
1 Introduction
This application note explains how the twisted nematic (TN)
liquid crystal display (LCD) works and how this kind of LCD
can be controlled using the microcontroller's GPIO pins. There
are two ways to control the TN LCD, statically and dynamically.
The driver discussed in this document is intended to drive
dynamic LCDs. The dynamically driven LCDs require a pure
AC voltage waveform applied to the LCD electrodes. Each
electrode needs one backplane electrode and one frontplane
terminal to be displayed. A dynamic LCD makes the situation
more complicated because the segments are organized into a
matrix, but then again this kind of LCD reduces the number of
terminals used. The Freescale application note titled XGATE
Library: TN/STN LCD Driver Driving Bare TN and STN LCDs
Using GPIO Pins (document AN3219) explains in depth the
dynamically driven LCDs performance.

© 2010 Freescale Semiconductor, Inc.

Document Number: AN3412Freescale Semiconductor
Rev. 0, 4/2010Application Note

Dynamic LCD Driver Using GPIO
Pins

Juan Cazaresby:
Applications Engineer
Mexico
Guadalajara

Contents
Introduction...11

LCD Overview..22

Hardware ..33

Functional Description..64

Configuring the Driver..................................64.1

Driver Initialization.......................................74.2

Driver Control...74.3

LCD Refresh Cycle Frequency.....................74.4

Contrast Control..74.5

Maximum Number of Digits.........................74.6

Configuring Backplanes................................84.7

LCD Buffer...84.8

Displaying Characters...................................84.9

Creating New Characters..............................94.10

Displaying Message......................................94.11

Code Size and Execution Time...................104.12

Conclusion...105

2 LCD Overview
To reduce the number of terminals used to drive the LCD, the segments are multiplexed. This means each terminal drives two
or more segments. The terminals are also called frontplanes. The amount of segments driven depends on the number of LCD
backplanes. The LCD manufacturer must specify the number of backplanes used to drive the LCD. This driver is intended to
manage a dynamically driven LCD with 4 backplanes, although the number of backplanes can be changed. The number of
backplanes is also called a duty ratio, in this case ¼ duty ratio.

The LCD model used in this application note is the VIM-878-DP. Each digit in the display is made up of 16 segments in total.
The 16 segments of each digit can be driven with four terminals, this is because the segments are organized into a matrix. Figure
1 and Figure 2 show how the display segments are organized.

Figure 1. Display segments

To polarize one segment a differential voltage must exist between the desired frontplane terminal and the appropriate backplane.
Table 1 shows the backplane and frontplane connections required to polarize the 16 segments shown in Figure 1.

Table 1. Backplane and frontplane connections

Backplane3Backplane2Backplane1Backplane0

ABCDPFrontplane0

CAFEDFrontplane1

IJKLFrontplane2

HGNMFrontplane3

The polarity of the voltage waveform applied to each segment must be inverted periodically to maintain a constant electric field
between electrodes and to avoid damage on segments because of the DC component. All the visible segments must be refreshed
with a minimal refreshing frequency of 50 Hz or 60 Hz. The software driver provided in this application note (AN3412SW)
refreshes each segment with a frequency equal to 400 Hz. The entire LCD is refreshed at 100 Hz. This is faster than the minimal
frequency needed to enhance the contrast control implemented by the software.

To turn segment C on; frontplane0 and backplane1 must be enabled. The same frontplane drives four segments, the rest of the
frontplanes and backplanes must remain disabled. To turn segments C and E on; frontplane0, frontplane1, and backplane1 must
be enabled.

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
Freescale Semiconductor, Inc.2

LCD Overview

To turn segments C and D on; frontplane0, frontplane1, backplane0, and backplane1 must be enabled. If both frontplanes and
backplanes are enabled at the same time the segments DP, C, D, and E are displayed. This means that two or more backplanes
can not be enabled at the same time.

To turn on all the segments they must be enabled in four phases. In phase one, the segments under the backplane0 can be
displayed, in phase two, the segments under backplane1 can be displayed and so on. When the four phases are refreshed the
cycle must be repeated.

