Step-Down Switching Regulator Evaluation Board

Part Number: LM2595ATPBCKGEVB

Evaluation/Development Tool Description

The LM2595 regulator is circuit ideally suited for easy and convenient design of a step-down switching regulator (buck converter). It is capable of driving a 1 A load with excellent line and load regulation. This device is available in adjustable output version and it is internally compensated to minimize the number of external components to simplify the power supply design. Demoboard size: 51mm x 32mm

Features

- Adjustable Output Voltage Range 1.23 V 37 V
- Guaranteed 1 A Output Load Current
- Wide Input Voltage Range up to 40 V
- 150 kHz Fixed Frequency Internal Oscillator
- TTL Shutdown Capability
- Low Power Standby Mode, typ 50 _A
- Thermal Shutdown and Current Limit Protection
- Internal Loop Compensation
- Moisture Sensitivity Level (MSL) Equals 1

Applications

- Simple High-Efficiency Step-Down (Buck) Regulator
- Efficient Pre-Regulator for Linear Regulators
- On-Card Switching Regulators
- Positive to Negative Converter (Buck-Boost)
- Negative Step-Up Converters
- Power Supply for Battery Chargers

Bill of Materials for the LM2595ATPBCKGEVB

								Substitution		
Designator	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Allowed	Lead Free	Comments
R1	1	Resistor	1.0 k	1%	Axial	Panasonic - ECG	ERO-S2PHF1001	Yes	Yes	OK
R2	1	Resistor	3.0 k	1%	Axial	Panasonic - ECG	ERO-S2PHF3001	Yes	Yes	OK
C1	1	Electrolytic Capacitor	100 uF / 50 V	10%	Axial	Nichicon	UPM1C471MPD6	Yes	Yes	OK
C2	1	Electrolytic Capacitor	220 uf / 25 V	10%	Axial	Nichicon	UPM1H101MPD6	Yes	Yes	OK
C3	1	Capacitor	4.7 nF	10%	Radial	Vishay	K472K15X7RH5TH5	Yes	Yes	OK
L2	1	Inductors	68 uH	20%	RFB0810	Coilcraft	RFB0810-680L	No	Yes	OK
D4	1	Schottky Rectifier, 1.0 A, 40 V	1N5819	-	Axial	ON semiconductors	1N5819RLG	No	Yes	OK
IC1	1	Controller	LM2595	-	TO220	ON semiconductors	LM2595TADJG	No	Yes	OK

Schematic for LM2595ATPBCKGEVB - LM2595ADJ 1.0 A TO220 BUCK DEMO BD

Test Procedure for the LM2595ATPBCKGEVB

Figure 1: Test Setup

Test Procedure:

- 1. Connect the test setup as shown in Figure 1.
- 2. Apply an input voltage, Vcc = 24 V
- 3. Apply Iout = 0 mA load.
- 4. Check that Vout is 5.0 V
- 5. Increate Iout load to 1 A
- 6. Check that Vout is 5.0 V
- 7. Power down the load
- 8. Power down Vcc
- 9. End of test