Emulation Extension Pak (EEP) and Emulation Header User's Guide #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. #### **Trademarks** The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoQ, KEELoQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2014-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-63277-835-2 # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # EEP AND EMULATION HEADER USER'S GUIDE #### **Table of Contents** | Chapter 1. EEP and Emulation Header Overview | | |--|----| | 1.1 What is an Emulation Extension Pak? | 5 | | 1.2 What is an Emulation Header? | 5 | | 1.3 Why Would I Want to Use an Emulation Header? | 6 | | 1.4 Compare Emulation Header, Debug Header and Device Features | 6 | | 1.5 Support Information | 8 | | 1.6 Emulation Header Hardware Setup | 9 | | 1.7 Emulation Header Setup for MPLAB X IDE | 11 | | 1.8 Additional Information | 11 | | Chapter 2. Emulation Header Features | | | 2.1 Introduction | 13 | | 2.2 Breakpoint, Runtime Watch, and Trace Resources | 14 | | 2.3 Runtime Watches | 14 | | 2.4 Real Time Hardware Instruction Trace | 15 | | 2.5 Hardware Address/Data Breakpoints | 19 | | 2.6 Enhanced Event Breakpoints | 22 | | 2.7 Event Combiners | 23 | | 2.8 Stopwatch Cycle Counter | 25 | | 2.9 Trigger In/Out | 25 | | 2.10 View Hardware Stack On Halt | 27 | | 2.11 Previous Program Counter | 28 | | 2.12 Background Debug | 28 | | Chapter 3. Emulation Header List | | | 3.1 Introduction | 29 | | 3.2 AC244055 | 31 | | 3.3 AC244063 | 33 | | 3.4 AC244064 | 35 | | 3.5 AC244065 | 37 | | 3.6 AC244066 | 39 | | Appendix AME2 Silicon Errata | | | A.1 Introduction | 41 | | A.2 CCP3 Capture | 41 | | A.3 Hardware Breakpoint Issue | 41 | | A.4 Trigger In/Halt during Multi-Cycle Instruction Processing | 42 | | Appendix B. Emulation Header Target Footprints | | |--|----| | B.1 Introduction | 43 | | B.2 DIP Device Footprints | 43 | | B.3 TQFP/PLCC Device Footprints | 43 | | Appendix C. Emulation Header Connections | | | C.1 Introduction | 45 | | C.2 6-Pin Modular Connector | 45 | | C.3 6-Pin SIL Connector | 46 | | C.4 Modular-to-SIL Adapter | 47 | | C.5 Ordering Information | 47 | | Index | 51 | | Worldwide Sales and Service | 54 | #### Chapter 1. EEP and Emulation Header Overview #### **NOTICE TO CUSTOMERS** All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available. Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXXX" is the document number and "A" is the revision level of the document. For the most up-to-date information on development tools, see the MPLAB X IDE online Help (Help menu). This chapter contains the following topics: - · What is an Emulation Extension Pak? - What is an Emulation Header? - Why Would I Want to Use an Emulation Header? - Compare Emulation Header, Debug Header and Device Features (Future) - Support Information - Emulation Header Hardware Setup - Emulation Header Setup for MPLAB X IDE - Additional Information #### 1.1 WHAT IS AN EMULATION EXTENSION PAK? An Emulation Extension Pak (EEP) contains an emulation header; gold, single, in-line pins; a trace cable, and a trace adapter board. An EEP is what you purchase when you want an emulation header. #### 1.2 WHAT IS AN EMULATION HEADER? An emulation header is a circuit board that allows a debug tool to debug code for a specific device. A special version of the device (-ME2) with on-board emulation circuitry is located on the header. Connectors on the side of the header allow it to connect directly to, or through, an adapter to the emulator. Connectors on the bottom of the header allow it to connect directly to, or through, a transition socket to a target board. #### 1.3 WHY WOULD I WANT TO USE AN EMULATION HEADER? Although some devices have on-board debug circuitry to allow you to debug your code, you often lose device resources to debugging, i.e., debugging requires the use of two I/O lines, plus VDD, Vss and VPP, to communicate with the device. Using an emulation header can free up these resources for your application, and give you new and powerful debugging features not found on debug headers. For details on emulation header features, see Chapter 2. "Emulation Header Features". For details on debug header features, see the user's guide or online help file for supported debug tools (listed in Section 1.5 "Support Information"). Also see the *Processor Extension Pak and Debug Header Specification* (DS51292). Find all documentation on the Microchip website (http://www.microchip.com). For a comparison of emulation versus debug features, see Section 1.4 "Compare Emulation Header, Debug Header and Device Features (Future)". ### 1.4 COMPARE EMULATION HEADER, DEBUG HEADER AND DEVICE FEATURES (FUTURE) Use the Development Tool Selector (DTS) to compare the extra debug features of an emulation header to a supported device (with on-board debug circuitry) and supported debug header. To find features by device: - 1. In a web browser, go to: http://www.microchip.com/dtsapp/ - 2. Select your device from the "Select Product" list. Or type and search for the name of your device in the "Search" box and it will appear at the top of the "Select Product" list, where you can select it. - 3. Click on the tab "Emulators & Debuggers" to see debug features. #### FIGURE 1-1:
DTS DEVICE INFORMATION #### 1.5 SUPPORT INFORMATION Emulation headers require specific MPLAB X IDE versions and debug tools to operate. Acquire these before purchasing an emulation header in an emulation extension pak (EEP). Available EEPs are listed in Chapter 3. "Emulation Header List". To proceed with setting up emulation header hardware, see Section 1.6 "Emulation Header Hardware Setup". Contact Customer Support for issues with emulation headers. #### 1.5.1 Software Support Emulation headers are supported on MPLAB X IDE v1.90 and greater. #### 1.5.2 Tool Support Emulation headers are supported on the following tools: - PICkit™ 3 in-circuit debugger - MPLAB® ICD 3 in-circuit debugger - MPLAB® REAL ICE® in-circuit emulator Note: Not all features are supported on all tools. #### 1.5.3 Customer Support Users of Microchip products can receive assistance through several channels: - · Distributor or Representative - · Local Sales Office - Field Application Engineer (FAE) - Technical Support Technical support is available through the web site at: http://support.microchip.com Documentation errors or comments may be sent to: docerrors@microchip.com. #### 1.6 EMULATION HEADER HARDWARE SETUP To set up your header, follow these instructions before doing anything else: 1. Check the header box for any paper inserts that specify special operating instructions and the emulation header for any stickers (Figure 1-2). FIGURE 1-2: SPECIAL HEADER INSTRUCTIONS - 2. Set any jumpers or switches on the header to determine device functionality, or selection, as specified for that header. See the section "Emulation Header List" for information on how to set up individual headers. - 3. Connect the header to your desired debug tool by consulting the tool documentation for connection options. Example connections are shown in Figure 1-3, Figure 1-4, and Figure 1-5. FIGURE 1-3: PICkit™ 3 IN-CIRCUIT DEBUGGER CONNECTIONS FIGURE 1-4: MPLAB® ICD 3 IN-CIRCUIT DEBUGGER CONNECTIONS FIGURE 1-5: MPLAB® REAL ICE™ IN-CIRCUIT EMULATOR CONNECTIONS - 4. Connect the header to the target board. On the bottom of the header is a socket that is used to connect to the target board. The header can be connected to the target board as follows: - a) PDIP header socket to PDIP target socket with a stand-off (male-to-male) connector or single in-line pins. An example is shown in Figure 1-6. - b) Header socket to plug on the target board - c) Header socket to target socket with a transition socket (see the *Transition Socket Specification*, DS51194) The header socket will have the same pin count as your selected device. The -ME2 device on the top of the header usually has a larger pin count because it has additional pins that are dedicated to debug. FIGURE 1-6: CONNECT HEADER TO TARGET - 5. If using a debug tool that can power the target, power that tool now. - 6. Power the target, if needed. #### 1.7 EMULATION HEADER SETUP FOR MPLAB X IDE Emulation header functionality is supported on MPLAB X IDE 1.90 or greater, but **not** on MPLAB IDE v8. Please use debug headers, if you are still using MPLAB IDE v8. You need to do the following to use an emulation header on MPLAB X IDE: - Set up the emulation header as specified in Section 1.6 "Emulation Header Hardware Setup". - Begin creating a project for a device supported by your emulation header using the Projects wizard (<u>File>New Project</u>). See MPLAB X IDE documentation for more on projects. - 3. In one step of the wizard you will have an opportunity to specify the emulation header product number (AC#####). - 4. In another step you will specify the hardware (debug) tool to which the emulation header is attached. - 5. Once the wizard is complete, write code for your project. - 6. Select <u>Debug>Debug Project</u> to run and debug your code. **Note:** An emulation header can only be used to debug (Debug menu), not to program (Run menu). See "Section 1.8.1 "Programming Notes"". #### 1.8 ADDITIONAL INFORMATION The following additional information is useful when using an emulation header from an Emulation Extension Pak. #### 1.8.1 Programming Notes The emulation header is designed to be used with the in-circuit emulator in debugger mode, <u>Debug>Debug Project</u>, (not in programmer mode, <u>Run>Run Project</u>), in MPLAB X IDE. Any programming of the special -ME2 device on the header is for debug purposes. To program production (non-special) devices with your debug tool, use the *Universal Programming Module* (AC162049) or design a modular interface connector on the target. See the appropriate specification for connections. For the most up-to-date device programming specifications, see the Microchip website at http://www.microchip.com. Also, production devices can be