Dynamically driven LCDs require more than two voltage levels to drive segments. The different voltage levels to drive a dynamic
LCD must be at least 0, 1.6, and 3 volts, so the required voltage levels are generated with external resistors. The voltage levels
are called bias, in this case ½ bias. To turn any segment on, the voltage applied between the desired frontplane terminal and the
appropriate backplane must be 3 volts. To turn any segment off, the voltage level applied between the frontplane and backplane
terminal must not be higher than 1.6 volts.

3 Hardware
This driver was tested with the M68EVB08GB60 Rev. C, the XTWR-MCF51MM Rev. A, and the XTWR-MCF51JE Rev. A
evaluation boards. The LCD driver uses GPIO pins to drive the backplanes and frontplanes making it easier to migrate the driver
to any microcontroller or any custom board. The hardware connections between the MCU and the LCD are described in Table
2 and Table 3.

Table 2. M68EVB08GB60 Rev.C and LCD connections

COM3COM2COM1COM0LCD Pin NumberMCU Pin

CA11F1E1D1PTA5

1I1J1K1L2PTA6

CA22F2E2D3PTA1

2I2J2K2L4PTA2

CA33F3E3D5PTC5

3I3J3K3L6PTC6

CA4F44E4D7PTC1

4I4J4K4L8PTC2

CA55F5E5D9PTD5

5I5J5K5L10PTD6

CA66F6E6D11PTD1

6I6J6K6L12PTD2

CA77F7E7D13PTF5

7I7J7K7L14PTF6

CA88F8E8D15PTF1

8I8J8K8L16PTF2

———COM017PTG4

——COM1—18PTG5

—COM2——19PTG6

COM3———20PTG7

8A8B8CDP821PTF0

8H8G8N8M22PTF3

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
3Freescale Semiconductor, Inc.

Hardware

COM3COM2COM1COM0LCD Pin NumberMCU Pin

7A7B7CDP723PTF4

7H7G7N7M24PTF7

6A6B6CDP625PTD0

6H6G6N6M26PTD3

5A5B5CDP527PTD4

5H5G5N5M28PTD7

4A4B4CDP429PTC0

4H4G4N4M30PTC3

3A3B3CDP331PTC4

3H3G3N3M32PTC7

2A2B2CDP233PTA0

2H2G2N2M34PTA3

1A1B1CDP135PTA4

1H1G1N1M36PTA7

Table 3. XTWR-MCF51MM Rev.A, XTWR-MCF51JE Rev.A, and LCD connections

COM3COM2COM1COM0LCD Pin NumberMCU Pin

CA11F1E1D1PTJ5

1I1J1K1L2PTJ6

CA22F2E2D3PTF5

2I2J2K2L4PTF6

CA33F3E3D5PTD5

3I3J3K3L6PTD6

CA44F4E4D7PTC1

4I4J4K4L8PTC2

CA55F5E5D9PTH1

5I5J5K5L10PTH2

CA66F6E6D11PTH5

6I6J6K6L12PTH6

CA77F7E7D13PTJ1

7I7J7K7L14PTJ2

CA88F8E8D15PTE1

8I8J8K8L16PTE2

———COM017PTA1

——COM1—18PTG5

—COM2——19PTB6

COM3———20PTG7

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
Freescale Semiconductor, Inc.4

Hardware

COM3COM2COM1COM0LCD Pin NumberMCU Pin

8A8B8CDP821PTE0

8H8G8N8M22PTE3

7A7B7CDP723PTJ0

7H7G7N7M24PTJ3

6A6B6CDP725PTH4

6H6G6N6M26PTH7

5A5B5CDP527PTH0

5H5G5N5M28PTH3

4A4B4CDP429PTC0

4H4G4N4M30PTC3

3A3B3CDP331PTD4

3H3G3N3M32PTD7

2A2B2CDP233PTF4

2H2G2N2M34PTF7

1A1B1CDP135PTJ4

1H1G1N1M36PTJ7

This driver is intended to work with ½ bias LCDs, therefore only the backplanes need pull-up and pull-down resistors to generate
waveforms. The resisitor value is important because it controls the DC component. The LCD manufacturer specifies the maximum
DC component that can be applied to the LCD. For this application note the value for all pull-up and pull-down resistors is
equal to 15 K ohms. These values generate a maximum of 16 mV on the DC component. See Figure 2.

