
Freescale Semiconductor
Application Note

Document Number: AN4365
Rev. 0, 09/2011

Contents

JTAG . 2
On-Chip Emulation (OnCE) . 6
Nexus read/write access block 22
System initialization . 27
Creating the flash programming tool 29
References . 34
Revision history . 34

ppendix A
emo calling basic SSD functions. 35

Qorivva MPC56xx Flash
Programming Through
Nexus/JTAG
by: Andrew Turner

32-bit Applications Engineering
Microcontroller Solutions Group
The Qorivva MPC56xx family of devices has internal
flash memory used for code and data. The MPC56xx
Nexus debug interface can be used to program flash
memory using the JTAG communication protocol
through the JTAG port. This allows programming of the
internal flash memory with an external tool.

All MPC56xx devices have versions of the e200zx core
that support variable length encoding (VLE)
instructions. Most MPC56xx devices support both Book
E and VLE instructions; however, some MPC560x
devices utilize the e200z0 core that only supports VLE
instructions. Table 9 shows the core types used on
currently available MPC56xx devices. However, as
different variations of the MPC56xx family will be
released during the lifecycle of this document, it is
important that you confirm the core type on the target
MPC56xx device. For the remainder of this document,
code examples are provided in Book E. If the instruction
example differs when implemented in VLE, the
equivalent VLE instruction is also shown in brackets.

1
2
3
4
5
6
7
A
D

© Freescale Semiconductor, Inc., 2011. All rights reserved.

JTAG
For further information on VLE, please consult VLEPM, Variable-Length Encoding (VLE) Programming
Environments Manual, available from freescale.com.

This application note is adapted from AN3283, “MPC5500 Flash Programming Through Nexus/JTAG.” It
first addresses the JTAG and Nexus communication protocol. The JTAG discussion includes the JTAG
signals, TAP controller state machine, and the JTAG controller. The explanation of Nexus includes the
on-chip emulation (OnCE) module and the Nexus read/write (R/W) access block. As different versions of
the MPC56xx devices may use different JTAG and Nexus modules, the examples given here are generic
to suit this flash memory programming note. If more detailed information is required for a specific device,
please consult the reference manual.

After the communication protocols are described, this document goes into the details of the
Freescale-provided flash memory drivers and the requirements of the external tool for flash programming.
For the purpose of this document, the external tool consists of a PC application combined with interface
hardware that connects the PC to the JTAG port on an MPC56xx board or module.

This document is intended for anyone wanting to develop a flash memory programming tool for the
MPC56xx family of devices. Someone wanting to learn about the JTAG communication protocol, OnCE
module, or the Nexus R/W access block may also find this application note beneficial.

1 JTAG
JTAG is a serial communication protocol developed by the Joint Test Access Group. Originally developed
for boundary scan, JTAG is also used for communication with the Nexus debug interface (NDI) on the
MPC56xx devices. Figure 2 shows a block diagram of the NDI.

1.1 JTAG signals
The JTAG port of the MPC56xx devices consists of the TCK, TDI, TDO, TMS, and JCOMP pins. TDI,
TDO, TMS, and TCK are compliant with the IEEE 1149.1-2001 standard and are shared with the NDI
through the test access port (TAP) interface. See Table 1 for signal properties.

Table 1. JTAG signal properties

Name I/O Function

TCK I Test Clock

TDI I Test Data In

TDO O Test Data Out

TMS I Test Mode Select

JCOMP1

1 JCOMP is not available on all MPC56xx devices. In devices without a JCOMP pin, the
JTAG controller is always enabled and can only be reset by clocking TCK five times with
TMS high. See AN4088, “MPC5500/MPC5600 Nexus Support Overview.”

I JTAG Compliancy

RDY2

2 RDY is not available on all devices or all package types. When unavailable, the RDY
feature cannot be used to accelerate Nexus block move options

O Nexus/JTAG Ready
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 2

JTAG
1.2 TAP controller state machine
The TAP controller state machine controls the JTAG logic. The TAP controller state machine is a 16-state
finite state machine (FSM) as shown in Figure 1. The TCK and TMS signals control transition between
states of the FSM. These two signals control whether an instruction register scan or data register scan is
performed. Both the TDI and TMS inputs are sampled on the rising edge of TCK while the TDO output
changes on the falling edge of TCK. The value shown next to each state of the state machine in Figure 1
is the value of TMS required on the rising edge of TCK to transition to the connected state. Five rising
edges of TCK with TMS at logic 1 guarantees entry into the TEST LOGIC RESET state.
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 3

JTAG
Figure 1. TAP controller finite state machine
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 4

JTAG
1.3 JTAG Controller (JTAGC)
The devices in the MPC56xx family have a JTAG controller (JTAGC) that enables both boundary scan and
communication with the Nexus Development Interface (NDI). A block diagram of the NDI is shown in
Figure 2.

Figure 2. Nexus Development Interface (NDI) functional block diagram

1.3.1 JTAGC reset

The JTAGC is placed in reset when the TAP controller state machine is in the test logic reset state. The test
logic reset state is entered upon the assertion of the power-on reset signal, negation of JCOMP, or through
TAP controller state machine transitions controlled by TMS. Asserting power-on reset or negating JCOMP
results in asynchronous entry into the test logic reset state.

In devices without a JCOMP pin, the JTAGC is always enabled and can only be reset by clocking TCK
five times with TMS high. See AN4088, “MPC5500/MPC5600 Nexus Support Overview” for a table of
devices that implement the JCOMP pin.

JCOMP

Program, Data,
Ownership,
Watchpoint,

Trace

R/W Register,
Halt, Step,
Continue

Data,
Watchpoint,

Trace

Buffer

Program, Data,
Ownership,
Watchpoint,

Trace

R/W Register,
R/W Data,
Halt, Step,
Continue

Read/Write
Access

Cache

NZ6C3

Nexus Port Controller
(NPC)

JTAG Port Controller (JTAGC)

RDY TDI TCK TDO TMS EVTI

Auxiliary Port

MSEO[0:1] MCKO MDO(4 or 12) EVTO

• • •

Buffer

Off-Chip
Memory & I/O

XBAR

eDMAC

MMU

e200z6

Engine
1

CDC

Engine
2*

eTPU

NXDM

Data,
Watchpoint,

Trace

Buffer

NXFR

FlexRay

On-Chip
Memory & I/O

Buffer

* Some MPC55xx devices have one eTPU engine, others have two engines.

NDEDI
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 5

On-Chip Emulation (OnCE)
1.3.2 TAP sharing

The JTAGC allows communication with the NDI by sharing the test access port (TAP) with other TAP
controllers. The JTAGC initially has control of the TAP after the assertion of power-on reset or the
negation of JCOMP. As an example, selectable NDI TAP controllers for the MPC5674F include the Nexus
port controller, e200z7 OnCE, eTPU Nexus, and eDMA Nexus. The NDI TAP controllers are selected by
loading the appropriate opcode into the 5-bit instruction register of the JTAGC while JCOMP is asserted.
Table 2 shows the opcodes for the selectable TAP controllers. The JTAGC instructions available will vary
slightly depending on the core type of the MPC56xx device being programmed; however, the important
factor in the context of this flash memory programming note is that the ACCESS_AUX_TAP_ONCE
opcode is the same on all MPC56xx devices. For further details on the device-specific JTAGC instructions,
please consult the individual reference manual

When one of these opcodes is loaded, control of the TAP pins is transferred to the selected auxiliary TAP
controller. Any data input via TDI and TMS is passed to the selected TAP controller, and any TDO output
from the selected TAP controller is sent back to the JTAGC to be output on the TDO pin.

The JTAGC regains control of the TAP during the UPDATE-DR state if the PAUSE-DR state was entered.
Auxiliary TAP controllers are held in RUN-TEST/IDLE while they are inactive. This document will focus
on the OnCE TAP controller. While access to the other TAP controllers is similar, they are outside the
scope of this document and are not needed for flash memory programming.

2 On-Chip Emulation (OnCE)
All of the MPC56xx devices possess a OnCE module for debug control of the PowerPC® e200zx core. The
OnCE logic provides static debug capability including run-time control, register access, and memory
access to all memory-mapped regions including on-chip peripherals. The OnCE module is controlled by
the JTAG signals through the OnCE TAP controller.

2.1 Enabling the OnCE TAP Controller
Control of the OnCE module is obtained through the OnCE TAP controller. To enable the OnCE TAP
controller, the JTAGC must have control of the TAP and the ACCESS_AUX_TAP_ONCE (0b10001)
opcode must be loaded into the 5-bit JTAGC instruction register with the JCOMP signal set to a logic 1.
The JTAGC instruction register is loaded by scanning in the appropriate bits on the TDI pin, least
significant bit (LSB) first, while in the SHIFT-IR state of the TAP controller state machine shown in
Figure 1. The last bit is shifted in with TMS set to a logical 1 causing transition from the SHIFT-IR state

Table 2. Selected JTAG client select instructions

JTAGC Instruction Opcode Description

ACCESS_AUX_TAP_NPC 10000 Enables access to the NPC TAP controller

ACCESS_AUX_TAP_ONCE 10001 Enables access to the e200z7 OnCE TAP controller

ACCESS_AUX_TAP_eTPU 10010 Enables access to the eTPU Nexus TAP controller

ACCESS_AUX_TAP_NXDM 10011 Enables access to the eDMA_A Nexus TAP controller

ACCESS_AUX_TAP_NXFR 10100 Enables access to the FlexRay Nexus TAP controller
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 6

On-Chip Emulation (OnCE)
to the EXIT1-IR state. Table 3 shows the steps required to enable the OnCE TAP controller, assuming the
TAP controller state machine is initially in the RUN-TEST/IDLE state. The state machine is returned to
the RUN-TEST/IDLE state when the write is complete.

Figure 3 shows the required signal transitions on a logic analyzer for enabling the OnCE TAP controller.

Figure 3. Signal transitions for enabling the OnCE TAP controller

2.2 OnCE register access
The OnCE module provides several registers for static debug support. The OnCE Command register
(OCMD) is a special register and acts as the IR for the TAP controller state machine and is used to access
other OnCE resources.

