ANALOG
DEVICES

Introduction

The EVAL-ADICUP360 is an Arduino-like platform based on the ADUCM360 fully integrated, 3.9
kSPS, 24-bit data acquisition system that incorporates dual high performance, multichannel
sigma-delta (2-A) analog-to-digital converters (ADCs), a 32-bit ARM Cortex™-M3 processor, and
Flash/EE memory on a single chip. The platform has an Arduino-Due form factor and has two
additional PMOD connectors. An Eclipse based development environment is provided for code
development and debugging. The base platform is accompanied by a set of shields provided by
Analog Devices but it can also work with 3rd party Aduino shields.

This guide is structured as follows:

- Hardware - Contains hardware-related information about the base board and the various shields

- Quick Start Guides - Provides all the necessary steps to get the software environment up and
running

- Reference Designs - Contains detailed descriptions of the software reference designs available for
the base board and the shields

- Help and Support - Provides info on where to get support on any questions you might have
regarding the hardware or the software

Tool Chain Guides

This chapter provides all the necessary steps to get the software environment up and running.
It contains two main sections:

- Tool Chain Download & Installation Guide - Provides all the necessary instructions on how to
download and install the customized software development environment for ADuCM360 based on
Eclipse IDE.

- Tool Chain Setup & User Guide - Provides information about using the customized Eclipse IDE, in
particular, the process of importing, building, debugging, and creating user applications for the
ADuUCM360 microcontroller.

- Using EVAL-ADICUP360 with IAR and Keil IDEs - Provides detailed information how to use the
EVAL-ADICUP360 board with other IDEs than Eclipse, such as IAR Embedded Workbench and Keil
MVision.

Tool Chain for EVAL-ADICUP360

This page provides all the necessary steps to get the customized Eclipse software environment up
and running in either Windows or Linux.

The software development environment for EVAL-ADICUP360 is based on open source tools, and
includes the following features and components:

- ADUCM360 customized Eclipse IDE for C/C+ + Developers

- GNU Tools for ARM Embedded Processors (GCC toolchain for ARM processors)

- GNU ARM Eclipse Plug-ins, Copyright © 2009 Liviu lonescu, A family of Eclipse CDT extensions and
tools for GNU ARM development (open source ARM debug and build tools)

- GNU ARM Eclipse Build Tools, Copyright © 2009 Liviu lonescu (GNU make & busybox: sh, rm and
echo)

- OpenOCD with support for ADUCM360 microcontroller (open source SWD)
- Mbed CMSIS-DAP/Serial drivers (for Windows)

The Windows IDE compared to Linux IDE is pretty much the same. So if the documentation mainly
references the Windows version, things directly apply to the Linux version as well.

The EVAL-ADICUP360 Toolchain is based on Eclipse IDE, but because the MBED platform provides
CMSIS-DAP interface to connect to the board, the EVAL-ADICUP360 can be used without problems
together with IAR Embedded Workbench IDE or Keil pVision IDE.

Pre-Requisites and Requirements List

There are a few things that you will need for the tools and software to work properly.

- PC or laptop computer
- (2) Micro USB to USB cables

Both USB cables needs to have ALL data lines connected, can't use a charging only micro USB cable.

- Terminal Program to interface your PC with the EVAL-ADICUP360

' Putty
o Tera Term
» Or other favorite Terminal program
- Detailed ADuCM360 User Guide

Windows Tool Chain Installer Instructions

Windows Tool Chain Installer is a tool that facilitates the installation of the entire tool chain. It's an
single executable file which will either automatically download or install bundled packs of all of the
necessary tool chain components. The following open source components are included in the tool
chain installer:

- Customize ADUCM360 Eclipse IDE for C/C+ + Developers
- OpenOCD with ADuCM360 support

- GNU Tools for ARM Embedded Processors

- GNU Eclipse Build Tools for ARM Processors

- Mbed Windows serial port driver

DURING INSTALLATION ONLY CONNECT HARDWARE DEVICE WHEN YOUR ARE PROMPTED
BY THE DRIVER INSTALLER. WAIT TO ENSURE THAT THE HARDWARE DRIVERS ARE
COMPLETELY (AND SUCCESSFULLY) INSTALLED BEFORE MOVING FORWARD WITH THE
SOFTWARE INSTALL

_'&, EVAL-ADICUP360 Tool Chain Installer for Windows

The executable installs the components to a default local directory structure which can be found
below.

- ADUCM360 Eclipse IDE installs to C:\Analog Devices\ADuCM360-IDE\Eclipse (also creates links in

the Start menu)
» The customized ADuCM360 Eclipse IDE includes the required Eclipse plug-ins for ARM processor
and for the debug tools.

- OpenOCD is saved in C:\Analog Devices\ADuCM360-IDE\openocd\usr\bin

- GNU ARM Processor Tools will be saved to C:\Program Files (x86)\GNU Tools ARM
Embedded\4.9 2014q4\arm-none-eabi

- GNU ARM Eclipse Build Tools will be save to C:\Program Files (x86)\GNU ARM
Eclipse\Build_Tools

Linux Tool Chain Installer Instructions

There are two methods to get Linux Tool Chain Installer:

- Debian packages for 32-bits and 64-bits
- Tarball packages for 32-bits and 64-bits

The preferred way is to use the debian packages (.deb). You may be asked if you want to install
them while there are being downloaded. If not, you can use your file browser. The debian package is
typically recognized and associated with your distribution package management system. In any case
you can also install them from the command line using following command:

sudo dpkg -i DEB PACKAGE

The alternative way is to download the self-contained and relocateable tarball packages (.tar.gz).
The only advantage is that unlike the debian package is installed system wide. You can extract the
tarball anywhere including your HOME directory:

tar xzf TAR PACKAGE

The tarball package also includes some simple shell scripts that installs a symplic link to the
aducm360-ide executable into /usr/local/bin , copies the udev rules for the OpenOCD debugger,
installs a application launcher with icon etc.

Depending on your system (32-bits or 64 bits) you should pick one of the available versions:

EVAL-ADICUP360 Tool Chain Installer for Linux 32-bit

G EVAL-ADICUP360 Tool Chain Installer for Linux 64-bit
= |EVAL-ADICUP360 Tool Chain Installer for Linux 32-bit
EVAL-ADICUP360 Tool Chain Installer for Linux 64-bit

debian package)
debian package)
tarball package)
tarball package)

—_ |~~~

Tool Chain Setup User Guide

This page provides detailed information about using the ADuCM360 customized Eclipse IDE, in
particular, the process of importing, building, debugging, and creating user applications for the
ADuCM360 microcontroller.

This page will outline:

How to import existing projects into your workspace

How to build the .elf files, for programming the ADUCM360

How to configure the debug session for a particular user application
How to start a debug session

How to create a new project

ukwhe

Workspace and Projects

The workspace is a folder where Eclipse can access local copies of user application projects. When
starting Eclipse, a prompt will ask you for a location of this folder. This is the location where all the
ADuCM360 user applications will be stored.

Using the Tool Chain

The instructions below have been tested in Windows XP and Windows 7, on both 32-/64-bit machines.

Importing a Project

There are 2 methods for importing existing programs:

- Examples that come with the installer package.
- Examples which are in our GIT repository (most up to date content).

Only one method is needed to get started with the EVAL-ADICUP360.

How to Import Existing Projects within the Installer Package

1. From the menu located in the tool bar, select the File -» Import option.
2. A window will pop-up with several importing options, select General - Existing Projects into

n"fﬂﬂ'ﬂﬁ = =l @
Select
Create new projects from an archive file or directony. L' |
Select an import sounce
type filter text
a [General
_5.: Arghive File
i [Existing Projects into Workspace
1 Fale System
__ Peelerences
[CiCes
(& Git
(= Invstall
(2 RurvDebug
(= Tmm
7 I | et = | Cancel
Workspace.

3. Select Browse in the dialog window and search for the local copy of where the ADuCM360-IDE
examples are. If you used the default directory that can be found here: C:\Analog
Devices\ADuCM360-IDE\Examples

4. Make sure that the check-box Copy projects into workspace is checked (this creates a local copy
of the projects and preserves the original versions) and press Finish .

Dimport o o]

Import Projects ‘ =1,
Select a directory to search for existing Eclipse projects. -
@ Select root directory: | ChAnalog Devices\ADUCM260-IDEVADUCM 260 Examples - L Browyse.,. J
"1 Select archive file: - 2
Projects:

[| ADUCMIB0_demo_blink (C:\Analog Devices\ADUCM360-FINALYADUCM 360 Examplesh ADuUCM360_demo_blink) L Select All]

[| ADUCM360_demo_cli (Ch\ARalog Devices\ADUCM360-FINAL\ADUCM360 Examples\ADUCM 360_demo_cli) | DeselectAll |
eselec |

Refresh |

Options
| Search for nested projects
¥ | Copy projects into workspace
Hide projects that already exast in the workspace

Worlang sets
Add project to working sets

If you imported the example programs from the installer, you can skip ahead to “Building the
.ELF/.HEX Files” section. The only time you will need to import from the GIT repository, is if you want
to look for newly released/updated programs.

How to Import Existing Projects from the GIT Repository

1. Open the GIT perspective window by navigating the menu near the tool bar. File - Perspective -
Open Perspective - Other -» GIT and the press “OK".

|W'|ndmu | Help

MNews Windowy ® & v &] v & v % - -
1 Editor (N 3
1 Hide Toolbar 1
Show View »
| Perspective b Open Perspective » @ CodeRed
MNavigation » Customize Perspective... ﬁ Lioug
Save Perspective As,.. 7|1 eane ynchronmng
Preferences
Reset Perspective... Other...
Close Perspective
Close All Perspectives
3 Open Perspective =8|ECH <)
0@ C/C+ + (default)
CodeRed
?-E?_D-ehug
aa-}F'alvl:ks
ia Remote Systern Explorer
{5 Resource

& Team Synchronizing

| ok || conce |

2. Clone the Git repository which contains all the latest code and projects associated with the
ADuCM360. Populate the URI field with the following address.
1. URI: - https://github.com/analogdevicesinc/EVAL-ADICUP360.git
2. Click Next - Next - Finish

Source Git Repository

Enter the location of the source repository.

Location
URL 3 ://github.com/analogdevicesinc/EVAL-ADICUP360.gi ' | Local File...
Host: github.com

Repository path: /analogdevicesinc/EVAL-ADICUP360.git

Connection

Protocok |https ~

Port:

Authentication

User:

Password:

Store in Secure Store

@ | <Back | Net>]| Enish |[_ Cancel

3. In the Git Repositories window, Right Click on Projects folder and select the Import option.

| & [J EVAL-ADICUPZ6N [rrarter] - COlsersjEubikgmEVAL -ADICUP 360, git

52 Branches
g Tags
[+ [E% References
p O Remotes
a (= Working Directory - C\Lsershjkubikhgith EVAL-ADICLIP 260
X L
| projerts.__
b (= Al d Add te Index
b J&hi o Delete Delete
g2y Import Projects...
ShowIn Alt+Shift W »
Copy Path to Cliphoard Ctrl+C
Paste Repositony Path or UR] Crl ¥

4. Select the radio button for Import existing Eclipse projects and click on the projects folder as the
destination.

Select a wizard to use for importing projects

Depending on the wizard, you may select a directory to determine
the wizard's scope

Wizard for project import

@ Import existing Eclipse projects

) Import using the New Project wizard
) Import as general project

4 [Working Directory - C:\Users\jkubik\git\EWAL-ADICUP360
b = .git
4 (= projects
b ADuCM360_demo_blink
b = ADuCM360_demo_cli

< Back MNext = Finish Cancel

[import Projects from Git Repositary Ci\Users\jkubik\git\EVAL-ADICUP360.. — | (= |

Imponrt Projects
Import projects from a Git repository

Projects:

type filter text to filter unselected projects Select Al

V] k= ADUCM360_dermno_blink (C\Users\jkubik\git\EVAL-ADICUP360Y/
V] = ADUCM360_demo_cli (C:\Users\jkubik\git\EVAL-ADICUP360\pro|

Deselect All

< | . b
/| Search for nested projects

Working sets
| Add project to working sets

< Back Next > [Finish] | Cancel

5. Click Next — Finish

Building the .ELF/.HEX Files

It's important to build your project before setting up the debug configuration. This will allow the debug
configuration to automatically populate the appropriate fields.

1. Starting on the C/C+ + perspective, select the project you want to debug in the Projects Explorer
Window.
2. Right click on the project and select the Build Project option.

 Could also go up to the tool bar and click on the Hammer icon %,

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/hammer.png?id=resources:eval:user-guides:eval-adicup360:quickstart:eclipse_user_guide

Setting up a Debug Configuration for the Project

A new debug configuration must be set up for EACH application you intend on developing/debugging.
So you will have many different debug configurations, depending on the number of programs you
create/debug.

