PRODUCT DATA SHEET

LINE MATCHING TRANSFORMER P3324

Features

- Lead-free (Pb-free)
- RoHS compliant
- 12.6mm (0.5") Seated Height
- Industry Standard Pinout
- IEC 60950 and UL 60950 Certified
- UL Recognized Component
- Environmentally tested to IEC 68
- CERT reliability tested
- Extended Frequency Response
- Flat TX and RX Responses
- Simple Matching
- Low Insertion Loss
- High Thermal Stability

Applications

- Voice
- V.22bis Modems
- Set Top Boxes
- Least Cost Routers
- Instrumentation

DESCRIPTION

P3324 is intended for low speed data and voice applications where good distortion at moderate power levels is required at a most competitive price.

P3324 uses patented design and construction methods to achieve excellent signal performance and safety isolation to international standards making it the component of choice for voice and low speed data applications throughout the world. P3324 is certified to IEC 60950 and UL60950. P3324 is a UL Recognized Component, and is supported by an IEC CB Test Certificate. The part is completely lead-free, compliant with RoHS Directive 2002/95/EC, and suitable for lead-free and conventional processing.

P3324 has exceptionally flat frequency response from 100Hz to 10kHz, a 3dB bandwidth of over 50kHz and requires only the very simplest of matching to achieve good return loss and transhybrid loss across the voiceband, with low levels of signal distortion at signal frequencies as low as 200Hz.

P3324 is a rugged lightweight design that exhibits stable characteristics over its full operating temperature range to maximize data throughput under varying environmental conditions without the need for modem retraining.

P3324 has been subjected to relevant environmental testing according to IEC 68 and Combined Environmental Reliability Testing (CERT) beyond normal operational levels and passed all tests, remaining fully functional.
SPECIFICATIONS

Electrical

At $T = 25^\circ C$ and as circuit Fig. 2 unless otherwise stated.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>$f = 2kHz$, $R_L = 600\Omega$</td>
<td>-</td>
<td>1.8</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Frequency Response</td>
<td>LF -3dB cutoff</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td>HF -3dB cutoff</td>
<td>-</td>
<td>55</td>
<td>-</td>
<td>kHz</td>
</tr>
<tr>
<td></td>
<td>200Hz – 4kHz</td>
<td>-</td>
<td>-</td>
<td>±0.1</td>
<td>dB</td>
</tr>
<tr>
<td>Return Loss (5)</td>
<td>200Hz – 4kHz</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Transhybrid Loss (5)</td>
<td>200Hz – 4kHz</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>Third Harmonic Distortion (1)</td>
<td>450Hz -10dBm in line</td>
<td>-</td>
<td>-86</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td></td>
<td>200Hz -10dBm in line</td>
<td>-</td>
<td>-79</td>
<td>-</td>
<td>dBm</td>
</tr>
<tr>
<td>Voltage Isolation (2)</td>
<td>50Hz DC</td>
<td>2.12</td>
<td>-</td>
<td>-</td>
<td>kVrms</td>
</tr>
<tr>
<td>Operating Range:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional</td>
<td></td>
<td>0</td>
<td>-</td>
<td>+70</td>
<td>°C</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td>-40</td>
<td>-</td>
<td>+85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Lumped equivalent circuit parameters as Fig. 1

DC resistance (3)	Primary resistance R_{DCp}	70	-	87	Ω
	Secondary resistance R_{DCs}	95	-	120	Ω
Leakage inductance, ΔL		3	3.8	5	mH
Shunt inductance, L_p (4)	200Hz 10mV	3	4	-	H
Shunt loss, R_p	200Hz 10mV	6	8	-	kΩ

Notes:

1. Third harmonic typically exceeds other harmonics by 10dB.
2. Components are 100% tested at 3.25kVDC.
3. Caution: do not pass DC through windings. Telephone line current must be diverted using semiconductor line hold circuit or choke.
4. At signal levels greater than 100mV, L_p will increase and R_p will decrease slightly but the effect is usually favourable to the return loss characteristic.
5. Return loss and transhybrid loss can be improved to 30dB in improved matching circuit. The values shown relate to the simplest configuration, Fig. 2.
MATCHING RECOMMENDATIONS

The following recommendations start with the simplest implementations and progress to enhanced performance utilizing additional components. Good performance is achieved even with the simplest configurations. The implementations assume a low impedance balanced TX drive and a relatively high impedance RX input, as is commonly available, though use with other TX/RX arrangements is straightforward. Note that there are no changes to components on the line side, or in the hybrid, whether 600Ω or complex reference impedance selected, thus assisting country configuration. For complex impedance, the matching circuits derived are suitable for reference impedances of the type 270 + 750Ω/150nF e.g. European CTR21 and 220 + 820Ω/120nF (or 115nF) e.g. Australia, South Africa, etc., and yield similar performance characteristics. For other impedances, please contact Profec Technologies.