Table 3. Steps for enabling the OnCE TAP controller

TCK Tick TMS TDI1

1 A value of X signifies that the signal value does not
matter.

Resulting state

1 1 X SELECT-DR-SCAN

2 1 X SELECT-IR-SCAN

3 0 X CAPTURE-IR

4 0 X SHIFT-IR

5 0 1 SHIFT-IR

6 0 0 SHIFT-IR

7 0 0 SHIFT-IR

8 0 0 SHIFT-IR

9 1 1 EXIT1-IR

10 1 X UPDATE-IR

11 0 X RUN-TEST/IDLE
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 7

On-Chip Emulation (OnCE)
2.2.1 OnCE Command register

The OnCE Command register (OCMD) is a 10-bit shift register that receives its serial data from the TDI
pin and acts as the IR register of the TAP controller state machine. The OCMD is updated when the TAP
controller enters the UPDATE-IR state. It contains fields for controlling access to a resource, as well as
controlling single step operations and exit from debug mode. Figure 4 shows the register definition for the
OnCE command register. Table 4 and Table 5 display the bit definitions for the command register and
register addressing selection, respectively.

0 1 2 3 4 5 6 7 8 9

R/W GO EX RS[0:6]

Reset - 0b10_0000_0010 on assertion of JCOMP, during power on reset, or while in the TEST LOGIC RESET state

Figure 4. OnCE Command register (OCMD)

Table 4. OCMD bit definitions

Bit(s) Name Description

0 R/W Read/Write Command bit
The R/W bit specifies the direction of data transfer.
0 Write the data associated with the command into the register specified by RS[0:6]
1 Read the data contained in the register specified by RS[0:6]
Note: The R/W bit is ignored for read-only or write-only registers. In addition, it is ignored for

all bypass operations. When performing writes, most registers are sampled in the
Capture-DR state into a 32-bit shift register, and subsequently shifted out on TDO during
the first 32 clocks of Shift-DR.

1 GO Go Command bit
0 Inactive (no action taken)
1 Execute instruction in IR
If the GO bit is set, the chip will execute the instruction that resides in the IR register in the
CPUSCR. To execute the instruction, the processor leaves debug mode, executes the
instruction, and if the EX bit is cleared, returns to debug mode immediately after executing the
instruction. The processor goes on to normal operation if the EX bit is set, and no other debug
request source is asserted. The GO command is executed only if the operation is a read/write
to CPUSCR or a read/write to “No Register Selected.” Otherwise, the GO bit is ignored. The
processor will leave debug mode after the TAP controller Update-DR state is entered.
On a GO + NoExit operation, returning to debug mode is treated as a debug event, thus
exceptions such as machine checks and interrupts may take priority and prevent execution of
the intended instruction. Debug firmware should mask these exceptions as appropriate. The
OSR[ERR] bit indicates such an occurrence.
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 8

On-Chip Emulation (OnCE)
Table 5 shows the OnCE register address. This example is taken from an e200z7 core MPC56xx device.
Some of the registers shown may not be available on devices with other cores. However, the registers used
for flash memory programming are identical across all MPC56xx e200zx cores.

Only the DBCR0[EDM] is accessible in the DBCR0 register prior to that bit being set. Setting
DBCR0[EDM] enables external debug mode and disables software updates to debug registers. The CPU
should be placed in debug mode via the OCR[DR] bit prior to setting the DBCR0[EDM] bit. For more
information on enabling external debug mode, see Section 2.5, “Enabling external debug mode and other
initialization.”

2 EX Exit Command bit
0 Remain in debug mode
1 Leave debug mode
If the EX bit is set, the processor will leave debug mode and resume normal operation until
another debug request is generated. The Exit command is executed only if the Go command
is issued, and the operation is a read/write to CPUSCR or a read/write to “No Register
Selected.” Otherwise, the EX bit is ignored.
The processor will leave debug mode after the TAP controller Update-DR state is entered. Note
that if the DR bit in the OnCE control register is set or remains set, or if a bit in the DBSR is
set, or if a bit in the DBSR is set and DBCR0[EDM]=1 (external debug mode is enabled), then
the processor may return to debug mode without execution of an instruction, even though the
EX bit was set.

3–9 RS Register Select
The Register Select bits define which register is source (destination) for the read (write)
operation. Attempted writes to read-only registers are ignored.

Table 5. OnCE register addressing (e200z7 core)

OCMD, RS[0:6] Register selected

000 0000—000 0001 Invalid value

000 0010 JTAG DID (read-only)

000 0011—000 1111 Invalid value

001 0000 CPU Scan Register (CPUSCR)

001 0001 No register selected (bypass)

001 0010 OnCE Control Register (OCR)

001 0011—001 1111 Invalid value

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 Data Value Compare 1 (DVC1)

Table 4. OCMD bit definitions (continued)

Bit(s) Name Description
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 9

On-Chip Emulation (OnCE)
2.2.2 Example of OnCE register write

OnCE registers can be written by selecting the register using the RS[0:6] field and clearing the R/W bit in
the OnCE Command register (OCMD). This requires a scan through the IR path of the TAP controller state
machine to write the OCMD and a scan through the DR path of the TAP controller state machine to write
the selected register. As mentioned above, the external debug mode bit, DBCR0[EDM], must be set to a
logical 1 to allow access to most of the OnCE registers. Therefore, writing the DCBR0 register to set the

010 0111 Data Value Compare 2 (DVC2)

010 1000 Instruction Address Compare 5 (IAC5)

010 1001 Instruction Address Compare 6 (IAC6)

010 1010 Instruction Address Compare 7 (IAC7)

010 1011 Instruction Address Compare 8 (IAC8)

010 1100 Debug Counter Register (DBCNT)

010 1101 Debug PCFIFO (PCFIFO) (read-only)

010 1110 External Debug Control Register 0 (EDBCR0)

010 1111 External Debug Status Register 0 (EDBSR0)

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100 Debug Control Register 3 (DBCR3)

0011 0101 Debug Control Register 4 (DBCR4)

011 0110 Debug Control Register 5 (DBCR5)

011 0111 Debug Control Register 6 (DBCR6)

011 1000—011 1100 Invalid value (do not access)

011 1101 Debug Data Acquisition Message Register (DDAM)

011 1110 Debug Event Control (DEVENT)

011 1111 Debug External Resource Control (DBERC0)

111 0000—111 1001 General Purpose Register Selects [0:9]

111 1010 Cache Debug Access Control Register (CDACNTL)

111 1011 Cache Debug Access Data Register (CDADATA)

111 1100 Nexus3 access

111 1101 LSRL select

111 1110 Enable_OnCE (and bypass)

111 1111 Bypass

Table 5. OnCE register addressing (e200z7 core) (continued)

OCMD, RS[0:6] Register selected
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 10

On-Chip Emulation (OnCE)
EDM bit is used as an example of a writing a OnCE register. Figure 5 shows the register definition of
DBCR0.

The example of writing DBCR0 is divided into two parts: writing OCMD to select a write to DBCR0, and
writing the value 0x80000000 to DBCR0. All data will be scanned in least significant bit first.

Figure 6 shows writing the value 0b00_0011_0001 to OCMD through the IR path to select a write to
DBCR0 assuming the TAP controller state machine is initially in the RUN-TEST/IDLE state. The state
machine is returned to the RUN-TEST/IDLE state when the write is complete.

Figure 6. Signal transitions for writing OCMD to select a write to DBCR0

Figure 7 shows writing the value 0x80000000 to DBCR0 through the DR path to set the EDM bit assuming
the TAP controller state machine is initially in the RUN-TEST/IDLE state. The state machine is returned
to the RUN-TEST/IDLE state when the write is complete.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDM IDM RST ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC1 DAC2

W

Reset 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RET 0 0 0 0 DEVT1 DEVT2 DCNT1 DCNT2 CIRPT CRET 0 0 0 0 FT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1DBCR0[EDM] is affected by a Nexus port reset or a power on reset, but not by an assertion of RESET. All other
bits are reset by processor reset (including assertion of RESET) as well as by a power on reset.

Figure 5. DBCR0 register
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 11

On-Chip Emulation (OnCE)
Figure 7. Signal transitions for writing DBCR0

2.2.3 Example of OnCE register read

OnCE registers can be read by selecting the register using the RS[0:6] field and setting the R/W bit in the
OnCE Command register (OCMD). This requires a scan through the IR path of the TAP controller state
machine to write the OCMD and a scan through the DR path of the TAP controller state machine to read
the selected register. A write to DBCR0 to set the EDM bit was used in Section 2.2.2, “Example of OnCE
register write,” so this read example will read DBCR0 after the EDM bit is set. Figure 5 shows the register
definition of the DBCR0.

Figure 8 shows writing the value 0b10_0011_0001 to OCMD through the IR path to select a read from
DBCR0 assuming the TAP controller state machine is initially in the RUN-TEST/IDLE state. The state
machine is returned to the RUN-TEST/IDLE state when the write is complete.

Figure 8. Signal transitions for writing OCMD to select a read from DBCR0
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 12

On-Chip Emulation (OnCE)
Figure 9 shows reading the value 0x80000000 from DBCR0 through the DR path assuming the TAP
controller state machine is initially in the RUN-TEST/IDLE state. The state machine is returned to the
RUN-TEST/IDLE state when the read is complete.

Figure 9. Signal transitions for reading DBCR0

2.3 OnCE Status Register
The OnCE Status Register (OSR) is a special register in terms of how it is read. Status information related
to the state of the CPU is latched into the OnCE Status Register when the OnCE TAP controller state
machine enters the CAPTURE-IR state. The status information is shifted out serially through the
SHIFT-IR state on TDO. The OSR is a 10-bit register like the OCMD. Therefore, the status information
can be read while writing OCMD. The OSR is shown in Figure 10.

Figure 11 shows reading the OnCE status register on TDO while writing the OCMD on TDI assuming the
TAP controller state machine is initially in the RUN-TEST/IDLE state. The state machine is returned to
the RUN-TEST/IDLE state when the read is complete. The OCMD is written with the value
0b10_0001_0001 choosing a read of No Register Selected. The data read on TDO from the OnCE status
register is 0b10_0000_1001 showing that the OSR[MCLK] and OSR[DEBUG] status bits are set. All data
is scanned in and out least significant bit first.

