "\02 Linux2.6 Kit\02

Tools\SAM-BA" in the CD-ROM as well as the patch

sam-ba_2.12_patch2a.exe. After installation is done, a shortcut icon for

SAM-BA v2.12 can be found on the desktop of your PC as shown below;

Figure 25: SAM-BA Shortcut

7.1.1 Programming System Image Automatically

The procedure for automatic programming of system images is much easier

than manual method. You only need to copy the relevant Linux images

including boot.bin and uboot.bin to the root directory of a card, and insert

it into the slot on the board and then power it up. The system will

automatically implement programming to Serial Flash and NAND Flash.

After the programming process is complete, you just need to reboot the

Figure 24: Images in NAND Flash

uImage

RAMDisk

UBIFS

Share

0x00000000

0x00600000

0x00C00000

0x07A00000

0x10000000

Page | 68

EDM6070 to complete the process.

(Images are saved under 02 Linux 2.6 Kit\00 Image of the CD-ROM)

The table shown blow contains the images required.

Categories Names Ways to Make Images

Tool
Images

boot.bin By using tools

uboot.bin By using tools

System
Images

strap.bin
System image, by renaming

at91sam9x5ek-dataflashcardboot-3.1.bin

u-boot.bin System image, u-boot.bin

uImage System image, uImage

rootfs.bin System image, by renaming UBIFS file system

Note:
 You should erase the boot area of Serial Flash first to make sure that the system

will boot from the microSD card. You can find the instructions for erasing a
microSD card in Appendix of this manual.

 If you fail to program the microSD card, format it and try again. SD Formatter
is recommended as a formatting tool.

If there is already a complete system existing in Serial Flash and NAND Flash,

and you just need to update a single image file such as u-boot.bin or

uImage or rootfs.bin, a USB flash drive can be used to facilitate the

updating process. The only requirement is to copy the file to a USB flash

drive and insert it into USB interface of the EDM6070, and then reboot the

system.

Page | 69

7.1.2 Programming System Image Manually

Follow the steps listed below to program a system image manually.

7.2 Preparations

1） Connect the debugging serial interface of EDM6070 to your PC’s

serial interface using a female-to-female cross-over serial cable

and a serial interface adapter;

2） Connect the MicroUSB interface of EDM6070 to a USB interface on

your PC with a MicroUSB cable;

3） Enable NAND Flash and disable Serial Flash according to the switch

settings shown below:

Figure 26: Switch Settings 1

4） Open a HyperTerminal on your PC and set bitrates to 115200, 8 data

bits, no parity, 1 stop bit, no flow control;

5） Power on EDM6070 and run SAM-BA v2.12 to open the window as

show below;

Figure 27: SAM-BA v2.12 Window

If the USB connection between the board and your PC is working properly,

Page | 70

an option \USBserial\COMx (x is number of the COM interface) can be

seen in Select the connection drop-down menu. Select

at91sam9x35-ek in Select your board drop-down menu and then click

Connect;

6） Enable both Serial Flash and NAND Flash according to the switch

settings shown below; (refer to Figure 2: MINI6935 CPU Module

(Front View) for the switch location:

Figure 28: Switch Settings 2

7） Click the Serial Flash AT25/AT26 tab in the SAM-BA main window

as shown below, and select Enable DataFlash (SPI0 CS0) in the

Scripts drop-down menu, and then click Execute on the right to

start the enabling process. The information box at the bottom of the

window will display the details of the process as shown in Figure 29;

Figure 29: Enabling DataFlash

Page | 71

8） Select Erase All in the Scripts drop-down menu and then click

Execute to erase all the contents in Serial Flash as shown below;

Figure 30: Erasing Serial Flash

7.3 Programming Image Files

1） Select Send Boot File in the Scripts drop-down menu of SAM-BA’s

main window and then click Execute to open the following window;

Figure 31: Selection of Strap.bin

Page | 72

Select strap.bin (the at91sam9x5ek-dataflashcardboot-3.1.bin file

generated in section 5.4), and click Open to download it to Serial

Flash;

2） Enter an address 0x8400 in Address text box of SAM-BA’s main

window and click located to the right of the Send File Name

text box to open the following window;

Figure 32: Selection of U-boot.bin

Select u-boot.bin and click open to download it to Serial Flash;

3） Click the NAND Flash tab in SAM-BA main window as shown below,

and select Enable NAND Flash in the Scripts drop-down menu,

and then click Execute on the right to enable NAND Flash;

Page | 73

Figure 33: Enabling NAND Flash

4） Select Enable OS PMECC parameters in the Script drop-down

menu and then click Execute to open the following window;

Figure 34: ECC Configuration Settings

Check Trimffs check-box and keep the rest of options unchanged,

and then click OK;

5） Select Erase All in Script drop-down menu of SAM-BA main window,

and then click Execute as shown below;

Page | 74

Figure 35: Erasing NAND Flash

6） Enter an address 0x0 in Address text box and click on the right

of Send File Name text box to open the following window;

Figure 36: Selection of uImage

Select uImage file and click Open, and then click Send File in

SAM-BA main window to download it to NAND Flash;

Page | 75

7） Enter an address 0xc00000 in Address text box and click on

the right of the Send File Name text box to open the following

window;

Figure 37: Selection of rootfs.bin

Select rootfs.bin file and click Open, and then click Send File in

SAM-BA main window to download it to NAND Flash; Reboot the

system to finish manually programming system images.

Page | 76

Chapter 8: Appendix A: Common
u-boot Instructions

 Erasing Bootstrap

 sf probe 0; sf erase 0 5000

 Erasing u-boot parameter area

 sf probe 0; sf erase 5000 3000

 Erasing u-boot

 sf probe 0; sf erase 8000 50000

 Erasing NAND

 nand erase.chip

 NFS root file system

 setenv bootargs 'console=ttySAC6,115200n81 root=/dev/nfs

nfsroot=<NFS_Server_IPAddr>:<NFS_DIRECTORY>

ip=<Local_IPAddr>:<NFS_Server_IPAddr>:<Gateway_Addr>:255.255.255.

0::eth0:off'

