torm 5100 Series USB Display
VA Interfacel Engineering Manual

Contents
Product Overview, Rangeccoiiiiiiiiiiee e 2
FUNCHONS o 3
Ratings and Performance, Installationcooiin 4
UsiNg the Displayo 6
Configuration ULilitycooiiiiii 7
Application Programming Interface (API) ..., 14
Code EXaMPIESeiieiie e . 36
Change History ... 42

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 1 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Product Overview

These sealed and rugged displays have 3 illuminated keys and a 60mm x 33mm screen.
= 128 x 64 dot graphic display or character display with black characters on white background
= llluminated keys under software control (on / off / flashing)
= Screen only version available if keys not required
= Extreme version available with higher environmental spec.

Install into a panel in a %2 DIN cutout or from the rear of the panel using the fixing kit (order separately)
Connect to host via mini USB. The display uses an HID-compliant device interface to communicate with the host

A host application must be written to send content to the display, using the display control functions.
These functions are all listed in the API and the use of these is illustrated with code examples.
Download the following from www.storm-interface.com/downloads :-

e PC based Configuration Utility
e Object Libraries for Windows (XP onwards) & Linux (Ubuntu)
e API Source Code (contact sales@storm-interface.com for source code requests)

Product Range

Character Display Graphic Display
Screen with | Industrial USB 3 key 4x20 char display IP54, 0°C to 60°C USB 3 key graphic display IP54, 0°C to 60°C
3 Keys Impact 5J. Vibration& Shock IEC721-5M3 Impact 5J. Vibration& Shock IEC721-5M3
Part Number 5103-000 Part Number 5103-100
Extreme USB 3 key 4x20 char display IP65,-20°C to 70°C | USB 3 key graphic displaylP65, -20°C to 70°C
Impact 10J. Vibration& Shock IEC721-6M3 Impact 10J. Vibration& Shock IEC721-6M3
Part Number 5103-010 Part Number 5103-110
Screen Industrial USB 4x20 char display IP54, 0°C to 60°C USB graphic display 1P54, 0°C to 60°C
only Impact 5J. Vibration& Shock IEC721-5M3 Impact 5J. Vibration& Shock IEC721-5M3
Part Number 5100-000 Part Number 5100-100
Extreme USB 4x20 char display IP65, -20°C to 70°C USB graphic display [IP65, -20°Cto70°C
Impact 10J. Vibration& Shock IEC721-6M3 Impact 10J. Vibration& Shock IEC721-6M3
Part Number 5100-010 Part Number 5100-110

Please note that if ordering from broadline distribution there will be an additional suffix at the end of the part number.
This is for distributor labelling purposes only.

Accessories Fixing Kit with panel clips, fixings, underpanel gasket, silicone seal
Part Number 5100-FKO

USB Cable 1m, USB A to 90 degree USB mini-B

Part Number 4500-01

Downloads Configuration Utility / Object Libraries for Windows and Linux / Source Code
3D CAD Models

Panel Cutout Details

Download from www.storm-interface.com/downloads.
Contact sales@storm-interface.com for source code requests

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 2 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Functions

e The USB Display uses a USB HID-Compliant device interface to communicate with the host.
e The graphic LCD is 128 pixels by 64 pixels, with backlight, contrast level, and white on black capability.
¢ 3 llluminated keys are under software control — on, off and flashing.
e The character LCD has three fixed fonts included
0 6 by 8, this will give 8 lines by 20 characters , and
0 6 by 16, this will give 4 lines by 20 characters.

"#$%&'()*+,-\0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[/]* 'abcdefghijklmnopgstuvwxyz{|}~

0 26 by 64, this allows for 4 characters to be displayed 0123456789 ,.:° +

e Four user definable Icons (up to 128 By 64) and any one of them can be setup as a splash screen.
e A host utility will be supplied to configure the unit, including downloading of the Icons.

o Field upgradeable via the utility.

e The host API allows access to following functions:

Set Pixel Write Character Write Character String
Draw Circle Fill Circle Draw rectangle

Fill Rectangle Draw bitmap directly to LCD Load Icons

Draw bargraph. Draw line.

e Each button when pressed will output a fixed key code.
e The Icons can be designed using Microsoft Paint™.
e The utility will allow the user to preview the Icon before loading to the USB display.

The USB display uses USB for communicating with the host. It also includes an HID-datapipe back-channel. One of
the advantages of using this implementation using only HID interfaces is that no drivers are required on host system.

Basic architecture of the USB display :

LCD Functions Drawing/character functions
Flip / inverse / backlight etc Circle / rectangle /fill / put character etc

USB Display API

HIDAPI

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 3 of 43

torm

4N Interfacel

Ratings & Performance

Overall Dimensions
Packed Dims
Connection

Environmental Industrial Version

102mm x 102mm x 32mm
125mm x 110 mm x 40mm, 203grams (Screen only version is193 grams)
mini-USB socket (locking type)

5100 Series USB Display
Engineering Manual

Extreme Version

Operational temperature 0°C to +60°C -20°C to +70°C
Vibration/ shock IEC721 5M3 6M3
Impact Rating 5J 10J
Sealing IP54 IP65

Storage temperature
Humidity

Insulation resistance
Breakdown voltage
Operating voltage
Operating current

-20°C to +70°C

10% to 90% non-condensing

50Mohms (min)

500V a.c. (60 secs)

5V +/- 5% (USB)

20mA (excluding key illumination current)

Safety EU Low Voltage Directive EN60950
EMC: Emissions and Immunity: FCC part 15B Class B
EN55022, EN55024
ESD: Up to +/- 15kV air discharge, +/- 7.5kV contact discharge
EU RoHS Compliant
WEEE Directive Compliant

Panel Cutout Drawings

Y DIN Underpanel

Recommended panel thickness 1.6mm — 4mm s/s Use M3 x 12mm or equivalent weld studs

M3 x 12mm 4
4 PLACES B
A N

~
R3.50 K"\
4 PLACES R4
4 PLACES

92

108.10
79
1

A

79

i - @ 71 @

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 4 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Installation into a ¥4 DIN cutout

1. Push the white seal into the groove, and fit the M4 nuts and screws to the brackets.
Allow the screw to protrude to touch the panel.

2. Fit the unit into the panel using 4 brackets

3. Tighten the M3 screws (#1 PZ) to attach each bracket to the rear of the unit.

4. Tighten the M4 screws (#2 PZ) to pull the unit down to the panel surface

5. Remove the protective film from the screen and connect your USB cable

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 5 of 43

torm 5100 Series USB Display
A Interfacel Engineering Manual

Installation Underpanel

1. Prepare panel with studs M3 x 12mm (or equivalent 6-32 UNC)

2. Place the foam gasket around the display front

3. Fit the unit into the cutout — one bracket goes over each weld stud.

4. Fit a nut over each weld stud and tighten down

5. Remove the protective film from the screen and connect your USB cable

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 6 of 43

torm

4 interfacel

Using the USB Display

5100 Series USB Display
Engineering Manual

On power up the USB display will perform basic self test and then proceed to display an initial splash screen. The
default is the “Storm” logo, customers can customise this splash screen using the software utility, see below for
more detailed description.