0 1 2 3 4 5 6 7 8 9

MCLK ERR CHKSTOP RESET HALT STOP DEBUG 0 1

Figure 10. OnCE Status Register (OSR)
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 13

On-Chip Emulation (OnCE)
Figure 11. Signal transitions of reading the OnCE Status Register

2.4 Entering debug mode during reset
There are several different methods of entering debug mode. This section covers entering debug mode
while the RESET pin is asserted. Entering debug mode while the RESET pin is asserted is useful, because
the debug session begins with the CPU in a known state. The OnCE Control Register (OCR) controls entry
into debug mode for this method. Figure 12 shows the register definition for the OCR.

Some MPC56xx devices with a Harvard architecture have additional bits in the range 0–15. These are
beyond the scope of this application note and are detailed in the device reference manuals.

The OCR[DR] bit is the CPU debug request control bit; it requests that the CPU unconditionally enter
debug mode. The OCR[WKUP] bit is the wakeup request bit used to guarantee that the CPU clock is
running. Debug status and CPU clock activity can be determined by reading the DEBUG and MCLK bits
in the OnCE status register. After entering debug mode, the OCR[DR] bit should be cleared leaving the
OCR[WKUP] bit set. OCR[FDB] should also then be set to enable recognition of software breakpoints.
See Section 2.12.1, “Software breakpoints,” for details on software breakpoints. The steps required for
entering debug mode during reset assuming the OnCE TAP controller has been enabled via the method
described in Section 2.1, “Enabling the OnCE TAP Controller,” are listed below:

1. Assert RESET.

2. Set the OCR[DR] and OCR[WKUP] bits.

3. Deassert RESET.

4. Verify debug mode via the DEBUG bit in the OnCE status register.

5. Clear the OCR[DR] bit while leaving OCR[WKUP] set and set OCR[FDB].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 DMDIS 0

D
W

D
I

D
M

D
G

D
E

0 WKUP FDB

D
R

Reset - 0x0000_0000 on negation of JCOMP, power on reset, or entering TEST LOGIC RESET state

Figure 12. OnCE Control Register (OCR)
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 14

On-Chip Emulation (OnCE)
In order to program the flash memory through the Nexus port, the boot mode must be set such that the
internal flash and Nexus state are both enabled. This is determined in slightly different ways on different
MPC56xx family members. Some use BOOTCFG pins, whereas others use FAB (Force Alternate Boot)
and ABS (Alternate Boot Selector) pins. Please consult the BAM chapter of the relevant reference manual
for detailed information on boot mode setting.

2.5 Enabling external debug mode and other initialization
Before enabling external debug mode, the CPU should be placed into debug mode via the method outlined
in Section 2.4, “Entering debug mode during reset.” The external tool should then write the DBCR0[EDM]
bit to enable external debug mode. Note that the first write to DBCR0 will only affect the EDM bit. All
other bits in that register require DBCR0[EDM] to be set prior to writing them. After enabling external
debug mode, the DBSR status bits should be cleared by writing 0xFFFFFFFF to DBSR using the method
described in Section 2.2, “OnCE register access.” The register definition of DBSR is shown in Figure 13.

2.6 CPU Status and Control Scan Chain Register (CPUSCR)
CPU information is accessible via the OnCE module through a single scan chain register named the
CPUSCR. The CPUSCR provides access to this CPU information and a mechanism for an external tool to
set the CPU to a desired state before exiting debug mode. The CPUSCR also provides the ability to access
register and memory contents. Figure 14 shows the CPUSCR. Once debug mode has been entered, it is
required to scan in and update the CPUSCR prior to exiting debug mode or single stepping. Access to the
CPUSCR is controlled by the OCMD as described in Section 2.2, “OnCE register access.”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R IDE UDE MRR ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC1
R

DAC1
W

DAC2
R

DAC2
W

W

Reset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RET 0 0 0 0 DEVT
1

DEVT
2

DCNT
1

DCNT
2

CIRP
T

CRET 0 0 0 0 CNT1
RG

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 13. Debug Status Register (DBSR)
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 15

On-Chip Emulation (OnCE)
Figure 14. CPU Status and Control Scan Chain Register

2.6.1 Instruction Register (IR)

After entering debug mode, the opcode of the next instruction to be executed will be in the Instruction
Register (IR). The value in the IR should be saved for later restoration if continuation of the normal
instruction stream is desired.

The external tool has the capability to put instructions directly into the IR via the CPUSCR. These
instructions can then be executed by the debug control block. By selecting appropriate instructions and
single stepping them, the external tool can examine or change memory locations or CPU registers. See
Section 2.7, “Single step,” for details on single step.

2.6.2 Control State register (CTL)

The Control State register (CTL) stores the value of certain internal CPU state variables before debug
mode is entered. Figure 15 shows the CTL register. Some MPC56xx devices have additional bit fields
populated in the bit range 0–15. These bits are not important in the context of this document. For further
information, please see the relevant e200zx core guide, available at www.freescale.com.

TDO

TDI

TCK

MSR

WBBR high

32

32
0 31

0 31

PC

32
0 31

IR

32
0 31

CTL

32
0 31

WBBR low

32
0 31
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 16

On-Chip Emulation (OnCE)
The “*” in the CTL register represents internal processor state bits that should be restored to the value they
held when debug mode was entered prior to exiting debug mode. If a single step is executing an instruction
that is in the normal instruction flow of the program that was running when debug mode was entered, these
bits should be restored. If a single step is executing an instruction outside the normal instruction flow, these
bits should be cleared to zero.

The PCOFST field indicates whether the value in the PC portion of the CPUSCR must be adjusted prior
to exiting debug mode. Due to the pipelined nature of the CPU, the PC value must be backed-up under
certain circumstances. The PCOFST field specifies the value to be subtracted from the PC value when
debug mode was entered. This PC value should be adjusted according to PCOFST prior to exit from debug
mode if continuation of the normal instruction stream is desired. In the event that PCOFST is non-zero,
the IR should be loaded with a no-op instruction instead of the value in the IR when debug mode was
entered. The preferred no-op instruction is ori 0,0,0 (0x60000000). Using VLE the preferred no-op is e_ori
0,0,0 (0x1800D000).

Below are the possible values and meanings of the PCOFST field.

0000 = No correction required.

0001 = Subtract 0x04 from PC.

0010 = Subtract 0x08 from PC.

0011 = Subtract 0x0C from PC.

0100 = Subtract 0x10 from PC.

0101 = Subtract 0x14 from PC.

All other encodings are reserved.

After entering debug mode, the PCINV field overrides the PCOFST field and indicates if the values in the
PC and IR are invalid. If PCINV is 1, then exiting debug mode with the saved values in the PC and IR will
have unpredictable results. Debug firmware should initialize the PC and IR values in the CPUSCR with
desired values before exiting debug if this bit was set when debug mode was initially entered.

0 = No error condition exists.

1 = Error condition exists. PC and IR are corrupted.

The FFRA control bit causes the contents of WBBR to be used as the rA (rS for logical and shift
operations) operand value of the first instruction to be executed when exiting debug mode or the
instruction to be single stepped. This allows the external tool to update CPU registers and memory. rA and
rS are instruction syntax used to identify a source GPR.

0 = No action.

1 = Contents of WBBR used as rA (rS for logical and shift operations) operand value.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

* PCOFST

P
C

IN
V

F
F

R
A

IR
S

TA
T

0

IR
S

TA
T

1

IR
S

TA
T

2

IR
S

TA
T

3

IR
S

TA
T

4

IR
S

TA
T

5

IR
S

TA
T

6

IR
S

TA
T

7

IR
S

TA
T

8

IR
S

TA
T

9

Figure 15. Control State Register (CTL)
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 17

On-Chip Emulation (OnCE)
The IRStat0-9 bits provide status information to the external tool. The IRStat8 bit indicates that the
instruction in the IR is a VLE or non-VLE instruction. For MPC56xx devices with an e200z0 core only
VLE instructions are used and this bit is reserved.

0 = IR contains a BookE instruction.

1 = IR contains a PowerPC VLE instruction, aligned in the most significant portion of IR if 16-bit.

2.6.3 Program Counter register (PC)

The PC stores the value of the program counter that was present when debug mode was entered. The PC
value is affected by operations performed during debug mode and must be restored prior to exiting debug
mode. It may be necessary to adjust the PC before exiting debug mode according the PCOFST field in the
CTL. If the external tool wants to redirect program flow to an arbitrary location, the PC and IR should be
initialized corresponding to the first instruction to be executed. Alternatively, the IR may be set to a no-op
instruction and the PC may be set to the location prior to the location at which it is desired to redirect flow.
When debug mode is exited, the no-op will execute and then instruction fetch and execution will begin at
the location which it is desired to redirect flow.

2.6.4 Write-Back Bus Register (WBBRlow, WBBRhigh)

WBBR is used as a means of passing operand information to/from the CPU from/to the external tool.
Whenever the external tool needs to read the contents of a CPU register or memory location, it can force
the CPU to single step an instruction that brings that information to WBBR. To write the contents of a CPU
register or memory location, the external tool can force the CPU to single step an instruction that uses the
information in WBBR. For the purpose of this document, only WBBRlow will be used. WBBRhigh is used
for SPE instructions that generate 64-bit results or use 64-bit operands. Such instructions are outside the
scope of this document.

2.6.5 Machine State Register (MSR)

The MSR is used to read/write the machine state register of the CPU. This register is affected by operations
performed while in debug mode. If consistency of the machine state is desired, the MSR should be saved
when entering debug mode and restored prior to exiting debug mode.

2.7 Single step
Single stepping of instructions is achieved by first placing the CPU in debug mode if the CPU is not
already in debug mode. The next step is to write the appropriate information into the CPU scan chain
register (CPUSCR), followed by writing to OCMD to set the OCMD[GO] bit and clear the OCMD[EX]
bit with the OCMD[RS] field indicating either the CPUSCR or No Register Selected. The CPUSCR
register is covered in Section 2.6, “CPU Status and Control Scan Chain Register (CPUSCR).” Once debug
mode has been entered, it is required that a scan in and update to the CPUSCR must be performed prior to
single stepping.