programmed with the following tools: - MPLAB PM3 device programmer - PICkit 3 development programmer - MPLAB ICD 3 in-circuit debugger (select as a programmer) - MPLAB REAL ICE in-circuit emulator (select as a programmer) #### 1.8.2 Calibration Bits The calibration bits for the band gap and internal oscillator are always preserved to their factory settings. #### 1.8.3 Performance Issues See the MPLAB X IDE help file regarding your debug tool for information on specific device limitations that could affect performance. | EEF AIIU EIIIUIAUOII | EEP and Emulation neader USEr 5 Guide | | | | |----------------------|---------------------------------------|--|--|--| | NOTES: | #### **Chapter 2. Emulation Header Features** #### 2.1 INTRODUCTION Emulation header features depend on the debug tool used. The table below shows a list of all available emulation header features, and the features that are supported on each tool. TABLE 2-1: EMULATION FEATURE SUPPORT BY HARDWARE TOOL | Features | RI | ICD3 | PK3 | |--|----------|----------|-------------| | Section 2.3 "Runtime Watches" - see Note | V | X | × | | Section 2.4 "Real Time Hardware Instruction Trace" - see Note | V | X | × | | Section 2.5 "Hardware Address/Data Breakpoints" - see Note Section 2.5.2 "Range Breakpoints" Section 2.5.3 "Data Value Comparison" Section 2.5.4 "Data Value Mask" Section 2.5.6 "Trigger Out Operation" Section 2.5.7 "Interrupt Context Detection" | * | * | * | | Section 2.6 "Enhanced Event Breakpoints" - see Note Section 2.6.1 "Execution Out-of-Bounds Detection" Section 2.6.2 "Break on Trigger In/Emit Trigger Out" | * | * | > | | Section 2.7 "Event Combiners" | V | V | * | | Section 2.8 "Stopwatch Cycle Counter" | ~ | V | > | | Section 2.9 "Trigger In/Out" | ~ | V | > | | Section 2.10 "View Hardware Stack On Halt" | ~ | V | * | | Section 2.11 "Previous Program Counter" | ~ | V | V | | Section 2.12 "Background Debug" | * | * | V | #### Legend: RI = MPLAB[®] REAL ICE[™] In-Circuit Emulation ICD3 = MPLAB[®] ICD 3 In-Circuit Debugger PK3 = PICkit[™] 3 In-Circuit Debugger Note: See also Section 2.2 "Breakpoint, Runtime Watch, and Trace Resources". #### 2.2 BREAKPOINT, RUNTIME WATCH, AND TRACE RESOURCES Emulation headers have 32 data capture resources, total, that may be used for breakpoints and runtime watches. For example, if you use a data capture resource for a breakpoint, you will have one less data capture resource for other breakpoints or runtime watches. Runtime watches and trace are mutually exclusive. Data streaming from the emulation header may be used for either runtime watches or trace. For example, if you want to use trace, you cannot use runtime watches. Selecting trace in the Project Properties takes precedence over other selections, such as in the Watches window or in any plug-ins. #### 2.3 RUNTIME WATCHES In the MPLAB X IDE Watches window (<u>Window>Debugging>Watches</u>), you can create a watch for a symbol where the value changes at runtime. Before you add a runtime watch to the Watches window, you need to set up the clock. Perform the following steps to set up the clock: - 1. Right click on the project name and select "Properties". - 2. Click on the debug tool name (e.g., Real ICE) and select option category "Clock". - 3. Set the runtime instruction speed. To add a global symbol or SFR as a runtime watch, do one of the following: - Right click in the Watches window and select "New Runtime Watch" or select <u>Debug>New Runtime Watch</u>. Click the selection buttons to see either Global Symbols or SFRs. Click on a name from the list and then click **OK**. - Select the symbol or SFR name in the Editor window and then select "New Runtime Watch" from the right click menu. The name is populated in the Watches window. Click OK. Debug Run and watch the values change as the program executes. For more information on the Watches window, see MPLAB X IDE documentation. #### 2.3.1 Symbol/SFR Size For all devices except PIC32 MCUs, symbols used in a runtime watch must be sized to match the device memory. That is, you need 8-bit symbols when using an 8-bit device. #### 2.3.2 SFR Caveats Unless an SFR is explicitly read or written by code, no value change will be visible in the Watches window. As the runtime watch uses the trace mechanism, code must read or cause a change before a trace packet is output. Therefore any SFR value changes, without code explicitly reading it or causing the SFR value change, cannot be directly monitored as a Runtime Watch. For example, setting up a Runtime Watch on the
Analog-to-Digital Converter (ADC) conversion result SFRs ADRESH and ADRESL will not show any runtime changes, even when the input voltage to the ADC is changing. A workaround is code that copies the ADRESH and ADRESL register values to RAM variables (e.g., ADRESH_copy and ADRESL_copy') after an ADC conversion is complete. These variables, added to the Watches window as Runtime Watches, will then reflect the changes in ADC values. Another example would be monitoring an input pin or an entire port that is configured as inputs. External changes on the input pin(s) will not trigger a trace watch packet; and, therefore, no runtime updates to the port will be displayed. The Runtime Watch display will only update when code reads the input pin or input port. #### 2.4 REAL TIME HARDWARE INSTRUCTION TRACE Note: This feature is only supported on the MPLAB REAL ICE in-circuit emulator. Real Time Hardware Instruction Trace is a real-time dump of the program execution stream that can be captured and analyzed. The functionality that is provided includes the following: - full instruction execution information, up to 32 MHz - · trace through Reset conditions - · trace buffer with optional stall Emulation header trace is similar to PIC32 instruction trace, which is a non-intrusive hardware instruction trace. You can use trace to capture every instruction executed by the device. The trace data is output from the device (using the pins TRCLK, TRDAT[6:0], and TRSTALL) to the emulator. The emulator streams this data to a trace buffer, that acts like a rolling first-in/first-out (FIFO) buffer, on the PC. The amount of trace data is limited only by the size of the trace buffer. This buffer can fill quickly even when set to the maximum size, so it is wise to determine exactly what you need to capture. **Note:** Execution will NOT HALT when this external buffer is full. However, MPLAB X IDE will announce when the trace buffer has overflowed. Trace requires hardware and software setup before trace data can be viewed in a window. #### 2.4.1 Set Up Trace Hardware To use trace, you will need the ribbon cable and emulator interface board that comes with the emulation header. Connect one end to the emulation header (Figure 2-1). Connect the other end to the emulator. For more information on complete hardware setup and connections, refer to Section 1.6 "Emulation Header Hardware Setup". For details on trace connectors, see Section 2.4.4 "Trace Hardware". FIGURE 2-1: EMULATION TRACE CABLE CONNECTED TO HEADER #### 2.4.2 Set Up Trace for MPLAB X IDE To set up MPLAB X IDE to use trace for the MPLAB REAL ICE in-circuit emulator, perform the following steps: - 1. Right click on the project name and select "Properties" to open the Project Properties window. - 2. Click on "Real ICE" under "Categories". - 3. Under "Option categories", select "Clock". Specify the target run-time instruction speed and speed units. FIGURE 2-2: CLOCK OPTION CATEGORY - 4. Under "Option categories", select "Trace and Profiling". - 5. Under "Data Collection Selection", choose "Instruction Trace/Profiling". - 6. Set up any other trace-related options. FIGURE 2-3: TRACE AND PROFILING OPTION CATEGORY 7. Click OK. #### 2.4.3 Using Trace Once trace hardware and MPLAB X IDE are set up, you can begin using trace. On a Debug Run, trace will continue to fill the trace buffer with data, rolling over when the buffer is full, until a program Halt. For more on the trace buffer, see Section 2.4 "Real Time Hardware Instruction Trace". #### 2.4.3.1 VIEWING TRACE DATA When trace is enabled and code is run, trace data will be collected by the emulator. Once the device is halted, trace data will be decoded and displayed in the Trace window (*Window>Debugging>Trace*). FIGURE 2-4: TRACE WINDOW | Line | Address | Q0 | Label | Instruction | |------|---------|--------|-------------|----------------| | 1 | 000 | 0x3180 | | MOVLP 0x0 | | 2 | 001 | 0x2802 | | GOTO 0x2 | | 3 | 002 | 0x0064 | MainProgram | CLRWDT | | 4 | 003 | 0x30FE | Loop_202 | MOVLW 0xFE | | 5 | 004 | 0x0023 | | MOVLB 0x3 | | 6 | 005 | 0x008E | | MOVWF PORTC | | 7 | 006 | 0x0022 | | MOVLB 0x2 | | 8 | 007 | 0x100E | | BCF PORTC, 0x0 | | 9 | 800 | 0x0021 | | MOVLB 0x1 | | 10 | 009 | 0x100E | | BCF PORTC, 0x0 | | 11 | 00A | 0x0022 | | MOVLB 0x2 | | 12 | 00B | 0x140E | | BSF PORTC, 0x0 | | 13 | 000 | 0x3180 | | MOVLP 0x0 | | 14 | 001 | 0x2802 | | GOTO 0x2 | #### 2.4.3.2 BANK SELECT AND TRACE For PIC12F/16F1xxx devices and related headers, Trace can decode instructions resulting in a bank set. Once established, decoding with that bank continues until the next bank switch. Therefore, scrolling up in the window will cause the bank to be indeterminate, where as scrolling down sets the bank. #### 2.4.3.3 IMPROVING THE TRACE EXPERIENCE Remove as many USB devices from your PC USB ports as you can. This should improve trace throughput. #### 2.4.4 Trace Hardware Hardware details are shown in the following figures. FIGURE 2-5: TRACE CONNECTOR ON EMULATION HEADER FIGURE 2-6: INTERFACE BOARD #### 2.5 HARDWARE ADDRESS/DATA BREAKPOINTS Up to 32 hardware address/data breakpoints are available to use on the emulation header (for details see Section 2.2 "Breakpoint, Runtime Watch, and Trace Resources".). Software breakpoints are useful, but real hardware breakpoints are incomparable when you need unfettered control of qualifying the breakpoint/event conditions beyond the simple address matching. Consider the