Once the unit is connected to PC, Windows will detect the USB display as follows :-

When connected to a PC, the USB Display should be detected by the operating system and enumerated without
drivers. Windows shows one device in the Device Manager : USB Human Interface Device: Compliant device

> -&¥ Network adapters

» Wl Portable Devices

»'F Ports (COM & LPT)

4 D Processors

b > Smart card readers

> 3’ Sound, video and game controllers
» -4 Storage controllers

- - System devices

>~ § Universal Serial Bus controllers

> @ USB Virtualization

A Computer Management = |5 -
File Action View Help
«=|AE BE =
& Computer Management || 4 24 KI00050 Actions
- ffﬁ System Toals i 9@ Batteries Device Manager ray
3 @Task Scheduler > - Computer
- [Event Viewer L¥ ControlVault Device More Actions 4
: & Shared Folders » g Disk drives
> & Local Users and G > B2, Display adapters
o ‘?31' Performance \:u_, DVD/CD-ROM drives
&= Device Manager E‘ 3 Human Interface Devices
4 =3 Storage g 7 HID-compliant devic
¢ Disk Management - "5 USB Input Device €
» £ Services and Applicat, > @ IEEE 1394 Bus host controllers \
ij Imaging devices
» == Keyboards
b -JF Mice and other pointing devices
b &3 Modems
> -I&| Monitors

USB compliant input device

The USB Configuration Utility is supplied in order that the user can perform firmware updates, and upload icons to

the USB display.

Download the Configuration Utility for free from www.storm-interface.com/downloads

All other functions in the Configuration Utility are also available in the API.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 7 of 43

torm

4N Interfacel

5100 Series USB Display
Engineering Manual

Controlling the USB Display with the Configuration Utility

Launch the application and it will display the following screen:

Before loading the form it initially detects the encoder using the VID/PID and if found it sends a device status
message. If all successful then all the buttons are enabled. If not then they will all be disabled except for “Re-Scan”
and “Exit”.

& UsB Display Configuration Utility

File Help

#torm

USB Display Configuration Utility

=] -

=

Scan For
Device

C0 Elir
CD Flip

Left LED

LCD Backlight

Update Encoder
Firmware

LCD Contrast Leval

LCD Inverse
Center LED Right LED
Start Stop
Clock Clock
Reset From

Configuration File

Exit

Buttons will be disabled/enabled depending on options installed.

Options Installed

Buttons disabled

3 keys + 4/8line character only

Customise ICONs

3 keys + 4/8line character + bitmap

None

No keys + 4/8line character only

All LEDs + Customise ICONs

No keys + 4/8line character +
bitmap

All LEDs

Note: Manufacturer and Product strings are recovered from the USB stack. The USB ID in our product is

Vendor ID: 0x2047 Product ID: 0x0922.

Firmware version is recovered from the encoder.

Once a configuration is selected and accepted by the USB Display then that information is stored in volatile
memory of the unit. So if the user has not written to flash (using “Save Changes”) then powering down/up the
encoder, that configuration will be lost.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 8 of 43

torm

4N Interfacel

Configuration Utility Functions

LCD Flip

This will set the default value of how the lcd data will be displayed.

LCD Flip — No (Factory Default)
LCD Flip — Yes

LCD Inverse
This will invert the colour of the pixels.

LCD Inverse — No (Factory Default)
LCD Inverse — Yes

LCD Contrast Level

This will set the contrast level of LCD display.

LCD Contrast Level — 0
LCD Contrast Level — 1

i_CD Contrast Level — 10 (Factory Default)
LCD Contrast Level — 20

LCD Backlight

This will set the default value of the backlight.

LCD Backlight — Off (Factory Default)
LCD Backlight — On
LCD Backlight — Flashing

LEDs

5100 Series USB Display
Engineering Manual

If unit has the three keys installed then the LEDs can be controlled via software individually as follows:

Left LED

Left LED — Off

Left LED — On (Factory Default)
Left LED - Flashing

Right LED

Right LED — Off

Right LED — On (Factory Default)
Right LED - Flashing

Centre LED

Centre LED — Off

Centre LED — On (Factory Default)
Centre LED — Flashing

Self Test

This will execute a self test mode on the encoder.

» Show a test pattern on LCD display
« Display circles, rectangle etc.,
e Test keys on unit.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 9 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Customise Bitmaps

The USB display supports up to four downloadable bitmaps (128 by 64).

The ICONs must be first designed using Paint or any other package that supports the monochrome paint format
(i.e. 1bpp format).

Select an Icon position eg Icon 3 and click on “Browse” button. This will open explorer : navigate to your bitmap
file and click on “Open”.

— — — — —
= Customiselcons =y x|

Customise ICONs

| eon

1
lcon No 3
File Name Erowse
| Height 0 Width 0

Sot As Splash Scroen

Bamap Information

Fila Name Browse

View Bitmap on LCD Load ICON

lcon 3

File Name Browse |

leon

4
File Name Erowse Close

The ICON will be displayed in the icon picture box. The picture box is 128 by 64 bits, so this is exactly what will be
displayed on the LCD screen.

E 3 -_— = - — — — I < o
uy' Customiselcons Sl H-'-‘

~ Customise ICONs

leson 1 Bitmap Information

1 leon Mo 1
1 2 34 Filo Mame Gilusb display\DocsVonts\gimp_testbr | Browsa |
Height [Wadth 128
Set As Splash Screen

leon 2

File Mame Browse 1T

- View Bitmap on LCD Load ICON

lcon 3

Fila Mama Browse
lcon 4

Fila Mame Browse Close

On right hand side there is information about the ICON, height, width, icon number and if user wants to use this as
the splash icon, when the unit starts up. Only one icon can be set as splash screen.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 10 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Now to view the icon on the LCD unit click on “View bitmap on LCD”. It will prompt you to enter X, Y coordinates.
The ICON can be placed anywhere on the LCD screen.

a5 Customiselcons = =] X
Customise ICONs
lcon 1 Bitmap Information
lcon No 1
1 234 File Name G:usb display\Docs\fonts\gimp_test.br
Height 64 Width 128

Set As Splash Screen
lcon 2

File Name Browse
View Bitmap on LCD Load ICON

lcon 3 = 5 | 1
85 Coordinate |E|EI—J
File N E i
ile Name o3 Enter Coordinates
-
lcon 4 x |
File Name Broy Y \L/

Clicking on “OK”, the utility will send the ICON to the USB Display.

Once you are happy with the ICON then you can load the ICON into non volatile memory by clicking on “Load
ICON”.

The ICON will be placed in appropriate ICON value on USB display. You can also select one of the icons to be
used as a splash screen.

Save Changes

All configurations are written to volatile memory. So if after modifying and the user switches off the encoder then
next time the encoder is powered on, it will revert back to previous configuration data. To save the modified data in
non volatile memory, click on “Save Changes” button. All the information is also stored in configuration file.

Reset To Factory Default

Clicking on “Factory Default” will set the USB display with values that are preset.

Reset From Configuration File
Clicking on “Reset From Configuration File” will configure the unit from the configuration file from “Save Changes”.
Update Firmware

This option allows the user to update the firmware on the USB display unit.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 11 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

API Overview

The USB Display API Library is a library program which currently is tested on Windows (from XP and above) and
Linux (Ubuntu) platform.

The Library is a middleware program between operating system and host application. The library encapsulates all the
communication protocol and exposes a very simple API for host application.

This document is prepared for application developers who will implement a host application for the USB Display.

The USB Display API Library is a middleware application between USB Display Host application and USB Display
system.