For single step, the CPU will return to debug mode after executing a single instruction. The external tool
should read the OnCE Status Register (OSR) to verify that the CPU has returned to debug mode with no
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 18

On-Chip Emulation (OnCE)
error by verifying that the OSR[DEBUG] bit is set and OSR[ERR] bit is cleared. For details on reading
the OSR, see Section 2.3, “OnCE Status Register.”

During single step, exception conditions can occur, if not masked, and may prevent the desired instruction
from being executed. After stepping over the instruction, the core will fetch the next instruction. The new
program counter and instruction will be loaded into the PC and IR portions of the CPUSCR. Care must be
taken to insure that the next instruction fetch after the single step is to a valid memory location. See
Section 4.1, “Setting up the memory management unit,” and Section 4.2, “Internal SRAM initialization,”
for details. For MPC56xx devices with Book E and VLE capable cores, the CTL[IRstat8] bit indicates that
the instruction in the IR is a VLE or non-VLE instruction. For MPC56xx devices with an e200z0 core,
only VLE instructions are available and the CTL[IRstat8] is reserved. The CTL[FFRA], CTL[IRStat8],
and the CTL bits indicated by “*” should be set as appropriate before single stepping. All other CTL bits
should be set to zero. See Section 2.6.2, “Control State register (CTL),” for details on FFRA, IRStat8, and
the bits indicated by “*”.

Single stepping can be used during normal execution of the instruction flow or to force execution of a
particular instruction by loading the desired instruction into the IR portion of the CPUSCR. By forcing
execution of particular instructions, single stepping can be used for memory and register access by the tool.
See Section 2.11, “OnCE memory access,” Section 2.9, “GPR access,” and Section 2.10, “SPR access,”
for details.

2.8 Exit from debug mode to normal execution
Exiting debug mode and returning to normal execution is achieved by first clearing the OCR[DMDIS] and
OCR[DR] bits if not already clear while leaving the OCR[MCLK] set. The next step is to write the
appropriate information into the CPU scan chain register (CPUSCR), followed by a write to OCMD to set
the OCMD[GO] bit and OCMD[EX] bit with the OCMD[RS] field indicating either the CPUSCR or No
Register Selected. Once debug mode has been entered, it is required that a scan in and update to the
CPUSCR be performed prior to exiting debug mode. The CPUSCR register is covered in Section 2.6,
“CPU Status and Control Scan Chain Register (CPUSCR).” If continuation of the normal instruction
stream is desired, the external tool is responsible for inspection of the CTL register value when debug
mode was entered to determine if the PC is invalid or needs to be offset prior to exiting debug mode. Also,
the internal state bits indicated by “*” in the CTL should be restored to their original value when debug
mode was entered if continuation of the normal instruction stream is desired. The IRStatus bits of the CTL
should be set to zero with the exception of CTL[IRStat8] on MPC56xx devices with VLE (MPC56xx
devices with e200z0 cores are only VLE instructions). CTL[IRStat8] indicates if the current instruction in
the IR is a VLE or non-VLE instruction. See Section 2.6.2, “Control State register (CTL),” for details.

To begin instruction execution from an arbitrary location, which is the case when executing the
Freescale-provided flash memory drivers, the PC should be set to the desired location for execution to
begin minus 0x4. The IR should be set to a no-op (ex: Book E=0x60000000 VLE =1800D000), then exit
debug mode as mentioned above. The no-op will be executed, then the core will begin fetching instructions
at the desired location for execution.
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 19

On-Chip Emulation (OnCE)
2.9 GPR access
The OnCE module provides the ability to read and write the general purpose registers (GPR) while in
debug mode. Reading a general purpose register is achieved by single stepping over an ori instruction. As
an example, to read the lower 32 bits of GPR r1, an ori r1,r1,0 instruction is executed (for VLE e_ori
r1,r1,0), and the result of the instruction will be latched into WBBRlow. The external tool can then read
the contents of WBBRlow by scanning out the CPUSCR.

Writing a register is achieved by single stepping over an ori (for VLE e_ori) instruction with the
CTL[FFRA] bit set causing the WBBRlow to be used as the source register for the instruction. As an
example, to write the lower 32 bit of GPR r1, an ori r1, X, 0 (VLE e_ori r1,X,0) is executed with the data
to be written in WBBRlow. The X in the instruction will be replaced by the WBBRlow register. See
Section 2.7, “Single step,” for details on single stepping.

2.10 SPR access
The OnCE module provides the ability to read and write the special purpose registers (SPR) while in debug
mode. Reading a special purpose register is achieved by saving the value in a GPR, single stepping over a
mfspr instruction which brings the SPR value into both the saved GPR and WBBRlow, and then restoring
the GPR. As an example, to read SPR 624, first save r31. Then execute mfspr r31, 624. The value that
was in SPR 624 will now be in WBBRlow of the CPUSCR and can be read by the external tool. Finally r31
should be restored.

To write an SPR, single step over a mtspr instruction with the value to write to the SPR in WBBRlow and
the CTL[FFRA] bit set. For example, to write SPR 624 with the value 0x10050000, single step over mtspr
624, X with the value to write to SPR 624 in WBBRlow and CTL[FFRA] set. The X in the instruction will
be replaced by WBBRlow. See Section 2.7, “Single step,” for details on single stepping.

DBCR0–3, DBSR, DBCNT, IAC1–4, and DAC1–2 cannot be written by single stepping over mtspr like
the other SPRs while in external debug mode. They can, however, be written by the method detailed in
Section 2.2, “OnCE register access.”

2.11 OnCE memory access
There are two ways to access memory mapped locations on the MPC56xx devices: one is through the
OnCE module, and the other is through the Nexus R/W access block. The OnCE module method requires
that the CPU be in debug mode and make use of the memory management unit (MMU) and cache. The
Nexus R/W access block does not require that the CPU be in debug mode and bypasses the MMU and
cache. The Nexus R/W access block is also the faster method of accessing memory. This section covers
access to memory mapped locations using the OnCE method. The Nexus R/W access block is covered in
Section 3, “Nexus read/write access block.”

Writing a memory location is achieved by first reading the contents of a GPR and saving that value, writing
that GPR with the value to be written to memory, and single stepping over a stw, sth, or stb (VLE e_stw,
e_sth, e_stb) instruction with the address to write in WBBRlow and the CTL[FFRA] bit set. The GPR that
was previously saved should be used as the rS field of the store instruction. After single stepping over the
store instruction, the saved GPR value should then be restored. For example, to write the word
0xA5A5A5A5 to location 0x40000000, first save the value in a r31. Then write the value 0xA5A5A5A5
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 20

On-Chip Emulation (OnCE)
to r31. The next step is to step over the instruction stw r31, 0(X) with 0x40000000 in WBBRlow and the
CTL[FFRA] bit set. The X in the instruction is replaced by the WBBRlow register. GPR r31 should then
be restored to its saved value.

Reading a memory location is achieved by first reading the contents of a GPR and saving that value, then
single stepping a lwz, lhz, or lbz (VLE e_lwz, e_lhz, e_lbz) with the address to be read in WBBRlow and
the CTL[FFRA] bit set. The GPR that was previously saved should be used as the rD field of the load
instruction. The value read from the memory location will then be in both the WBBRlow and the GPR
whose value was previously saved. After single stepping the load instruction and getting the read data from
WBBRlow, the saved GPR value should then be restored. For example, to read a word from address
location 0x40000000, first save the value in r31. Then single step over the instruction lwz r31, 0(X) with
0x40000000 in WBBRlow and the CTL[FFRA] bit set. The X in the instruction is replaced by the
WBBRlow register. After the single step is complete, the data read from memory can be read by the external
tool from WBBRlow. GPR r31 should then be restored to its saved value. See Section 2.7, “Single step,”
for details on single stepping.

2.12 Breakpoints
The OnCE debug module provides the capability for both software and hardware breakpoints to be set at
a particular address. For Flash programming using the Freescale provided Flash drivers, software
breakpoints are the easiest to use. As a reference, instruction address hardware breakpoints will also be
discussed in this section.

2.12.1 Software breakpoints

Recognition of software breakpoints by the OnCE module are enabled by setting the OCR[FDB] bit along
with the DBCR0[EDM] bit. Upon executing a bkpt pseudo-instruction, the CPU enters debug mode after
the instruction following the bkpt pseudo-instruction has entered the instruction register. The bkpt
pseudo-instruction is defined to be an all zeroes instruction opcode. The Freescale-provided flash memory
drivers have the bkpt pseudo-instruction built in and execution of this instruction at the completion of the
driver can be enabled or disabled. This feature of the drivers is discussed in Section 5.2.2, “FlashInit.”

2.12.2 Instruction address hardware breakpoints

The OnCE module provides the capability to set up four instruction address hardware breakpoints. When
an instruction address breakpoint is hit, the CPU will enter debug mode prior to executing the instruction
at that address location. When debug mode is entered due to a breakpoint, the CPUSCR will hold the
address at which the breakpoint was set in the PC, and the IR will contain the instruction at that address.

To use an instruction address hardware breakpoint, the following steps are required:

1. Write the address at which a breakpoint is desired to one of the instruction address compare
registers IAC1, IAC2, IAC3, or IAC4. Some MPC56xx devices have more than four IAC registers,
up to a maximum of eight.

2. Enable the instruction address compare debug event in the DBCR0 by setting the appropriate
enable bit; DBCR0[IAC1], DBCR0[IAC2], DBCR0[IAC3], or DBCR0[IAC4].

3. Exit from debug mode to normal execution to execute the desired code.
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 21

Nexus read/write access block
4. Poll the DBSR for the appropriate status bit to be set; DBSR[IAC1], DBSR[IAC2], DBSR[IAC3],
or DBSR[IAC4]. Figure 13 shows the register definition of DBSR.

5. If the appropriate status bit in DBSR is set, verify entry into debug mode by reading the OnCE
status register.

6. Clear the appropriate status bit by writing a 1 to that bit location in the DBSR; DBSR[IAC1],
DBSR[IAC2], DBSR[IAC3], or DBSR[IAC4].