addition of a special interrupt contextual qualifier and these hardware breakpoints offer a high degree of configurability. Emulation header hardware breakpoints can trigger without halting execution and could be used as trigger events to other features. #### 2.5.1 Breakpoint Setup Address/Data Breakpoints may be found and set up on the New Breakpoint dialog (<u>Debug>New Breakpoint</u>) by choosing either "Address" or "Data" as the "Breakpoint Type". After the breakpoint is created, it can be edited by right clicking and selecting "Customize". For details, see the MPLAB X IDE documentation. #### 2.5.2 Range Breakpoints A breakpoint may be specified to occur with a range of program or data memory. A start address, and then an end address, are specified for the breakpoint. Then the break condition is selected. The dialog items used to set up range breakpoints are described below. TABLE 2-2: ADDRESS/DATA BREAKPOINTS - SETTINGS | Item | Description | | |----------------------|---|--| | Enable Range Address | check to set a range breakpoint | | | Address (Start) | enter a starting hexadecimal memory address | | | Address (End) | enter an ending hexadecimal memory address | | | Breaks on | specifies the conditions of the break Conditions differ for address memory and data memory. | | #### 2.5.3 Data Value Comparison Data memory breakpoints may be set up to compare a "Break on" value to another value before breaking. The dialog items used to set up data value comparison are described below. TABLE 2-3: DATA BREAKPOINTS - SETTINGS | Item | Description | |------------------|---| | Breaks on | specifies the conditions of the break | | Value | for the "Breaks on" selection of: Read Specific Value Write Specific Value Read or Write Specific Value Enter a hexadecimal value here. | | Value Comparison | compare to "Value" as specified: = Value: Equal-to value != Value: Not-equal-to value > Value: Greater-than value < Value: Less-than value | #### 2.5.4 Data Value Mask Data memory breakpoints may be set up to compare a masked "Break on" value to another value before breaking. To set up a value comparison, see Section 2.5.3 "Data Value Comparison". The dialog items used to set up a data value mask are described below. TABLE 2-4: DATA BREAKPOINTS - SETTINGS | Item | Description | |-----------------|---| | Data Value Mask | use mask when comparing to "Value" Enter a value in the range 0x00 to 0xhh, where: 0x00: no bits compared 0xhh: all bits compared | #### 2.5.5 Pass Count Operation Using a pass count allows you to delay breaking until after a specified count. #### **Event must occur Count times** Count is the number of times you will pass the breakpoint before stopping. - · 0 means execution will stop immediately - 1 means execution will pass once then stop the next time (stop on second time) - 10 means execution will pass 10 times and stop the next time (stop on eleventh time) The dialog items used to set up a pass count operation are found in the "Pass count" section of the dialog and are described below. TABLE 2-5: ADDRESS/DATA BREAKPOINTS - PASS COUNT | Item | Description | | |-----------|--|--| | Condition | determines when the break specified under "Breaks on" occurs: Always Break: Always break when the "Breaks on" condition is met. | | | | Event must occur Count times: An event ("Breaks on" condition) must occur Count times before actually breaking. | | | Count* | according to the condition specified, enters the number of events | | #### 2.5.6 Trigger Out Operation A trigger out pulse can be generated when an address or data breakpoint is reached. For more on triggers, see Section 2.9 "Trigger In/Out". The dialog item used to set up trigger out operation is described below TABLE 2-6: ADDRESS/DATA BREAKPOINTS - TRIGGER OUT OPTIONS | Item | Description | |-----------------|--| | Trigger Options | selects when to trigger, either: | | | do not emit a trigger out pulse when breakpoint is hit | | | emits a trigger out pulse when
breakpoint is hit | #### 2.5.7 Interrupt Context Detection An address or data breakpoint can be set based on the context of an interrupt. You can set up the breakpoint so it only breaks when it is in the interrupt section of code (ISR), only when it is in main line code, or when it is in either ISR or main code. This can assist when attempting to narrow down issues in code regions. Address/Data Breakpoints may be found and set up on the New Breakpoint Dialog (<u>Debug>New Breakpoint</u>) by choosing either "Address" or "Data" as the "Breakpoint Type". After the breakpoint is created, it may be edited by right clicking and selecting "Customize". The dialog item used to set up interrupt context is described below. TABLE 2-7: ADDRESS/DATA BREAKPOINTS - INTERRUPT CONTEXT | Item | Description | |-------------------|---| | Interrupt Context | Interrupt Context qualifier for address/data breakpoints | | | select from: Always break (break in both ISR and main code) Break in main line (non-interrupt) context only - break in main code only Break in interrupt context only - break in ISR code only | #### 2.6 ENHANCED EVENT BREAKPOINTS For a definition of event breakpoints, see the MPLAB X IDE Help, "New Breakpoint Dialog". Additional events for emulation headers are: - · Break on MCLR reset - · Break on execution out of bounds - · Break on trigger in signal When creating a new breakpoint or customizing an existing breakpoint using an emulation header, additional actions are available for each event breakpoint: | Action | Description | |-----------------------|---| | Break | breaks (halts) execution per option specified | | Trigger out | emits a trigger out pulse per option specified | | Break and trigger out | breaks (halts) execution AND emits a trigger out pulse per option specified | Event breakpoints may be found and set up on the New Breakpoint Dialog (<u>Debug>New Breakpoint</u>) by choosing "Event" as the "Breakpoint Type". After the breakpoint is created, it may be edited by right clicking and selecting "Customize". #### 2.6.1 Execution Out-of-Bounds Detection An emulation header can be used to detect out-of-bounds execution of code. Out-of-bounds code execution is detected by an event breakpoint that watches for Program Counter (PC) values that exceed the available program memory of the emulated MCU. The out-of-bounds code execution condition is typically caused by a computed GOTO or CALL that erroneously computes the index, or by loading PCLATH with an incorrect value. Once code is halted due to the execution out-of-bounds event breakpoint the 'Previous PC' functionality can be used to identify the offending instruction. The Out-of-bounds break option may be found and set up on the New Breakpoint Dialog (<u>Debug>New Breakpoint</u>) by choosing "Event" as the "Breakpoint Type" and checking "Break on execution out of bounds". After the breakpoint is created, it may be edited by right clicking and selecting "Customize". #### 2.6.2 Break on Trigger In/Emit Trigger Out An emulation header can be set up to break on a trigger in. For details on this type of trigger, see Section 2.9.2 "Trigger In Operation". Also, the emulation header may be set to trigger out, or break and trigger out, when an enhanced even breakpoint is hit. For details on this type of trigger, see Section 2.9.3 "Trigger Out Operation". See also: Section 2.9.1 "Trigger In/Out Hardware". #### 2.7 EVENT COMBINERS An event combiner monitors multiple event inputs (currently breakpoints only) and can generate a halt or a trigger out that is based on combinations and sequences of those inputs. Emulation headers have four (4) Event Combiners, and each combines eight (8) combinational or sequential events into a single event trigger. Individual breakpoints may be grouped into sequences, logical 'AND' lists, or a nested combination of these for more complex control. The Event Combiners were modeled after the legacy MPLAB[®] ICE 2000 complex triggers. Set up the following complex breakpoints through selections in the Breakpoint window (*Window>Debugging>Breakpoints*). #### 2.7.1 Complex Breakpoint Sequence A breakpoint sequence is a list of breakpoints that execute but do not halt until the last breakpoint is executed. Sequenced breakpoints can be useful when there are more than one execution path leading to a certain instruction, and you only want to exercise one specific path. #### To create a Breakpoint Sequence: - 1. Right click on an existing breakpoint or shift click to select a group of existing breakpoints and right click on the group. - 2. From the pop-up menu, go to "Complex Breakpoint" and select "Add to New Sequence". - 3. Enter a name for your sequence in the dialog box, and click **OK**. - 4. The breakpoint(s) will appear under the new sequence. #### To add Existing Breakpoints to a Sequence: - Right click on an existing breakpoint or shift click to select a group of existing breakpoints and right click on the group. - 2. From the pop-up menu, go to "Complex Breakpoint" and select "Move to *Name*", where *Name* is the name of the sequence. #### To add a New Breakpoint to a Sequence: Right click on the sequence and select "New Breakpoint". For more on setting up a new breakpoint, see Section 2.5 "Hardware Address/Data Breakpoints" and Section 2.6 "Enhanced Event Breakpoints". #### To select the Sequence Order: - 1. Expand on a sequence to see all items. - 2. Right click on an item and select <u>Complex Breakpoints>Move Up</u> or <u>Complex Breakpoints>Move Down</u>. Sequence execution of breakpoints is bottom-up; the last breakpoint in the sequence occurs first. #### To remove Breakpoints from a Sequence: - 1. Right click on an existing breakpoint or shift click to select a group of existing breakpoints and right click on the group. - 2. From the pop-up menu, go to "Complex Breakpoint" and select "Remove from *Name*", where *Name* is the name of the sequence. #### 2.7.2 Complex Breakpoint Latched-And In addition to breakpoint sequences, a Latched-And (hardware AND) is available to AND a list of breakpoints. ANDed breakpoints can be useful when a variable is modified in more than one location and you need to break only when that variable is modified in one particular location. #### To create a Breakpoint Latch-And: - 1. Right click on an existing breakpoint or shift click to select a group of existing breakpoints and right click on the group. - 2. From the pop-up menu, go to "Complex Breakpoint" and select "Add a New Latched-And". - 3. Enter a name for your Latched-And in the dialog box and click **OK**. - 4. The breakpoint(s) will appear under the new Latched-And. #### To add Existing Breakpoints to a Latch-And: - 1. Right click on an existing breakpoint or shift click to select a group of existing breakpoints and right click on the group. - 2. From the pop-up menu, go to "Complex Breakpoint" and select "Move to *Name*", where *Name* is the name of the Latched-And. #### To add a New Breakpoint to a Latch-And: Right click on the Latched-And and select "New Breakpoint". #### To remove Breakpoints from a Latch-And: - 1. Right click on an existing breakpoint or shift click to select a group of existing breakpoints and right click on the group. - 2. From the pop-up menu, go to "Complex Breakpoint" and select "Remove from *Name*", where *Name* is the name of the Latched-And. #### 2.7.3 Complex Breakpoint Nesting Complex breakpoints may be nested to create even more complex breaking schemes. #### To nest one group of complex breakpoints into another: - 1. Create two groups of complex breakpoints (Sequenced, Latched-And or one of each). - 2. Right click on the complex breakpoint group you wish to nest. - 3. From the pop-up menu, go to "Complex Breakpoint" and select "Move to *Name*", where *Name* is the name of the other complex breakpoint group. - 4. The first group will appear under the second group, thus creating a scheme. #### FIGURE 2-7: NESTED COMPLEX BREAKPOINTS #### 2.8 STOPWATCH CYCLE COUNTER The Stopwatch Cycle Counter (32-bit-wide instruction cycle counter) has the ability to perform the existing basic instruction cycle counting (all instruction cycles counted) that exists on standard Enhanced Midrange parts.. **Note:** The count units are in instruction cycles, not in instructions (as not all instructions execute in a single cycle). The stopwatch is available under <u>Window>Debugging>Stopwatch</u>. The stopwatch uses two (2) breakpoint resources. #### 2.9 TRIGGER IN/OUT The emulation header is capable of producing an output pulse for external triggering and detecting an input pulse for internal triggering. - Trigger In/Out Hardware - Trigger In Operation - Trigger Out Operation #### 2.9.1 Trigger In/Out Hardware Pins on the emulation header may be used for Trigger In/Out. Pin functions are labeled on the board silkscreen, namely: - GND ground - TRIG IN used for Trigger In - TRIG OUT used for Trigger Out #### 2.9.2 Trigger In Operation A pulse on the Trigger In (TRIG IN) pin can be used to generate a trigger condition, halt and/or trigger out signal. Set up Trigger In by selecting <u>Window>Debugging>Triggers</u>. | Selection | Description | |------------------------|---| | Polarity | Trigger-in pin pulse polarity: Positive: a positive-going pulse Negative: a negative-going pulse | | Noise Reduction Filter | reduces the noise on the trigger-in pin using a filter, which helps mitigate spurious triggers from halting code Enables or disables this
feature | | Trigger Trace | Trigger trace when a pulse is received on the trigger-in pin
Enables or disables this feature | An Event Breakpoint can be set up to break when a Trigger In pulse is detected. See Section 2.6 "Enhanced Event Breakpoints". #### 2.9.3 Trigger Out Operation A pulse can be output on the Trigger Out (TRIG OUT) pin based on the setting of breakpoint types: - Line - Data or Address (see Section 2.5 "Hardware Address/Data Breakpoints") - Event (see Section 2.6 "Enhanced Event Breakpoints"). The breakpoint can be set up so that the pulse is emitted without halting device execution. | Set up Trigger Out by | v selecting | Window>Debugging>Triggers. | |-----------------------|-------------|----------------------------| | | | | | Selection | Description | |--------------------|---| | Polarity | Trigger-out pin pulse polarity: | | | Positive: a positive-going pulse | | | Negative: a negative-going pulse | | Slew Rate Limiting | Limit the slew rate on the Trigger Out pulse. | | | Enable: slew rate is slow and limited | | | Disable: Slew rate is as fast as possible | | One Shot | The trigger out pulse duration is: | | | Enable: a fixed width, regardless of MCU operating frequency | | | Disable: the length of the event itself, which is MCU frequency | | | dependent | | Force Trigger Out | Click this button to force a Trigger Out pulse. | A handy feature of the trigger out signal is that its duration can last as long as the occurring event. For example, if the customer needs to time the duration of the watchdog timer (whose timeout period is user-programmable); the following code, in conjunction with the trigger out and SLEEP event breakpoint features, can make timing an event very simple without employing the old-school technique of writing a single line of (special, non-production) code to wiggle an I/O pin. The following code is an example: ``` TRIGGER OUT TEST: TIMING THE WATCHDOG TIMER ; 1) Ensure the watchdog timer configuration bit is enabled. ; 2) Set an Event Breakpoint (Break on SLEEP) to initiate a 'Trigger out' action only. ; 3) Connect your oscilloscope probe to the TRIGGER OUT pin and set up your oscilloscope to trigger on the rising edge. ; 4) Run the following code: CLRWDT NOP NOP SLEEP ; The expiration of the watchdog timer will wake up the MCU from : sleep after ~2 seconds. The trigger out pulse high-time ; duration is the duration of the watchdog timer: ____--- ; Since the default watchdog timer period value is 2 seconds : typical, the trigger out pulse measured on the oscilloscope ; should be approximately 2 seconds. NOP NOP NOP Loop_101: BRA Loop_101 ``` #### 2.10 VIEW HARDWARE STACK ON HALT View the contents of the hardware stack on halt. To open the hardware stack window, do the following: - 1. Select <u>Window>PIC Memory Views</u> and choose any memory window type (e.g., Program Memory). - 2. In the memory window, under the "Memory" drop-down list, select "Hardware Stack". The first stack level is denoted by "0". FIGURE 2-8: HARDWARE STACK VIEW #### 2.11 PREVIOUS PROGRAM COUNTER MPLAB X IDE has a Previous Program Counter (PrevPC) display, whose value can be used as discussed below. The caller of a subroutine or branch can be identified from the PrevPC value if a breakpoint is set on the first instruction of the destination routine (or subroutine). When the part is halted in the debug session, the PrevPC display in MPLAB X IDE will indicate the address of the calling or branch instruction. Similarly, if a breakpoint is set on the instruction that follows a BTFSC-pair (not the skipped instruction, but the next one), PrevPC will identify whether or not the skip occurred. Additionally if an 'execution out-of-bounds' halt exception occurs, the PrevPC feature can be used to identify the wild-branch instruction that caused the 'execution out-of-bounds' halt exception. FIGURE 2-9: PREVIOUS PC VIEW #### 2.12 BACKGROUND DEBUG The emulation header's on-board -ME2 device contains a Background Debug control interface that allows you read/write access to RAM memory, SFRs, and emulation registers while your program is running or even sleeping. **Note:** Write access to RAM memory and SFRs while your program is running/sleeping is currently not supported in MPLAB X IDE but is planned in a future release. Background Debug capability includes the following advantages: - Allows runtime changes of breakpoints (i.e., runtime address/data/complex/event breakpoints). - Compared to debug headers (with -ICE or -ICD devices), yields noticeably faster single-stepping speeds at lower MCU operating frequencies. #### **Chapter 3. Emulation Header List** #### 3.1 INTRODUCTION Currently available emulation headers and their associated -ME2 devices are shown below, organized by supported device. **TABLE 1: OPTIONAL EMULATION HEADERS - PIC12/16 DEVICES** | Device Supported by
Emulation Header | Pin
Count | EEP* Part
Number | -ME2 Device on
Emulation Header | VDD Max | |---|--------------|---------------------|------------------------------------|---------| | PIC12F1612 | 8 | AC244066 | PIC16F1619-ME2 | 5.5V | | PIC16F1613 | 14 | | | | | PIC16F1614 | 14 | | | | | PIC16F1615 | 14 | | | | | PIC16F1618 | 20 | | | | | PIC16F1619 | 20 | | | | | PIC12LF1612 | 8 | | | 3.6V | | PIC16LF1613 | 14 | | | | | PIC16LF1614 | 14 | | | | | PIC16LF1615 | 14 | | | | | PIC16LF1618 | 20 | | | | | PIC16LF1619 | 20 | | | | | PIC16F1703 | 14 | AC244065 | PIC16F1719-ME2 | 5.5V | | PIC16F1704 | 14 | | | | | PIC16F1705 | 14 | | | | | PIC16F1707 | 20 | | | | | PIC16F1708 | 20 | | | | | PIC16F1709 | 20 | | | | | PIC16F1713 | 28 | | | | | PIC16F1716 | 28 | | | | | PIC16F1717 | 40/44 | | | | | PIC16F1718 | 28 | | | | | PIC16F1719 | 40/44 | | | | | PIC16LF1703 | 14 | | | 3.6V | | PIC16LF1704 | 14 | | | | | PIC16LF1705 | 14 | | | | | PIC16LF1707 | 20 | | | | | PIC16LF1708 | 20 | | | | | PIC16LF1709 | 20 | | | | | PIC16LF1713 | 28 | | | | | PIC16LF1716 | 28 | | | | | PIC16LF1717 | 40/44 | | | | | PIC16LF1718 | 28 | | | | | PIC16LF1719 | 40/44 | | | | ^{*} See Section 1.1 "What is an Emulation Extension Pak?". TABLE 1: OPTIONAL EMULATION HEADERS - PIC12/16 DEVICES (CON'T) | Device Supported by | Pin | EEP* Part | -ME2 Device on | | |---------------------|-------|-----------|------------------|---------| | Emulation Header | Count | Number | Emulation Header | VDD Max | | PIC16F1782 | 28 | AC244064 | PIC16F1789-ME2 | 5.5V | | PIC16F1783 | 28 | | | | | PIC16F1784 | 40/44 | | | | | PIC16F1786 | 28 | | | | | PIC16F1787 | 40/44 | | | | | PIC16F1788 | 28 | | | | | PIC16F1789 | 40/44 | | | | | PIC16LF1782 | 28 | | | 3.6V | | PIC16LF1783 | 28 | | | | | PIC16LF1784 | 40/44 | | | | | PIC16LF1786 | 28 | | | | | PIC16LF1787 | 40/44 | | | | | PIC16LF1788 | 28 | | | | | PIC16LF1789 | 40/44 | | | | | PIC12F1822 | 8 | AC244063 | PIC16F1829-ME2 | 5.5V | | PIC12F1840 | 8 | | | | | PIC16F1823 | 14 | | | | | PIC16F1824 | 14 | | | | | PIC16F1825 | 14 | | | | | PIC16F1826 | 18 | | | | | PIC16F1827 | 18 | | | | | PIC16F1828 | 20 | | | | | PIC16F1829 | 20 | | | | | PIC16F1847 | 18 | | | | | PIC12LF1822 | 8 | | | 3.6V | | PIC12LF1840 | 8 | | | | | PIC16LF1823 | 14 | | | | | PIC16LF1824 | 14 | | | | | PIC16LF1825 | 14 | | | | | PIC16LF1826 | 18 | | | | | PIC16LF1827 | 18 | | | | | PIC16LF1828 | 20 | | | | | PIC16LF1829 | 20 | | | | | PIC16LF1847 | 18 | 100//075 | DIO4054000 1450 | F 5) (| | PIC16F1933 | 28 | AC244055 | PIC16F1939-ME2 | 5.5V | | PIC16F1934 | 40/44 | | | | | PIC16F1936 | 28 | | | | | PIC16F1937 | 40/44 | | | | | PIC16F1938 | 28 | | | | | PIC16F1939 | 40/44 | | | | | PIC16LF1933 | 28 | | | 3.6V | | PIC16LF1934 | 40/44 | | | | | PIC16LF1936 | 28 | | | | | PIC16LF1937 | 40/44 | | | | | PIC16LF1938 | 28 | | | | | PIC16LF1939 | 40/44 | | | | ^{*} See Section 1.1 "What is an Emulation Extension Pak?". #### 3.2 AC244055 #### 3.2.1 Header Identification The AC number is used for ordering the Emulation Extension Pak, which contains the emulation header. However, this number is not on the header, as the board may be used for multiple headers by inserting different -ME2 devices. To identify this header, use the following information. | AC Number | -ME2 Device | Board Assembly Number | |-----------|----------------|-----------------------| | AC244055 | PIC16F1939-ME2 | 02-10039 | #### 3.2.2 Header Setup and Operation For this header, select your device type using J5. You can also enable the Power LED by using J3. J6 is not a jumper but a group of pins that you can use for trigger in and/or trigger out signals. | Jumper | Name | Setting | Function | Notes | |--------|-------------|----------|------------------------------------|--------| | J3 | LED Enable | Open | disable power LED indicator | | | | | Short | enable power LED indicator | | | J5 | Emulation | pins 1-2 | emulate 'F' variants (5.5 V MAX) | Note 1 | | | Select | pins 2-3 | emulate 'LF' variants (3.6 V MAX!) | | | J6 | Trigger I/O | pin 1 | Ground | Note 2 | | | | pin 2 | used for Trigger In | | | | | | used for Trigger Out | | Note 1: Do not change this setting when the header is powered. Power down first. Note 2: See Section 2.9 "Trigger In/Out". #### 3.2.3 Header Limitations and Errata See the "Limitations" section in your debug tool online Help file for details. For silicon errata, see: Section A.3 "Hardware Breakpoint Issue" Section A.4 "Trigger In/Halt during Multi-Cycle Instruction Processing" #### 3.2.4 Header Dimensions The figure below lists the dimensions for the emulation header. Dimensions are design values in inches. If the length and/or width of the emulation header is too large a footprint for the target board, consider using stand-offs, single in-line pins, transition sockets or other extenders in the header connection socket to raise the header above the target. FIGURE 3-1: DIMENSIONS - AC244055 #### 3.3 AC244063 #### 3.3.1 Header Identification The AC number is used for
ordering the Emulation Extension Pak, which contains the emulation header. However, this number is not on the header, as the board may be used for multiple headers by inserting different -ME2 devices. To identify this header, use the following information. | AC Number | -ME2 Device | Board Assembly Number | |-----------|----------------|-----------------------| | AC244063 | PIC16F1829-ME2 | 02-10212 | #### 3.3.2 Header Setup and Operation For this header, select your device type using J5. You can also enable the Power LED by using J3. J7, J8, and J9 are a group of pins that you can use for trigger in/trigger out signals. | Jumper | Name | Setting | Function | Notes | |--------|-------------|----------|------------------------------------|----------| | J3 | LED Enable | Open | disable power LED indicator | | | JS | LED Enable | Short | enable power LED indicator | | | J5 | Emulation | pins 1-2 | emulate 'F' variants (5.5 V MAX) | Note 1 | | 33 | Select | pins 2-3 | emulate 'LF' variants (3.6 V MAX!) | - Note 1 | | J6 | Device | pins 1-2 | 18-pin devices | Note 1 | | 30 | Package | pins 2-3 | 8/14/20-pin devices | - Note 1 | | J7 | | pin 1 | Ground | | | J8 | Trigger I/O | pin 2 | used for Trigger In | Note 2 | | J9 | | pin 3 | used for Trigger Out | | Note 1: Do not change this setting when the header is powered. Power down first. Note 2: See Section 2.9 "Trigger In/Out". #### 3.3.3 Header Limitations See the "Limitations" section in your debug tool online Help file for details. For silicon errata, see: Section A.4 "Trigger In/Halt during Multi-Cycle Instruction Processing" #### 3.3.4 Header Dimensions The figure below lists the dimensions for the emulation header. Dimensions are design values in inches. If the length and/or width of the emulation header is too large a footprint for the target board, consider using stand-offs, single in-line pins, transition sockets or other extenders in the header connection socket to raise the header above the target. FIGURE 3-2: DIMENSIONS - AC244063 #### 3.4 AC244064 #### 3.4.1 Header Identification The AC number is used for ordering the Emulation Extension Pak, which contains the emulation header. However, this number is not on the header, as the board may be used for multiple headers by inserting different -ME2 devices. To identify this header, use the following information. | AC Number | -ME2 Device | Board Assembly Number | |-----------|----------------|-----------------------| | AC244064 | PIC16F1789-ME2 | 02-10039 | #### 3.4.2 Header Setup and Operation For this header, select your device type using J5. You can also enable the Power LED by using J3. J6 is not a jumper but a group of pins that you can use for trigger in/trigger out signals. | Jumper | Name | Setting | Function | Notes | |--------|-------------|----------|------------------------------------|--------| | J3 | LED Enable | Open | disable power LED indicator | | | | | Short | enable power LED indicator | | | J5 | Emulation | pins 1-2 | emulate 'F' variants (5.5 V MAX) | Note 1 | | | Select | pins 2-3 | emulate 'LF' variants (3.6 V MAX!) | | | J6 | Trigger I/O | pin 1 | Ground | Note 2 | | | | pin 2 | used for Trigger In | | | | | pin 3 | used for Trigger Out | | Note 1: Do not change this setting when the header is powered. Power down first. Note 2: See Section 2.9 "Trigger In/Out". #### 3.4.3 Header Limitations and Errata See the "Limitations" section in your debug tool online Help file for details. For silicon errata, see: Section A.2 "CCP3 Capture". Section A.4 "Trigger In/Halt during Multi-Cycle Instruction Processing" #### 3.4.4 Header Dimensions The figure below lists the dimensions for the emulation header. Dimensions are design values in inches. If the length and/or width of the emulation header is too large a footprint for the target board, consider using stand-offs, single in-line pins, transition sockets or other extenders in the header connection socket to raise the header above the target. FIGURE 3-3: DIMENSIONS - AC244064 #### 3.5 AC244065 #### 3.5.1 Header Identification The AC number is used for ordering the Emulation Extension Pak, which contains the emulation header. However, this number is not on the header, as the board may be used for multiple headers by inserting different -ME2 devices. To identify this header, use the following information. | AC Number | -ME2 Device | Board Assembly Number | |-----------|----------------|-----------------------| | AC244065 | PIC16F1719-ME2 | 02-10315 | ### 3.5.2 Header Setup and Operation For this header, select your device type using JP2. You can also enable the Power LED by using JP1. TP1-3 are not jumpers but a group of test points that you can use for trigger in/trigger out signals. | Jumper | Name | Setting | Function | Notes | |--------|---------------------------------------|---|------------------------------------|--------| | JP1 | LED Enable | LED Enable Open disable power LED indicator | | | | | | Short | enable power LED indicator | | | JP2 | Emulation pins 1-2
Select pins 2-3 | | emulate 'F' variants (5.5 V MAX) | Note 1 | | | | | emulate 'LF' variants (3.6 V MAX!) | | | JP3 | Destruit pino 12 in in 1 | | 28/40/44-pin devices | Note 1 | | | | | 14/20-pin devices | | | TP1 | Trigger I/O | | Ground | Note 2 | | TP2 | | | used for Trigger In | | | TP3 | | | used for Trigger Out | | Note 1: Do not change this setting when the header is powered. Power down first. Note 2: See Section 2.9 "Trigger In/Out". #### 3.5.3 Header Limitations and Errata See the "Limitations" section in your debug tool online Help file for details. For silicon errata, see: Section A.2 "CCP3 Capture" Section A.4 "Trigger In/Halt during Multi-Cycle Instruction Processing" #### 3.5.4 Header Dimensions The figure below lists the dimensions for the emulation header. Dimensions are design values in inches. If the length and/or width of the emulation header is too large a footprint for the target board, consider using stand-offs, single in-line pins, transition sockets or other extenders in the header connection socket to raise the header above the target. FIGURE 3-4: DIMENSIONS - AC244065 #### 3.6 AC244066 #### 3.6.1 Header Identification The AC number is used for ordering the Emulation Extension Pak, which contains the emulation header. However, this number is not on the header, as the board may be used for multiple headers by inserting different -ME2 devices. To identify this header, use the following information. | AC Number | -ME2 Device | Board Assembly Number | |-----------|----------------|-----------------------| | AC244066 | PIC16F1619-ME2 | 02-10384 | ## 3.6.2 Header Setup and Operation For this header, select