The USB display uses USB for communicating with the host. It includes an HID-compliant device . One of the
advantages of using this implementation, which using only HID interfaces, is that no drivers are required on host
system.

The protocol for communicating with host is described fully in the following pages. The basic architecture of the USB
display API is shown below.

LCD Functions Drawing/character functions
Flip / inverse / backlight etc Circle / rectangle /fill / put character etc

USB Display API

HIDAPI

o USB Display APl — The USBDisplayApi library allows for the host application to invoke USB display functions
as listed above. The API encapsulates all the communications to USB and provides a simple API for the host
application developers.

e HIDAPI - This is a third party library, which allows an application to interface with USB HID-Compliant devices
on Windows, Linux, and Mac OS X. While it can be used to communicate with standard HID devices like
keyboards, mice, and Joysticks, it is most useful with custom (Vendor-Defined) HID devices. This allows for
host software to scan for the device using its VID/PID.

Libraries are provided for both the HIDAPI and USB display interface, so that it can be linked into the users host
application. This exposes a well defined API for the host application.

The developer does not need to worry about the communication at low level. You can request source code for the
implementation for library so it can be ported to your specific platform. Currently the library has been tested on
Windows and Linux (Ubuntu) platform.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 12 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

The APl makes the following functions available to developers see page
F I (T =T TR Y/ o 1= U POPP PR OPPPRRN 14
2T 0= 1o F TSSO ERTRRRRROOP 29
Ol - 1= ol (=T gl o] o1 £ T OO ST PSP TSR PP PPN 21
[= T Yo o B PSP 21
(D= ST =T o] PP PRSPPI 25
DrawBItMapFTOMHOST ...ttt e e e et e e et e e e e e e e e e e e tabeeeeeeeeeeeaasbeseeeaeeeeaaanbeeeeeeaeanabaaneeas 30
(D=1 o = T USSR 26
(DL O] o] 1 T OO T PO U PP PP PP TRPTOPI 24
(D= T Lod oY o o o o 4] =T PRSPPI 32
D= T R T PRSPPI 22
(B R LTt - L g o | [T OO EU TR OPR 23
(DT U A (T Lo PRSP 27
o g: 10 0] oY L= O o o [T PSPPI 34
LTy B o ot = 11 U E PP PP PPPP 17
INItIAlISESTOTMUSBDEVICE ...ttt ettt et e bt e bt e e be e e ea bt e e bt e e sh et e sa ket e oab e e aabe e eabee e sabe e e embeeenbeeebeesnbeeanneeenns 15
[T] W] o Toa 410 o T (1) [ORI SP 18
(IO 0T o Yo o] K= 22 PSPPI 19
(o= o | 27111 =T o PRSPPI 31
REITEVEB YL TOMBUT I ettt e e e e e e et e e e e e e e e e e e e asbeeeeeaeeeseasabeeeeeeaesansreeneess 33
Y= DIES] o] F= 1V OXo 1 0} 1 PSP 20
Y I D] N O QI € I IS = = 16
1= 0 D= SO PSP PPP 28

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 13 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Message Types

This is referenced in below functions:

enum REQUEST_TYPE{ // message types

DEVICE_STATUS = 1, ///Device status message

LED LEFT, //< set led brightness

LED_RIGHT, //right led

LED CENTER, //Center led

LCD_CLEAR_SCREEN, //clears LCD display buffer
LCD_DISPLAY_SCREEN, //displays whats in screen buffer
LCD_INIT, //inits LCD

LCD_SCREEN_FLIP, //FLIPS LCD SCREEN

LCD_INVERSE, //INVERSE LCD

DISPLAY_TEST_PATTERN, //displays test pattern

LCD_SET_CONTRAST,

LCD_BACKLIGHT, //controls backlight

RESERVED,

WRITE_DEFAULT, // Write defaults values from ram to flash
RESET_TO_FACTORY_DEFAULT, // reset the setting to factory default
ENABLE_BSL, //start downloader

DRAW_LINE,

DRAW_RECTANGLE,

DRAW_CIRCLE,

DRAW_BITMAP_HOST,

PUT_CHAR,

PUT_STRING,

SET_PIXEL,

GET_PIXEL,

SET_BITMAP,

DRAW_BITMAP_FLASH,

RESERVED,

DRAW_BARGRAPH,

KEYPRESS

}

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 14 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

InitialiseStormUSBDevice

This function is used to initialise the USB Display. The usb display is identified by the Product PID and Manufacturer
VID. This are assigned to Keymat:

. Vendor ID — 0x2047
° Product ID — 0x0922

On successful finding the USB display the manufacturer_local will be filled with “Storm Interface” and product_local
will be filled with “USB Display”. If not successful both of the strings will be filled with “none”

Parameters :

storm_vid - Vendor ID

product_pid - Product ID
manufacturer_local - vendors name will be stored
product_local - product name will be stored

Return Value:

True for success
False for failure.

///\brief InitializeStormUSBDevice is called at the beginning of the
application to

///Setup the PRODUCT ID (PID) and product vid

///\return false on failure, true on success.

///0n failure, call GetErrorCode() to retrieve the error
///

bool InitializeStormUSBDevice(int storm_vid, int product_pid, std::string
&manufacturer_local, std::string &product local);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 15 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

SetLEDBACKLIGHTState

This function is used to control the illumination of front panel button LEDs and screen backlight.
Parameters :

led_backlight - Which led to control :

. LED_LEFT

. LED_RIGHT

. LED_CENTRE

. LCD_BACKLIGHT

_Flag - 0 - off, 1 —on or 2 — Flashing

timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief SetLEDBACKLIGHTState turns on, off or flash the LED or backlight in
USB DISPLAY

///\param led_backlight LEFT, RIGHT, CENTRE led or BACKLIGHT
///\param _Flag "0" to turn it off, "1 to turn it ON, or "2° to flash.
///\return O on success, negative error code on fTailure

//

int SetLEDBACKLIGHTState(int led_backlight, int _Flag, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 16 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

GetDeviceStatus

This function retrieves status information about the USB Display. For example, contrast level, LED status etc. All
information is stored in DEVICE_INFO structure.

Parameters :

typedef struct

{
unsigned char flip_mode;
unsigned char inverse_mode;
unsigned char contrast_level;
unsigned char backlight;
unsigned char left _led, right led, centre_led;
unsigned char icon_splash_no;
std: :string FirmwareName;

} DEVICE_INFO;

_devicelnfo - DEVICE_INFO sturcture, that will be filled by the function
timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief GetDeviceStatus Retrieves the USB Display’s status information including:

Contrast Level, LED status, Backlight status, Firmware Name.

///The data are returned in a DEVICE_INFO structure

///N\param _devicelnfo is a pointer to a DEVICE INFO structure that receives information
retrieved from the USB Display.

///\param _timeToWait is the time in milliseconds to wait for the data to be retrieved.

///\return 0 on success, negative error code on failure

/77

Int GetDeviceStatus(DEVICE_INFO * devicelnfo, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 17 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

LCDFunctions (1)

This is an overloaded function. This function is used to control various functionality of the USB Display Screen, e.g.
Contrast level, Inverse display etc.