3 Nexus read/write access block
The Nexus module provided on the cores of the MPC56xx family of devices offers the capability for
program trace, data trace, ownership trace, watchpoint messaging and trigger, and read/write (R/W) access
to memory mapped regions. This section covers R/W access using the Nexus R/W access block. The other
features of the Nexus module are beyond the scope of this document and will not be covered. Some
versions of the MPC56xx devices with an e200z0 core do not have a Nexus read/write access block.
Further details can be found in AN4088, “MPC5500/MPC5600 Nexus Support Overview.”

Unlike the OnCE method of memory access, the Nexus R/W access block provides the ability to read and
write memory without having to stop code execution by entering debug mode. The Nexus R/W access
method provides faster memory access over the OnCE method due to fewer JTAG scans, and it doesn’t
require loading and single stepping over any instructions. The Nexus R/W access block is independent of
the CPU and therefore bypasses the MMU and cache.

The R/W access block is controlled by three Nexus registers. These registers are the Read/Write Access
Control/Status register (RWCS), Read/Write Access Data register (RWD), and Read/Write Access
Address register (RWA). Access to the Nexus registers is covered in Section 3.1, “Nexus register access.”

RWCS is shown in Figure 17 and Table 6 gives the field descriptions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R AC RW SZ MAP PR BST 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0x7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R CNT ERR DV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0x7

Figure 16. Read/Write Access Control/Status register (RWCS)
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 22

Nexus read/write access block
Table 7 details the status bit encodings.

The Read/Write Access Data register is shown in Figure 17.

Table 6. RWCS field description

Bit(s) Name Description

31 AC Access control.
0 End access
1 Start access

30 RW Read/write select.
0 Read access
1 Write access

29–27 SZ
[2:0]

Word size.
000 8-bit (byte)
001 16-bit (half-word)
010 32-bit (word)
011 64-bit (double-word - only in burst mode)
100–111 Reserved (default to word)

26–24 MAP
[2:0]

MAP select.
000 Primary memory map
001–111 Reserved

23–22 PR
[1:0]

Read/write access priority.
00 Lowest access priority
01 Reserved (default to lowest priority)
10 Reserved (default to lowest priority)
11 Highest access priority

21 BST Burst control.
0 Module accesses are single bus cycle at a time.
1 Module accesses are performed as burst operation.

20–16 — Reserved.

15–2 CNT
[13:0]

Access control count. Number of accesses of word size SZ.

1 ERR Read/write access error. See Table 7.

0 DV Read/write access data valid. See Table 7.

Table 7. Read/Write Access Status Bit Encoding

Read action Write action ERR DV

Read access has not completed Write access completed without error 0 0

Read access error has occurred Write access error has occurred 1 0

Read access completed without error Write access has not completed 0 1

Not allowed Not allowed 1 1
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 23

Nexus read/write access block
The Read/Write Access Address register is shown in Figure 18.

3.1 Nexus register access
Access to the Nexus registers is enabled by loading the Nexus3-Access instruction (0b00_0111_1100) into
the OCMD. See Section 2.2.1, “OnCE Command register,” for details on the OCMD. Once the
Nexus3-Access instruction has been loaded, reading/writing a Nexus register requires two passes through
the DR path of the OnCE TAP controller state machine, detailed below. For details on the TAP controller
state machine, see Section 1.2, “TAP controller state machine.”

1. The first pass through the DR selects the Nexus register to be accessed and whether the access will
be a read or a write. This is achieved by loading an 8-bit value LSB first into the JTAG Data
Register (DR). This register has the following format:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Read/Write Data

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0xA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Read/Write Data

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0xA

Figure 17. Read/Write Access Data register (RWD)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R Read/Write Address

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0x9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R Read/Write Address

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Nexus Reg 0x9

Figure 18. Read/Write Access Address register (RWA)
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 24

Nexus read/write access block
2. The second pass through the DR then shifts the data in or out depending on the type of access. Data
is always shifted LSB first.

a) During a read access, the data is latched from the Nexus register when the TAP controller state
machine passes through the CAPTURE-DR state. The data from the Nexus register can be read
by the external tool by shifting the data out in the SHIFT-DR state. The last bit is shifted out
with TMS set to 1, causing a transition to the EXIT1-DR state.

b) During a write access, the data is shifted in while in the SHIFT-DR state. The last bit is shifted
in with TMS set to 1, causing transition to the EXIT1-DR state. The data is latched into the
Nexus register when the TAP controller state machine passes through the UPDATE-DR state.

3.2 Single memory write access
The steps to perform a single memory write access via the Nexus R/W access block are:

1. Initialize RWA with the address to be written using Nexus register index 0x9.

2. Initialize RWCS using Nexus register index 0x7.

a) Access Control (AC) = 0b1 (to indicate start access)

b) Map Select (MAP) = 0b000 (primary memory map)

c) Access Priority (PR) = 0b00 (lowest priority)

d) Read/Write (RW) = 0b1 (write access)

e) Word Size (SZ) = 0b000 (8-bit) or 0b001 (16-bit) or 0b010 (32-bit)

f) Access Count (CNT) = 0b00_0000_0000_0000 or 0b00_0000_0000_0001 (single access)

g) Burst Control (BST) = 0b0 (burst disabled)

3. Initialize RWD using Nexus register index 0xA with the data to be written to the address in RWA.
The endianess of the data needs to be right-justified little endian.

— 8-bit value of 0xDE to be written to memory: RWD = 0x000000DE

— 16-bit value of 0xDEAD to be written to memory: RWD = 0x0000ADDE

— 32-bit value of 0xDEADBEEF to be written to memory: RWD = 0xEFBEADDE

Nexus register index Value shown at bottom of register description

Read/Write (R/W): 0 Read
1 Write

Nexus Register Index R/W

(7 bits) (1 bit)

RESET value: 0x00
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 25

Nexus read/write access block
4. The Nexus block will then arbitrate for the system bus and transfer the data value from RWD to
the memory mapped address in RWA. When the access has completed without error, then
RWCS[ERR] = 0 and RWCS[DV] = 0. See Table 7 for details. This indicates that the device is
ready for the next access. Nexus will also assert the RDY pin when the transaction has completed
without error. The external tool can use this as an alternative to polling the RWCS status bits.

3.3 Burst block memory write access
The steps to perform a burst block memory write access via the Nexus R/W access block are:

1. Initialize RWA with the first address to be written using Nexus register index 0x9. The address
needs to be aligned on an 8-byte boundary. RWA[2:0] are ignored on a burst write.

2. Initialize RWCS using Nexus register index 0x7.

a) Access Control (AC) = 0b1 (to indicate start access)

b) Map Select (MAP) = 0b000 (primary memory map)

c) Access Priority (PR) = 0b00 (lowest priority)

d) Read/Write (RW) = 0b1 (write access)

e) Word Size (SZ) = 0b011 (64-bit)

f) Access Count (CNT) = 0b00_0000_0000_0100 (four double-words)

g) Burst Control (BST) = 0b1 (burst enabled)

3. Write all 32 bytes of data to be burst to RWD using Nexus register index 0xA, 32 bits at a time,
starting with the first 32-bit word to be written to the address in RWA. This data will be buffered
internally by the burst data buffer. The endianess of the 32-bit data written to RWD needs to be
little endian.

— Value of 0xDEADBEEF to be written to memory: RWD = 0xEFBEADDE

4. The Nexus block will then arbitrate for the system bus and transfer the burst data from the burst
data buffer to the memory starting at the address in RWA. When the access has completed without
error, then RWCS[ERR] = 0 and RWCS[DV] = 0. See Table 7 for details. This indicates that the
device is ready for the next access. Nexus will also assert the RDY pin when the transaction has
completed without error. The external tool can use this as an alternative to polling the RWCS status
bits.

3.4 Single memory read access
The steps to perform a single memory read access via the Nexus R/W access block are:

1. Initialize RWA with the address to be read using the register index 0x9.

2. Initialize RWCS using Nexus register index 0x7.

a) Access Control (AC) = 0b1 (to indicate start access)

b) Map Select (MAP) = 0b000 (primary memory map)

c) Access Priority (PR) = 0b00 (lowest priority)

d) Read/Write (RW) = 0 (read access)

e) Word Size (SZ) = 0b000 (8-bit) or 0b001 (16-bit) or 0b010 (32-bit)
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 26

System initialization
f) Access Count (CNT) = 0b00_0000_0000_0000 or 0b00_0000_0000_0001 (single access)

g) Burst Control (BST) = 0b0 (burst disabled)

3. The Nexus block will then arbitrate for the system bus and the read data will be transferred to RWD
from the memory mapped address in RWA. When the access has completed without error, then
RWCS[ERR] = 0 and RWCS[DV] = 1. See Table 7 for details. This indicates that the device is
ready for the next access. Nexus will also assert the RDY pin when the transaction has completed
without error. The external tool can use this as an alternative to polling the RWCS status bits.

4. The data can then be read from the RWD register using Nexus register index 0xA. The data in RWD
will be right-justified little endian.

— 8-bit value of 0xDE read from memory: RWD = 0x000000DE

— 16-bit value of 0xDEAD read from memory: RWD = 0x0000ADDE

— 32-bit value of 0xDEADBEEF read from memory: RWD = 0xEFBEADDE

3.5 Burst block memory read access
The steps to perform a burst block memory read access via the Nexus R/W access block are:

1. Initialize RWA with the first address to be read using Nexus register index 0x9. The address needs
to be aligned on an 8-byte boundary. RWA[2:0] are ignored on a burst read.

2. Initialize RWCS using Nexus register index 0x7.

a) Access Control (AC) = 0b1 (to indicate start access)

b) Map Select (MAP) = 0b000 (primary memory map)

c) Access Priority (PR) = 0b00 (lowest priority)

d) Read/Write (RW) = 0b0 (read access)

e) Word Size (SZ) = 0b011 (64-bit)

f) Access Count (CNT) = 0b00_0000_0000_0100 (four double-words)

g) Burst Control (BST) = 0b1 (burst enabled)

3. The Nexus block will then arbitrate for the system bus and transfer the burst data from memory to
the burst data buffer starting at the address in RWA. When the access has completed without error
then RWCS[ERR] = 0 and RWCS[DV] = 1. See Table 7 for details. This indicates that the device
is ready for the next access. Nexus will also assert the RDY pin when the transaction has completed
without error. The external tool can use this as an alternative to polling the RWCS status bits.