1. Go to the menu bar and follow this path, Run - Debug Configurations...

" Alternatively, locate the small bug icon 5 - in the tool bar and click the small downward facing
arrow to the right, and select the Debug Configurations... option from the menu.

2. Double click the GDB OpenOCD Debugging configuration from window.

u Debug Configurations

Create, manage, and run cenfigurations

=l Configure launch settings from this dialeg:
type filter text - Press the "New' button to create a configuration of the selected type.
[t] C/C++ Application = - Press the ‘Duplicate’ button to copy the selected configuration.

[E] C/C++ Attach to Applic
[£] C/C++ Postrmortem Del
[t] C/C++ Remote Applica | 5 - Press the ‘Filter' button to configure filtering options.
[t | GDB Hardware Debuggi

[t | GDB OpenOCD Debugging |
[c | GDB QEMU Debugging ||
[£] GDB SEGGER I-Link Deb || Configure launch perspective settings from the ‘Perspectives’ preference page.
= Launch Group

- Press the 'Delete’ button to remove the selected configuration.

- Edit or view an existing configuration by selecting it:

o 1]} k

Fitter matched 9 of 9 iterns

.? Debug Close

3. The necessary input fields should be populated, assuming that you built your project in the
previous step. The following images should be used as a reference if some of the fields are blank.

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/bug.png?id=resources:eval:user-guides:eval-adicup360:quickstart:eclipse_user_guide

2 pebug Canfigurations
Create, manage, and run configurations

X B~
type filter test

[E] C/C=+ Application
[E] CiC++ Attach to Application
|_"E': C/C=+ Postmortem Debugger
[E] C/C++ Remote Application
L‘E: GDE Hardware Debiugging
[£] GDB OpenOCD Debugging
[T ADUCM360_demo_blink Debug
[€] GDB QEMU Debugging
[GD8 SEGGER J-Link Debugging
B Launch Group

| Filter matched 10 of 12 itermns

:’z

Ewd

&3]

B

Mame: ADuCMIG0_derno_blink Debug
|__|;hﬁi_ ‘._# Debugger @ 5I.||1up- g Suurc:- 13| Cnrnmun-
Progect:
ADUCMIED_demo_blink Browse.. |
CiC+s Application:
Debugl ADUCMIGD_dermio_blink.eif
Vanables... | [Sauml!-n,'ea..i [Browse.. |

Build (if requared) before launching
Build configuration: | Debug -

Disable auto build

afigise Work inps..

Enabile auto busld
@ Use workspace settings

e e
Create, manage, and run configurations

BX| B3~
type Filter tost

[E] C/C=+ Apphcation
[E] C/C++ Attach to Application
I.'?: CiC++ Postmortem Debugger
[E] C/C=+ Remote Application
£ GDE Hardware Debugging
[E] GDE OpenOCD Debugging
[T ADWCM350_demo_blink Debug
[£] GDB QEMU Debugging
[E7] GD8 SEGGER J-Link Debugging
B Launch Group

| Fitter matched 10 of 12 items

.:\?;.

Next, switch to the Debugger tab and ensure the following required GDB commands are present.

-

Mame: ADUCMI6D_demo_blink Debug
12 Mlm-lm_l__ﬁ 5l.u’lup. 11 Sclurce. 1} Cnmmun-

Cpen0CD Setup -
] Seart OpenOCD bocally

Executable: $openocd_path |3 openocd_executable} lm m|

GOE port: 3333

Telnet port: 4448

Config options: _f board/eval-adicup360.cfg -

&liccate consoke for OpenQCD Allocate console for the teinet connection

GD8 Client Setup

Executable: Herous_prafichgdb${crons_ suffin) rﬂmwu. {vmbl&.

Other opbons

Commandss st mem naccessible-by-default off -
Remote Target =

5. Finally, click the checkbox in the Common tab --> Display in Favorites Menu to make the created
debug configuration appearing in the Debug Configurations section of the menu: Click “Apply”,

then “Close”.

n Debug Configurations

' o

Mame: ADuCMIG0_derno_blink Debug

Create. 1

ge, and run

X o -
el 12 Main | T Debugger | = Startup :=_ Source | Comman
CiC=+ Apphcation Save as

CiC++ Attach to Application

AFRIFIFFA |2

& Local file
L£/C=+ Postmortem Debugger
C/Ce+ Remote Application Shared file:
GDE Hardware Debugging
a [£] GDB Open0CD Debugging Display in faverites menu Encoding
[T ADUCM360_demo_blink Debug 7| 4§ Debug @ Default - inherted (Lpl52)
[€] GDB QEMU Debugging 4| O Run Other | 1
[£ GDE SEGGER J-Link Debugging
B+ Launch Group

Standard Input snd Output
#| Allocate console [mecessary for input)

Irpust Files
Dutput File

Append

o Launch in background

Filter mutched 10 of 12 iterms i

? Diebasg i Close

Debugging an Application

1. Make sure the EVAL-ADICUP360 board is connected to the computer via the DEBUG USB port.
(The micro USB connector closest to the DC barrel jack)

- Using the tool bar, navigate to the small Debug icon® * and click on the downward arrow to the
right. Select the debug configuration you want to download to the ADuCM360.
I3 Crt++ - ADUCREEN derno_ Blinkfsrcfmain.c - Snalog Devices Inc ADUCRIENTDE
File Edit Source Refactor Mawvigate Search Project Run Window Help

[|§3"%Tpiu \Qxl Eﬁ"ﬁ.' "'V@"j#gvaqugafv] ¥l .
[r_. Project Explorer s 5% T = 8 |[E minc 5 ||?] |1ADuCM360_demo_blink Debug | l
L:.‘jr » ADUCM3E0. derno I'.-Imk IE\.F.&L AD]CIJP3E-B nl &/ This file :u' Debug As y lprojec
» ef§ > ADUCM360_demo_cli [EVAL-ADICUP 360 mas — | DebugConfigurationse:. beees

J Organize Favontes...
#include <stdio.

#include <stdlib.h>

3. If this is the first time you have launched OpenOCD, a pop-up window will display asking for access.

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/bug.png?id=resources:eval:user-guides:eval-adicup360:quickstart:eclipse_user_guide

Click on “Allow Access”.
4. If everythlng goes fine, in the Console window, you will see a report W|thout errors.

ok,
T Publihen: Uniknonem
Paih:
Tiopenoed. e
AR D0 #i 00 COMMUREENS o s Pbarics:
[Darnan ris, guch o3 & veriplace aetwerk

h

| Windows Fireveall has blodosd some festures of openood exs on & pubbe, prvate snd doenain

T\ erograe Ses (486 ducm 6w cpenotd b

| of | Priwiahd Setetarls, SuCh @5 my e of widk ffwork

Pl ntwsr ks, sl ok those & arpets and coffes sheps (nod resammendhind
b thise netaorks often hine Mthe o no secunty)

Wit dte he foils of sllevahg @ Seagrecs Shitudh 8 fevwel?

| 59 Ao aceess |

File Edit Source nﬂtthx humqnt: Search Pnumu Rnn Window Help

CGrEl@ B w Ham kS &ty e Qe g f e
Quick Access = | B C/Cs+ m* Packs
% Debug 13 R T 5 0O |0 Variables | % Breakpoin | il Registers = o Penphuab =, Medules| = O
4 [E] ADuCM360_demao_blink Debug [GDE OpenOCD Debugging] | B | _"_,- e
::“;MT;:';:-“:‘:E i Name Valus Description
res ottt i S o ; 1
E main() at main.c46 0E4 " General Registers General Purpose and FPU RL..
w openocd.exe
o arm-none-eahi-gdb
o m | P
L) ¥
' [maing 22 = B |8 Outline 2 st mi
const unsigned use_irg = 1; - EgWy e ~
- void GP_Tmr0_Int_Handler{void) W sioh
o stdiibh
Blink_Process(); & diag/Traceh
/™ Clears current Timer interrupt =/ u biinkh
GptClrInt(pADI_TM@, TSTA THOUT); o Timech
} i @ use irg: const unsigned
T int main (int argc, char™ argv[]) & GP_Tmi_Int Handler(vaid) ; void
& f & mainfint, char[]] : int
i Initialize GPIO */
Blink Imit();
o m [

Ei“. -:}%. :E{f.;;.uinﬁm- “tiimuuhhﬁ;rﬂ —

ADuCM360_demio_blink Debug [GDE OpenOCD Debugging] openccd.exe

Open On-Chip Debugger @.10.8-dev-80825-gBlcedll-dirty (2015-88-17-13:23)

Licensed under GHU GPL w32

For bug reports, read
http:/fopenocd.org/doc/doxygen/bugs. html

Infa : enly anhe transport optlon; autoselect 'swd®

sdapter speed: 1888 kH:

adapter_nsrst_delay: 188

cortex_m reset_config vectreset

init_aduce

Started by GNU ARM Eclipse

Info : CMSIS-DAP: SWD Supported

Info : CMS15-DAP: Interface Initislised (SWD)

Infa : CMSIS-DAP: FW Version = 1.9

Info : SWCLK/TCK = @ SWDIO/TMS = 1 TDT = @ TDO = & nTRST = @ nRESET = 1

a

As a reference, the full text should be similar to:Open On-Chip Debugger
0.10.0-dev-00025-g81cc011-dirty (2015-08-17-13:23)

Licensed under GNU GPL v2

For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
Info : only one transport option; autoselect 'swd'
adapter speed: 5000 kHz
adapter _nsrst delay: 100
cortex_m reset_config vectreset
init_aducm
Started by GNU ARM Eclipse
Info : CMSIS-DAP: SWD Supported
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : CMSIS-DAP: FW Version = 1.0
Info : SWCLK/TCK = 0 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET =1
Info : CMSIS-DAP: Interface ready
Info : clock speed 5000 kHz
Info : SWD IDCODE 0x2ba01477
Info : aducm360.cpu: hardware has 6 breakpoints, 4 watchpoints
Info : accepting 'gdb’ connection on tcp/3333
The relevant EEPROM sectors of ADUCM360 are erased and the microcontroller is programmed.
You can follow the progress in the Console window. As an approximate reference you will see
something similar to:target state: halted
target halted due to debug-request, current mode: Thread
XPSR: 0x81000000 pc: 0x00000a94 msp: 0x20001fe0
semihosting is enabled
RESET: ADI halt after bootkernel
breakpoint set at 0x000001f5
Warn : Only resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or
configure hardware srst support.
target state: halted
target halted due to debug-request, current mode: Thread
XPSR: 0x01000000 pc: 0x000001f4 msp: 0x20002000, semihosting
flash 'aducm360' found at 0x00000000
Info : Padding image section 0 with 3 bytes
RESET: ADI halt after bootkernel
breakpoint set at 0x000001f5
Warn : Only resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or
configure hardware srst support.
target state: halted
target halted due to debug-request, current mode: Thread
XPSR: 0x01000000 pc: 0x000001f4 msp: 0x20002000, semihosting
RESET: ADI halt after bootkernel
breakpoint set at 0x000001f5
Warn : Only resetting the Cortex-M core, use a reset-init event handler to reset any peripherals or
configure hardware srst support.
target state: halted
target halted due to debug-request, current mode: Thread
XPSR: 0x01000000 pc: 0x000001f4 msp: 0x20002000, semihosting
===== arm v/m registers
(0) r0 (/32): 0x40002800
(1) r1 (/32): 0x00000001

(/32): 0x00000064
(/32): 0x00000000
(/32): 0x00000000
(/32): 0x00000000
(/32): 0x00000000
(/32): 0x00000000
(/32): 0x00000000
(/32): 0x00000000

Ir (/32): OXFFFFFFFF

pc (/32): 0x000001F4

XPSR (/32): 0x01000000
msp (/32): 0x20002000

psp (/32): 0x6A850410
primask (/1): 0x00

basepri (/8): 0x00
faultmask (/1): 0x00

control (/2): 0x00

===== Cortex-M DWT registers
(23) dwt_ctrl (/32)

(24) dwt_cycent (/32)
(25) dwt_0_comp (/32)
(26) dwt_0_mask (/4)
(27) dwt_0_function (/32)
(28) dwt_1 comp (/32)
(29) dwt_1 mask (/4)
(30)
(31)
(32)
(33)
(34)
(35)

r
r
r
r
r
r
r
r
)
)
)
) sp (/32): 0x20002000
)
)
)
)
)
)
)
)
)

dwt 1 function (/32)
dwt 2 comp (/32)
dwt_2_mask (/4)
dwt 2 function (/32)
dwt 3 comp (/32)
dwt 3 mask (/4)
(36) dwt_3 function (/32)
5. The user application execution is then stopped automatically at the first breakpoint at the
beginning of main() loop. From this point on, you can use the debug functions and features of the
Eclipse environment. (Such as stepping through, breakpoints, register reads, variable values, etc.)