Parameters :
IcdFunction - LCD function supported are:

e LCD_SCREEN_FLIP

e LCD_INVERSE_DISPLAY

e LCD_SET_CONTRAST
Param1 - Following parameters for each of the functions:
LCD_SCREEN_FLIP 0 — no flip, 1 - flip
LCD_INVERSE DISPLAY O — normal, 1 - inverse
LCD_SET_CONTRAST 10 levels provided, O to 9
timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief LCDFunctions - this functions allows to control the LCD units and incoporates
following functions:

/// LCD Screen Flip Host To USB Display € 0 € normal, 1 © flips
/// LCD Inverse Display Host To USB Display € 0 € Normal, 1 € Inverse
/// LCD set Contrast Host To USB Display € Sets contrast: 0 € 10 levels

///\Param - lcdFunctions

///\Param - paraml — parameters as stated above in each function.

///\param _timeToWait is the time in milliseconds to wait for function to complete
//7/

///\return 0 on success, negative error code on failure

/// Possible error codes are:

/// NO_USB_DISPLAY_CONNECTED = No usb display is
connected

//7/

int LCDFunctions(int IcdFunction, int paraml, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 18 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

LCDFunctions (2)

This is an overloaded function. This function is used to control various functionality of the USB Display Screen that
takes no parameters.

Parameters :
IcdFunction - LCD function supported are:
e LCD_CLEAR_SCREEN
e LCD_DISPLAY_SCREEN
e LCD_INIT
e DISPLAY_TEST_PATTERN
timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief LCDFunctions - overloaded functions allows to control the LCD units and
incoporates following functions: That does not take parameters

/// LCD Clear Screen Clears LCD screen buffer
/7/7/ LCD Display Displays LCD Screen Buffer
/// LCD Init Initializes LCD unit

/// Display Test Pattern Displays a test pattern

///\Param - lcdFunctions

///\param _timeToWait is the time in milliseconds to wait for function to complete
//7/

///\return 0 on success, negative error code on failure

/// Possible error codes are:

//7/ NO_USB DISPLAY_ CONNECTED = No usb display is
connected

//7/

int LCDFunctions(int lcdFunction, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 19 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

SetDisplayConfig

This functions allows USB display to save config from ram to flash and also to reset to factory defaults.

Parameters :
configCommand - Config Commands:

e WRITE_DEFAULT — Saves status values to flash

e RESET_TO_FACTORY_DEFAULT — Resets status values
timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief SetDisplayConfig - this functions allows USB display to save config from ram
to flash and also to reset to factory defaults

///\configCommand - Write_to Defaults - saves parameters from ram to flash

/// Restore_to_factory default - restores parameters to preset
factory defaults

///_timeToWait is the time in milliseconds to wait for function to complete

///

///\return 0 on success, negative error code on failure

/// Possible error codes are:
/// NO_USB_DISPLAY_ CONNECTED = No usb display is connected
//7/

int SetDisplayConfig(int configCommand, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 20 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Draw Functions

This set of draw functions allows the developer to draw various shapes with a simple API. The screen size is 128 X 64 pixels.

128 (x)

A
v

v)

The USB Display has dedicated screen buffer (128 X 64) and it is this screen buffer holds the pixel image, before it is transfered
to the LCD display. This allows the developer to first build up a image and then display it using the LCDFunction
(SCREEN_DISPLAY) command.

The coordinates are referenced as shown above, with 0,0 (x,y) in top left hand corner.

Character Fonts

The USB Display also has two full set of character fonts (6X8 and 6X16) with following characters:
<SPC>I"#$%&()*+,-./0123456789:;<=>? @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]*_’abcdefghijklmnopgrstuvwxyz{|}~
The above fonts have a border of 4 pixels at beginning and 4 pixels at end of line

The characters fonts are display with x coordinate and line number, as specified below:

FONT 6X8 - lineOto7
FONT 6X16 - line0to 3

There is also special large font (26X64) but only a limited set of characters:
This font can only be specified with line as 0.

0123456789 - This are all defined as 26X64
T e - This are all defined as 8X64

For the large fonts, following characters have been mapped:

~ will display °
I will display

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 21 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

DrawLine

This functions draw’s a line with the supplied coordinates.

For example to draw line

0,32
100,54

In above example:

x1 - 0

yl - 32

X2 - 100

y2 - 54
Paramaters :
x1,y1, x2, y2 - coordinates as shown above
colour - 1 — black, 0 - white
timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief DrawLine - This functions draws a line between two coordinates

///\Param - x1, yl, x2, y2 coordinates

///\Param - colour - 0 white and 1 black

///\param _timeToWait is the time in milliseconds to wait for function to complete
///

///\return 0 on success, negative error code on failure

/// Possible error codes are:
/// NO_USB_DISPLAY_ CONNECTED = No usb display is connected
//7/

int DrawLine(unsigned char x1, unsigned char yl, unsigned char x2, unsigned char y2,
unsigned colour, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 22 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

DrawRectangle

This functions draw’s a rectangle with the supplied coordinates.
For example to draw rectangle

28, 10 top left corner

In above example:

X - 28
y - 10
h - 20
w - 20
fill - 0

If fill = 1 then the rectangle will be filled with colour.

Parameters :

X, Y - coordinates as shown above

colour - 1 — black, 0 - white

timeToWait - maximum time to wait for command to complete

Return Value:

True for success

False for failure.

///\brief DrawRectangle - This functions draws a rectangle with supplied coordinates
///\Param - x, y coordinates

///\Param - Fill O - no Fill 1 - Ffill rectangle

///\Param - w - width of rectangle

///\Param - h - height of rectangle

///\Param - colour - 0 white 1 black

///\param _timeToWait is the time in milliseconds to wait for function to complete
///\return 0 on success, negative error code on failure

/// Possible error codes are:
/// NO_USB_DISPLAY_ CONNECTED = No usb display is connected
//7/

int DrawRectangle(unsigned char fill, unsigned char X, unsigned char y, unsigned char
w, unsigned char h, unsigned colour, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 23 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

DrawCircle

This functions draw’s a circle with the supplied parameters.

For example to draw circle and filled.

64,32
In above example:
The center of the circles coordinates are 64, 32
X - 64
y - 32
radius - 28
fill - 1
colour - 1
If fill = 0 then the rectangle will not be filled with colour.
Parameters :
X,y - coordinates as shown above
colour - 1 — black, 0 — white
radius - radius of circle in number of pixels.
Fill - 1 —fill, 0 — no fil
timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///N\brief DrawCircle - This functions draws a circle with supplied coordinates
///\Param - x1, yl coordinates

///\Param - fill O - no fill 1 - fill rectangle

///\Param - radius - radius of circle

///\Param - colour - 0 white 1 black

///N\param _timeToWait is the time in milliseconds to wait for function to complete
///

///\return 0 on success, negative error code on failure

//7/ Possible error codes are:

/// NO _USB_DISPLAY_ CONNECTED = No usb display is
connected

///

int DisplayCircle(unsigned char fill, unsigned char x1, unsigned char yl, unsigned char
radius, unsigned char colour, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 24 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

DrawBargraph

This functions draws a bargraph with the supplied parameters. The bargraph can be drawn in vertical or horizontal
direction.

For example to draw bargraph, which shows two bargraph, one horizontal and one vertical.
The vertical shows with scale set to on (which gives 10 equal scales) and horizontal with no scaling.