Minimum Cost Implementations

600Ω

![Fig. 2](image)

*Insertion Loss: 2.2dB @ 2kHz
Frequency Response: ±0.1dB 200Hz – 10kHz
Return Loss: 18dB 200Hz – 4kHz
Transhybrid Loss: 22dB 200Hz – 4kHz*

Improved matching and hybrid

![Fig. 4](image)

*Insertion Loss (Line to RXA): 3.2dB @ 2kHz
Frequency Response: ±0.1dB 200Hz – 10kHz
Return Loss: 20dB 200Hz – 4kHz
Transhybrid Loss: 30dB 200Hz – 10kHz*

Complex European CTR21/(Australia, etc.)

![Fig. 3](image)

*Insertion Loss: 1.3dB @ 2kHz
Frequency Response: ±0.5dB 200Hz – 4kHz
Return Loss: 18dB 200Hz – 4kHz
Transhybrid Loss: 14dB 200Hz – 4kHz*

*Note: 100nF capacitor should have a temperature stable dielectric
+ Note: 2.2μF capacitor may be acceptable

![Fig. 5](image)

*Insertion Loss (Line to RXA): 2.5dB @ 2kHz
Frequency Response: ±0.5dB 200Hz – 4kHz
Return Loss: 20dB 200Hz – 4kHz
Transhybrid Loss: 18dB 200Hz – 4kHz*

*Note: 100nF capacitor should have a temperature stable dielectric
+ Note: 2.2μF capacitor may be acceptable
600Ω Instrumentation

Insertion Loss: 1.8dB @ 2kHz
Frequency Response: ±0.2dB 50Hz – 20kHz
Return Loss: 16dB 20Hz – 20kHz

CONSTRUCTION

Dimensions

* If no DC block required, one of these capacitors can be removed and the other set to 22μF; or if preferred, both capacitors can be eliminated.

Connections

Dimensions shown are in millimetres (inches).
Geometric centres of outline and pin grid coincide within a tolerance circle of 0.6mmØ.
Windings may be used interchangeably as primary or secondary.
Total weight typically 5.2g.
ENVIRONMENTAL TESTING

Reliability testing to IEC 68

Tested to clauses of IEC 68 and compliant with all functional and safety requirements following exposure as follows:

<table>
<thead>
<tr>
<th>Test description</th>
<th>IEC 68 reference</th>
<th>Test details</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robustness of terminations</td>
<td>68-2-21 Test Ua1</td>
<td>Tensile 5N pull</td>
<td>No impairment</td>
</tr>
<tr>
<td></td>
<td>68-2-21 Test Ua2</td>
<td>Thrust 1N push</td>
<td>No pin detachment or distortion</td>
</tr>
<tr>
<td>Solderability</td>
<td>68-2-20 Test Ta</td>
<td>Solder bath 235ºC 2s</td>
<td>No impairment</td>
</tr>
<tr>
<td>Resistance to soldering heat</td>
<td>68-2-20 Test Tb</td>
<td>Solder bath 260ºC 10s Soldering iron 350ºC 5s</td>
<td>Finish smooth, bright and even</td>
</tr>
<tr>
<td>Vibration</td>
<td>68-2-6 Test Fc</td>
<td>Sweep 10-55-10Hz in 1 minute</td>
<td>No impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amplitude 1.5mm pk-pk Duration 2h per axis, 3 axes</td>
<td></td>
</tr>
<tr>
<td>Shock</td>
<td>68-2-27 Test Ea</td>
<td>Peak acceleration 1000m/s² Duration of pulse 6ms</td>
<td>No impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 shocks each direction on 3 axes</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>68-2-1 Test Ab</td>
<td>-25ºC 16h Recovery to ambient 1-2h</td>
<td>No impairment</td>
</tr>
<tr>
<td>Dry heat</td>
<td>68-2-2 Test Bb</td>
<td>125ºC 16h Recovery to ambient 1-2h</td>
<td>No impairment</td>
</tr>
<tr>
<td>Damp heat</td>
<td>68-2-3 Test Ca</td>
<td>40ºC 4 days, RH 93% Recovery to ambient 1-2h</td>
<td>No impairment</td>
</tr>
<tr>
<td>Change of temperature</td>
<td>68-2-14 Test Na</td>
<td>T_A ~-25ºC T_B +85ºC t1 30 min 2 min s1≤3 min</td>
<td>No impairment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recovery to ambient 1-2h 5 cycles</td>
<td></td>
</tr>
</tbody>
</table>