| 3 log =
File Edt Source Refactor Navigate Search Project Run Window Help
m R I H-O Q- P BB i PE SRS S E e

Quick Access | Bt &LG&M

(4 Debug 33 % 41| d% T 2 O |- Varisbles | % Breakpoint | !l Registers | Peripherals i1 . m\ Modules| = O |

-

[€] ADuCM3E0_demo_blink Debug [GDB OpenlCD Debugging] LB
4 1B ADuCMIS0_demo_blink.elf . Paripheral Addrece Deseription =
4P ;ﬁi:ﬁ”ﬁﬂ:&mm“ 1%, ADLADCO 0340030000 Analog to Digital Converter L
B omanccgem %, ADLADCI 0MO030080 Analog to Digital Converter
[, ADLADCOMA 0#00300F) Analog te Digital Convertss

2 bi-gdb
ol ymanz eabig 15 A AN STER__OnMMMEL __borlont Nt Commter =

i 4 L
-@l‘l\lin.l: EE' b = “&MHI m. e 5 |
i s = JB B_ & * =
/* Initialize GPIO =/ . :’ R A
Blink_Init(); -
. o sdibh
if (use_irq) { 8 diag/Traceh
/* Initislire the general purpose timerd */f 21 blink.h
Gptld(paADI_THB, 63); A Set timeout period for 8.5 secon o Tirmerh
GptCfg(pADI_TMB, TCON_CLK_LFOSC, TCON_PRE_DIVZSG, TCOM_MOD_PERIODIC | TCON_EMABLE); e R "
WVIC_EnablaIRQ(TIMER® IRGn); /7 Enable Timere IAQ 3 o Wbt
} else { |_ e GF Tmd Int_Handlerivedd) : vond
/* Configure the system's tick interrupt */ @ main{int, char'{]} : int
timer start ();
}
LH | lir, ™
| | & Consale 52 . &) Tasks|[£] Problems| € Executables| [} Memory BRpE =B-ri-=0)
GNU ARM Eclipse Packs consale '

File parsed in 20as.

Identifying installed packages...

Found 1 installed packages.

Completed in 258ms.

Parzing SVD file "C:\Ueers\shenneri\PackageshanalogDevices\ADuCMIEx_DFPYL.8. 1\ SVD\ADUCM3ER . evd ™. . .

|

Ll "
|

6. When finished, the debugger has to be stopped. Click on red Stop button up in the tool bar, then
right click on the debug application in the “Debug” window, and select the Terminate and Remove
option.

\-! s “ * - -

- i hy]
1 Quck Accens | @ | EC/Cer (L Gu (D)
0 Debug [x| 8 |t Varables ®g Breakpoint || !mmlgw _h-m it =
@ | Al WIS dema hlnercbq!ﬁDl] OpenOCD Debugging I : =
4= | Penphers Address Descrghion -
o P ::m-d 5 iuwcﬁd; Beesbpount) | 7 ADIL_ADCD Owb(03000 Analog to Degital Converter
- s 7. ADL_ADC] (el) I Aralog to Depitsl Corverter
s frbnm TS ADUADCDMA DW0ONOF) Anslog to Digital Converter
N S 9] 1. ANt ANCSTER MedVAAEn PR | ST o r— -
L] L L]
|« "

Initialize GPIO *
Blink_Init();

irf '.’ll'l-r I"‘iﬂ {
initialize the general purpose tisecd

qpuu:pmr ™, 63:
Gptcig(pan]_ ™, TCoM _CLK_LPOSC, TCON_PRE_DIVISH, TCON_MOO_ pERI0DIC | Teon Ml.t}

WIC_EnsbleIRQ(TINERS TRQR); Enable Tiserd IR

} else {
oo srart 08
}
i =
D Comsole 1T &) Tasks| [Problems| O Executables| [Memory

GHU ARM Echipae Packs conzole

File parced in Dows.

Identifylng Installed packages...

Fourd 1 Installed packages.

Completed In 250mi.

Parsing SVD File “Co\lsersimhenneri\Packages\dnslogDevices ADuCrEn_DFPLLL 0. 1\SVDNADUCHIGR . svd ™. . .

Creating a New Project

Be
g
H

=R
stdecs b
stahb b
disg/Trace b
blnich
Tirraerh
ey e
GP_Terrd_imt_Handlestvoed)
mainfet, char[])

-

=B~ =0

The customized Eclipse IDE that you installed for EVAL-ADICUP360 offer the possibility to create 2
types of projects: Empty Project and Hello World Project. Both C and C++ formats.

The idea of these templates is to have at the end a functional ADuCM360 project which can be run on

the target. The basic system configuration is the same for both:

- startup code

- memory map and linker script

- system clock configuration

- disabling watchdog

- enabling clocks for all peripherals

- low drivers libraries for ADuCM360 microcontroller

The differences are regarding the complexity of the main() function: the Empty template provide an
empty main() function, being in this way a good choose when you want to start your ADuCM360
project from the scratch; the Hello World template is for more complex projects. It provide 1 sec
time base and different possibilities to display an output message to the user.

See below how to create the C projects for EVAL-ADICUP360 board. The same steps being available
for C++ projects as well.

1. To create a new project, go to the menu bar and find File = New - C Project.

File

Edit Source Refoctor Mavigste Search Project Run Window Help

Mew AlteShiftehl » | B Makefile Project with Existing Code B-®™ 4~ 5
Open File... [E% C++ Project s #deg % Packs
Close Crl=W E CP.’ = m (]
Clase &l Cuisshiftew |3 Project- |
Save Cirles [E7 Convertto a C/C++ Project (Adds C/C++ Nature)
o
SR a9 Souwrce Folder
|
Save Al Ceteshittes | FoMder
et |1_:? Source File
|ni Header File
Mo 1 File from Template
[Rename.. 2 |& s
&' Refresh F5
Convert Line Delimiters To b Cliot o
Print... CtrieP Lo the general purpose timers */
, TMB, 63); A Set timeout peried for 8.5 seconds|
Switch Werkspace * | TM@, TCOW_CLE_LFOSC, TCOM_PRE_DIV2SE, TCON_MOD_PERIODIC | TCOW_EMABLE);
Factmt TRO(TIMERG_TROR); /7 Ensble Timers IRQ
iy Import... e the systea's tick interrupt */
ﬁ Expun.. (}- b
Praperties Alt+Enter Loop *f
1 mainc [ADUCM3E0_deme blink/src]
2.project [Program Files (x85)/...] b SR s 1
ligure blinking interval *
5 mellertDiv.c |m360_demo_ch/zrc) lesp{BLINK_TIME * TIMER_FREQUENCY HZ);
4 main.c [m36)_demo_clifsrc] rocess(};
Exit m '
EL,',;'_'PmHm_.EJ!’am|Cnnsnhe Hﬁmpmml#mhuﬂ -D- {r|:ﬂ£§ BB O
COT Build Console [ADUCMEG0_demo_blink]
13:19:19 **** Incremental Build of configuration Debug for project ADUCM3GR demo_blink *==* -
make all
Invoking: Cross ARM GHU Print Size
arm-none-egabi-size --format=berkeley "ADUCM3E@_deme_blink.elf” L
text data bss dec hex filename L
4185 1@ 416 4715 1275 ADuCHM368_demo_blink.elf
Finished building: ADwCMIG® demo_blink.siz
13:19:20 Build Finished (took 756ms) >
a4 13
0 items selected

(Off ki

2. Provide a name for your project, and then choose Project Type: Executable - ADuCM36x C/C+ +
Project , with the Toolchains: Cross ARM GCC. Press Next.

....‘j=::..;?---::.._:E:I.E!E... = -” uF:;.I X |
C Project

Create C project of selected type

Ll

Project name: my_project

[¥] Use default location

Lacatian: | ChUzers\wiupeihaducm360_finalymy. project | [_ Bronse..
Project type: Toolchains:
= Executable Cross ARM GCC

® Empty Project
® Hello World ARM C Project
'® ADUCM36x C/C++ Project
& Hallo Woaorld ARM Cortex-M CfC++ Project
= Shared Library
= Static Library
= Makefile project
e
[¥] Show project types and toolchains only if they are supported on the platform

‘ @ <Back | MNea> | Fnsh ||, Cancel |

3. Choose as Processor core: ADuCM360.

D cproject s [@=

Project settings ;-k'}
Select the ADUCM36x processor and define project options. —
Processor core: [ﬁDuﬂMiﬁﬂ ']
Content; IEMP';'E {add your own content) bt l
Use systern calls: |Free-5tanding (no POSEX system calls) v]
Trace output: |Sen‘u’hastjng DEBUG channel v]

Check some warnings [¥/]

Check mostwarnings |

Enable -Wemor]
Use -Og on debug vl
se newlib nano [+

Use link optimizations [|

@ T g | T

4. Select which type of project do you want: Content: Empty (add your own content) or Hello World
(with 1s timer).

Project settings —

r
Select the ADUCM36x processor and defing project options, —
Processor core: ADUCM360 o
Content:

mipty {(add your own content)

Use system calls: ello World with 15 timer)

Trace output |Semihosting DEBUG channel -

Check some warmings

Check most warnings
Enable -Werror O
Use -Og on debug
Use newlib nano
Use link optimizations

@ [<Back | mwext>][Fmsn [concel

5. The Use system calls and Trace output options are available for Hello World template only.

Project settings —>

r
Select the ADuCM36x processor and define project options. -

Processor core: [A{?yﬂpﬁﬁﬂ_ -]
Content: IEmp’g’ {add your own content) -]
Use system calls: [_Freestanding.i:m POSIK system calls) '_]
Trace output: ISen‘u’hnsling DEBG channeal v]

Check some wamings

Check mostwarnings ||
Enable -Werror]
Use -Og on debug
Use newlib nang
Use link optimizations ||

@) fw—" | QNS | e

6. You can select various settings for your project (which can be changed later, in the project settings,
or as different pre-processor definitions).

| Project settings p—

Select the ADuCM 36x processor and define project options, -

Processor core: [AMCMEEB arl
Content |Empty {add your own content). B
Use systerm calls; [Frges!a_nﬂinginﬂ POSIX system calls) v.ﬂl
Trace output: [-_Semihesﬁng DEBLUG channel "I

Check some wamnings [V]

Check most warnings

Use -Og on debug
Use newdib nano

al
Enable -Werror
]
]
]

Lise link optimizations

@ [<Back | Next> | Finish | Cancel |

7. Select both the configuration check boxes you want to deploy on.

?E o o .
D ceroject o O
Select Configurations —

Select platforms and configurations you wish to deploy on —

Project type: Executable
Toolchains: Cross ARM GCC
Configurations:

|..r B Debug . [
I'Ef i Release

Select all

[Deselect all

I[Aduanced settings... |

Use "Advanced settings” button to edit project's properties.

Additional configurations can be added after project creation.
Use "Manage configurations” buttons either on toolbar or on property pages.

'@3 L < Back ‘ Mext >] Finish Cancel |

8. On the next page select the compiler toolchain. It should will automatically selected, just check or
enter the right path to it.

n C Project = IE'_l
Cross GNU ARM Toolchain e

Select the toolchain and configure path

Toaolchain name: GNU Tools for ARM Embedded Processors (arm-none-eabi-goe) -

Toolchain path: CfProgram Files (x85)/GMU Tools ARM Embedded/4.9 2015q2/bin !Brw.-*se...J

@ < Back | Mext » | Finish | Cancel '

9. Finally, press Finish and the project will be created and you can begin programming.

Options available for "Hello World" template only

Use system calls available options are (see GNU ARM Eclipse support page):

Freestanding - a typical embedded configuration, that does not use the POSIX system calls (open,
close, read, write, etc).

POSIX (retargetting) - a more elaborate embedded configuration where the application makes use
of these calls, but redirects the file descriptors to local devices or files, by providing custom
implementations for the system calls (like open, close, read, write etc). This configuration allows
to port POSIX programs easier.

Semihosting - a special testing configuration, that bridges all system calls to the host operating
system where the GDB server runs. This configurations is particularly interesting for running test

programs that can leave the test results in a file stored on the host, for automated integration in a
test suite.

Trace output available options are:

- None (no trace output) - a basic configuration that doesn't use trace output messages.

- ARM ITM (via SWO) - a specific configuration that help to print information via SWO pin when using
J-Link.

- Semihosting STDOUT stream - a more complex configuration that configure stdout to use a physical
serial connection as UART or any other peripherals that offer the possibility to output messages.

- Semihosting DEBUG channel - a debug specific configuration which enable semihosting in DEBUG
mode and offer the possibility to use resources from the development platform n the embedded

target via debugger. This can help the user to send trace stream to debugger console (like
trace_printf, trace_puts etc).