In above example:

Vertical Bargraph Horizontal Bargraph
Direction 0 1
X 10 50
Y 4 4
w 50 30
H 30 50
Colour 1 1
Percentage Fill 20 66
Scale 1 0
Parameters :
Direction - 0 — vertical, 1 — horizontal
X,y - coordinates as shown above
w - width
h - height
colour - 1 — black, 0 — white
percentagefFill - Total percentage of rectangle to fill with colour.
Scale - 1 —insert scaling, 0 — no scaling
timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 25 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

DrawChar

This functions draws a single character at supplied coordinates

In above example, display single character ‘Z’ at coordinates x — 63, line — 3 and font used FONT6X8

Parameters :

X - 0to 127

Line - 0to 7 (FONT6X8) and 0 to 3 (FONT6X16) and 0 (FONT26X64)
fontSelected - FONT6X8, FONT6X16 or FONT26X64

colour - 1 — black, 0 — white

character - character to be displayed

timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///N\brief DisplayChar - This functions draws supplied ascii character and specified
fonts at coordinates

///\Param - x (0 to 127)

///\Param - line (0 to 7)

///\Param - colour - 0 white 1 black

///\Param - character - character string

///\Param - font_selected - Two full fonts (6 X 8, 6 X 16 and limited font 26 X 64)
///\param _timeToWait is the time in milliseconds to wait for function to complete
//7/

///\return 0 on success, negative error code on failure

/// Possible error codes are:
//7/ NO_USB DISPLAY_CONNECTED = No usb display is
connected

int DisplayChar(unsigned char x, unsigned char line, unsigned char colour, char
character, int font_selected, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 26 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

DrawString

This function draws a string of characters. The USB Display will autowrap the string to next line if more than 20
characters are on a single line or on a carriage return.

FONTE by 8 and Rutow
rarringd exanele

FONT 6 |':u_4 16
STORM

In above example, displays a mixture of fonts line 0 and 1 is using FONT6X8 and line 4 and 7 using FONT6X16.

Note: the line spacing of fonts for FONT6X16 will be left to the developer.

Parameters :

X - 0to 127

Line - 0to 7 (FONT6X8 and FONT6X16) and 0 (FONT26X64)
fontSelected - FONT6X8, FONT6X16 or FONT26X64

colour - 1 — black, 0 — white

charString - Character string.

timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief DisplaysTRING - This functions DRAWS supplied string of characters and
specified fonts at coordinates

///\Param - x (0 to 127)

///\Param - line (0 to 7)

///\Param - colour - 0 white 1 black

///\Param - charString - character string

///\Param - font_selected - Two full fonts (6 X 8, 6 X 16 and limited font 26 X 64)
///\param _timeToWait is the time in milliseconds to wait for function to complete
//7/

///\return 0 on success, negative error code on failure

/// Possible error codes are:
/77 NO_USB DISPLAY_ CONNECTED = No usb display is
connected

int DisplayString(unsigned char x, unsigned char line, unsigned char colour, char
*charString, int font selected, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 27 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

SetPixel

This functions sets a pixel on/off at supplied coordinates.

In above example, displays one pixel at x=63, y=31.

Parameters :

X,y - coordinates

colour - 1 — black, 0 — white

timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief SetPixel - This functions set a pixel at specified coordinates

///\Param - x (1 to 128)

///\Param - y (1 to 64)

///\Param - colour - O white 1 black

///\param _timeToWait is the time in milliseconds to wait for function to complete
//7/

///\return 0 on success, negative error code on failure

/// Possible error codes are:
/// NO_USB_DISPLAY_CONNECTED = No usb display is
connected

int SetPixel(unsigned char x, unsigned char y, unsigned char colour, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 28 of 43

to rm 5100 Series USB Display
A nterface M Engineering Manual

Bitmaps
The API has 3 functions that deal with the bitmap.

e DrawBitMapFromHost

e LoadBitMap

e DrawlconFromFlash
Background
The bitmap image cannot exceed 128 X 64, below is the process for converting from bitmap (MicroSoft Paint —
monochrome bitmap (1 bitmap per pixel) format) to the Storm USB display format. This data is then used in the above
bitmap commands. Please note: The Configuration Utility allows the user to load/Display/set as splash icon an
already created bitmap (1bpp MS Paint format). The utility converts from bitmap to Storm USB Display and loads the
data to the display.
The bitmap data for the USB display is formated with following criteria, for a 128 X 64 bit display, the screen buffer is
of size 1024bytes. The screen buffer is direct representation of the LCD display and represented as follows:

Screen Buffer

Byte 00 01 02 03 04 0506 07 080910 111213 14 15 (16 bytes represents 128 bit horizontal)
171819202122 23

[126 127
The pixels in each byte is represented as follows:

Bit 7

O-=_2NWh,rOOIO®

So to enable pixel at position (0, 0), bit 7 of byte O will be set to 1.

There are various free utilities available to help convert to this format. Please contact Storm for further information.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 29 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

DrawBitMapFromHost

This function populates the screen buffer with the passed in converted bitmap data. Then use DISPLAY_SCREEN to
display the bitmap.

/

In above example, a “Storm” bitmap is loaded from the host application.

This is a blocking function, that is the DrawBitMapFromHost function will not return control until all of the bitmap
has been loaded to the USB Display.

Parameters :

X,y - coordinates of top left corner of bitmap

h,w - height and width of bitmap

colour - 1 — black, 0 — white

nbytes - number of bytes in bitmap

iconPtr - pointer to the bitmap

timeToWait - maximum time to wait for command to complete

Return Value:
True for success
False for failure.

///\brief DrawBitMapFromHost - This functions loads the bitmap from iconPtr to the LCD
screen memory.
///\brief The bitmap must be created using MS paint and stored as monochrome 1 bpp.

/// Note: maximum number of bytes in bitmap must not exceed 1024 bytes.
///\Param - x (0 to 127)

///N\Param - y (0 to 63)

///\Param - w - width of the icon in pixel

///\Param - h - height of icon in pixel

///\Param - colour - 0 white 1 black

///\Param - nbytes - number of bytes in bitmap

///\Param - iconPtr - pointer to start of bitmap

///

///\return 0 on success, negative error code on failure

/// Possible error codes are:

/// NO _USB_DISPLAY CONNECTED = No usb display is
connected

int DrawBitMapFromHost(unsigned char x, unsigned char vy, unsigned char w, unsigned
char h, unsigned char color, char *iconPtr, int nbytes, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 30 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

LoadBitMap

This functions loads the passed in icon data from host to the USB Display at specified icon location in flash. It also
allow it to be set as the splash screen on a reboot.

This is a blocking function, that is the LoadBitMap function will not return control until all of the bitmap has been
loaded to the USB Display.

Parameters :

h,w - height and width of bitmap

icon_location - 4 icons can be stored (0 to 3)
icon_set_as_splash_screen- 0 — donot set as splash, 1 — set as splash
nbytes - number of bytes in bitmap

iconPtr - pointer to the bitmap

timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///\brief LoadBitMap - This functions loads the bitmap from iconPtr to the ICON memory
in flash.

///\brief The bitmap must be in the USB Display format.

///N\brief The icon can also set up as splash screen.