your device type using JP2. You can also enable the Power LED by using JP1. J7-J9 are not jumpers but a group of test points that you can use for trigger in/trigger out signals. | Jumper | Name | Setting | Function | Notes | |--------|--------------------|----------|------------------------------------|--------| | JP1 | LED Enable Open | | disable power LED indicator | | | | | Short | enable power LED indicator | | | JP2 | Emulation pins 1-2 | | emulate 'F' variants (5.5 V MAX) | Note 1 | | | Select | pins 2-3 | emulate 'LF' variants (3.6 V MAX!) | | | J7 | Trigger I/O | | Ground | Note 2 | | J8 | | | used for Trigger In | | | J9 | | | used for Trigger Out | | Note 1: Do not change this setting when the header is powered. Power down first. Note 2: See Section 2.9 "Trigger In/Out". #### 3.6.3 Header Limitations and Errata See the "Limitations" section in your debug tool online Help file for details. #### 3.6.4 **Header Dimensions** The figure below lists the dimensions for the emulation header. Dimensions are design values in inches. If the length and/or width of the emulation header is too large a footprint for the target board, consider using stand-offs, single in-line pins, transition sockets or other extenders in the header connection socket to raise the header above the target. FIGURE 3-5: **DIMENSIONS - AC244066** ## Appendix A. -ME2 Silicon Errata #### A.1 INTRODUCTION All emulation header boards have a special -ME2 device mounted on them. In some cases the -ME2 silicon has errata, i.e., the device does not operate as expected due to silicon issues. Known errata are: - CCP3 Capture - Hardware Breakpoint Issue - Trigger In/Halt during Multi-Cycle Instruction Processing #### A.2 CCP3 CAPTURE When the input threshold control for RE0 is configured for TTL, the CCP3 capture input is ignored. This applies to silicon revision C0 of the devices listed below. PIC16F1789-ME2 (AC244064): - PIC16(L)F1784 - PIC16(L)F1787 Work-around: use ST Threshold. #### A.3 HARDWARE BREAKPOINT ISSUE When using this emulation header with C language or Assembly language code, hardware breakpoints will not function past memory locations 0x3FF for the emulated devices listed below. PIC16F1939-ME2 (AC244055): - PIC16(L)F1936 - PIC16(L)F1937 Workarounds: - Software breakpoints for these four parts could be used (with the caveat that software breakpoints do not offer the advanced capability of hardware breakpoints). - Any function(s) that need to be debugged with hardware breakpoints could be explicitly (and temporarily) located in the program memory area below 0x400 until the function is properly debugged. In C language for the MPLAB XC8 C compiler, this can be done with the @ address construct as follows, which will locate $function_1$ at program memory base address 0x200. ``` void function_1(void) @ 0x200 { asm("NOP"); asm("NOP"); asm("NOP"); } ``` In assembly language for the MPASM assembler, this can be done with the CODE directive as follows, which will locate $function_1$ at program memory base address 0x200. ``` HW_BRKPT CODE 0x0200 function_1: NOP NOP NOP RETURN ``` ### A.4 TRIGGER IN/HALT DURING MULTI-CYCLE INSTRUCTION PROCESSING For some -ME2 devices, the arrival of a trigger-in/HALT event during processing of a multi-cycle
instruction may cause the emulator to fail to properly execute/complete the instruction before coming to a HALT. This applies to the following -ME2 products: PIC16(L)F1939-ME2 (AC244055) PIC16(L)F1829-ME2 (AC244063) PIC16(L)F1789-ME2 (AC244064) PIC16(L)F1719-ME2 (AC244065) ## **Appendix B. Emulation Header Target Footprints** #### **B.1 INTRODUCTION** To connect an emulation header directly to a target board (without the use of a transition socket) the following information will be helpful. - DIP Device Footprints - TQFP/PLCC Device Footprints ### **B.2** DIP DEVICE FOOTPRINTS The DIP device adapter footprint shown will accept adapter plugs like Samtec series APA plugs. These plugs can be soldered into place during development/emulation and eliminate the need for other sockets. FIGURE B-1: DIP FOOTPRINT #### **B.3 TQFP/PLCC DEVICE FOOTPRINTS** TQFP/PLCC device adapter footprints shown will accept board stackers like Samtec series DWM 0.050 Pitch Stackers. These stackers can be soldered into place during development/emulation and eliminate the need for other sockets. FIGURE B-2: SINGLE-ROW TQFP/PLCC FOOTPRINT 0.028 DIA PLATED-THRU HOLES 0.960 1.160 1.360 0.050 =0.960 UNLESS OTHERWISE SPECIFIED, 1.160 DIMENSIONS ARE IN INCHES. Drawing of device is 64/68-pin, 1.360 80/84-pin and 100-pin DOUBLE AND TRIPLE-ROW TQFP/PLCC FOOTPRINT FIGURE B-3: Header pin-out matches the PLCC package. PLCC will map to TQFP as follows: Header to 44-pin TQFP – one-to-one mapping. ## **Appendix C. Emulation Header Connections** ### C.1 INTRODUCTION The following types of emulation header connectors are described here. Information on connecting development tools to the header is presented, as well. The topics discussed here are: - 6-Pin Modular Connector - 6-Pin SIL Connector - Modular-to-SIL Adapter - Ordering Information ### C.2 6-PIN MODULAR CONNECTOR Emulation headers with 6-pin modular (RJ-11/ICSP) connectors can connect directly to the following tools: - MPLAB REAL ICE in-circuit emulator (Standard Driver Board) - MPLAB ICD 2 or 3 FIGURE 1: MODULAR CONNECTION #### C.3 6-PIN SIL CONNECTOR Emulation headers with 6-pin SIL (Single In-Line) connectors are compatible with the PICkit 3 but can also be used with the MPLAB REAL ICE in-circuit emulator. The 6-pin modular cable attached to the Standard Driver Board may be connected to the 6 header pins through the Modular-to-SIL Adapter. The 8-pin socket of the High Speed Driver Board or optional Isolation Unit may be connected directly to the 6 header pins. Be sure to line up pin 1 on the board with pin 1 on the header. FIGURE C-1: 6-PIN SIL CONNECTION TO AN EMULATOR ### C.4 MODULAR-TO-SIL ADAPTER You can use this adapter for a 6-pin modular connector to an 6-pin SIL connector. Ensure that you line up pin 1 of J1 with pin 1 of the 6-pin header connector. TOP TOP TOP 6-Pin From Header Tool Connector Assembly No.: TP2 02-01988 Modular Connector SIL Connector ICRST ICRST VDD VDD 4 (ICDT) (ICCK) FIGURE C-2: MODULAR-TO-SIL ADAPTER CONNECTION ## C.5 ORDERING INFORMATION To order the development tools and other hardware shown here, please refer to the table below. TABLE C-1: MICROCHIP HARDWARE ORDERING NUMBERS | Hardware | Order# | |---|----------| | MPLAB REAL ICE in-circuit emulator (Standard Communication) | DV244005 | | MPLAB REAL ICE in-circuit emulator (High-Speed Communication) – Performance Pak | AC244002 | | MPLAB REAL ICE Isolation Unit (works with High-Speed Communication) | AC244005 | | Modular-to-SIL Adapter | AC164110 | | | dei Osei s | Guide | | |--------|------------|-------|--| | NOTES: | ## **Appendix D. Revision History** ### D.1 Revision A (2014) Release of original document. ## D.2 Revision B (October 2015) - Chapter 1. "EEP and Emulation Header Overview" - reorganized for better information flow. - Chapter 2. "Emulation Header Features" reorganized for better information flow. Added new content for tool support table, "Breakpoint, Runtime Watch, and Trace Resources", "Runtime Watches", "View Hardware Stack on Halt", and "Previous Program Counter". Added content to "Hardware Address/Data Breakpoints" and "Enhanced Event Breakpoints." - Chapter 3. "Emulation Header List" Added AC244065 and AC244066. - Appendix A. "-ME2 Silicon Errata" Added this chapter. Some content has been taken from a previous chapter. | NOTES: | | | |--------|--|--| # EEP AND EMULATION HEADER USER'S GUIDE # Index | Numerics | Additional Information7 | |-------------------------|--| | 6-Pin Modular Connector | С | | 6-Pin SIL Connector | Calibration Bits | | 8-Pin SIL Connector74 | Calibration bits | | A | I | | AC162050 10 | ICE vs. ICD | | AC162052 | J | | AC162053 | Jumper Settings10, 12, 18, 22, 28, 39, 47, 50, 53, 56, 57, | | AC162054 | | | AC162055 | | | AC162056 12 | M | | AC162057 12 | Modular Connector73 | | AC162058 10 | Modular-to-SIL Adapter76 | | AC162059 16 | MPLAB ICE 200022 | | AC162060 18 | 0 | | AC162061 20 | - | | AC162062 39 | Ordering Hardware77 | | AC162064 | Р | | AC162065 44 | PCM16YM022 | | AC162066 | Performance | | AC162067 47 | PIC10F2009 | | AC162070 16 | PIC10F202 9 | | AC162074 47 | PIC10F204 9 | | AC162078 50 | PIC10F206 | | AC162079 39 | PIC10F220 | | AC162083 24 | PIC10F222 9 | | AC162087 39 | PIC10F320 9 | | AC162088 53 | PIC10F322 9 | | AC162091 39 | PIC10LF3209 | | AC162094 53 | PIC10LF322 | | AC162096 16 | PIC12F1501 | | AC244022 44 | PIC12F1822 | | AC244023 | PIC12F1840 | | AC244024 | PIC12F508 | | AC244026 56 | PIC12F5099 | | AC244027 56 | PIC12F5109 | | AC244028 28 | PIC12F5199 | | AC244033 59 | PIC12F6099, 24 | | AC244034 59 | PIC12F6159, 24 | | AC244035 61 | PIC12F617 | | AC244036 61 | PIC12F629 | | AC244043 63 | PIC12F635 | | AC244044 | PIC12F675 9, 10 | | AC244045 | PIC12F683 9, 10 | | AC244046 | PIC12HV609 | | AC244047 65 | PIC12HV615 9, 24 | | AC244051 | PIC12LF15019 | | AC244052 | PIC16F145435 | | AC244053 67 | PIC16F145535 | | AC244054 67 | PIC16F145835 | | PIC16F1459 35 | DIO40E44E0 | 0.5 | DIOACI FACOA | 00 | |--|-------------|--------|--------------|---| | Pictor P | | | | | | PIC16F1508 35 | | | | | | PIC16F1509 | | | | | | PIC16F1823 | | | | | | PIC16F1824 35 36 PIC16I-F723 35 PIC16F1825 35 36 PIC16I-F724 35 PIC16F1826 35 PIC16I-F327 35 PIC16I-F327 35 PIC16I-F327 35 PIC16I-F329 35, 36 PIC16I-F320 36, 50 PIC16I-F33 36 PIC16I-F333 36 PIC16I-F333 36 PIC16I-F333 36 PIC16I-F333 36 PIC16I-F334 36 PIC16I-F334 36 PIC16I-F335 36, 50 PIC16I-F334 36 PIC16I-F335 36 PIC16I-F335 36 PIC16I-F335 36 PIC16I-F335 36 PIC16I-F335 36 PIC16I-F336 36 PIC16I-F336 36 PIC16I-F337 36 PIC16I-F337 36 PIC16I-F337 36 PIC16I-F339 37 39 9.22 PIC16I-F6311 37 PIC16I-F639 PIC16I-F6311 37 PIC16I-F639 39 PIC16I-F6311 37 PIC16I-F639 39 PIC16I-F | | | | | | PIC16F1825 35 36 PIC16I-F724 35 PIC16F1827 35 PIC16I-F726 35 PIC16F1827 35 PIC16I-F727 35 PIC16F1827 35 PIC16I-F727 35 PIC16F1827 35 PIC16I-F727 35 PIC16F1827 35 PIC16I-F727 35 PIC16F1933 36 PIC16F1330 36.50 PIC16F1933 36 PIC16F1330 36.50 PIC16F1934 36 PIC16F13850 10 PIC16F1936 36 PIC16F13850 10 PIC16F1936 36 PIC16F13850 10 PIC16F1938 36 PIC16F13850 10 PIC16F1938 36 PIC16F13850 10 PIC16F1938 36 PIC16F13850 36 PIC16F1938 36 PIC16F2110 36 PIC16F205 9 PIC16F2110 36 PIC16F505 9 PIC16F2110 36 PIC16F506 9 PIC16F2110 36 PIC16F506 9 PIC16F311 37 PIC16F506 9 PIC16F311 37 PIC16F507 9 PIC16F311 37 PIC16F610 9,24 PIC16F6311 37