4. Read all 32 bytes of data from RWD using Nexus register index 0xA, 32 bits at a time, starting with
the first 32-bit word read from the address in RWA. The endianess of the 32-bit data read from
RWD will be little endian.

— Value of 0xDEADBEEF read from memory: RWD = 0xEFBEADDE

4 System initialization
For flash memory programming, there is some system initialization that needs to be performed by the
external tool. This initialization includes setting up the memory management unit (MMU), initializing the
internal SRAM, and configuring the frequency modulated phase-locked loop (FMPLL).
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 27

System initialization
4.1 Setting up the memory management unit
MPC56xx devices with an e200z0 core do not have a memory management unit (MMU). The memory
locations are permanently mapped and setting up the MMU is not required.

The MMU on the non-e200z0 MPC56xx devices provides access protection to memory mapped regions
as well as memory translation from effective to real addresses. For the purpose of flash memory
programming, it is easiest to setup the MMU such that the effective addresses are the same as the real
addresses. For the CPU to access a memory mapped region, an MMU entry for that memory space must
be configured. The external tool has the capability to setup MMU entries by writing the appropriate SPRs
and single stepping over the tlbwe instruction.

For flash memory programming, the external tool should set up at least four MMU entries. The steps
required to setup an MMU entry are:

1. Set up MAS0 (SPR 624).

2. Set up MAS1 (SPR 625).

3. Set up MAS2 (SPR 626).

4. Set up MAS3 (SPR 627).

5. Execute tlbwe (0x7C0007A4).

The minimum set of four MMU entries required is detailed in Table 8. This example for setting up the
MMU is for an external tool using the Freescale provided non-VLE Flash drivers running from internal
SRAM. For the VLE driver set, MAS2 value for the internal SRAM should be 0x40000028 to enable the
MAS2[VLE] bit.

4.2 Internal SRAM initialization
The MPC56xx family of devices all contain internal SRAM that must be initialized after power-on reset
by 64-bit writes to the entire memory. This is necessary to initialize the error-correcting code (ECC) logic.
The easiest way to do this with an external tool is to single step over a number of stmw (VLE e_stmw)
(store multiple words) instructions with r0 as the rS field, the address to begin the writes in WBBRlow, and
CTL[FFRA] set. See Section 2.7, “Single step,” for details on single step. This will cause all 32 GPRs to
be written to memory beginning at the address in WBBRlow using 64-bit writes. For example, the starting
physical address of the internal SRAM is 0x40000000. Stepping over stmw r0, 0(X) with the 0x40000000

Table 8. MAS register settings for MMU setup

Memory region MAS0 MAS1 MAS2 MAS3

PBridge B1

1 The PBridge B MMU entry is not required for flash memory programming, but this MMU
entry in addition to the others allows access to the entire memory map of the MPC56xx
devices.

0x10000000 0xC0000500 0xFFF0000A 0xFFF0003F

Internal SRAM 0x10010000 0xC0000400 0x400000082

2 Set Internal SRAM MAS2 value to 0x40000028 when using the VLE driver set.

0x4000003F

PBridge A 0x10020000 0xC0000500 0xC3F00008 0xC3F0003F

Internal flash 0x10030000 0xC0000700 0x00000000 0x0000003F
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 28

Creating the flash programming tool
in WBBRlow will cause all 32 GPRs to be written to memory starting at address 0x40000000 using 64-bit
writes. Then 0x80 should be added to the address, written to WBBRlow, and stmw executed again. This
should be done [size of internal SRAM]  [0x80] times to initialize the entire internal SRAM. The MMU
must be configured prior to initializing the internal SRAM. See Section 4.1, “Setting up the memory
management unit,” for details.

4.3 FMPLL initialization
For correct flash memory operation, the system frequency needs to be greater than 25 MHz and less than
the specified maximum operating frequency of the device being programmed. The FMPLL configuration
methods are similar across the MPC55xx/MPC56xx families but some MPC56xx devices have slight
variations. It is advisable to refer to the pertinent reference manual to set the PLL to the desired frequency.
Device-specific examples for setting the PLL are provided in AN2865, “MPC5500 & MPC5600 Simple
Cookbook.”

5 Creating the flash programming tool
This section covers the flash memory drivers provided by Freescale, describes the tool requirements, and
also suggests a functional division of the tool.

5.1 Flash programming drivers
Freescale provides a set of flash memory drivers for each of the MPC56xx devices. The flash memory
drivers are available from the Freescale website for each individual device. Table 9 shows the flash drivers
used for each MPC56xx device available at the time of writing. Please consult the Freescale website for
the latest drivers. A user’s manual is also installed with the drivers. These drivers are easy to use and well
documented. The drivers come in a c-array, s-record, and library format. For external tools, the s-record
format is the easiest to use. Instructions on how to use the s-record format set of drivers are included in the
next section. There are also examples of how to use the three driver formats provided with the installation
of the SSD.

Table 9. MPC56xx flash memory standard driver and e200zx core family type1

MPC 56xx device Freescale SSD flash driver Core type

MPC5668G C90FL_SSD e200z6

MPC5604E C90LC_SSD e200z0*

MPC560xB C90LC_JDP_SSD e200z0*

MPC560xP C90LC_JDP_SSD e200z0*

MPC560xS C90LC_JDP_SSD e200x0*

MPC563xM C90LC_JDP_SSD e200z3

MPC564xA MPC5644A_ C90FL_JDP_SSD e200z4
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 29

Creating the flash programming tool
5.2 Tool requirements
The flash programming tool must perform several required tasks to program the flash memory on the
MPC56xx devices.

5.2.1 Debug and driver initialization

The first requirement is to enter debug mode followed by the appropriate initialization. These steps must
be performed every time a reset occurs or a new MPC56xx device is connected to the flash programming
tool. The steps to do this are listed below.

1. Ensure that the JTAGC currently has control of the TAP by going through the PAUSE-DR state.
See Section 1.3.2, “TAP sharing,” for details.

2. Enable the OnCE TAP controller by the method outlined in Section 2.1, “Enabling the OnCE TAP
Controller.”

3. Enter debug mode during reset and enable recognition of software breakpoints as mentioned in
Section 2.4, “Entering debug mode during reset.”

4. Enable external debug mode and clear the debug status bits as mention in Section 2.5, “Enabling
external debug mode and other initialization.”

5. Setup the MMU as described in Section 4.1, “Setting up the memory management unit.”

6. Initialize the internal SRAM as mentioned in Section 4.2, “Internal SRAM initialization.”

7. Initialize the FMPLL as mentioned in Section 4.3, “FMPLL initialization.”

The next step is to load the s-record format flash driver set. The required drivers to load are FlashInit,
SetLock, FlashProgram, and FlashErase. The other drivers are not required but could be loaded if features
other than erasing and programming are desired. The s-record drivers all specify a start address of 0x0;
however, the drivers are position independent. The tool should load each driver into internal SRAM at a
desired location. The tool is responsible for knowing where these drivers are located in memory. Space
should also be reserved in the internal SRAM for variables needed for the driver set. For example, the
SSD_CONFIG structure is used for all drivers. Space must be allocated for this structure. Space should
also be allocated in internal SRAM for the stack and a buffer for the data to be programmed to flash
memory. The drivers and variables can be written by the method described in Section 2.11, “OnCE
memory access,” or Section 3, “Nexus read/write access block.”

MPC564xL C90FL_JDP_SSD e200z4

MPC567xF MPC_5674F_MPC5676F_C90FL_ SSD e200z7

MPC567XK MPC567XK_C90LC_FLASH_SSD e200z7

MPC5676R MPC5674F_MPC5676F_C90FL_SSD e200z7

1 Devices with e200z0 cores must use only VLE instructions.

Table 9. MPC56xx flash memory standard driver and e200zx core family type1
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 30

Creating the flash programming tool
An example of the s-record demo for the C90LC flash driver is shown in Appendix A, “Demo calling
basic SSD functions,” to illustrate how parameters are passed to the flash driver functions used in the next
steps.

5.2.2 FlashInit

After the drivers are loaded into internal SRAM, operations on the flash memory can begin. The FlashInit
driver should be called first to initialize the flash memory. The steps required are outlined below.

1. Set up the SSD_CONFIG structure as required. This is documented in the SSD user’s manual. YOu
should correctly initialize the fields XXXXRegBase (replace XXXX with the relevant flash
memory module such as C90LC or C90FL), mainArrayBase, shadowRowBase, shadowRowSize,
pageSize, and BDMEnable. The other fields will be initialized when FlashInit is executed.
BDMEnable should be set to 1 to cause debug mode to be entered via a software breakpoint when
each driver completes execution. This is the easiest way for the external tool to determine when
driver execution is complete.

2. Set up r1 as the stack pointer by writing r1 using the method described in Section 2.9, “GPR
access.”

3. Set up r3 to point to the SSD_CONFIG structure in internal SRAM.

4. Set the PC to the beginning of FlashInit minus 0x4 and load the IR with a no-op (ex: Book
E=0x60000000 VLE =1800D000). See Section 2.6, “CPU Status and Control Scan Chain Register
(CPUSCR)” for details.

5. Exit debug mode and begin execution of the driver as described in Section 2.8, “Exit from debug
mode to normal execution.”

6. Poll the OnCE Status Register to determine when debug mode has been re-entered. Reading the
OnCE Status Register is described in Section 2.3, “OnCE Status Register.”

7. When debug mode has been entered, read the return value in r3. Possible return values and their
meanings are discussed in the SSD user’s manual. Reading a GPR is explained in Section 2.9,
“GPR access.”

5.2.3 SetLock

After the flash memory has been initialized using the FlashInit function, the SetLock function should be
called as many times as required to unlock or lock the appropriate flash memory blocks. For the low and
mid blocks as well as the shadow block, the lock bits in both the primary and secondary lock registers must
be set appropriately. It is recommended that the shadow block be locked unless programming of the
shadow block is absolutely necessary. Erasing the shadow block without reprogramming the censorship
information prior to a reset will cause the device to be censored. The steps to call the SetLock driver are
listed below.

1. Set up r1 as the stack pointer.

2. Set up r3 to point to the SSD_CONFIG structure in internal SRAM.

3. Set up r4 with the lock indicator as documented in the SSD user’s manual.

4. Set up r5 with the lock state as documented in the SSD user’s manual.
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 31

Creating the flash programming tool
5. Set up r6 with the correct password as documented in the SSD user’s manual.