// Note: maximum number of bytes in bitmap must not exceed 1024 bytes.
///\Param - w - width of the icon in pixel

///\Param - h - height of icon in pixel

///\Param - icon_location - (0 - 3) icon position to be written in flash

///\Param - icon_set _as splash_screen - true - set icon as splash false - do not set as
splash screen

///\Param - nbytes - number of bytes in bitmap

///\Param - iconPtr - pointer to start of bitmap

///\Param - _timeToWait

///

///\return 0 on success, negative error code on failure

/// Possible error codes are:

/// NO _USB_DISPLAY CONNECTED = No usb display is
connected

int LoadBitMap(unsigned char w, unsigned char h, int icon_location, bool
icon_set_as_splash_screen, char *iconPtr, int nbytes, int _timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 31 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

DrawlconFromFlash

This functions populates the screen buffer with the passed in data from the flash. Then use DISPLAY_SCREEN to
display the bitmap.

/

In above example, a icon 0 from flash is loaded from the host application.

This is a blocking function, that is the DrawlconFromFlash function will not return control until all of the bitmap
has been loaded to the USB Display.

Parameters :

X,y - coordinates

iconLocation - icon location in flash (0 to 3)

timeToWait - maximum time to wait for command to complete

Return Value:

True for success
False for failure.

///N\brief DrawlconFromFlash - This functions draws stored icon in flash.

/// Note: maximum number of bytes in bitmap must not exceed 1024 bytes.
//\Param - x, y - coordinates

///\Param - icon_location - (0 - 3) icon position to be written in flash

//7/

///\return 0 on success, negative error code on failure

/// Possible error codes are:
//7/ NO_USB DISPLAY_ CONNECTED = No usb display is
connected

int DrawlconFromFlash(unsigned char x, unsigned char vy, int icon_location, int
_timeToWait);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 32 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

RetrieveByteFromBuffer

This function retrieves bytes from the buffer a key press value. The following fixed values are passed to host:

enum KEYPRESSED_VALUE

RIGHT_KEY_CODE = OX4F,
LEFT_KEY_CODE = 0X50,
CENTRE_KEY_CODE = 0X58

///\brief RetrieveByteFromBuffer gets the next available keystroke character from the
input buffer.
///This retrieves the keystrokes from the keypad that have been received.

/// Following values are received for key presses:
// enum KEYPRESSED_VALUE

77 {

1/ RIGHT_KEY_CODE = OX4F,
1/ LEFT_KEY_CODE = 0x50,
1/ CENTRE_KEY_CODE = 0X58
// };

///\return Positive number if valid keystroke, negative number if error occurred.
/// Possible error codes are:

/// NO_DATA AVAILABLE = There are no keystrokes to retrieve
/// COULDNT_LOCK_MUTEX = Internal error - retry
//7/ NO_KEYPAD_CONNECTED = No keypad is connected so cannot
retrieve info
///
int RetrieveByteFromBuffer(void);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 33 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Example Code

Below is an example code on how to use the USB Display API.

On request this source code can be downloaded. The following files are included :

e Visual Studio Project — TestApi

e TestApi.c - Source Code to test the UBDisplayApi

e Header files - All header files for above

e Debug - Debug Folder with USBDisplayApi.lib and hidapi.lib
e Release - Release Folder with USBDisplayApi.lib and hidapi.lib

The workspace also contains project settings for Eclipse under Ubuntu (Linux).

The version of Eclipse used is the Indigo version and currently the Linux version uses SDL library.

testAPI - demonstration project that includes and shows how to use the 'USBDisplayApi.lib' to communicate with the
USB Display.

USBDisplayApi is based on the HIDAPI library which is a multi-platform library which allows an application to interface
with USB HID-Class devices on Windows, Linux, and Mac OS X. The HIDAPI is encapsulated within the
USBDisplayApi.lib and the developer should not be concerned with the usage of this library.

testAPI directory contains the project. The 'debug' and 'release’ subdirectories of the project contain pre-built
executables that are immediately usable for testing.
Also, this directory contains Visual Studio 9 project and solution that will build these executables directly.

The includes pre-built executables should demonstrate useage of the USB Display API.

This program simply demonstrate most of the API like draw circle, draw rectangle, draw string etc.
It also displays the front panel key presses.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 34 of 43

torm 5100 Series USB Display
4 interfacell Engineering Manual

//
// Name testAPI .cpp
// Author prakash

// Copyright
// Description
//

Storm Interface Ltd, 2013 **all rights reserved**

// Version ;
; USB Display Example Code — Initialiase API

#include <iostream>

#include <stdio.h>

#include "USBDisplayApi.h"

using namespace std;

#define STORM_VID 0x2047
#define USB_DISPLAY_PID 0x0922

/lthis are external files that contains icons that are already converted to USB //display format.
extern unsigned char iconO[];

extern unsigned char icon1[];

extern unsigned char icon2[];

extern unsigned char icon3[];

enum LCD_STATE

{

LCD_FLIP_STATE
LCD_INVERSE_STATE,
LCD_BM_TO_HOST 1,
LCD_BM_TO_HOST 2
LCD_LOAD_BM_1,
LCD_LOAD_BM_2,
LCD_DISP_ICON_1,
LCD_DISP_ICON_2,
LCD_DISPLAY_TEST_PATTERN,
LCD_DRAW_CHAR
LCD_SET_PIXEL,
LCD_DRAW_LINE,
LCD_DRAW_RECTANGLE,
LCD_DRAW_RECTANGLE_FILL,
LCD_DRAW_CIRCLE
LCD_DRAW_HORIZONTAL_BG_1,
LCD_DRAW_HORIZONTAL_BG_2,
LCD_DRAW_HORIZONTAL_BG_3
LCD_DRAW_HORIZONTAL_BG_4,
LCD_DRAW_HORIZONTAL_BG_5
LCD_DRAW_HORIZONTAL_BG_6,
LCD_DRAW_HORIZONTAL_BG_7,
LCD_DRAW_VERTICLE_BG_1,
LCD_GET_DEVICE_STATUS,
LCD_IDLE

k
#ifndef WIN32

#include <termios.h>
#include <unistd.h>
#include <fcntl.h>
int _kbhit(void)
{ struct termios oldt, newt;
int ch;
int oldf;

tcgetattr(STDIN_FILENO, &oldt); newt = oldt; newt.c_lIflag &= ~(ICANON | ECHO); tcsetattr(STDIN_FILENO, TCSANOW, &newt);
oldf = fentl(STDIN_FILENO, F_GETFL, 0); fentl(STDIN_FILENO, F_SETFL, oldf | O_NONBLOCK);

ch = getchar();
tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
fentl(STDIN_FILENO, F_SETFL, oldf);
if(ch = EOF)
{
ungetc(ch, stdin);
return 1; }

return 0;}

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 35 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

#else

#include <conio.h>

#endif

int main() {USBDisplayApi *usbDisplayPtr; std::string manufacturer, product;
int retval;

int lastReturnValue=0;

long counter = 0;

int left_led = 0, center_led=0, right_led=0;
int lcd_state;

int screen_flip=0, screen_inverse=0;

int X2;

int radius;

int fill;

int clear_screen;

int iconNo;

/I First - instatiate our class that communicates with the USB Display
usbDisplayPtr = new USBDisplayApi();

/I Next, initialize it and get it ready to use. STORM_VID and USB_DISPLAY_PID are the ids isssued to storm
1
usbDisplayPtr->InitialiseStormUSBDevice(STORM_VID, USB_DISPLAY_PID, manufacturer, product);

DEVICE_INFO devicelnfo;
retval = usbDisplayPtr->GetDeviceStatus(&devicelnfo, 3000);
if (retval == 0)