Figure 2. Maximum DC component applied to the LCD electrodes

The block diagram shows how the MCU and the LCD must be connected. Notice that only the backplane nets have pull-up and
pull-down resistors.

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
5Freescale Semiconductor, Inc.

Hardware

Figure 3. Block diagram

The following schematic shows a way to connect the TN LCD to the XTWR-MCF51MM Rev.A, and the XTWR-MCF51JE
Rev.A. The schematic and layout files are provided with this application note.

Figure 4.TN LCD schematic

4 Functional Description
The AN3412SW source code for the LCD driver can be downloaded from www.freescale.com. The driver is made up of two
files, the LCD.c and LCD.h. Including these files into an application the user can perform any of the capabilities described in
the following sections.

4.1 Configuring the Driver
The driver configuration is performed by modifying the macro definitions located in the LCD.h header file.

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
Freescale Semiconductor, Inc.6

Functional Description

https://www.freescale.com/

4.2 Driver Initialization
After the MCU comes out of reset, all GPIO pins used to drive the backplanes and frontplanes must be configured. The time
base to refresh the LCD segments must also be enabled, to do this, the function vfnLCDInit must be called by the main
application.

4.3 Driver Control
The driver function vfnLCDDriver refreshes the backplanes and frontplanes when the refresh cycle period elapses. This function
must be called into the main loop to get the driver working properly.

4.4 LCD Refresh Cycle Frequency
Each frontplane and backplane must be refreshed periodically. This period of time is generated with a timer comparator, therefore
a timer channel must be configured as output compare. In this case Timer2 Channel0 is used to generate an interrupt each 2.5
milliseconds. The waveform period can be calculated using the following formula.

The timer and channel used to refresh the LCD can be changed if desired. To change the LCD the next macro definition in the
LCD.h file must be modified.

#define WAVE_FORM_PERIOD (390)
 #define CONSTRAST_HIGH (WAVE_FORM_PERIOD/2)
 #define CONSTRAST_MED (WAVE_FORM_PERIOD)
 #define CONSTRAST_LOW (WAVE_FORM_PERIOD*2)

 #define LCD_INTERRUPT_VECTOR (9)
 #define TIMER_REGISTER (TPM2SC)
 #define TIM_CHANNEL_REGISTER (TPM2C0SC)
 #define RELOAD_TIMER_VALUE (TPM2C0V)
 #define CLEAR_TIMER_FLAG (TPM2C0SC_CH0F = 0)

4.5 Contrast Control
The driver has an LCD contrast adjustment that does not need an external component. The contrast can be adjusted by modifying
the value stored in the variable g16ContrastValue. When increasing the value stored in g16ContrastValue, the contrast
decreases. And if decreasing the value stored then the contrast increases. The contrast value can be changed at any moment and
the value can be from 0–65535.

4.6 Maximum Number of Digits
Although the driver is intended to drive an eight digit LCD, the number of digits handled can be changed by modifying the
macro definition MAX_DIGITS located in the LCD.h header file. Each of the digits are managed with four frontplanes, that is
four GPIO pins. Any desired port can be used to drive any digit in the LCD. The unique restriction is each frontplane must be
part of the same port and must be aligned by nibbles.

The following macros configure what GPIO pins drive digit1 in the LCD. This macro is using the most significant nibble of
port A to drive digit1.

 #define LCD_DIGIT1_NIBBLE (HIGH_NIBBLE)
 #define LCD_DIGIT1_PORT_INIT (PTADD |= LCD_DIGIT1_NIBBLE)

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
7Freescale Semiconductor, Inc.

Functional Description

 #define LCD_DIGIT1_CLEAR_PORT (PTAD &= ~LCD_DIGIT1_NIBBLE)
 #define LCD_DIGIT1_PORT (PTAD)

For example, if digit1 is managed with the least significant nibble from port E, the macro definitions must be modified as
follows.