Assign Device to the Project using Packs

This step will allow you to access the ADUCM360 registers in debugger mode. In order to see the
device list it is required to have Packs plug-ins installed. This is already done by the installer, however
you do need to update the Packs list, and then install a particular family of devices.

1. To update your Packs library, go to the menu and Choose Window- Perspective - Open
Perspective - Other

2. Click on “Packs”. Once open, find the Packs window, and click on the Update arrow in the
upper-righthand corner.

3. After updating has completed, find the folder for Analog Devices and navigate down to the latest
version of ADuCM36x and right click and hit Install.

To assign device to your project:

- Select your project in the Project explorer view

- Go to Project tab from Eclipse menu and select Properties

| File Edit Source Refactor Navigate

Run Window Help

Search |P
ﬁ'wu|!}v"ﬁ-|ﬁ'ﬁﬂ'gvt Open Project Py Al v ey D |
Close Project Quick Atcess 5’|
& main 4 Build Al Cul+B =0|E=o=E % = o)
BER T 1=/ Build Configurations - ElhEaow -
24 Build Project ARM Eclipse distribution. o stdich
¥ /1 BuildWorking Set 18 U sdiibh
: / Clean U diag/Traceh
6 Build Autematically |] e main{int, char'(]} : int
7 Make T 1
i & |dscnpts 2 # WHETAIDEY
o B C/C4+ Index
12 W 8
i | Properties p
P oo i m i i i e i i e
13 /M
14 ¢/ t{shortChipFamily) empty sample (trace via DEBUG).
15 ¢
16 /f Trace support is enabled by adding the TRACE macro definj
L7 ff By default the trace messages are forwarded to the DEBLG
18 /ff but can be rercuted to any device or cospletely suppresse
19 ff changing the definitions required in system/srcfdiagftrac
28 {currently OS5 _USE_TRACE_ITM, OS_USE_TRACE_SEMIHOSTING DEE
21/
2z
23 e MBLML) mer s s mr s F e a f e s m e S H = -
el i | r
(2 Problems & & Tasks| @ Console | [Properties| ==
0 items
-~
Description Resource Path Location Ty
lr < I A J b
;Jllﬁrmr,,pmjnct

- Go to C/C+ + Build- Settings

- Select the desired configuration

- Click on Device tab and expand the Analog Devices node

- Select ADUCM360 as a device and press OK

» Resource
Builders
4 CfC++ Build
Build Variables
Emvironment
Leaging
Toods Paths
» CfC++ General
Project References
Run/Ciebug Settings

ol |
Device selection (Not vet used during buldl)
Name Details
4 Boards
» Analoag Devices Vendaor
a Devices a
4 Anzlog Devices Vendor i
4 ADUCM 36x Series Family (Cortex-M3, r2p0, 16 MHz, 8 kB RAM, 128 kB ROM)
ADUCM380 Device
ﬁDl.lE_:MSBI Device
Device core: Cortex-M3
Memory map (Waming: Notyet used to generate the linker scriptst)
ADUCM360
Section Start Size Start..
IRAM1 Owe20000000 (w2000 0 =
IROML Oec00000000 0x20000 1

oo J [cona

Hardware

This chapter contains hardware-related information about the base board and the various shields.
Each sub-section contains a general description of the board, detailed description of the connectors,
jumpers, and buttons (if any). It also provides links to the Schematics, Bill of materials, design
projects, and Technical documentation. It also gives internal links to the provided example demo

software projects.
The following boards are currently available:

. EVAL-ADICUP360 Base Board
- EVAL-CNO0216-ARDZ Shield
- EVAL-CNO357-ARDZ Shield

EVAL-ADICUP360 Base Board

The EVAL-ADICUP360 base board consists of two basic blocks:

- Afully integrated, 3.9 kSPS, 24-bit data acquisition system that incorporates dual high performance,
multichannel sigma-delta (2-A) analog-to-digital converters (ADCs), a 32-bit ARM Cortex™-M3
processor, and Flash/EE memory, realized on a single chip ADUCM360 microcontroller.

- An on-board SWD interface, based on the OpenSDA platform, which is implemented with the
Freescale's K20DX128 microcontroller. This block allows using a free Software Development
Toolchain to program and debug the ADuCM360 microcontroller part.

This page describes the hardware connectors, the jumpers and switches configuration options, the
USB connectors, and links to download the schematics and the layout.

s EVAL-ADLCUP 360

Connectors

The following connectors are populated on the base board:

LISER USB

DEBUG USB

DC Power
Jack

Arduino PWMH

Arduino PWML Arduino Communication

Arduino Power Arduino ADCL Arduino ADCH

- DC Power Jack: Core positive, accepts +7V to +12V DC supply voltage;

- DEBUG USB: Used for flash programming and debug interface;

- USER USB: Provides a Virtual serial port connection to ADUCM360 microcontroller;

- PMOD_SPI: 12-pin SPI PMOD connector;

- PMOD_I2C: 8-pin 12C PMOD connector;

. Six Arduino connectors described in the table below.

QO 145

O0Nd 2TI

Connector Pin Pin Name /ADuCM360 pin or other function A_rduino Due
No. Pin Name

10 SCL P2.0/SCL/UARTCLK SCL1

9 SDA P2.1/SDA/UARTDCD SDA1

8 AREF VREF+ AREF

7 GND AGND (Analog ground) GND
PWMH 6 SCK P0.1/SCLK1/SCL/SIN PWM13

5 MISO P0.0/MISO1 PWM12

4 MOSI P0.2/MOSI1/SDA/SOUT PWM11

3 SS P0.3/IRQ0O/CS1 PWM10

2 P0.4 P0.4/RTS/ECLKO PWM9

1 P0.5 P0.5/CTS/IRQ1 PWM8

Pin

Arduino Due

Connector Pin Name ADuCM360 pin or other function .
No. Pin Name

8 PWM5 P2.2/BM PWM7

7 PWM4 P1.4/PWM2/MISO0 PWM6

6 PWM3 P1.3/PWM1/DSR PWM
PWML 5 PWM2 P1.2/PWMO/RI PWM4

4 PWM1 P1.1/IRQ4/PWMTRIP/DTR PWM3

3 PWMO P1.0/IRQ3/PWMSYNC/EXTCLK PWM2

2 X P0.7/POR/SOUT X0

1 RX P0.6/IRQ2/SIN RX0

8 P0.2 P0.2/MOSI1/SDA/SOUT TX3

7 PO.1 P0.1/SCLK1/SCL/SIN RX3

6 P1.7 P1.7/IRQ7/PWM5/CSO X2

5 P1.6 P1.6/IRQ6/PWM4/MOSIO RX2
COMMUNICATION 4 P1.5 P1.5/IRQ4/PWM3/SCLKO X1

3 P1.4 P1.4/PWM2/MISO0 RX1

2 SDA P2.1/SDA/UARTDCD SDA

1 SCL P2.0/SCL/UARTCLK SCL

1 A8 AIN8/EXTREF2IN- A8

2 A9 AIN9/DACBUFF+ A9

3 A10 AIN10 A10

4 All AIN11/VBIAS1 All
ADCH 5 DAC DAC DACO

6 G SwW GND_SW DAC1

7 VREF+ VREF+ CANRX

8 VREF- VREF- CANTX

1 A0 AINO A0

2 Al AIN1 Al

3 A2 AIN2 A2

4 A3 AIN3 A3
ADCL 5 A4 AIN4/IEXC A4

6 A5 AIN5/IEXC A5

7 A6 AIN5/IEXC A6

8 A7 AIN7/VBIASO/IEXC/EXTREF2IN+ A7

1 NC - not connected - NOT USED

2 IOREF Dvdd (+3.3V) IOREF

3 RESET RESET RESET

4 3.3V Dvdd (+3.3V) 3V3
POWER 5 5V +5V 5V

6 GND DGND (Digital Ground) GND

7 GND DGND (Digital Ground) GND

8 vin The input line of the +5V linear voltage VIN

regulator

Connector Pin Pin Name ADuCM360 pin or other function A_rduino Due
No. Pin Name

1 MISO P0.0 MISO

2 +5 +5 +5
Sp| 3 SCLK PO.1 SCLK

4 MOSI P0.2 MOSI

5 RESET RESET RESET

6 GND DGND GND

1 CS P1.7 CHIP SELECT

2 MOSI P1.6 MOSI

3 MISO P1.4 MISO

4 SCLK P1.5 SCLK

5 GND DGND GND

6 VDD DVDD VDD
SPIPMOD 7 INT P1.0 INT

8 RESET P1.1 RESET

9 GPIO P1.2 GPIO

10 GPIO P2.2 GPIO

11 GND DGND GND

12 VDD DVDD VDD

1 SCL P2.0 SCL

2 SCL P2.0 SCL

3 SDA P2.1 SDA

4 SDA P2.1 SDA
12C_PMOD 5 GND DGND GND

6 GND DGND GND

7 VDD DVDD VDD

8 VDD DVDD VDD

Jumper Configuration

There are 3 jumpers groups on the EVAL-ADICUP360 base board:

Jumper P12

Configuration

Function

P12

5

ADuCM360 is powered from the linear voltage regulator on the baseboard

ADuCM360 is not powered from the baseboard and may be powered from the
application shield

Jumper REFnSel

Configuration Function

3y

5 ;ij ADuCM360 VREF- pin connected to Analog GND

2 [

5 i ADuCM360 VREF- pin connected to the ADCH connector, pin 8
w G

Jumpers J1,)2, J3,)4,)5

Configuration Function
J1
: - ADuUCM360's UART pins are connected to the Virtual serial port of the Debug
[Tz
- - adapter
J2
J1
[@) , . ,
ke ' ADuCM360's UART pins are not connected to the Virtual serial port of the
,sz' Debug adapter
J3
()| .
IIIH%): ADuCM360's SWD lines are connected to the Debug adapter. ADuCM360 can
T | be programmed
- J3
rTl "'@I: 1 H
oo ADuCM360's SWD lines are not connected to the Debug adapter. ADUCM360
a cannot be programmed
J5
- ' /ADUCM360's RESET line is connected to the Debug adapter. The button B1 can
be used to invoke the Debug adapter's Bootloader.
|{ORO)]

' |ADUCM360's RESET line is not connected to the Debug adapter. The button B1

is just an ADuCM360 reset button.

USB/Connector Multiplexer

There are 4 switches on the EVAL-ADICUP360 base board, which are used to multiplex pairs of pins
(P0.1/P0.2, and P0.6/P0.7) to various different connectors on the board. Depending on how the
pins are configured you may route them to the USB ports, use them for SPI communication or for
UART communication.

DEBUG

Switches S1, S2, S3, S4

The S1, S2, S3, S4 switches are used to route the P0.1/SCLK1/SCL/SIN, P0.2/MOSI1/SDA/SOUT,
P0.6/IRQ2/SIN and P0.7/POR/SOUT pins when they have been assigned a UART function to either the
Arduino I/0 and the PMOD connectors or to the Virtual Serial ports implemented via the USER USB

or the DEBUG USB connectors. Each pin can be routed separately, but the routing is usually done for
the pairs TxD/RxD.

Most commonly used configurations are given in the table below. For any other more 'exotic'
configuration, consult with the Schematics and the Layout of the board.

ADuCM360's pair of pins [Required connection Configuration

to the User USB (FT232RL)

P0.1/SCLK1/SCL/SIN , .
P0.2/MOSI1/SDA/SOUT to the Debug USB (mbed's Serial Port)

to the Arduino PWMH (pin 6, pin 3)
and

the SPI header (pin 1, pin 3)

ADuUCM360's pair of pins |Required connection Configuration

to the User USB (FT232RL)

P0.6/IRQ2/SIN
P0.7/POR/SOUT

to the Arduino PWML (pin 1, pin 2)

Switch Schematic

Here is the schematic of the switching network, the switches allow to route the P0.1/P0.2 and
P0.6/P0.7 signals to multiple connector depending how you want to configure the pins. Above are the
common configurations, but for complete details please reference the diagram.

ARDUINO PWMI / SP1

DEBUG USB

TRRTLIX. 5oy 5[:—2 2]]] RXD
UART1_RX PO & 2 D? | ? 2 XD USER USB

Buttons

The EVAL-ADICUP360 base board provides two buttons RESET and BOOT.

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/hardware/switch_p6_7_gpio.png?id=resources:eval:user-guides:eval-adicup360:hardware:base_board

. EVAL-ADICUP360
REV 1.1

Button

Function

Provides a hardware RESET to ADuCM360 microcontroller. If the RESET line is connected to

RESET |the Debug adapter, this button can be used to invoke the Debug adapter's Bootloader, see
section Jumper Configuration.
When BOOT is held down during the reset and after, the ADuUCM360 microcontroller enters
BOOT UART download mode via P0.1 and P0.2. In this case, the user can download program via

DEBUG USB or USER USB, depending on the jumpers settings, see section Jumper
Configuration. BOOT button should be held press while a reset from the button is performed.