6. Set the PC to the beginning of SetLock minus 0x4 and load the IR with a no-op.

7. Exit debug mode and begin execution of the driver.

8. Poll the OnCE Status Register to determine when debug mode has been re-entered.

9. When debug mode has been entered, read the return value in r3. Possible return values and their
meanings are discussed in the SSD user’s manual.

5.2.4 FlashErase

When the appropriate blocks have been locked or unlocked, then an erase of the unlocked blocks can be
performed. The steps to call the FlashErase driver are listed below.

1. Set up r1 as the stack pointer.

2. Set up r3 to point to the SSD_CONFIG structure in internal SRAM.

3. Set up r4 to indicate either the main array or shadow block to be erased as describes in the SSD
user’s manual. Erasing the shadow block without reprogramming the censorship control
information prior to a reset will result in the device being censored.

4. Set up r5 to select the low address array blocks to be erased as documented in the SSD user’s
manual.

5. Set up r6 to select the mid address array blocks to be erased as documented in the SSD user’s
manual.

6. Set up r7 to select the high address array blocks to be erased as documented in the SSD user’s
manual.

7. Set up r8 with the pointer to the call back function as documented in the SSD user’s manual.

8. Set the PC to the beginning of FlashErase minus 0x4 and load the IR with a no-op.

9. Exit debug mode and begin execution of the driver.

10. Poll the OnCE Status Register to determine when debug mode has been re-entered.

11. When debug mode has been entered, read the return value in r3. Possible return values and their
meanings are discussed in the SSD user’s manual.

5.2.5 FlashProgram

When flash memory blocks have been erased, they then can be programmed. To program the flash, the
internal SRAM should first be written with the data to be programmed in flash memory. Depending on the
size of the data buffer in internal SRAM and the size of the data to be programmed to flash, the
FlashProgram driver may need to be called multiple times. The steps to call the FlashProgram driver are
listed below.

1. Set up r1 as the stack pointer.

2. Set up r3 to point to the SSD_CONFIG structure in internal SRAM.

3. Set up r4 to point to the destination address to be programmed in flash memory. This address must
be aligned on a double word boundary.
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 32

Creating the flash programming tool
4. Set up r5 to the size of the data in bytes to be programmed to flash memory. This size should be a
multiple of 8 and the combination of the destination address and size should be entirely contained
in the main array or shadow block.

5. Set up r6 to point to the source buffer of data in internal SRAM to be programmed to flash memory.
This address should be aligned on a word boundary.

6. Set up r7 with the pointer to the call back function as documented in the SSD user’s manual.

7. Set the PC to the beginning of FlashProgram minus 0x4 and load the IR with a no-op.

8. Exit debug mode and begin execution of the driver.

9. Poll the OnCE Status Register to determine when debug mode has been re-entered.

10. When debug mode has been entered, read the return value in r3. Possible return values and their
meanings are discussed in the SSD user’s manual.

5.2.6 Using other drivers

There are other useful drivers provided with the driver set. For example, BlankCheck can be used to verify
that a particular region is erased, and ProgramVerify can be used to verify that the data was programmed
correctly. The method to use these other drivers is similar to the above mentioned drivers except that the
GPRs will need to be setup appropriately for that particular driver.

5.3 Functional division of the external tool
Before creating the external tool for flash memory programming, thought should be given to how the
software should be divided to meet the tool’s functional requirements. The following list gives an example
of a simple functional division of the software:

• OnCE TAP controller enable, see Section 2.1, “Enabling the OnCE TAP Controller.”

• OnCE register read, see Section 2.2, “OnCE register access.”

• OnCE register write, see Section 2.2, “OnCE register access.”

• OnCE status register read, see Section 2.3, “OnCE Status Register.”

• Debug mode during reset, see Section 2.4, “Entering debug mode during reset.”

• Single step, see Section 2.7, “Single step.”

• Exit from debug mode, see Section 2.8, “Exit from debug mode to normal execution.”

• Write GPR, see Section 2.9, “GPR access.”

• Read GPR, see Section 2.9, “GPR access.”

• Write SPR, see Section 2.10, “SPR access.”

• Read SPR, see Section 2.10, “SPR access.”

• OnCE memory read, see Section 2.11, “OnCE memory access.”

• OnCE memory write, see Section 2.11, “OnCE memory access.”

• Nexus3 single write, see Section 3.2, “Single memory write access.”

• Nexus3 burst write, see Section 3.3, “Burst block memory write access.”

• Nexus3 single read, see Section 3.2, “Single memory write access.”
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 33

References
• Nexus3 burst read, see Section 3.5, “Burst block memory read access.”

• MMU initialization, see Section 4.1, “Setting up the memory management unit.”

• Internal SRAM initialization, see Section 4.2, “Internal SRAM initialization.”

• FMPLL initialization, see Section 4.3, “FMPLL initialization.”

• S-record parser and loader.

• Debug and driver initialization, see Section 5.2.1, “Debug and driver initialization.”

• Flash initialization, see Section 5.2.2, “FlashInit.”

• Flash block lock initialization, see Section 5.2.3, “SetLock.”

• Flash erase, see Section 5.2.4, “FlashErase.”

• Flash program, see Section 5.2.5, “FlashProgram.”

6 References
For further information, please refer to the documents listed in Table 10.

7 Revision history

Table 10. References

Document Title Availability

AN2865 MPC5500 & MPC5600 Simple Cookbook www.freescale.com

AN3283 MPC5500 Flash Programming Through Nexus/JTAG

AN3968 Nexus Interface Connector for the MPC567xF and MPC5676R Families

AN4088 MPC5500/MPC5600 Nexus Support Overview

e200z0CORERM e200z0 Power Architecture® Core Reference Manual

e200z1RM e200z1 Power Architecture Core Reference Manual

e200z3CORERM e200z1 Power Architecture Core Reference Manual

e200z4RM e200z4 Power Architecture Core Reference Manual

e200z6RM e200z6 PowerPC Core Reference Manual

e200z760RM e200z760 Power Architecture Core Reference Manual

Table 11. Changes made April 20121

1 No substantive changes were made to the content of this document; therefore the revision number was not
incremented.

Section Description

Front page Add SafeAssure branding.

Title and text on first page Add Qorivva branding.

Back page Apply new back page format.
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 34

Demo calling basic SSD functions
Appendix A
Demo calling basic SSD functions
This is a demo for the LC flash driver included in the flash driver. A similar example is provided in each
of the other Freescale flash drivers.
;***
;* (c) Copyright Freescale Semiconductor & STMicroelectronics Inc. 2011 *
; All Rights Reserved *
;***
;
;***
;* *
;* Standard Software Driver for C90lc(2) *
;* *
;* FILE NAME : demo.mac *
;* DESCRIPTION : This file shows how to call basic SSD functions. *
;* DATE : May 18, 2011 *
;* AUTHOR : FPT Team *
;* *
;* *
;***/
;
;******************************* CHANGES *********************************
; 0.1.0 05.18.2010 FPT Team Initial Version
;***/
;1. Demo with SSD in S-record format;
;
;2. Demo 8 S-record format SSD functions:
; FlashInit FlashInit.sx
; FlashErase FlashErase.sx
; BlankCheck BlankCheck.sx
; FlashProgram FlashProgram.sx
; ProgramVerify ProgramVerify.sx
; CheckSum CheckSum.sx
; GetLock GetLock.sx
; SetLock SetLock.sx
;
;3. RAM Mapping of SSD S-record demo
; Start Address End Address Size (Byte)
; ---
; FlashInit $40000000 $40000300-1 $300
; FlashErase $40000300 $40000A00-1 $700
; BlankCheck $40000A00 $40000D00-1 $300
; FlashProgram $40000D00 $40001B00-1 $E00
; ProgramVerify $40001B00 $40001E00-1 $300
; CheckSum $40001E00 $40002100-1 $300
; GetLock $40002100 $40002600-1 $500
; SetLock $40002600 $40002A00-1 $400
;
; Demo data $40004000 $40004200-1 $200
; Data buffer $40005000 $40005800-1 $800
; Stack $40007000 $40008000-1 $1000
;
; ***
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 35

Demo calling basic SSD functions
; Start to initialize variables for demo and download SSD.
; Start to initialize variables for demo and download SSD. Please wait...

; Set return code
symbol C90LC_OK $00000000
symbol C90LC_ERROR_ALIGNMENT $00000100
symbol C90LC_ERROR_RANGE $00000200
symbol C90LC_ERROR_BUSY $00000300
symbol C90LC_ERROR_PGOOD $00000400
symbol C90LC_ERROR_EGOOD $00000500
symbol C90LC_ERROR_NOT_BLANK $00000600
symbol C90LC_ERROR_VERIFY $00000700
symbol C90LC_ERROR_LOCK_INDICATOR $00000800
symbol C90LC_ERROR_RWE $00000900
symbol C90LC_ERROR_PASSWORD $00000A00
symbol C90LC_ERROR_AIC_MISMATCH $00000B00
symbol C90LC_ERROR_AIC_NO_BLOCK $00000C00
symbol C90LC_ERROR_FMR_MISMATCH $00000D00
symbol C90LC_ERROR_FMR_NO_BLOCK $00000E00
symbol C90LC_ERROR_ECC_LOGIC $00000F00
symbol C90FL_ERROR_SUSP $00001000

; word size, double word size and page size in byte
symbol C90LC_WORD_SIZE $4
symbol C90LC_DWORD_SIZE $8
symbol C90LC_PAGE_SIZE_04 $4
symbol C90FL_PAGE_SIZE_08 $8
symbol C90FL_PAGE_SIZE_16 $16

; Indicators for symbolting/getting block lock state
symbol LOCK_SHADOW0_PRIMARY $0
symbol LOCK_SHADOW0_SECONDARY $1
symbol LOCK_LOW_PRIMARY $2
symbol LOCK_LOW_SECONDARY $3
symbol LOCK_MID_PRIMARY $4
symbol LOCK_MID_SECONDARY $5
symbol LOCK_HIGH $6