{

printf(" flip mode %d\r\n", devicelnfo.flip_mode);

printf(" Inverse Mode %d\r\n", devicelnfo.inverse_mode);

printf(" backlight Mode %d\r\n", devicelnfo.backlight);

printf(" centre_led Mode %d\r\n", devicelnfo.centre_led);

printf(" contrast_level Mode %d\r\n", devicelnfo.contrast_level);
printf(" icon_splash_no Mode %d\r\n", devicelnfo.icon_splash_no);
printf(" left_led Mode %d\r\n", devicelnfo.left_led);

printf(" right_led Mode %d\r\n", devicelnfo.right_led);

printf(" FirmwareName Mode %s\r\n", devicelnfo.FirmwareName.c_str());
printf(" Counter %d\r\n\r\n", counter++);

}

lcd_state = LCD_FLIP_STATE;

x2=1;

radius = 4;

fill = 0;

clear_screen = 1;

iconNo = 0;

/[clear sOree

retval = usbDisplayPtr->LCDFunctions(MessageRequest::LCD_CLEAR_SCREEN, 4000);
/Iset all lights on

retval = usbDisplayPtr->SetLEDBACKLIGHTState(MessageRequest::LED_LEFT, 1, 3000);
retval = usbDisplayPtr->SetLEDBACKLIGHT State(MessageRequest::LED_RIGHT, 1, 3000);
retval = usbDisplayPtr->SetLEDBACKLIGHTState(MessageRequest::LED_CENTER, 1, 3000);
while(!_kbhit())

{

Il
/I Check for decoded keypresses

1

retval = usbDisplayPtr->RetrieveByteFromBuffer() ;

/I Positive value means a keypress was retrieved

if(USBDisplayApi::SUCCESS <= retval)

{switch(retval)

{case USBDisplayApi:LEFT_KEY_CODE:printf("Left key pressed\r\n");

retval = usbDisplayPtr->SetLEDBACKLIGHTState(MessageRequest::LED_LEFT, left_led, 3000);
if (retval == USBDisplayApi::SUCCESS)

{if (left_led) left_led=0; else left_led=1; }

break;

case USBDisplayApi::RIGHT_KEY_CODE: /IRIGHT_KEY_CODE:

printf("Right key pressed\r\n");

retval = usbDisplayPtr->SetLEDBACKLIGHTState(MessageRequest::LED_RIGHT, right_led, 3000);

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 36 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

if (retval == USBDisplayApi::SUCCESS)

{if (right_led) right_led=0; else right_led=1;} break;

case USBDisplayApi::CENTRE_KEY_CODE: /ICENTRE_KEY_CODE:

printf("Centre key pressed %I|d\r\n", counter++);

retval = usbDisplayPtr->SetLEDBACKLIGHTState(MessageRequest::LED_CENTER, center_led, 3000);

if (retval == USBDisplayApi::SUCCESS)

if (center_led)

center_led=0;

else

center_led=1;

}

break;

default:

printf("Invalid key pressed\r\n");
break;

}

}

#ifdef WIN32
Sleep(100);

#else
usleep(100*1000);
#endif

/[clear screen

if (clear_screen)

{clear_screen = 0;

retval = usbDisplayPtr->LCDFunctions(MessageRequest::LCD_CLEAR_SCREEN, 3000);
}

switch(lcd_state)
{
case LCD_FLIP_STATE:

{
retval = usbDisplayPtr->LCDFunctions(MessageRequest::LCD_SCREEN_FLIP, screen_flip, 3000);
if (retval == USBDisplayApi::SUCCESS)

if (screen_flip)
screen_flip=0;
else

screen_flip=1;

}
lcd_state = LCD_INVERSE_STATE;
break;

}
case LCD_INVERSE_STATE:

{

retval = usbDisplayPtr->LCDFunctions(MessageRequest::LCD_INVERSE, screen_inverse, 3000);
if (retval == USBDisplayApi::SUCCESS)

{

if (screen_inverse)
screen_inverse=0;
else

screen_inverse=1;

}
lcd_state = LCD_DISPLAY_TEST_PATTERN;
break;

}
case LCD_DISPLAY_TEST_PATTERN:

{
retval = usbDisplayPtr->LCDFunctions(MessageRequest::DISPLAY_TEST_PATTERN, 3000);
if (retval == USBDisplayApi::SUCCESS)

{
lcd_state =LCD_BM_TO_HOST_1;
clear_screen = 1;

}

break;

}
case LCD_BM_TO_HOST_1:

{

retval = usbDisplayPtr->DisplayString(0, 1, 1, "Display Bitmap from Host", USBDisplayApi::FONT6X8, 3000);
retval = usbDisplayPtr->DisplayString(0, 3, 1, "Please Wait...", USBDisplayApi::FONT6X8, 3000);

if (retval == USBDisplayApi::SUCCESS)

{

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 37 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state =LCD_BM_TO_HOST_2;
}

break;

}
case LCD_BM_TO_HOST_2:

{
1 ifstream myfile;
/ffirst the bmp file needs to be converted into our Icd format
retval = usbDisplayPtr->DrawBitMapFromHost(0, 0, 128, 64, 1, (char *)&icon2[0], 1024, 3000);

retval = USBDisplayApi::SUCCESS ;
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_LOAD_BM_1;

clear_screen = 1;

}

break;
}
case LCD_LOAD_BM_1:

{

retval = usbDisplayPtr->DisplayString(0, 1, 1, "Load Bitmap from Host", USBDisplayApi::FONT6X8, 3000);
retval = usbDisplayPtr->DisplayString(0, 3, 1, "Please Wait...", USBDisplayApi::FONT6X8, 3000);

if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_LOAD_BM_2;

}

break;

}
case LCD_LOAD _BM_2:

{
1! ifstream myfile;
/ffirst the bmp file needs to be converted into our Icd format
retval = usbDisplayPtr->LoadBitMap(128, 64, 0, 1, (char *)&icon1[0], 1024, 3000);
/ retval = USBDisplayApi::SUCCESS ;

if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_DISP_ICON_T1;

clear_screen = 1;

}

break;

}
case LCD_DISP_ICON_1:

1 ifstream myfile;

[ffirst the bmp file needs to be converted into our Icd format

retval = usbDisplayPtr->DrawlconFromFlash(0, 0, iconNo, 3000);
if (retval == USBDisplayApi::SUCCESS)

{

iconNo++;

if (iconNo > 3)

iconNo = 0;

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_DRAW_CHAR,;
clear_screen = 1;

}

break;

}
case LCD_DRAW_CHAR:

{
retval = usbDisplayPtr->DisplayChar(1, 0, 1, 'A’, USBDisplayApi::FONT6X8, 3000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_SET_PIXEL;

clear_screen = 1;

}

break;

}

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 38 of 43

torm

4N Interfacel

case LCD_SET_PIXEL:

{

retval = usbDisplayPtr->SetPixel(1, 1, 1, 3000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
Icd_state = LCD_DRAW_LINE;

clear_screen = 1;

}

break;
}
case LCD_DRAW_LINE:

{

retval = usbDisplayPtr->DrawLine(63, 1, x2, 63, 1, 4000);
retval = usbDisplayPtr->DrawLine(63, 63, x2, 1, 1, 4000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
X2 +=8;

if (x2 > 127)