EVAL-CN0216-ARDZ Shield

CN-0216 is a precision weigh scale signal conditioning system. It uses the AD7791, a low power
buffered 24-bit sigma-delta ADC along with dual external ADA4528-2 zero-drift amplifiers. This
solution allows for high dc gain with a single supply.

Ultralow noise, low offset voltage, and low drift amplifiers are used at the front end for amplification of
the low-level signal from the load cell. The circuit yields 15.3 bit noise-free code resolution for a load
cell with a full-scale output of 10 mV.

ANALOG

EVICES

EVAL-CRORAM-ARDD REV. B

This circuit allows great flexibility in designing a custom low-level signal conditioning front end that
gives the user the ability to easily optimize the overall transfer function of the combined
sensor-amplifier-converter circuit. The AD7791 maintains good performance over the complete output
data range, from 9.5 Hz to 120 Hz, which allows it to be used in weigh scale applications that operate
at various low speeds.

Connectors and Jumper Configurations

PICTURE OF THE BOARD FILE with JUMPERS AND CONNECTORS HIGHLIGHTED

Sensor Connector

Pin Number|Pin Function
Pinl Not Used
Pin 2 - Excitation
Pin 3 + Signal

Pin 4 - Sense

Pin 5 + Sense

Pin 6 - Signal

Pin 7 + Excitation
Pin 8 Not Used

Bridge Configuration

1

NOTE - Any 4 or 6 wire load cells can be used with the
EVAL-CN0216-ARDZ.
The Tedeah Huntleigh Model 1042 load cell was used during testing.

+EXCITATION (GREEN) (7]

(5) +SENSE (BLUE)

SIGNAL (WHITE) (§) (3) +SIGNAL (RED)

LOAD CELL:
TEDEA-HUNTLEIGH

-SENSE (BROWN)(3) MODEL 1042

(2) -EXCITATION (BLAGK)
6-wire resistive bridges

- P2 - Connects REFIN+ to Sensor +Sense pin
- P3 - Connects REFIN- to Sensor -Sense pin

Position “1"” is used for 4-wire resistive bridges

- P2 - Connects REFIN+ to 5V supply
- P3 - Connects REFIN- to GND

Position “0” (shown below) is used for

EVAL-CNO357-ARDZ Shield

CNO0357 single-supply, low noise, portable gas detector circuit using an electrochemical sensor. The
Alphasense CO-AX carbon monoxide sensor is used in this example. Electrochemical sensors offer
several advantages for instruments that detect or measure the concentration of many toxic gases.
Most sensors are gas specific and have usable resolutions under one part per million (ppm) of gas
concentration.

The circuit shown in below uses the ADA4528-2, dual auto zero amplifier, which has a maximum offset
voltage of 2.5 uV at room temperature and an industry leading 5.6 uV/VHz of voltage noise density. In
addition, the AD5270-20 programmable rheostat is used rather than a fixed transimpedance resistor,
allowing for rapid prototyping of different gas sensor systems, without changing the bill of materials.
The ADR3412 precision, low noise, micropower reference establishes the 1.2 V. common-mode,
pseudo ground reference voltage with 0.1% accuracy and 8 ppm/°C drift. For applications where
measuring fractions of ppm gas concentration is important, using the ADA4528-2 and the ADR3412
makes the circuit performance suitable for interfacing with a 16-bit ADC, such as the AD7790.

ANALOG
DEVICES

VAL - CHODST - ARDE REY.D

L1
“m dn
[_J

ia

a2 md
[X
umi*

=

12 1l o

r
o

: o
MR rh

Connectors and Jumper Configurations

PICTURE OF THE BOARD FILE with JUMPERS AND CONNECTORS HIGHLIGHTED

Sensor Footprint

NOTE - Three electrode electrochemical toxic gas sensors can be used
. with the EVAL-CN0357-ARDZ The footprint can accommodate 3
ﬁ different sizes of sensors.
The Alphasense CO-AX electrochemical gas sensor was used during
testing and programming.

Recommended PCB Sockets(for Alphasense Sensors)

. A Series Sensors - Mill-Max 0364-0-15-15-13-27-10-0
. B Series Sensors - Mill-Max 0294-0-15-15-06-27-10-0
- D Series Sensors - Mill-Max 0667-0-15-15-30-27-10-0

- The sensor may be connected to the M1 footprint using the appropriate pin sockets
Jumper P1 Settings

- “0" position - Sensor output connected to ADC(defualt)
- “1” position - Sensor output connected to Al pin of ANALOG header, for connection to external ADCs

Reference Designs

This chapter contains various reference designs available for the base board and the various shields.
Each sub-section describes the demo program, how to setup the hardware, how to obtain the source
code, and finally, how to import the project in the Eclipse workspace and to run it.

The following reference designs are currently available:

- Blinking LEDs Demo - Shows the basic steps of creating a new project for the EVAL-ADICUP360
base board, running and debugging the software.

- Command Line Interpreter Demo - A Command Line Interpreter (CLI) demo project for the
EVAL-ADICUP360 base board.

- Accelerometer Demo - lllustrates the functionality of the ADXL362 3-axes accelerometer. It works
with the EVAL-ADXL362-ARDZ Shield.

- Weigh Scale Demo - Weigh Scale measurement example for 4-/6-wire bridge sensors. It works
with the EVAL-CN0216-ARDZ Shield.

- pH Measurement Demo - pH Measurement System with Temperature Compensation that works
with the EVAL-CN0326-PMDZ Pmod.

- Data Acquisition for Input Current Demo - Handles data of the acquisition system for 4-20 mA
inputs current that works with the EVAL-CN0336-PMDZ Pmod.

- RTD Temperature Measurement Demo - RTD temperature measurement example that works
with the EVAL-CN0337-PMDZ Pmod.

- Carbon Dioxide Gas Detection Demo - Non Dispursive Infrared Gas Detection that works with the
EVAL-CNO0338-ARDZ Shield.

- Toxic Gas(CO) Detection Demo - Measuring toxic gases using electrochemical sensors that work
with the EVAL-CN0357-ARDZ Shield.

Blinking LEDs demo

The ADUCM360_demo_blink is the simplest possible demo project for the EVAL-ADICUP360, created
using the GNU ARM Eclipse Plug-ins in Eclipse environment.

General description

The project includes basic initialization - stopping the watchdog, configuring the system clock,
disabling the clocks for all peripherals and setting two digital outputs for driving the two LEDs on the
board: LED2 and LED3. The automatically generated code by the GNU ARM Eclipse Plug-ins provide a
system tick interrupt at 1ms intervals and a simple delay function.

This project uses the low level drivers available for ADuCM360 microcontroller. It provide the
possibility to choose the LEDs blinking method: use the delay function or use timer interrupt service.

When the project is compiled and run, the two LEDs flash alternatively in predefined intervals (1
second for delay function method and 0.5 seconds for timer interrupt method).

Setting up the hardware

- To program the EVAL-ADICUP360, set the jumpers as shown in the next figure. The important
jumpers are highlighted in red.

. Connect the PC to the EVAL-ADICUP360 via DEBUG USB

- Load the program and run it.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

To learn how to import the ADuCM360_demo_blink project from the projects examples in the Git

repository, please click on How to import existing projects from the GIT Repository.

The source code and include files for the ADUCM360_demo_blink can be found in projects examples
which comes with installer package, or the latest version of the project can be found on Github:

ADuCM360_demo_blink at Github

Importing the ADuCM360 demo_blink project

The necessary instructions on how to import ADuCM360_demo_blink project in your workspace can
be found in the section, Import a project into workspace.

Debugging the ADUCM360 demo_blink project

- A debug configuration must be set up for this project in order to have the possibility to program and
to debug it. To do this, follow the instructions from Setting up a Debug Configuration.

- Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,

navigate to the small Debug icon™ * and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

https://www.blackfin.uclinux.org/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/bug.png?id=resources:eval:user-guides:eval-adicup360:reference_designs:demo_blink

3 Dby - it Bk e, - el Dievices e, AU X
e plr Seece Rolege e S Beeen Ben e Helg
= - GrO-Q-wumHEE b e

TF Dobuy 11 &)
[T] ADOBE darves_blsk Dpbney 1608 Dpatrv 0D Dbl
a T8 AR g biak ol
@ ¥ Thawad 1] (honperaod | Beesipoent)
B maan]) b mue ol adS4
W eperact e
] e ke gl

ADUADCT DuBONNRD drslog b Digts Comarim

AN ADCDMA (RNEEED Analog ba Diglsl Comertei

| Fangharal Adderin
‘ |_BRY ADSTER: PhAWINER Bt i Pt o it

DE_ADCD: a0 RS Ak 0 Dt bl (in 181 i

" Imitdall
Blink_Ewin{))
i [wne_krg)
= TniTisllce The gerneral s

Sptidipadl_Tra, E3); st tlawout piriad for 8.4
SpLOfgipand_THE, TOOM_CLE LPOSC, TCOM PRI_DIVISE, TOOM_FOC PIRCOCIC | TOOM_ERSLE);
MVIC_Ensble TROT FISERS TR2nY) dale Thewrs 100

} wlie § i

Tmar b

ne_rg 4
GF_Vrre Bt Hindberdebad]
e, (BT

sssEEEEE
=

=I-l-ef_u£1;':l| (41
}

= [

B Cowsole o) Tesia |5 Prebderen | O Dvutsies [Wamery n BI =0-0-"0
() A Ly g Puz i Lomnde

Pile paried in T,

Tdentifylag installed pockages...

Foord 1 ladtallied pachige.

Completed in TFibma.

Fargleg B0 Tlle “Coperymhenses] Fackapee daa loghevioes MuTHige DEFYD 8, DNEVTADGCRIES, 8 100 L

- Use step-by-step execution or directly run the program.

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADuCM360_demo_blink project use basic ARM Cortex-M C/C++ Project structure:

L1 Project Explorer 3 “®& v ="
o €5 > ADUCM360_demo_blink [EVAL-ADICLPIS0 masts
{;.h' Binaries
il Includes
a (3 src
Ly bBlink.c
Lel rmain.c
Ll Timer.c
4 |23 system
4 [include
(3 ADuCM360
=i aremm
£y CMEIS
7 cortexm
=F diag
[Fiy 3re
=y ADuCk3I60
= ChMSIS
[EF cortexm
Ey diag
= newlib
= Debug

I

include
&y blink.h
&l Timerh
C% Mdscripts

a Ly

In the src and include folders you will find the source and header files related to blink application.
You can modify as you wanted those files.

Here you can configure:

- LEDs blinking method: in order to use LEDs blinking in a Timer 0 interrupt routine you need to set
use_irq parameter to 1 (main.c). When use_irqg = 0 then you use only a delay function for LEDs
blinking.

- Time for blinking delay: BLINK _TIME (blink.h).

The system folder contains system related files (try not to change these files):

- ADUCM360 - contains low levels drivers for ADuCM360 microcontroller.

- CMSIS - contains files related to ADUCM360 platform, such as: ADuCM360.h (registers definitions),
system ADuCM360.c/h (system clock), vectors ADuCM360.c (interrupt vector table).

- cortexm - contains files for system management (start-up, reset, exception handler).

Command Line Interpreter Demo

The ADUCM360_demo_cli is a Command Line Interpreter (CLI) demo project for the EVAL-ADICUP360
base board, created using the GNU ARM Eclipse Plug-ins in Eclipse environment.

General description

The purpose of this project is to help you to get used with UART peripheral of ADuUCM360
microcontroller. The source code example can serve as a template for a resident command line
interpreter, complementing any other user application functionality. Interrupt-based receiving of text
commands from the UART is implemented. As soon as a command is entered, an execution request
flag is raised to signal the main loop. The commands are recognised and may be executed
immediately or later depending on the priority of the current tasks.

You can use any Terminal session you want, such as Putty or Serial Terminal with Eclipse Kepler
(incorporated in Eclipse environment).

A serial connection of a PC to the EVAL-ADICUP360 board using the user USB connector is required to
test and use the CLI application (EVAL-ADICUP360 board incorporates an FTDI USB-to-serial
converter). Any terminal application run on a PC at 9600-8-N-1 without flow control can be used to
'talk' to the EVAL-ADICUP360 board. After connecting and sending CR (by pressing Enter), the
command prompt '»' and a welcome message should appear.

£ COMIS - PuTTY = gy E:

Available commands

Command Description
help Display available commands
version Display SW version of CLI project

Display up to 0x40 consecutive byte-size

locations from any address of the ADUCM360 memory space.