PIC16F627 9,24 PIC16F6311 37 PIC16F627 9,14 PIC16F6310 37 PIC16F630 9,12 PIC16F6315 PI | | | | | | PIC16F1826 35 | | • | | | | PIC16F1827. 35 PIC16F1829. 36, 56 PIC16F1829. 35, 36 PIC18F1230. 36, 56 PIC16F1847. 35 PIC18F1230. 36, 56, 50 PIC16F1947. 35 PIC18F1330. 36, 50 PIC16F1934. 36 PIC18F1330. 36, 50 PIC16F1934. 36 PIC18F1355. 36 PIC16F1936. 36 PIC18F1355. 36 PIC16F1937. 36 PIC18F1355. 36 PIC16F1938. 36 PIC18F14K50. 36 PIC16F1938. 36 PIC18F24J10. 36 PIC16F1939. 36 PIC18F24J10. 36 PIC16F295. 9 PIC18F24J10. 36 PIC16F255. 9 PIC18F24J10. 36 PIC16F256. 9 PIC18F24J10. 36 PIC16F256. 9 PIC18F24J10. 36 PIC16F266. 9 PIC18F24J10. 37 PIC16F26. PIC18F25J10. PIC16F27. 9 PIC18F25J10. 37 PIC16F28. 9 PIC18F25J10. 37 PIC16F28. 9 PIC18F25J10. 37 PIC16F29. PIC18F25J10 | PIC16F1825 | 35, 36 | PIC16LF724 | 35 | | PIC16F1829 35, 36 | PIC16F1826 | 35 | PIC16LF726 | 35 | | PIC16F1847 35 | PIC16F1827 | 35 | PIC16LF727 | 35 | | PIC16F1933 | PIC16F1829 | 35, 36 | PIC18F1230 | 36, 50 | | PIC16F1934 36 | PIC16F1847 | 35 | PIC18F1330 | 36, 50 | | PIC16F1936 36 PIC18F14K50 10 PIC16F1937 36 PIC18F14K50 10 PIC16F1938 36 PIC18F24J10 36 PIC16F1939 36 PIC18F24J10 36 PIC16F1939 36 PIC18F24J10 36 PIC16F505 9 PIC18F24J10 36 PIC16F506 9 PIC18F24J10 36 PIC16F506 9 PIC18F3J10 36 PIC16F506 9 PIC18F3J10 36 PIC16F506 9 PIC18F3J10 36 PIC16F506 9 PIC18F3J10 36 PIC16F506 9 PIC18F63J10 36 PIC16F610 9,24 PIC18F63J10 37 PIC16F610 9,24 PIC18F63J10 37 PIC16F610 9,24 PIC18F64J11 37 PIC16F627A 9,14 PIC18F64J16 37 PIC16F628A 9,14 PIC18F64J10 37 PIC16F628A 9,14 PIC18F64J10 37 PIC16F631 9,20 PIC18F64J90 37 PIC16F631 9,20 PIC18F64J95 37 PIC16F636 9,12 PIC18F64J95 37 PIC16F638 9,22 PIC18F65J10 37 PIC16F639 9,22 PIC18F65J10 37 PIC16F639 9,22 PIC18F65J10 37 PIC16F639 10,20 PIC18F65J10 37 PIC16F639 10,20 PIC18F65J10 37 PIC16F684 10,12 PIC18F65J0 37 PIC16F685 10,20 PIC18F65J0 37 PIC16F685 10,20 PIC18F65J1 37 PIC16F686 10,12 PIC18F65J0 37 PIC16F687 10,20 PIC18F65J1 37 PIC16F689 10,20 PIC18F66J1 37 PIC16F690 10,20 PIC18F66J1 37 PIC16F690 10,20 PIC18F66J1 37 PIC16F72 35 PIC18F66J0 38 PIC16F72 35 PIC18F66J0 37 PIC16F72 36 PIC18F6J0 37 PIC16F72 37 PIC16F72 37 PIC16F73 37 PIC16F74 37 PIC16F74 37 PIC16F75 37 PIC16F75 37 PIC16F75 37 PIC16F76 PIC16F77 37 PIC16F78 37 PIC16F79 PIC16F | PIC16F1933 | 36 | PIC18F13K22 | 36 | | PIC16F1936 36 PIC18F14K50 10 PIC16F1937 36 PIC18F14K50 10 PIC16F1938 36 PIC18F24J10 36 PIC16F1939 36 PIC18F24J10 36 PIC16F1939 36 PIC18F24J10 36 PIC16F505 9 PIC18F24J10 36 PIC16F506 9 PIC18F24J10 36 PIC16F506 9 PIC18F3J10 36 PIC16F506 9 PIC18F3J10 36 PIC16F506 9 PIC18F3J10 36 PIC16F506 9 PIC18F3J10 36 PIC16F506 9 PIC18F63J10 36 PIC16F610 9,24 PIC18F63J10 37 PIC16F610 9,24 PIC18F63J10 37 PIC16F610 9,24 PIC18F64J11 37 PIC16F627A 9,14 PIC18F64J16 37 PIC16F628A 9,14 PIC18F64J10 37 PIC16F628A 9,14 PIC18F64J10 37 PIC16F631 9,20 PIC18F64J90 37 PIC16F631 9,20 PIC18F64J95 37 PIC16F636 9,12 PIC18F64J95 37 PIC16F638 9,22 PIC18F65J10 37 PIC16F639 9,22 PIC18F65J10 37 PIC16F639 9,22 PIC18F65J10 37 PIC16F639 10,20 PIC18F65J10 37 PIC16F639 10,20 PIC18F65J10 37 PIC16F684 10,12 PIC18F65J0 37 PIC16F685 10,20 PIC18F65J0 37 PIC16F685 10,20 PIC18F65J1 37 PIC16F686 10,12 PIC18F65J0 37 PIC16F687 10,20 PIC18F65J1 37 PIC16F689 10,20 PIC18F66J1 37 PIC16F690 10,20 PIC18F66J1 37 PIC16F690 10,20 PIC18F66J1 37 PIC16F72 35 PIC18F66J0 38 PIC16F72 35 PIC18F66J0 37 PIC16F72 36 PIC18F6J0 37 PIC16F72 37 PIC16F72 37 PIC16F73 37 PIC16F74 37 PIC16F74 37 PIC16F75 37 PIC16F75 37 PIC16F75 37 PIC16F76 PIC16F77 37 PIC16F78 37 PIC16F79 PIC16F | PIC16F1934 | 36 | PIC18F13K50 | 10 | | PIC16F1937 36 | | | | | | PIC16F1938 36 | | | | | | PIC16F505 9 | | | | | | PIC16F505 9 PIC18F4J10 36 PIC16F506 9 PIC18F45J10 36,47 PIC16F626 9 PIC18F63J11 37 PIC16F610 9,24 PIC18F63J90 37 PIC16F616 9,24 PIC18F63J90 37 PIC16F616 9,24 PIC18F63J90 37 PIC16F627A 9,14 PIC18F64J11 37 PIC16F628A 9,14 PIC18F64J90 37 PIC16F628A 9,14 PIC18F64J90 37 PIC16F630 9,12 PIC18F65J10 37 PIC16F631 9,20 PIC18F65J10 37 PIC16F639 9,22 PIC18F65J10 37 PIC16F639 9,22 PIC18F65J10 37 PIC16F648A 10,14 PIC18F64J96 37 PIC16F64BA 10,12 PIC18F65J6 37 PIC16F676 10,12 PIC18F65J5 37 PIC16F685 10,20 PIC18F65J1 37 PIC16F688 10,20 PIC18F65J0 37 PIC16F688 10,20 PIC18F65J0 37 PIC16F688 10,20 PIC18F65J0 37 PIC16F689 10,20 PIC18F65J0 37 PIC16F689 10,20 PIC18F65J0 37 PIC16F689 10,20 PIC18F65J0 37 PIC16F689 10,20 PIC18F66J1 37 PIC16F690 10,20 PIC18F66J1 37 PIC16F72 35 PIC18F66J6 38 PIC16F72 35 PIC18F66J6 38 PIC16F72 35 PIC18F66J6 38 PIC16F72 35 PIC18F6J0 37 PIC16F72 35 PIC18F6J0 37 PIC16F73 37 PIC16F73 35 PIC18F6J0 37 PIC16F74 37 PIC16F75 37 PIC16F75 37 PIC16F76 39 PIC18F679 37 PIC16F77 37 PIC16F78 37 PIC16F79 PIC | | | | | | PIC16F506 | | | | , | | PIC16F526 9 PIC18F63J11 37 PIC16F616 9, 24 PIC18F63J90 37 PIC16F627A 9, 14 PIC18F64J11 37 PIC16F628A 9, 14 PIC18F64J96 37 PIC16F630 9, 12 PIC18F64J95 37 PIC16F631 9, 20 PIC18F66J10 37 PIC16F633 9, 12 PIC18F65J11 37 PIC16F639 9, 22 PIC18F65J11 37 PIC16F639 9, 22 PIC18F65J15 37 PIC16F648A 10, 14 PIC18F65J50 37 PIC16F676 10, 12 PIC18F65J50 37 PIC16F6676 10, 12 PIC18F66J55 37 PIC16F684 10, 12 PIC18F66J50 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F686 10, 20 PIC18F66J10 37 PIC16F688 10, 20 PIC18F66J10 37 PIC16F689 10, 20 PIC18F66J16 37 PIC16F690 | | | | | | PIC16F610 9, 24 PIC18F63J90 37 PIC16F616 9, 24 PIC18F64J11 37 PIC16F627A 9, 14 PIC18F64J16 37 PIC16F628A 9, 14 PIC18F64J90 37 PIC16F630 9, 12 PIC18F64J90 37 PIC16F631 9, 20 PIC18F65J10 37 PIC16F636 9, 12 PIC18F65J11 37 PIC16F639 9, 22 PIC18F65J15 37 PIC16F639 9, 22 PIC18F65J16 37 PIC16F676 10, 14 PIC18F65J55 37 PIC16F677 10, 20 PIC18F65J55 37 PIC16F684 10, 12 PIC18F66J50 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F686 10, 20 PIC18F66J10 37 PIC16F688 10, 12 PIC18F66J10 37 PIC16F689 10, 20 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J5 37 PIC16F72 | | • | | , | | PIC16F616 9, 24 PIC18F64J11 37 PIC16F627A 9, 14 PIC18F64J16 37 PIC16F628A 9, 14 PIC18F64J90 37 PIC16F630 9, 12 PIC18F64J95 37 PIC16F631 9, 20 PIC18F65J10 37 PIC16F636 9, 12 PIC18F65J11 37 PIC16F639 9, 22 PIC18F65J15 37 PIC16F639 9, 22 PIC18F65J16 37 PIC16F668A 10, 12 PIC18F65J16 37 PIC16F676 10, 12 PIC18F65J50 37 PIC16F677 10, 20 PIC18F66J50 37 PIC16F684 10, 12 PIC18F66J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F6868 10, 12 PIC18F66J10 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J15 37 PIC16F720 10, 20 PIC18F66J5 37 PIC16 | | _ | | | | PIC16F627A | | - / | | | | PIC16F628A 9, 14 PIC18F64J90 37 PIC16F631 9, 12 PIC18F65J10 37 PIC16F636 9, 12 PIC18F65J11 37 PIC16F636 9, 12 PIC18F65J11 37 PIC16F639 9, 22 PIC18F65J15 37 PIC16F676 10, 14 PIC18F65J16 37 PIC16F677 10, 20 PIC18F65J50 37 PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F686 10, 20 PIC18F66J10 37 PIC16F687 10, 20 PIC18F66J10 37 PIC16F688 10, 20 PIC18F66J11 37 PIC16F689 10, 20 PIC18F66J15 37 PIC16F690 10, 20 PIC18F66J55 37 PIC16F716 10, 14 PIC18F66J55 38 PIC16F72 35 PIC18F66J6 38 PIC16F72 35 PIC18F66J55 38 PIC16F72 | | , | | _ | | PIC16F630 9, 12 PIC18F64J95 37 PIC16F631 9, 20 PIC18F65J10 37 PIC16F636 9, 12 PIC18F65J11 37 PIC16F639 9, 22 PIC18F65J15 37 PIC16F648A 10, 14 PIC18F65J16 37 PIC16F676 10, 12 PIC18F65J55 37 PIC16F677 10, 20 PIC18F65J55 37 PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F688 10, 20 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J15 37 PIC16F690 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J65 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F725 | | | | | | PIC16F631 9, 20 PIC18F65J10 37 PIC16F636 9, 12 PIC18F65J11 37 PIC16F639 9, 22 PIC18F65J15 37 PIC16F648A 10, 14 PIC18F65J16 37 PIC16F676 10, 12 PIC18F65J50 37 PIC16F677 10, 20 PIC18F65J55 37 PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F686 10, 20 PIC18F66J10 37 PIC16F688 10, 12 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J16 37 PIC16F690 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J50 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J60 38 PIC16F724 35 PIC18F67J10 37 PIC16F725 | | • | | | | PIC16F636 9, 12 PIC18F65J11 37 PIC16F639 9, 22 PIC18F65J15 37 PIC16F648A 10, 14 PIC18F65J5 37 PIC16F67C 10, 12 PIC18F65J55 37 PIC16F67T 10, 20 PIC18F65J55 37 PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F687 10, 20 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J15 37 PIC16F690 10, 20 PIC18F66J55 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F66J60 38 PIC16F725 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J50 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 | | • | | _ | | PIC16F639 9, 22 PIC18F65J15 37 PIC16F648A 10, 14 PIC18F65J16 37 PIC16F676 10, 12 PIC18F65J55 37 PIC16F677 10, 20 PIC18F65J55 37 PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F687 10, 20 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J16 37 PIC16F716 10, 20 PIC18F66J55 37 PIC16F722 35 PIC18F66J55 37 PIC16F723 35 PIC18F66J55 38 PIC16F724 35 PIC18F66J60 38 PIC16F725 35 PIC18F66J10 37 PIC16F726 35 PIC18F66J15 37 PIC16F727 35 PIC18F67J10 37 PIC16F7285 10, 18 PIC18F67J60 38 PIC16F785 | | | | | | PIC16F648A 10, 14 PIC18F65J16 37 PIC16F676 10, 12 PIC18F65J50 37 PIC16F677 10, 20 PIC18F65J55 37 PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F688 10, 20 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J16 37 PIC16F690 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F725 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV616 9, 24 PIC18F83J11 37 PIC16LF1454 | | | | | | PIC16F676 10, 12 PIC18F65J50 37 PIC16F677 10, 20 PIC18F65J55 37 PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F687 10, 20 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J6 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724