#define LCD_DIGIT1_NIBBLE (LOW_NIBBLE)
 #define LCD_DIGIT1_PORT_INIT (PTEDD |= LCD_DIGIT1_NIBBLE)
 #define LCD_DIGIT1_CLEAR_PORT (PTED &= ~LCD_DIGIT1_NIBBLE)
 #define LCD_DIGIT1_PORT (PTED)

The source code provided with this application note provides the necessary macros to drive eight digits. To add more digits you
must copy and paste the macros mentioned above and replace the desired port and nibble that will be used to drive the new
digit.

4.7 Configuring Backplanes
Each one of the four backplanes can be configured individually. The backplanes can be managed with different MCU ports if
desired. The following macro definition configures which GPIO pin is used to drive backplane0.

 #define BACK_PLANE0_DDR (PTGDD_PTGDD4)
 #define BACK_PLANE0_PIN (PTGD_PTGD4)

 #define BACK_PLANE0_DDR (PTGDD_PTGDD4)
 #define BACK_PLANE0_PIN (PTGD_PTGD4)

4.8 LCD Buffer
The polarity of the voltage waveform applied to each segment must be inverted periodically. To do so the driver works with
the values stored in the buffer named LCDBuffer. The length of the buffer must be equal to the maximum number of digits. In
this case the LCDBuffer length is eight.

To display a character in the digit1 the appropriate value must be stored in the LCDBuffer element 0. To display a character
in the digit2 the appropriate value must be stored in LCDBuffer element 1 and so on.

4.9 Displaying Characters
As shown in Figure 1 each digit is formed with 16 segments. These are not characters generated by default, so any number,
letter, or symbol must be designed by the user. The driver is provided with an array that allows displaying numbers and uppercase
letters. The array is called gau16CharactersArray and it is located in the LCD.c source file. To display numbers on the LCD,
the desired number value can be passed directly as the array index. The following example uses the array of characters to display
the numbers 01800999 on the LCD.

LCDBuffer[0].u16Word = gau16CharactersArray[0];
 LCDBuffer[1].u16Word = gau16CharactersArray[1];
 LCDBuffer[2].u16Word = gau16CharactersArray[8];
 LCDBuffer[3].u16Word = gau16CharactersArray[0];
 LCDBuffer[4].u16Word = gau16CharactersArray[0];
 LCDBuffer[5].u16Word = gau16CharactersArray[9];
 LCDBuffer[6].u16Word = gau16CharactersArray[9];
 LCDBuffer[7].u16Word = gau16CharactersArray[9];

 for(;;)
 {
 __RESET_WATCHDOG(); /* feeds the dog */

 vfnLCDDriver(); /* Call LCD Driver */
 }

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
Freescale Semiconductor, Inc.8

Functional Description

To display a letter, the desired letter value in ASCII format must be subtracted with a value equal to 30 hexadecimal (zero in
ASCII format) before passing it as the array index. The following example uses the array of characters to display the string
HELLO which begins in digit4.

 LCDBuffer[0].u16Word = BLANK_DIGIT;
 LCDBuffer[1].u16Word = BLANK_DIGIT;
 LCDBuffer[2].u16Word = BLANK_DIGIT;
 LCDBuffer[3].u16Word = gau16CharactersArray[‘H’ – ‘0’];
 LCDBuffer[4].u16Word = gau16CharactersArray[‘E’ – ‘0’];
 LCDBuffer[5].u16Word = gau16CharactersArray[‘L’ – ‘0’];
 LCDBuffer[6].u16Word = gau16CharactersArray[‘L’ – ‘0’];
 LCDBuffer[7].u16Word = gau16CharactersArray[‘O’ – ‘0’];

 for(;;)
 {
 __RESET_WATCHDOG(); /* feeds the dog */

 vfnLCDDriver(); /* Call LCD Driver */
 }

4.10 Creating New Characters
The user can generate characters or symbols by modifying the gau16CharactersArray array. Each element in the array must
have only the segments that need to be visible. If a character or symbol needs several segments to be displayed, each one of the
visible segments must be added with an OR operation. For example to display the letter “ B ” the segments that must be visible
are: A, B, C, D, E, F, and K.