{

clear_screen = 1;

lcd_state = LCD_DRAW_RECTANGLE;

x2=1;

}

}

break;

}

case LCD_DRAW_RECTANGLE:

{

retval = usbDisplayPtr->DrawRectangle(0, 1, 1, 32, 30, 1, 4000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
clear_screen = 1;

lcd_state = LCD_DRAW_RECTANGLE_FILL;

}

break;
}
case LCD_DRAW_RECTANGLE_FILL:

{
retval = usbDisplayPtr->DrawRectangle(1, 1, 1, 32, 30, 1, 4000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
clear_screen = 1;

lcd_state = LCD_DRAW_CIRCLE;

}

break;

}

case LCD_DRAW_CIRCLE:

{

retval = usbDisplayPtr->DisplayCircle(fill, 63, 32, radius, 1, 3000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
radius +=4 ;

if (radius > 32)

radius = 4;

if (fill)

fill =0;

else

fill =1;

lcd_state = LCD_DRAW_HORIZONTAL_BG_1;
clear_screen = 1;

}
}

break;

}
case LCD_DRAW_HORIZONTAL_BG_1:
{

/Ivertical draw bargraph

5100 Series USB Display
Engineering Manual

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 39 of 43

torm

4N Interfacel

usbDisplayPtr->DisplayString(10, 6, 1, "Temp", USBDisplayApi::FONT6X8, 3000);
usbDisplayPtr->DisplayString(80, 6, 1, "Vol", USBDisplayApi::FONT6X8, 3000);
usbDisplayPtr->DisplayBargraph(0, 10, 1, 40, 20, 1, 20,1, 3000);

retval = usbDisplayPtr->DisplayBargraph(0, 80, 1, 40, 20, 1, 80, 1, 3000);

if (retval == USBDisplayApi::SUCCESS)

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_DRAW_HORIZONTAL_BG_2;

}

break;
}
case LCD_DRAW_HORIZONTAL_BG_2:

{

usbDisplayPtr->DisplayBargraph(0, 10, 1, 40, 20, 1, 10, 1, 3000);

retval = usbDisplayPtr->DisplayBargraph(0, 80, 1, 40, 20, 1, 80, 1, 3000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_DRAW_HORIZONTAL_BG_3;

¥

break;
}
case LCD_DRAW_HORIZONTAL_BG_3:

{

usbDisplayPtr->DisplayBargraph(0, 10, 1, 40, 20, 1, 100, 1, 3000);

retval = usbDisplayPtr->DisplayBargraph(0, 80, 1, 40, 20, 1, 15, 1, 3000);
if (retval == USBDisplayApi::SUCCESS)

{
usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_DRAW_HORIZONTAL_BG_4;

}

break;
}
case LCD_DRAW_HORIZONTAL_BG_4:

{

usbDisplayPtr->DisplayBargraph(0, 10, 1, 40, 20, 1, 50, 1, 3000);

retval = usbDisplayPtr->DisplayBargraph(0, 80, 1, 40, 20, 1, 40, 1, 3000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
Icd_state = LCD_DRAW_HORIZONTAL_BG_5;

}

break;
}
case LCD_DRAW_HORIZONTAL_BG_5:

{

usbDisplayPtr->DisplayBargraph(0, 10, 1, 40, 20, 1, 70, 1, 3000);

retval = usbDisplayPtr->DisplayBargraph(0, 80, 1, 40, 20, 1, 44, 1, 3000);
if (retval == USBDisplayApi::SUCCESS)

{
usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_DRAW_HORIZONTAL_BG_6;

}

break;
}
case LCD_DRAW_HORIZONTAL_BG_6:

{
retval = usbDisplayPtr->DisplayBargraph(0, 10, 1, 40, 20, 1, 30, 1, 3000);
if (retval == USBDisplayApi::SUCCESS)

{

usbDisplayPtr->LCDFunctions(MessageRequest::LCD_DISPLAY_SCREEN, 3000);
lcd_state = LCD_GET_DEVICE_STATUS;

clear_screen = 1;

}

break;

}
case LCD_DRAW_VERTICLE_BG_1:
{

break;

}

case LCD_GET _DEVICE_STATUS:

{
retval = usbDisplayPtr->GetDeviceStatus(&devicelnfo, 3000);
if (retval == 0)

5100 Series USB Display
Engineering Manual

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 40 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

printf(" flip mode %d\r\n", devicelnfo.flip_mode);

printf(" Inverse Mode %d\r\n", devicelnfo.inverse_mode);

printf(" backlight Mode %d\r\n", devicelnfo.backlight);

printf(" centre_led Mode %d\r\n", devicelnfo.centre_led);

printf(" contrast_level Mode %d\r\n", devicelnfo.contrast_level);

printf(" icon_splash_no Mode %d\r\n", devicelnfo.icon_splash_no);
printf(" left_led Mode %d\r\n", devicelnfo.left_led);

printf(" right_led Mode %d\r\n", devicelnfo.right_led);

printf(" FirmwareName Mode %s\r\n", devicelnfo.FirmwareName.c_str());
printf(" Counter %d\r\n\r\n", counter++);

}
lcd_state = LCD_FLIP_STATE;
break;

}
default:

break;

!

}

printf(" Exiting USBDisplayApi_Demo.....\r\n\r\n");
usbDisplayPtr->~USBDisplayApi();

1 delete usbDisplayPtr;

return 0;

}

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 41 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Change History

Engineering Manual Date Version Details

10 Dec 13 1.0 First Release
Configuration Utility Date Version Details

10 Dec 13 1.0 First Release
Object Library (Windows) Date Version Details

10 Dec 13 1.0 First Release
Object Library (Linux) Date Version Details

10 Dec 13 1.0 First Release
API Source Code Date Version Details

10 Dec 13 1.0 First Release
Visual Studio Project — TestApi

TestApi.c - Source Code to test the
UBDisplayApi

Header files -All header files for above

Debug - Debug Folder with
USBDisplayApi.lib and hidapi.lib

Release - Release Folder with
USBDisplayApi.lib and hidapi.lib

This document is provided for use and guidance of engineering personnel engaged in the installation or application of Storm
Interface data entry products manufactured by Keymat Technology Ltd. Please be advised that all information, data and
illustrations contained within this document remain the exclusive property of Keymat Technology Ltd. and are provided for the
express and exclusive use as described above.

This document is not supported by Keymat Technology’s engineering change note, revision or reissue system. Data contained
within this document is subject to periodic revision, reissue or withdrawal. Whilst every effort is made to ensure the information,
data and illustrations are correct at the time of publication, Keymat Technology Ltd. are not responsible for any errors or omissions
contained within this document.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not
cause harmful interference, and (2) this device must accept any interference received, including interference that may cause
undesired operation.

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 42 of 43

torm 5100 Series USB Display
amminterface M Engineering Manual

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the
FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.
This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the
following measures:

—Reorient or relocate the receiving antenna.

—Increase the separation between the equipment and receiver.

—Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

—Consult the dealer or an experienced radio/TV technician for help.

No part of this document may be reproduced in any form or by any means or used to make any derivative work (such as translation
or adaptation) without written permission from Keymat Technology Ltd.

For more information about Storm Interface and its products, please visit our website at www.storm-interface.com © Copyright
Storm Interface. 2013 All rights reserved

www.storm-interface.com 5100 Series USB Display Engineering Manual ver 1.0 Dec 2013 Page 43 of 43