One should be careful not to request locations which are not decoded
because the hardware_fault exception code will block the board.

reset Perform a HW reset which also initialize the application

dump [begaddr] [count]

Setting up the hardware

In order to program the EVAL-ADICUP360 you need to use the DEBUG USB. The jumper set up is
shown in the next figure. The important jumpers are highlighted in red.

The ADUCM360 cli_demo can connect to the serial port of a PC through two different USB ports on the
board:

- USER USB (using P0.1, P0.2 or P0.6, P0.7 of the ADUCM360)
- DEBUG USB (only P0.1, P0.2 of the ADuCM360)

A bank of jumpers provided near the PMOD ports of the EVAL-ADICUP360, makes this easy to
configure. The jumpers required for particular configurations are provided in the images below.
Ensure that the pins you select in the hardware configuration, also match what is in your software pin
definition.(UART _PINS)

Using UART via USER USB (P0.1, P0.2)

Using UART via USER USB (P0.6, P0.7)

Using UART via DEBUG USB (P0.1, P0.2)

If using UART in USER USB configuration, you first need to program the board using DEBUG USB

If using UART in DEBUG USB configuration you first need to program the board using DEBUG USB
and after the program runs on target, you need to change jumper (J1 and J2) positions

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

To learn how to import the ADuUCM360_demo_cli project form the projects examples in the Git
repository, please click on How to import existing projects from the GIT Repository.

The source code and include files of the ADUCM360_demo_cli can be found in the projects examples
which comes with the installer package, or the latest version of the project can be found on Github:

_&, ADUCM360_demo_cli at Github

Importing the ADuCM360 _demo cli project

The necessary instructions on how to import ADuCM360_demo_cli project in your workspace can be
found in the section, Import a project into workspace.

Debugging the ADUCM360 demo cli project

- A debug configuration must be set up for this project in order to have the possibility to program and
to debug the ADuUCM360_demo_cli project. To do this, follow the instructions from Setting up a
Debug Configuration Page.

- Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,

navigate to the small Debug icon™ * and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

£

D iy - DA ghyeves ot - iy Do o o, ADSTHNE 6
Pl Bok Comrs Metwio Wesgis Sewch Pexert Bon Window i
|
SRR ST t% B-0-%-2

| L Dy L vie gt | g, e i Pt st

u
u
U 4
u T
u
u
u u
u
u
. L

- Use step-by-step execution or directly run the program.

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

https://wiki.analog.com/_detail/resources/eval/user-guides/eval-aducm360-ardz/quickstart/bug.png?id=resources:eval:user-guides:eval-adicup360:reference_designs:demo_cli

Project structure

The ADUCM360_demo_cli project use basic ARM Cortex-M C/C++ Project structure:

4 1% ': = ADUCMMIGD_demo_chi [EMAL-ADICUPIAN master]
. Binaries
il Includes

A3 srC

-

]
Le Cli.c
Lrl Carmmunication.c
[} main.c
kil Timer.c
4 (4 systemn
4 [include
=5 ADuCM3IA0
&g arm
& CMELS
£y cortexm
& diag
4 e osre
e ADUCM360
=3 CMSIS
[EF cortexm
=% diag
Ly newdib
. Debug
4 [include
Ik} Clivk
Ik Communication.h
s} Timer.h
[y ldscripts

This project contains: initialization part - disabling watchdog, setting system clock, enabling clock for
peripheral; UART interrupt service; port configuration for UART use; UART read/write management;
command line interpreter application.

In the src and include folders you will find the source and header files related to CLI application. You
can modify as you wanted those files. The Communication.c/h files contain UART specific data,
meanwhile the cli.c/h files contain the command interpreter data.

Here you can configure:

- UART pin configuration - UART PINS paramater - use for P0.1, P0.2 connection - UART _PINS 12 or
use for P0.6, P0.7 connection - UART_PINS 67 (Communication.h).

- UART mode- UART_MODE paramater - interrupt or polling mode (Communication.h).

- UART baud rate - available baud rates for serial port can be changed at initialization part (main).

- UART data bits - 5 to 8 bits can be changed at initialization part (main).

The system folder contains system related files (try not to change these files):

- ADUCM360 - contains low levels drivers for ADUCM360 microcontroller.

- CMSIS - contains files related to ADUCM360 platform, such as: ADuCM360.h (registers definitions),
system ADuCM360.c/h (system clock), vectors ADuCM360.c (interrupt vector table).

- cortexm - contains files for system management (start-up, reset, exception handler).

Weigh Scale Measurement Demo

The ADUCM360_demo_cn0216 is a weigh scale measurement demo project for the
EVAL-ADICUP360 base board with additional EVAL-CN0216-ARDZ shield, created using the GNU ARM
Eclipse Plug-ins in Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
various shield boards. It expand the list of possible applications that can be done with the base board.

The ADUCM360_demo_cn0216 project uses the EVAL-CN0216-ARDZ shield which is a precision
weigh scale system using a 24-bits sigma-delta converter, and auto-zero amplifiers providing high
gain for the bridge sensor input

The CN0216 circuit
translates the
resistance changes
on the bridge into
very small voltages.
The bridge is
excited by a
regulated 5V and
that determines
the full scale range
of the bridge
output. Those
values are passed through very low noise, auto zero amplifiers to remove as many error sources as
possible before being gained up to levels that will be compatible with the ADC. The 24-bit ADC value
is received via SPI interface of the EVAL-ADICUP360 board.

The
ADUCM360 demo [t
_cn0216 AD
application
processes ADC
output value and e
make all necessary B
conversions in
order to provide
the weight results.
A UART interface
(9600 baud rate
and 8-bits data
length) is used to send the results to terminal window: ADC Data Register codes, ADC Input Voltage
volts, and Sensor Input Weight grams are the outputs provided in the terminal window.

At the start of the project, a calibration of the upper and lower input range of the weigh scale is taken
to remove both offset and gain errors in the circuit, providing the most accurate weigh scale
measurements possible. Make sure you open up the serial terminal to your PC in order to do the
calibration. Once the program is running, it will ask you to make the zero scale calibration, you MUST
press <ENTER> to begin the zero scale calibration(takes about 5 seconds). Once that calibration has
taken place, the serial terminal will prompt you to add the calibration weight to the scale and then
press <ENTER> to make the full scale calibration(again takes about 5 seconds). Those measurements
are averaged over 100 samples and then stored into memory as the upper and lower calibration
coefficients.

Once calibration is complete, measurements of the output values (weights and conversion
information) are displayed every time you press <ENTER> key from the keyboard. Measurements
should be between the lower and upper calibration limit can be made at the beginning of the program.

Setting up the hardware

Connect the EVAL-CN0216-ARDZ to the Arduino connectors P4, P5, P6, P7, P8 of the
EVAL-ADICUP360 board.

Extremely important to plug in an acceptable power supply to the barrel jack P11 to supply power for
the EVAL-CN0216-ARDZ. The boards will not work if you try only to power it from the DEBUG_USB or
the USER_USB.

In order to program the base board you need to use the DEBUG USB, and you will need to use the
USER USB to communicate with the serial terminal program. The important jumpers and switches
configurations are highlighted in red.

Arduing PWKH Arduino PAWML Arduingo Communication

USER U58
Q08 145

DEBUG USE

Q04N 221

DC Pawer
lack

Arguing Power Arduing ADCL Arduing ADCH

The ADuCM360_demo_cn0216 uses UART connection via P0.6/P0.7 and SPI1 channel of the
ADuCM360 to communicate with EVAL-CN0216-ARDZ shield.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADuCM360_demo_cn0216 can be found on Github:

i AduCM360 _demo_cn0216 at Github

Importing the ADuCM360 demo cn0216 project

The necessary instructions on how to import the ADuCM360_demo_cn0216 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADUCM360 demo cn0216 project

- A debug configuration must be set up for this project in order to have the possibility to program and
to debug the ADuCM360_demo_cn0216 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

- Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,

navigate to the small Debug icon™ * and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

ﬂm-mm_m_<m_m;m-thnh.mmm =
Fim dit lowwe Belscioe Bieagein Seerch Projecd Bus Window el

W
u =
u
il
o
w
'] v
u
o
u
u
LT

- Use step-by-step execution or directly run the program.

After completion of the steps above the program will remain written into the system flash and it will

run by default every time the board is powered up.

Project structure

The ADUCM360_demo_cn0216 project use ADuCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI1, UART via P0.6/P0.7; SPI, UART read/write functions;

AD7791 control and weight conversions.

In the src and include folders you will find the source and header files related to CN0216 software
application. The Communication.c/h files contain SPI and UART specific data, meanwhile the
AD7791.c/h files contain the ADC control data and the CN0216.c/h files contain the calibration and

measurements management.

a "5 ADUCM3E0 derme_cn0216 ardz
s :j;f' Binaries
- [Includes
4 ",-T_,—J-F src
- lg] ADTT91.c
» 2] CNO216.c
- 4] Communication.c
-l main.c
- || Timer.c
4 [system
4 = include
- = ADuCM360
- [= arm
. = CMSIs
+ = cortexm
- = diag
4 = src
- = ADuCM360
. = CMSIS
- [= cortexm
- = diag
- = newlib
- = Debug
4 (= include
(& ADT791.h
(& CMO216.h
[Communication.h
[& Timerh
- [ldscripts

In the appropriate header files you can configure
next parameters:

- Converter reference voltage - VREF - reference voltage (V) for AD7791 converter (AD7791.h).

#define VREF 5

- Full scale calibration weight - CAL WEIGHT - this parameter can be set to the numeric value of
the full scale calibration weight you are using. (in grams) (CN0216.h).

#define CAL_WEIGHT 1000

The system folder contains system related files (try not to change these files):

- ADUCM360 - contains low levels drivers for ADUCM360 microcontroller.

- CMSIS - contains files related to ADUCM360 platform, such as: ADuCM360.h (registers definitions),
system ADuCM360.c/h (system clock), vectors ADuCM360.c (interrupt vector table).

- cortexm - contains files for system management (start-up, reset, exception handler).

pH Monitor with Temperature Compensation
Demo

The ADUCM360_demo_cn0326 is a pH monitor with automatic temperature compensation demo
project, for the EVAL-ADICUP360 base board with additional EVAL-CN0326-PMDZ pmod, created using
the GNU ARM Eclipse Plug-ins in Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
pmod boards. It expand the list of possible applications that can be done with the base board.

The ADuCM360_demo_cn0326 project uses the EVAL-CN0326-PMDZ pmod which is a pH sensor
signal conditioner and digitizer with automatic temperature compensation.

The CN0326 circuit provides a complete solution for pH sensors with internal resistance between 1
MQ and several GQ. It consist of pH probe buffer, Pt1000 RTD for temperature compensation and
24-bits ADC with 3 differential analog inputs.

The pH probe consists of a glass measuring electrode and a reference electrode, which is analogous
to a battery. When the probe is place in a solution, the measuring electrode generates a voltage
depending on the hydrogen activity of the solution, which is compared to the potential of the
reference electrode. As the solution becomes more acidic (pH < 7) the potential of the glass
electrode becomes more positive (+mV) in comparison to the reference electrode; and as the
solution becomes more alkaline (pH > 7) the potential of the glass electrode becomes more negative
(=mV) in comparison to the reference electrode.

The change in temperature of the solution changes the activity of its hydrogen ions. When the
solution is heated, the hydrogen ions move faster which result in an increase in potential difference
across the two electrodes. In addition, when the solution is cooled, the hydrogen activity decreases
causing a decrease in the potential difference. Electrodes are designed ideally to produce a zero volt (
0 V) potential when placed in a buffer solution with a pH of 7 (neutral pH).

The EVAL-CN0326-PMDZ comes with an evaluation software which can help you to test and to
calibrate your pmod before you use it.

Please visit CN0326 Software User Guide page to find out how to get and how to use the CN0326
evaluation software.

The potential changes are outputted as ADC 24-bits value which is received via SPI interface of the
EVAL-ADICUP360 board. The ADC analog differential channels are:

- AIN1(+)/AIN1(-) - pH probe (voltage full range: £414 mV at 25°C to £490 mV at 80°C)

- AIN2(+)/AIN2(-) - Pt1000 RTD (voltage full range: 210 mV to 290 mV with 210 pA excitation
current)

- AIN3(+)/AIN3(-) - Bias current (used to minimized tne voltage errors)

COMIT - PUTTY SR LTS X
&P o

The ADUCM360 _demo _cn0326 application purchase ADC outputs from input channels, calculates
voltage, temperature and pH values. You can choose to use internal excitation current of the ADC
(IOUT2) or calculate bias current of the circuit (see USE_IOUT2 parameter).

A UART interface (9600 baud rate and 8-bits data length) is used, as a command line interpreter, to
send the results to terminal window: temperature and ph values. Beside this two the interpreter
process other three commands: help, calibrate channel/channels and ADC reset.