The corresponding element in the array must be as follows:

(unsigned int)(SEG_A|SEG_B|SEG_C|SEG_D|SEG_E|SEG_F|SEG_K), //B

Any desired symbol can be added to the array of characters but you must be responsible for providing the correct definitions.

4.11 Displaying Message
In some cases the eight available digits on the LCD are not enough to display large messages. To solve this issue, the driver
provides a function that allows displaying any message regardless the length of the message. The function is named
vfnLCDPrintMessage and receives two parameters. The first parameter (u8pTextSource) is a pointer that points to the
beginning of the message you want displayed. The second parameter (u8TopDigit) is the length of the message. If the value
stored in u8TopDigit is higher than eight, the message is shifted from right to left. When the entire message is displayed the
action is repeated again. If the value stored in u8TopDigit is lower or the same as eight, the message remains static.

Each time the function is called by the main application the message is shifted one digit. This means that the shifting frequency
depends on how fast the function vfnLCDPrintMessage is called.

The following example displays the first 20 elements in the array named TestMsg. The shifting frequency is given by the value
of the variable u32Counter and the bus frequency.

 unsigned long u32Counter = 20000;

 for(;;)
 {
 __RESET_WATCHDOG(); /* feeds the dog */

 vfnLCDDriver(); /* Call LCD Driver */

 if(!(--u32Counter))
 {
 u32Counter = 20000;
 vfnLCDPrintMessage(&TestMsg[0],20);
 }
 }

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
9Freescale Semiconductor, Inc.

Functional Description

The function described above can be used to display a static message if the function is called only once. The next example
displays the first six elements of the message stored in TestMsg.

 vfnLCDPrintMessage(&TestMsg[0],6);

 for(;;)
 {
 __RESET_WATCHDOG(); /* feeds the dog */

 vfnLCDDriver(); /* Call LCD Driver */
 }

4.12 Code Size and Execution Time
Table 4. Required memory size (bus frequency = 20 MHz)

Execution Time (µS)Data Size (bytes)Code Size (bytes)Driver Functions

5.2050VfnLCDInit

9.21198VfnLCDDriver

1005134vfnLCDPrintMessage

3.8164LCD_ISR

Table 5. File sizes

Constant (bytes)Code (bytes)Data (bytes)File

11676239LCD.c

19391126C language overhead

——80Stack (default)

1351153245Entire project

Table 6. Performance details (bus frequency = 20 MHz)

UnitValuePerformance Detail

uS4.4Backplanes slew rate delay

mV16Maximum DC component

K ohms15Backplanes resistors

nA12Maximum current consumption x segment

5 Conclusion
This application note shows that anyTN LCD can be managed by using general purpose pins. The unique restriction is the
number of GPIO pins available on the microcontroller.

Dynamic LCD Driver Using GPIO Pins , Rev. 0, 4/2010
Freescale Semiconductor, Inc.10

Conclusion

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: AN3412
Rev. 0, 4/2010

Information in this document is provided solely to enable system and sofware implementers
to use Freescale Semiconductors products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or integrated circuits based
on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or guarantee
regarding the suitability of its products for any particular purpose, nor does Freescale
Semiconductor assume any liability arising out of the application or use of any product or
circuit, and specifically disclaims any liability, including without limitation consequential
or incidental damages. "Typical" parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including "Typicals",
must be validated for each customer application by customer's technical experts. Freescale
Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor prodcuts are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which failure of the
Freescale Semiconductor product could create a situation where personal injury or death
may occur. Should Buyer purchase or use Freescale Semiconductor products for any such
unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For
further information, see http://www.freescale.com or contact your Freescale sales
representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.

© 2010 Freescale Semiconductor, Inc.

	Introduction
	LCD Overview
	Hardware
	Functional Description
	Configuring the Driver
	Driver Initialization
	Driver Control
	LCD Refresh Cycle Frequency
	Contrast Control
	Maximum Number of Digits
	Configuring Backplanes
	LCD Buffer
	Displaying Characters
	Creating New Characters
	Displaying Message
	Code Size and Execution Time

	Conclusion