; values for TRUE and FALSE
symbol TRUE $1
symbol FALSE $0

; NULL callback
symbol NULL_CALLBACK $FFFFFFFF

; Array space lock enabled password
symbol FLASH_LMLR_PASSWORD $A1A11111
symbol FLASH_HLR_PASSWORD $B2B22222
symbol FLASH_SLMLR_PASSWORD $C3C33333

; Set the RAM mapping
symbol RAM_BASE $40000000
symbol SSD_BASE $40000000
symbol SSD_SIZE $4000
symbol DEMO_DATA_BASE $40004000
symbol DEMO_DATA_SIZE $200
symbol BUFFER_BASE $40005000
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 36

Demo calling basic SSD functions
symbol BUFFER_SIZE $800
symbol STACK_BASE $40007000
symbol STACK_SIZE $1000

; Set addresses of each function
symbol Addr_FlashInit $40000000
symbol Addr_FlashErase $40000300
symbol Addr_BlankCheck $40000A00
symbol Addr_FlashProgram $40000D00
symbol Addr_ProgramVerify $40001B00
symbol Addr_CheckSum $40001E00
symbol Addr_GetLock $40002100
symbol Addr_SetLock $40002600

; stack top address, this address should aligned on 8-byte boundary
symbol Addr_StackTop $400080F0

;;;
; variables used in demo
;;;

; SSD_CONFIG structure and fields
symbol pSSDConfig $40004000
symbol c90lcRegBase $40004000
symbol mainArrayBase $40004004
symbol mainArraySize $40004008
symbol shadowRowBase $4000400C
symbol shadowRowSize $40004010
symbol lowBlockNum $40004014
symbol midBlockNum $40004018
symbol highBlockNum $4000401C
symbol pageSize $40004020
symbol BDMEnable $40004024

; pointers used in SSD $40004028
symbol CallBack $4000402C
symbol failAddress $40004030
symbol failData $40004034
symbol failSource $40004038
symbol sum $4000403C
symbol blkLockEnabled $40004040
symbol blkLockState $40004044

; dest, size and source
symbol dest $8000
symbol size $100
symbol program_size $100
symbol source_start $40005000
symbol source_end $40005800

; enabled blocks for low/mid/high spaces which are used in FlashErase
symbol lowEnabledBlocks $3
symbol midEnabledBlocks $1
symbol highEnabledBlocks $0
symbol shadowFlag $0
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 37

Demo calling basic SSD functions
; symbol SSD_CONFIG fields
mm.l c90lcRegBase $C3F88000
mm.l mainArrayBase $00000000
mm.l shadowRowBase $00200000
mm.l shadowRowSize $00004000
mm.l pageSize C90FL_PAGE_SIZE_08
mm.l BDMEnable $00000001

; Initialize sum, failAddress, failData, failSource to 0s
mm.l CallBack NULL_CALLBACK
mm.l failAddress $0
mm.l failData $0
mm.l failSource $0
mm.l sum $0
mm.l blkLockEnabled $0
mm.l blkLockState $0

; fill buffer with all 0s
BF source_start source_end 00

; Load driver into RAM
hload .\temp\FlashInit.sx
hload .\temp\FlashErase.sx
hload .\temp\BlankCheck.sx
hload .\temp\FlashProgram.sx
hload .\temp\ProgramVerify.sx
hload .\temp\CheckSum.sx
hload .\temp\GetLock.sx
hload .\temp\SetLock.sx

;;;
; procedures for SSD functions
;;;
; ===================== initialize SSD_CONFIG structure =========================

; FlashInit
 ; Pass input arguments
 R3 pSSDConfig

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_FlashInit

 ; Run
 go
;======================= GetLock primary for low address space===============================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 LOCK_LOW_PRIMARY
 R5 blkLockEnabled
 R6 blkLockState

 ; Set stack pointer
 R1 Addr_StackTop
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 38

Demo calling basic SSD functions
 ; Set PC
 PC Addr_GetLock

 ; Run
 go

;===================== SetLock primary for low address space=================================;
 ; Pass input parameters
 R3 pSSDConfig
 R4 LOCK_LOW_PRIMARY
 R5 $0
 R6 FLASH_LMLR_PASSWORD

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_SetLock

 ; Run
 go

;====================== GetLock secondary for low address space==============================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 LOCK_LOW_SECONDARY
 R5 blkLockEnabled
 R6 blkLockState

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_GetLock

 ; Run
 go

;========================== SetLock secondary for low address space==========================;
 ; Pass input parameters
 R3 pSSDConfig
 R4 LOCK_LOW_SECONDARY
 R5 $0
 R6 FLASH_SLMLR_PASSWORD

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_SetLock

 ; Run
 go

;=========================== GetLock primary for mid address space===========================;
 ; Pass input arguments
 R3 pSSDConfig
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 39

Demo calling basic SSD functions
 R4 LOCK_MID_PRIMARY
 R5 blkLockEnabled
 R6 blkLockState

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_GetLock

 ; Run
 go

;========================= SetLock primary for mid address space=============================;
 ; Pass input parameters
 R3 pSSDConfig
 R4 LOCK_MID_PRIMARY
 R5 $0
 R6 FLASH_LMLR_PASSWORD

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_SetLock

 ; Run
 go

;====================== GetLock secondary for mid address space==============================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 LOCK_MID_SECONDARY
 R5 blkLockEnabled
 R6 blkLockState

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_GetLock

 ; Run
 go

;==================== SetLock secondary for mid address space================================;
 ; Pass input parameters
 R3 pSSDConfig
 R4 LOCK_MID_SECONDARY
 R5 $0
 R6 FLASH_SLMLR_PASSWORD

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 40

Demo calling basic SSD functions
 PC Addr_SetLock

 ; Run
 go

;====================== FlashErase to erase low block 0, low block 1, mid block 0============;
 ; Pass input arguments
 R3 pSSDConfig
 R4 shadowFlag
 R5 lowEnabledBlocks
 R6 midEnabledBlocks
 R7 highEnabledBlocks
 R8 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_FlashErase
 ; Run
 go
;============================ BlankCheck for low block 0 and low block 1======================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 $0
 R5 $C000
 R6 failAddress
 R7 failData
 R8 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_BlankCheck

 ; Run
 go

;================================ BlankCheck for mid block 0=============================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 $40000
 R5 $20000
 R6 failAddress
 R7 failData
 R8 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_BlankCheck

 ; Run
 go

Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 41

Demo calling basic SSD functions
;=============================== FlashProgram to low block 1==============================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 $8000
 R5 program_size
 R6 source_start
 R7 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_FlashProgram

 ; Run
 go

;=========================== ProgramVerify for low block 1===============================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 $8000
 R5 program_size
 R6 source_start
 R7 failAddress
 R8 failData
 R9 failSource
 R10 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_ProgramVerify

 ; Run
 go

 ;======================= FlashProgram to mid block 0================================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 $40000
 R5 program_size
 R6 source_start
 R7 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_FlashProgram

 ; Run
 go

;======================== ProgramVerify for mid block 0===============================;
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 42

Demo calling basic SSD functions
 ; Pass input arguments
 R3 pSSDConfig
 R4 $40000
 R5 program_size
 R6 source_start
 R7 failAddress
 R8 failData
 R9 failSource
 R10 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_ProgramVerify

 ; Run
 go

;======================= CheckSum for low block 1=================================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 $8000
 R5 program_size
 R6 Sum
 R7 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_CheckSum

 ; Run
 go

;====================== CheckSum for mid block 0===================================;
 ; Pass input arguments
 R3 pSSDConfig
 R4 $40000
 R5 program_size
 R6 Sum
 R7 NULL_CALLBACK

 ; Set stack pointer
 R1 Addr_StackTop

 ; Set PC
 PC Addr_CheckSum

 ; Run
 go
;=============================END OF DEMO==;
Qorivva MPC56xx Flash Programming Through Nexus/JTAG, Rev. 0

Freescale Semiconductor 43

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support
Document Number: AN4365
Rev. 0
09/2011

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products

pursuant to standard terms and conditions of sale, which can be found at the following

address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,

Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,

QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale

Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,

CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC

Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are

trademarks of Freescale Semiconductor, Inc. All other product or service names are

the property of their respective owners. The Power Architecture and Power.org

word marks and the Power and Power.org logos and related marks are

trademarks and service marks licensed by Power.org.

© 2011 Freescale Semiconductor, Inc.

	1 JTAG
	1.1 JTAG signals
	1.2 TAP controller state machine
	1.3 JTAG Controller (JTAGC)
	1.3.1 JTAGC reset
	1.3.2 TAP sharing

	2 On-Chip Emulation (OnCE)
	2.1 Enabling the OnCE TAP Controller
	2.2 OnCE register access
	2.2.1 OnCE Command register
	2.2.2 Example of OnCE register write
	2.2.3 Example of OnCE register read

	2.3 OnCE Status Register
	2.4 Entering debug mode during reset
	2.5 Enabling external debug mode and other initialization
	2.6 CPU Status and Control Scan Chain Register (CPUSCR)
	2.6.1 Instruction Register (IR)
	2.6.2 Control State register (CTL)
	2.6.3 Program Counter register (PC)
	2.6.4 Write-Back Bus Register (WBBRlow, WBBRhigh)
	2.6.5 Machine State Register (MSR)

	2.7 Single step
	2.8 Exit from debug mode to normal execution
	2.9 GPR access
	2.10 SPR access
	2.11 OnCE memory access
	2.12 Breakpoints
	2.12.1 Software breakpoints
	2.12.2 Instruction address hardware breakpoints

	3 Nexus read/write access block
	3.1 Nexus register access
	3.2 Single memory write access
	3.3 Burst block memory write access
	3.4 Single memory read access
	3.5 Burst block memory read access

	4 System initialization
	4.1 Setting up the memory management unit
	4.2 Internal SRAM initialization
	4.3 FMPLL initialization

	5 Creating the flash programming tool
	5.1 Flash programming drivers
	5.2 Tool requirements
	5.2.1 Debug and driver initialization
	5.2.2 FlashInit
	5.2.3 SetLock
	5.2.4 FlashErase
	5.2.5 FlashProgram
	5.2.6 Using other drivers

	5.3 Functional division of the external tool

	6 References
	7 Revision history