To start the command line interpreter you need to press ENTER key (CR) from the keyboard and after

that just type in <help> to see available commands. The output data are send via UART using
semihosting mechanism.

The project uses below formula to determine output ADC code for an input voltage on either channel:

Code = 271 | AIN=GAIN. 1 AIN - analog input voltage
|._ P | GAIN - gain value in the in-amp setting
- N - ADC resolution (24)
The temperature value is calculated using RTD resistance value and it varies from 0°C (1000 Q) to
100°C (1385 Q):

Rﬂd B R:Tun
¢ R

T =

Rrtd - RTD resistance at T°C
Rmin - RTD resistance at 0°C
a - temperature coefficient (0.00385 Q/Q/°C)

To calculate pH value is used Nernst equation:

E - voltage of the hydrogen electrode with
unknown activity
~ 2303R(T+273.1) a - zero point tolerance (=30 mV)

E=a- WF <\ PH = pH 150) T - ambient temperature in °C
n - valence, number of charges on ion (1 at 25
oC)
F - Faraday constant (96485 coulombs/mol)
R - Avogadro's number (8314 mV-coulombs /°K

mol)
pHiso - reference hydrogen ion concentration (7)

Semihosting with ARM

Semihosting is a mechanism that connect the target firmware's standard 10 (printf, scanf/fgets, open,
write, read, close, etc) to your host PC via JTAG or SWD. It's easy to configure it with open source
tooling - the newlib C standard library and OpenOCD JTAG implementation.

You can automatic enable semihosting and configure it by using the project ADUCM36x C/C+ +
Project template, which offer you the ability to select how do you want to use semihosting.

This example present the possibility to use semihosting to output messages with printf() by using a
physical serial connection as UART. It uses the newlib GNU ARM library which actually links the UART
physical port to standard C functions. You need only to overwrite _write() function, which is marked
as weak function in the GNU ARM library, with your own function that write characters to UART (the

same for _read() function when you want to use scanf() in your code).

Setting up the hardware

Connect the EVAL-CN0326-PMD to the SPI_PMOD connector of the EVAL-ADICUP360 board. In
order to program the base board you need to use the DEBUG USB. After you program the board you
can switch to USER USB and you are set to use the application. The important jumpers and switches

configuration are highlighted in red.

Arduing PWAH Arduing PWNL Arduing Communlcation

USER USE
Q0N 145

DEBUG LISB

QONd 271

Jack

DL Pawsr

Arduino Power #rduing ADCL Arduino ADCH

The ADuCM360 cn0326_demo use UART connection via P0.6/P0.7 and SPIO channel of the
ADuCM360 to communicate with CN0326 board.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADUCM360_demo_cn0326 can be found on Github:

i AdUCM360_demo_cn0326 at Github

Importing the ADuCM360 demo cn0326 project

The necessary instructions on how to import the ADUCM360_demo_cn0326 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADUCM360 demo cn0326 project

- A debug configuration must be set up for this project in order to have the possibility to program and
to debug the ADuCM360_demo_cn0326 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

- Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,

navigate to the small Debug icon™ * and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

(A et - ADWIM350. dema_cn032/snc/main.c - Analog Devices Inc. ADUCM360 1DE o o e
File- Edit Scurce Retactor Mawigate Sesech Project Run Window Help

(i - =Blom: : b Ely e Qoe® . w® -
ke A 8 | RIC/C++ |15 Debug |
tr Debug] 1| Il Ragisters =k Modules |55 Peniphara 22 % Breakpol Variables
4 [E] ADuCM360_dermo_crv0326 Debug [G08 CpenDD Debupaing] 1
& 5B ADUTM 360 derme_crl 3268l Penphera Address Descnphion =
a g® Thread 81 (Suspended ; Breakpoint) ADT_ADCD (0030000 Analog te Digital Comertar
E maind) an maimc8 ol Oal AD|_ADCL Coed 0030060 o
= Operd.ese ADIL_ADCDMA A D0300FD
= amenone-sabi-got AD]_ADCETEP CoedDOIVOED Analog to Digital Cormerter
ADI_ANA Ced000ZH10 Analog Contral
AFH FTECTI Pred N M Ferle Coin =
1 ¥
B0, | (8 mamng 2 il AD7TSE.C f CNO326.c | [H CNO3260 B | & Quiline =
- = B ow e M C
int madn(int args, char *argv[]) o sicdiak =
= { U gidlibh
o diag/Traceh
ADT73_Init(); % AN TG diagTrac
= U Temerh
CH326 Tnitl): f* CNOILE an tializ part * o W ADTTIsh =
i I [}
*! Problemd | B Cangele - Tahes L Exacutables [Memory o CND326L 4 Search - % b Tr‘ﬂ MR-
ADUCRZ60_derrg_¢rill326 Debug [GDE DpenDiD Debugging] openadd s
(31) dwt_2_comp (/31) -
33 m (fa
3 f 3G
' = -.-. :l'
mg (S
q |

Wiitable Smart Ingert 144 ;47
- Use step-by-step execution or directly run the program.

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADUCM360_demo_cn0326 project use ADuCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI0, UART via P0.6/P0.7; SPI, UART read/write functions;
AD7793 control, voltage conversion, command interpreter, temperature and pH calculations.

In the src and include folders you will find the source and header files related to CN0326 software
application. The Communication.c/h files contain SPI and UART specific data, meanwhile the
AD7793.c/h files contain the ADC control data and the CN0326.c/h files contain the pH monitor
application data.

-1 Project Explorer &3 = G
‘& ADI”CPjGD-dem-“”UM’ In the appropriate header files you can configure
mi Includes
next parameters:

4 B sr¢
le] ADTT93.c
[& CNO326.c
Lel Communication.c
L& main.c
L Timer.c
4 B gystem
4 = include
= ADUCM360
& arm
= cmsis
&= cortexm
= diag
4 G sre
= ADUCM360
& cmsis
= Cortexm
= diag
= newlib
4 = include
& AD7793.h
15 CNO326.h
& Communication.h
& Timerh
= lelseripts

- ADC gain - AD7793 GAIN - POWER DOWN set gain value for AD7793 converter (AD7793.h).
#define AD7793 GAIN AD7793 GAIN 1

- Excitation current - USE_IOUT2 - select if you want to use bias current from the AIN3 channel: YES
or you want to use internal excitation current, 210 pA: NO(CN0326.h).

#define USE_IOUT2 NO
- Zero point tolerance - TOLERANCE - tolerance used in Nernst equation (CN0326.h).

#define TOLERANCE 0

The system folder contains system related files (try not to change these files):

. ADUCM360 - contains low levels drivers for ADUCM360 microcontroller.

- CMSIS - contains files related to ADuUCM360 platform, such as: ADuCM360.h (registers definitions),
system ADuCM360.c/h (system clock), vectors ADuCM360.c (interrupt vector table).
- cortexm - contains files for system management (start-up, reset, exception handler).

Data Acquisition for Input Current Demo

The ADUCM360_demo_cn0336 is a data acquisition demo project for 4-20 mA inputs, for the
EVAL-ADICUP360 base board with additional EVAL-CN0336-PMDZ pmod, created using the GNU ARM
Eclipse Plug-ins in Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
pmod boards. It expand the list of possible applications that can be done with the base board.

The ADUCM360_demo _cn0336 project uses the EVAL-CN0336-PMDZ pmod which is a completely
isolated 12-bits, 300 kSPS data acquisition system (with only three active devices) that processes 4
mA to 20 mA input signals.

The CN0336 circuit consists of an input current-to-voltage converter, a level shifting circuit, an ADC
stage and an output isolation stage. The 4 mA to 20 mA input signal is converted into voltage levels
compatible with the input range of the ADC (0 V - 2.5 V). The 12-bits ADC value is received via SPI
interface of the EVAL-ADICUP360 board.

The EVAL-CN0336-PMDZ comes with an evaluation software which can help you to test and to
calibrate your pmod before you use it.

Please visit CN0336 Software User Guide page to find out how to get and how to use the CN0O336
evaluation software.

| B COoM11 - PuTTY = FEE

The ADUCM360_demo_cn0336 application processes ADC outputs and provide current and voltage
values. You can decide how often the ADC measurements take place (see SCAN_TIME parameter).

A UART interface (115200 baud rate and 8-bits data length) is used to send the results to terminal
window: input current value, voltage calculation and ADC code. If the input value is out of range
you get an error message which means that you need to check your settings.

To start displaying data acquisition results on a terminal (putty in this case) you need to press ENTER
key (CR) from the keyboard and after that the data are updated every time the input values are
changed. The output data are send via UART using semihosting mechanism.

The project offers two method to calculate the input current, giving you the possibility to get more

accurate results (see CN0336 circuit note). You can use transfer function of the circuit which
calculate input current based on voltage changed value and circuit gain:

I = Imin + (Vout - Voffset)/Gain

Or you can use the two-point calibration method which used the ADC output values for 2 different
measurements: first at Imin = 4 mA (ADC1) and second at Imax = 20 mA (ADC2):

Ix = Imin + [(Imax - Imin)/(ADC2 - ADC1l)]*(ADCx - ADC1)

Semihosting with ARM

Semihosting is a mechanism that connect the target firmware's standard 10 (printf, scanf/fgets, open,

write, read, close, etc) to your host PC via JTAG or SWD. It's easy to configure it with open source
tooling - the newlib C standard library and OpenOCD JTAG implementation.

You can automatic enable semihosting and configure it by using the project ADUCM36x C/C+ +
Project template, which offer you the ability to select how do you want to use semihosting.

This example present the possibility to use semihosting to output messages with printf() by using a
physical serial connection as UART. It uses the newlib GNU ARM library which actually links the UART
physical port to standard C functions. You need only to overwrite _write() function, which is marked
as weak function in the GNU ARM library, with your own function that write characters to UART (the
same for _read() function when you want to use scanf() in your code).

Setting up the hardware

Connect the EVAL-CN0336-PMD to the SPI_PMOD connector of the EVAL-ADICUP360 board. In
order to program the base board you need to use the DEBUG USB. After you program the board you
can switch to USER USB and you are set to use the application. The important jumpers and switches

configuration are highlighted in red.

Arduing PWAH Arduing PWNIL Ardying Communication

USER USE
Q0N 145

DEBUG LISB

QONd 2T1

Jack

DL Pawosr

Arduing Power Arduing ADCL Arduino ADCH

The ADuCM360 cn0336_demo use UART connection via P0.6/P0.7 and SPIO channel of the
ADuCM360 to communicate with CN0336 board.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADUCM360_demo_cn0336 can be found on Github:

AduCM360 demo cn0336 at Github

Importing the ADUCM360 demo cn0336 project

The necessary instructions on how to import the ADUCM360_demo_cn0336 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADuCM360 demo cn0336 project

- A debug configuration must be set up for this project in order to have the possibility to program and
to debug the ADuCM360_demo_cn0336 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

- Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,

navigate to the small Debug icon™ ~ and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

B oebug - ADUCMEE0 derme: crl336 e frnmn.c - Anslog Devices Ine. ADUCME60 IDE =
File Edit Sowrce Refactor Waagabe Search Project Run Window Help

3= L R T b E% BB~ 5 - - — -
Quick Aceess B | B acv s [EEDebug |
1k Debug o O | |in= Vari albles | ®a Breaipo Registers Penphera b odules
a {1 ADUCM3S0_demo_on(336 Debug [GD8 CpenDCD Debuggirg)
4 38 ADuCM350_demao_onDE36.el1 Penpheral Address Dlescriphon -
4 % Thiaad 81 (Suipended : Eraakpaint) T ADH_ADCD (0030000 Adslsg 16 Degrtsl Cormeéater :
£ main(} at man.c92 tudde ADL_ADCL AD0I00E0 Analog to Digtal Cormerter
o openddso ADI_ADCDMA, (A00300F0 Analog to Digital Comverter -
w ST-MONE -2ai-gdb 4 [
€] Frasn.g g i £ s r _syscallfc] Coammunicaticng 6 OH0336.¢ ™ 1 | EE Duting
- = e H W o %

it meim{det argc, ehar "argv[])

U stdioh -
i . - W stdiibh
ulntle T ulBadcValus;
e U diagTraceh
float Filvoltage, fIicurrent;
£ age, ¥: EnE; 9 Timern
. St aTi vk U ADTEIRR
ADTRSIR_Init(); W CH03IEh
CNE336_ Iniol): U Communicationh
it n_LFABT Ent Handlsetwoid) i
b F }
B Congale &3 o+ Tasks| O Exscutables) [Mermory - (| B CIE =m B~ -
ADUUM 300 dermd_onlE36 Debeg (006 DpenOUD Debugging] openocd e
(20) dwt_1_fumcti (F32) ¥
i~ -_.- 3 |']
mask [/4)
F. nctlL [.
37
- J'_.'I:\I.
d 12
4 I []

- Use step-by-step execution or directly run the program.