Combined Environmental Reliability Testing (CERT)

Components step stressed at increasing levels of severity using combined stresses to detect potential weaknesses.

Results are shown for highest levels of stress tested. Compliant with all functional and safety tests following exposure as follows:

<table>
<thead>
<tr>
<th>Test description</th>
<th>Test details</th>
<th>Duration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Test</td>
<td>Thermal cycling -30ºC to +100ºC at 11ºC/min 6mm pk 2-9Hz at 1 octave/min 20m/s² 9-200Hz</td>
<td>20 mins per plane</td>
<td>No impairment</td>
</tr>
<tr>
<td>Transportation Test</td>
<td>Thermal cycling -65ºC to +80ºC Random vibration 10-200Hz and 200-2000Hz at 57m/s² RMS</td>
<td>2 hours per plane</td>
<td>No impairment</td>
</tr>
</tbody>
</table>
SAFETY

Constructed in accordance with IEC 60950-1, EN 60950-1, and UL 60950-1, supplementary insulation, 250Vrms maximum working voltage, flammability class V-0.

There are no special installation requirements (beyond attending to usual PCB track separations) since the integral cover provides supplementary insulation from its external faces to internal core and windings.

CERTIFICATION

Certified under the IEC CB scheme (Certificate DK-8570) to IEC 60950-1-2001, sub-clauses 1.5, 1.5.1, 1.5.2, 1.7.1, 2.9, 2.9.1, 2.9.2, 2.9.3, 2.10, 2.10.1, 2.10.2, 2.10.3, 2.10.3.1, 2.10.3.2, 2.10.4, 2.10.5, 2.10.5.1, 2.10.5.2, 2.10.5.4, 4.7, 4.7.1 (classV-1), 4.7.3, 4.7.3.1, 4.7.3.4, 5.2, 5.2.1, 5.2.2, 6.1.2.1 (Finland, Norway, Sweden national deviations) for a maximum working voltage of 250Vrms, nominal mains supply voltage not exceeding 300Vrms and a maximum operating temperature of 70°C in Pollution Degree 2 environments.

Recognized under the Component Recognition Program of Underwriters Laboratories Inc. to US and Canadian requirements CAN/CSA C22.2 No. 60950-1-03/UL60950-1, First Edition, based on IEC 60950-1, First Edition, maximum working voltage 180Vrms (creepage), 420V peak (clearance), Pollution Degree 2, supplementary insulation.

UL File number E203175.

Additionally, Profec Technologies certifies all transformers as providing voltage isolation of 2.12kVrms, 3kV DC minimum. All shipments are supported by a certificate of conformity to current applicable safety standards.

ABSOLUTE MAXIMUM RATINGS

(Ratings of components independent of circuit).

- Short term isolation voltage (1s) 2.12kVrms, 3.0 kVDC
- DC current 100μA
- Storage temperature -40°C to +85°C
- Lead temperature, 10s 260°C

INTELLECTUAL PROPERTY RIGHTS

ETAL and P3324 are Trade Marks of Profec Technologies Ltd. The Trade Mark ETAL is registered at the UK Trade Marks Registry.

Profec Technologies Ltd. is the owner of the design right under the Copyright Designs and Patents Act 1988 and no rights or licences are hereby granted or implied to any third party.

P3324 design and construction are protected by patents and registered design.

British Patent No. 2333646.
USA Patent Nos. 6, 344, 787; 6,690,254
European Patent No. 1082734
China Patent No. ZL 99806739.3
UK Registered Design No. 2077360.
French Registered Design No. 991512.
United States Registered Design 426, 815.
Mexico Registered Design 12143
Other patents and registered designs pending.

© 1998 - 2005 Profec Technologies Ltd.
Reproduction prohibited.