35 PIC18F67J10 37 PIC16F726 35 PIC18F67J10 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16F785 10, 18 PIC18F63J11 37 PIC16F785 10, 18 PIC18F83J11 37 PIC16HV610 9, 24 PIC18F83J11 37 PIC16LF1454 | | , | | | | PIC16F677 10, 20 PIC18F65J55 37 PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F687 10, 20 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J16 37 PIC16F690 10, 20 PIC18F66J55 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J11 37 PIC16F726 35 PIC18F67J01 37 PIC16F727 35 PIC18F67J00 38 PIC16F728 10, 18 PIC18F67J60 38 PIC16F725 35 PIC18F67J60 38 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J60 38 PIC16F785 10, 1 | | • | | | | PIC16F684 10, 12 PIC18F65J90 37 PIC16F685 10, 20 PIC18F66J10 37 PIC16F687 10, 20 PIC18F66J15 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J6 37 PIC16F690 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J65 38 PIC16F722 35 PIC18F66J66 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F7285 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J1 37 PIC16HV785 10, 18 PIC18F83J1 37 PIC16LF1454 35 PIC18F84J90 37 PIC16LF1459 | PIC16F676 | 10, 12 | PIC18F65J50 | 37 | | PIC16F685 10, 20 PIC18F66J10 37 PIC16F687 10, 20 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J16 37 PIC16F790 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F725 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV785 10, 18 PIC18F83J11 37 PIC16LF1454 35 PIC18F84J11 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1459 <t< td=""><td>PIC16F677</td><td> 10, 20</td><td>PIC18F65J55</td><td>37</td></t<> | PIC16F677 | 10, 20 | PIC18F65J55 | 37 | | PIC16F687 10, 20 PIC18F66J11 37 PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J15 37 PIC16F690 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV785 10, 18 PIC18F83J10 37 PIC16LF1454 35 PIC18F84J11 37 PIC16LF1458 35 PIC18F84J90 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1508 <t< td=""><td>PIC16F684</td><td> 10, 12</td><td>PIC18F65J90</td><td>37</td></t<> | PIC16F684 | 10, 12 | PIC18F65J90 | 37 | | PIC16F688 10, 12 PIC18F66J15 37 PIC16F689 10, 20 PIC18F66J16 37 PIC16F690 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J60 38 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J11 37 PIC16LF1454 35 PIC18F84J11 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J11 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1509 35 PIC18F85J15 37 PIC16LF1509 35 PIC1 | PIC16F685 | 10, 20 | PIC18F66J10 | 37 | | PIC16F689 10, 20 PIC18F66J16 37 PIC16F690 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16LF1454 35 PIC18F84J11 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J90 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J15 37 PIC16LF1509 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F | PIC16F687 | 10, 20 | PIC18F66J11 | 37 | | PIC16F690 10, 20 PIC18F66J50 37 PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F83J90 37 PIC16LF1454 35 PIC18F84J11 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J90 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18 | PIC16F688 | 10, 12 | PIC18F66J15 | 37 | | PIC16F716 10, 14 PIC18F66J55 37 PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1508 35 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F8 | PIC16F689 | 10, 20 | PIC18F66J16 | 37 | | PIC16F722 35 PIC18F66J60 38 PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J50 37 PIC16F727 35 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J10 37 PIC16LF1508 35 PIC18F85J11 37 PIC16LF1508 35 PIC18F85J15 37 PIC16LF1509 35 PIC18F85J55 37 PIC16LF1826 35 PIC18F85J50 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | PIC16F690 | 10, 20 | PIC18F66J50 | 37 | | PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV785 10, 18 PIC18F83J90 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1508 35 PIC18F85J11 37 PIC16LF1509 35 PIC18F85J15 37 PIC16LF1509 35 PIC18F85J55 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F86J10 37 PIC16LF1847 35 PIC18F86J10 37 | PIC16F716 | 10, 14 | PIC18F66J55 | 37 | | PIC16F723 35 PIC18F66J65 38 PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV785 10, 18 PIC18F83J90 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1508 35 PIC18F85J11 37 PIC16LF1509 35 PIC18F85J15 37 PIC16LF1509 35 PIC18F85J55 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F86J10 37 PIC16LF1847 35 PIC18F86J10 37 | PIC16F722 | 35 | PIC18F66J60 | 38 | | PIC16F724 35 PIC18F67J10 37 PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J55 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 PIC16LF1847 35 PIC18 | | | | | | PIC16F726 35 PIC18F67J11 37 PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16F727 35 PIC18F67J50 37 PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16F785 10, 18 PIC18F67J60 38 PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J16 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16HV610 9, 24 PIC18F83J11 37 PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | • | | PIC16HV616 9, 24 PIC18F83J90 37 PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | -, - | | | | PIC16HV785 10, 18 PIC18F84J11 37 PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10
PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16LF1454 35 PIC18F84J16 37 PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | - / | | | | PIC16LF1455 35 PIC18F84J90 37 PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | -, - | | • | | PIC16LF1458 35 PIC18F84J95 37 PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16LF1459 35 PIC18F85J10 37 PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16LF1503 10 PIC18F85J11 37 PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16LF1507 10 PIC18F85J15 37 PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16LF1508 35 PIC18F85J16 37 PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16LF1509 35 PIC18F85J50 37 PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | _ | | | | PIC16LF1826 35 PIC18F85J55 37 PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16LF1827 35 PIC18F85J90 37 PIC16LF1847 35 PIC18F86J10 37 | | | | | | PIC16LF1847 | | | | | | | PIC16LF1827 | 35 | PIC18F85J90 | 37 | | PIC16LF1933 | PIC16LF1847 | 35 | PIC18F86J10 | 37 | | | PIC16LF1933 | 36 | PIC18F86J11 | 37 | | PIC18F86J15 | 37 | |------------------------------|----| | PIC18F86J16 | | | PIC18F86J50 | | | PIC18F86J55 | | | PIC18F86J60 | | | PIC18F86J65 | | | PIC18F87J10 | | | PIC18F87J11 | | | PIC18F87J50 | | | PIC18F87J60
PIC18F96J60 | | | PIC18F96J65 | | | PIC18F97J60 | | | PIC18LF13K22 | | | PIC18LF13K50 | | | PIC18LF14K22 | | | PIC18LF14K50 | | | PIC18LF24J10 | | | PIC18LF25J1036, | | | PIC18LF44J10 | | | PIC18LF45J1036, | 47 | | PIC24F04KA200 | 10 | | PIC24F04KA201 | 10 | | PIC24F08KA101 | 38 | | PIC24F08KA102 | | | PIC24F16KA101 | | | PIC24F16KA102 | | | PIC24FJ128GA006 | | | PIC24FJ128GA008 | | | PIC24FJ128GA010 | | | PIC24FJ16GA002 | | | PIC24FJ16GA004 | | | PIC24FJ32GA002 | | | PIC24FJ32GA004PIC24FJ48GA002 | | | PIC24FJ48GA002 | | | PIC24FJ64GA002 | | | PIC24FJ64GA004 | | | PIC24FJ64GA006 | | | PIC24FJ64GA008 | | | PIC24FJ64GA010 | | | PIC24FJ96GA006 | | | PIC24FJ96GA008 | | | PIC24FJ96GA010 | | | PICDEM HPC Explorer Board | | | Pin Count9, | | | Programming Non-ICD Devices | | | S | | | _ | | | SIL Connector, 6 Pin | | | SIL Connector, 8 Pin | | | Switch Settings Potent | | | Switch Settings, Rotary | ∠4 | | Т | | | Transition Socket | 5 | | V | | | | o- | | Vdd Max9, | | | Vddcore Max9, | 35 | ## Worldwide Sales and Service #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Austin, TX** Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit** Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York, NY Tel: 631-435-6000 **San Jose, CA** Tel: 408-735-9110 **Canada - Toronto** Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC **Asia Pacific Office** Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 **Australia - Sydney** Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 **China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 **China - Chongqing** Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 **China - Dongguan** Tel: 86-769-8702-9880 **China - Hangzhou** Tel: 86-571-8792-8115 Fax: 86-571-8792-8116 **China - Hong Kong SAR** Tel: 852-2943-5100 Fax: 852-2401-3431 **China - Nanjing** Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 **China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 **China - Shenzhen** Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 **China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 **China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 #### ASIA/PACIFIC China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 **India - Bangalore** Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-3019-1500 **Japan - Osaka** Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 **Japan - Tokyo** Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 **Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302 **Korea - Seoul** Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 **Malaysia - Kuala Lumpur** Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 **Malaysia - Penang** Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 **Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850 **Taiwan - Hsin Chu** Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-213-7828 **Taiwan - Taipei** Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 **Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Dusseldorf Tel: 49-2129-3766400 Germany - Karlsruhe Tel: 49-721-625370 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 **Italy - Milan** Tel: 39-0331-742611 Fax: 39-0331-466781 Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340 **Poland - Warsaw** Tel: 48-22-3325737 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 **UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820 07/14/15