
STTH15AC06

Turbo 2 ultrafast high voltage rectifier

Datasheet - production data

Features

- Ultrafast switching
- Low reverse current
- Reduces switching and conduction losses
- Low thermal resistance
- Insulated package TO-220FPAC:
 - Insulated voltage: 1500 V rms

Description

The STTH15AC06 uses ST Turbo 2 600 V technology and is suited as a boost diode in air conditioning equipment for continuous mode interleaved power factor correction.

The device is also intended for use as a freewheeling diode in power supplies and other power switching applications.

Table 1. Device summary

Symbol	Value
I _{F(AV)}	15 A
V _{RRM}	600 V
t _{rr} (max)	30 ns
V _F (max)	1.5 V
T _j (max)	175 °C

Characteristics STTH15AC06

1 Characteristics

Table 2. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit	
V_{RRM}	Repetitive peak reverse voltage	600	V	
I _{F(RMS)}	Forward rms current		30	Α
I _{F(AV)}	Average forward current	15	Α	
I _{FSM}	Surge non repetitive forward current	120	Α	
T _{stg}	Storage temperature range	-65 to +175	°C	
T _j	Maximum operating junction temperature	175	°C	

Table 3. Thermal parameters

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case	5.2	°C/W

Table 4. Static electrical characteristics

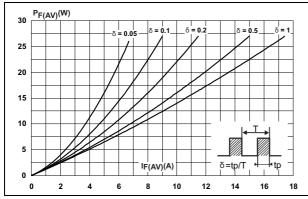
Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Poverse leakage current	T _j = 25 °C	\/ -\/			2	μA
I _R ⁽¹⁾ Reverse leakage current		T _j = 150 °C	$V_R = V_{RRM}$		20	200	μΑ
V_(2)	V _F ⁽²⁾ Forward voltage drop		I 15 Λ			1.9	V
vF`′			I _F = 15 A		1.15	1.50	

^{1.} Pulse test: $t_p = 5$ ms, $\delta < 2\%$

To evaluate the conduction losses use the following equation:

$$P = 1.2 \text{ x } I_{F(AV)} + 0.02 I_{F}^{2}_{(RMS)}$$

Table 5. Dynamic characteristics (per diode)


Symbol	Parameter	Test conditions			Тур.	Max.	Unit
-,			T	Min.	- 7		
+	Reverse recovery time	$I_{r} = 25 \text{ °C}$ $I_{r} = 0.5 \text{ A}, I_{rr} = 0.25 \text{ A}, I_{R} = 1 \text{ A}$				30	ns
۲rr	t _{rr} Reverse recovery time I _j	1, - 25 0	$I_F = 1 \text{ A}, V_R = 30 \text{ V}, dI_F/dt = -50 \text{ A}/\mu\text{s}$		40	55	113
I _{RM}	Reverse recovery current	T _j = 125 °C	$I_F = 15 \text{ A}, V_R = 400 \text{ V},$ $dI_F/dt = -100 \text{ A/}\mu\text{s}$		4.4	6	Α
t _{fr}	Forward recovery time	T _i = 25 °C	$I_{\rm F} = 25 ^{\circ}{\rm C}$ $I_{\rm F} = 15 {\rm A}, {\rm V}_{\rm FR} = 1.6 {\rm V}, {\rm d}_{\rm I_{\rm F}}/{\rm d}_{\rm I} = 100 {\rm A}/\mu{\rm s}$			300	ns
V _{FP}	Forward recovery voltage	1j = 25 C	dI _F /dt = 100 A/μs		2.5		V

^{2.} Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

STTH15AC06 Characteristics

Figure 1. Average forward power dissipation versus average forward current

Figure 2. Forward voltage drop versus forward current (typical values)

10.0 IF(A)

10.0 T_j = 150 °C

1.0 T_j = 25 °C

1.0 V_F(V)

0.1 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

Figure 3. Forward voltage drop versus forward current (maximum values)

Figure 4. Relative variation of thermal impedance, junction to case, versus pulse duration

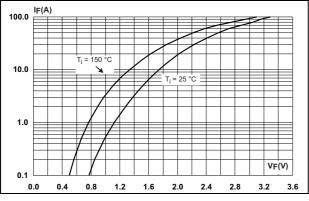
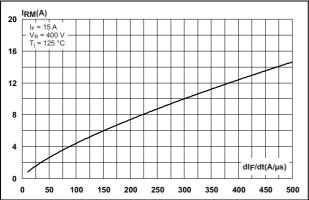
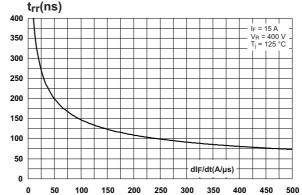
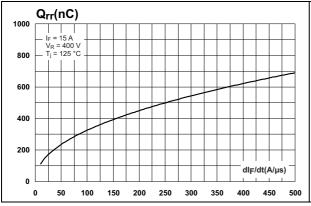




Figure 5. Peak reverse recovery current versus dl_F/dt (typical values)

Figure 6. Reverse recovery time versus dI_F/dt (typical values)



Characteristics STTH15AC06

Figure 7. Reverse recovery charges versus dl_F/dt (typical values)

Figure 8. Reverse recovery softness factor versus dl_F/dt (typical values)

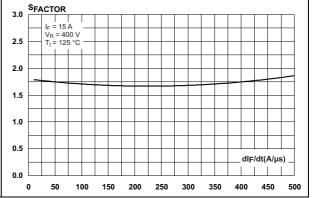
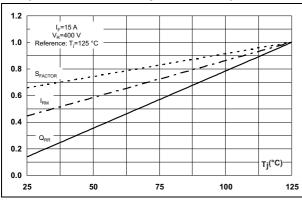



Figure 9. Relative variations of dynamic parameters versus junction temperature

Figure 10. Transient peak forward voltage versus dl_F/dt (typical values)

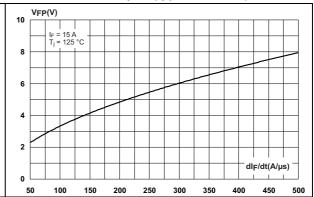
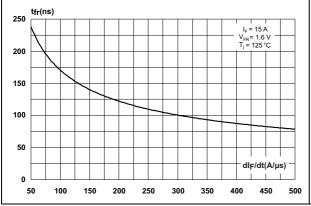
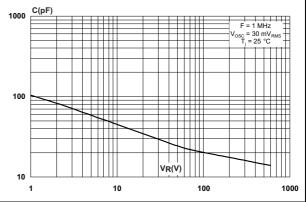




Figure 11. Forward recovery time versus dl_F/dt Figure 12. Junction capacitance versus reverse (typical values) voltage applied (typical values)

2 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque values:
 - 0.8 to 1.0 N·m (TO-220FPAC)

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Figure 13. TO-220FPAC dimension definitions

Package information STTH15AC06

Table 6. TO-220FPAC dimension values

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.70	0.018		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.70	0.045		0.067
G	4.95		5.20	0.195		0.205
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16 Typ.			0.63 Typ.	
L3	28.6		30.6	1.126		1.205
L4	9.8		10.6	0.386		0.417
L6	15.9		16.4	0.626		0.646
L7	9.00		9.30	0.354		0.366
Dia.	3.00		3.20	0.118		0.126

3 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STTH15AC06FP	STTH15AC06FP	TO-220FPAC	1.8 g	50	Tube

4 Revision history

Table 8. Document revision history

Date	Revision	Changes
17-Apr-2014	1	First release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

8/8

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID026243 Rev 1