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADUCM360_demo_cn0336 project use ADuUCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI0, UART via P0.6/P0.7; SPI, UART read/write functions;
AD7091R control and current-voltage conversion.

In the src and include folders you will find the source and header files related to CN0336 software
application. The Communication.c/h files contain SPI and UART specific data, meanwhile the
AD7091R.c/h files contain the ADC control data and the CN0336.c/h files contain the data acquisition
parts.

1

|

0
L1l

‘o Project Explorer &3 E
4 5 ADUCM360_demo_cn0336

¥ Binaries
- mit Includes

In the appropriate header files you can configure
next parameters:

4 (8 src
le) ADT091R.c
lg CNO336.c
gl Communication.c
L€ main.c
g Timer.c
4 [system
4 = include
= ADUCM 360
&% arm
= cmsis
= cortexm
= diag
A = 5IC
= ADuCM360
= cmsis
= cortexm
= diag
= newlib
& Debug
4 (= nclude
In AD7091Rh
sl CNO336.h
lsl Communicationh
Il Timer.h
= ldscnpts

- Converter operation mode - AD7091R_OPERATION_MODE - POWER_DOWN to select power-down
AD7091R mode of operation or NORMAL for normal mode (AD7091R.h).

#define AD7091R OPERATION MODE POWER DOWN

- Converter scan time - SCAN _TIME - how often (msec) to read conversion results (AD7091R.h).
#define SCAN TIME 500

- Converter reference voltage - VREF - reference voltage (V) for AD7091R converter (AD7091R.h).

#define VREF 2.5

- Current calculation formula - CALC_ FORMULA - this parameter can be set as
TRANSFER _FUNCTION or TWO POINT CALIBRATION (CN0336.h).

#define CALC FORMULA TWO POINT CALIBRATION

- Data acquisition parameters - all needed parameters for data calculations (CN0336.h).

#define IMIN 4 /* Imin [mA] */
#define IMAX 20 /* Imax [mA] */
#define ADC MIN 147 /* ADC min for IMIN */
#define ADC MAX 3960 /* ADC max for IMAX */

The system folder contains system related files (try not to change these files):

- ADUCM360 - contains low levels drivers for ADUCM360 microcontroller.

- CMSIS - contains files related to ADUCM360 platform, such as: ADuCM360.h (registers definitions),
system_ADuCM360.c/h (system clock), vectors ADuCM360.c (interrupt vector table).

- cortexm - contains files for system management (start-up, reset, exception handler).

Test procedure

The ADUCM360_demo_cn0336 project was tested using the base HW configuration
(EVAL-ADICUP360 board together with EVAL-CN0336-PMDZ pmod) and by using additional
EVAL-CN0179-PMDZ pmod which was choose because it can generate the input current between
required range 4mA - 20 mA.

In order to generate input current with CNO179 circuit is necessary just to use ADI available
evaluation software for this pmod (CN-0179 Software User Guide).

RTD Temperature Measurement Demo

The ADUCM360_demo_cn0337 is a RTD temperature measurement demo project for the
EVAL-ADICUP360 base board with additional EVAL-CN0337-PMDZ pmod, created using the GNU ARM
Eclipse Plug-ins in Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
pmod boards. It expand the list of possible applications that can be done with the base board.

The ADUCM360_demo _cn0337 project uses the EVAL-CN0337-PMDZ pmod which is a completely
isolated 12-bits, 300 kSPS RTD temperature measuring system (with only three active devices) that
processes the output of a Pt100 RTD and includes an innovative circuit for lead-wire compensation
using a standard 3-wire connection.

— ™ The CN0337 circuit
~translates the RTD
-~ inputresistance
— _—_——:-=_g-—_--—_range (100 Q -
. 212.05 Q for a
- e e .. .0°C-300°C
temperature) into voltage levels compatible with the input range of the ADC (0 V - 2.5 V). The
12-bits ADC value is received via SPI interface of the EVAL-ADICUP360 board.

The EVAL-CN0337-PMDZ comes with an evaluation software which can help you to test and to
calibrate your pmod before you use it with an RTD sensor.

Please visit CN0337 Software User Guide page to find out how to get and how to use the CN0337
evaluation software.

The ADUCM360_demo_cn0337 application processes ADC output value and make all necessary
conversions in order to provide RTD measure results. A UART interface (9600 baud rate and 8-bits
data length) is used to send the results to terminal window: RTD temperature and resistance
values, voltage calculation and ADC code. If the resistance and temperature values are out of range
you get an error message which means that you need to check your settings.

The output values are displayed when you press ENTER key (CR) from the keyboard. Also you can
decide how often the measurements take place (see SCAN _TIME parameter).

The project offers two method to calculate the RTD resistance, giving you the possibility to get more
accurate RTD measurement results (see CN0337 circuit note).

You can use transfer function of the circuit which calculate RTD resistance based on voltage
changed value and circuit gain:

Rrtd = (Vout - Voffset)/Gain

Or you can use the two-point calibration method which used the ADC output values for 2 different
measurements: first using Rmin = 100 Q (ADC1) precision resistor and second with Rmax = 212.05 Q
(ADC2) resistor.

Rrtd = Rmin + [(Rmax - Rmin)/(ADC2 - ADC1l)]*(ADCrtd - ADC1)

Because the transfer function of the RTD (resistance vs. temperature) is nonlinear is needed a
software linearization to eliminate the nonlinearity error of the RTD Pt100 sensor. This project used so
called Piecewise Linear Approximation method.

Piecewise Linear Approximation Method

This method characterized by taking linear approximation one step further, one can conceptualize any
number of linear segments strung together to better approximate the nonlinear RTD transfer function.
Generating this series of linear segments so that each segment’s endpoints meet those of
neighboring segments results in what can be viewed as a number of points connected by straight
lines.

These coefficients is calculated once to best match the RTD’s nonlinear transfer function and then
stored permanently in a look-up table (see C _rtd[] table). From this table of coefficients, the software
can perform simple linear interpolation to determine temperature based on measured RTD resistance.

The look-up table can have how many coefficients you needed depending how accurate you want to
be. For this project the RTD resistance range is separated into 100 linearization segments.

This method is also used in the AN-709 application note which provide also an RTD coefficient
generator tool that you also can use.

Setting up the hardware

Connect the EVAL-CN0337-PMD to the SPI_PMOD connector of the EVAL-ADICUP360 board. In
order to program the base board you need to use the DEBUG USB. After you program the board you
can switch to USER USB and you are set to use the application. The important jumpers and switches
configuration are highlighted in red.

Arduing FWMAH Arduing PWML Arduing Camrmunication

LISER USEB
QOWd 145

DEBUG U3E

QoW 371

DC Powar
Jack

Arduing Power Arduing ADCL Arduing ADCH

The ADuCM360 cn0337 _demo use UART connection via P0.1/P0.2 and SPIO channel of the
Rev 04 Dec 2015 11:31 | Page 3

ADuUCM360 to communicate with CN0337 board.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADUCM360_demo_cn0337 can be found on Github:

AduCM360 demo cn0337 at Github

Importing the ADUCM360 demo cn0337 project

The necessary instructions on how to import the ADUCM360_demo_cn0337 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADuCM360 demo cn0337 project

- A debug configuration must be set up for this project in order to have the possibility to program and
to debug the ADuCM360_demo_cn0337 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

- Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,

navigate to the small Debug icon™ ~ and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

B3 Debug - ADUCMIED. dermio_cn0337/sre/main.c - Analog Devices [ne. ADGCM3S0 1DE =]
File Edit Source Refactor Newvigate Search Project Run Window Help

o [va W [e] v D '-L v - - =i -
Quitk Access [| BRCAC++ |35 Debug |
 Debug M| i O |li=e Wasiakl %% Breakp | H Registe |5 Perph B0 5 i Module| ™ O
4 [F] ADUCM 380_derme_cn0337 Debug [GDE OpenDED Debwaging] =
+ B ADUCM360_demo_cnd337.elf Periphearal Agldress Descnption o
#® Thread #1 (Running : User Requesty Y ADI_ADCD O 0030000 Analog to Degital Converter =
Wl openocd.ene ADL_ADCL (40030080 Analog to Digital Converter
il AM-Rone-2abi-gdb o ADI_ADTDMA ed00300F0 Analag to Dugital Convertsr
T2 ADI_ADCSTEP Ched0O300ED Analog to Digital Converter
]] f
o Commusm cation o Communicationh & Communicationh o Mainc "2 O |[8 Outfine
- B oW ~
-] 2 15 o srchoh #
L & diag/Traceh
! =2 Timerh -
w b = E
i :II[.nt main{int argc, char *argv[]) E U ARTOSIEE
L
uintlf_t adevalue; U CND3ITh
float temp, voltage, rj & Commumcationh
W & LIART Int Handler{wsad)
L (k]] L) i k
B Console & ™ & Tasks| (2] Problems| OF Exacutables| [1 Memory] b (S ~ B "
ADUCM3a0_dermo_ond337 Debug [GD8 OpenOCD Debugaing) opencod.exe
(3@} dwt 1 fumction {/32) -
(31 yt_2 comp {[f32)
(223 t 2 mask {/4)
(33) dwt_2_Function {/32) -
“

- Use step-by-step execution or directly run the program.

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADUCM360_demo_cn0337 project use ADUCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI0, UART via P0.1/P0.2; SPI, UART read/write functions;
AD7091R control and RTD conversions.

In the src and include folders you will find the source and header files related to CN0337 software
application. The Communication.c/h files contain SPI and UART specific data, meanwhile the
AD7091R.c/h files contain the ADC control data and the CN0337.c/h files contain the RTD
measurements management.

‘1 Project Explorer &2 =% ¥ = 0
4 =2 ADUCM360_demo_cn0337
" Binaries
n Includes
4 (B src
tet AD7091R.¢c
gl CNO337.c
e, Communication.c

In the appropriate header files you can configure
next parameters:

L€ main.c
kel Timer.c
4 (£ system
4 = include
= ADuCM 360
& arm
& cmsis
= cortexm
&= diag
4 = src
= ADUCM360
& cmsis
= cortexm
= diag
= newlib

= Debug
4 (= include
lsf ADZ7091R.h
ls CNO337.h
lw Communication.h

Il Timer.h
= |ldscripts

- Converter operation mode - AD7091R_OPERATION_MODE - POWER_DOWN to select power-down
AD7091R mode of operation or NORMAL for normal mode (AD7091R.h).

#define AD7091R OPERATION MODE POWER _DOWN

- Converter scan time - SCAN_TIME - how often (msec) to read conversion results (AD7091R.h).
#define SCAN TIME 500

- Converter reference voltage - VREF - reference voltage (V) for AD7091R converter (AD7091R.h).

#define VREF 2.5

- RTD resistance calculation method - RTD FORMULA - this parameter can be set as
TRANSFER _FUNCTION or TWO POINT CALIBRATION (CN0337.h).

#define RTD_ FORMULA TRANSFER FUNCTION

- RTD parameters - all needed parameters for RTD calculations (CN0337.h).

#define TMIN (0) /* Tmin [°C] */

#define TMAX (300) /* Tmax [°C] */

#define RMIN (100) /* Resistance [0Ohms] at Tmin */

#define RMAX (212.052) /* Resistance [Ohms] at Tmax */

#define NSEG 100 /* Nr. of sections in look-up
table */

#define RSEG 1.12052 /* Resistance of each segment */

#define ADC MIN 152 /* ADC min for RMIN */

#define ADC_MAX 4095 /* ADC max for RMAX */

The system folder contains system related files (try not to change these files):

- ADUCM360 - contains low levels drivers for ADuCM360 microcontroller.

- CMSIS - contains files related to ADUCM360 platform, such as: ADuCM360.h (registers definitions),
system ADuCM360.c/h (system clock), vectors ADuCM360.c (interrupt vector table).

- cortexm - contains files for system management (start-up, reset, exception handler).

Test procedure

The ADUCM360_demo_cn0337 project was tested using the base HW configuration
(EVAL-ADICUP360 board together with EVAL-CN0337-PMDZ pmod) and by connecting the 3-wire
PT100 CZUJNIK temperature sensor.

Toxic Gas (CO) Measurement Demo

The ADUCM360_demo_cn0357 is a toxic gas(CO) detector demo project for the EVAL-ADICUP360
base board with additional EVAL-CN0357-ARDZ shield, created using the GNU ARM Eclipse Plug-ins in
Eclipse environment.

General description

This project is a good example for how to use EVAL-ADICUP360 board in different combinations with
various shield boards. It expand the list of possible applications that can be done with the base board.

The ADUCM360_demo_cn0357 project uses the EVAL-CN0357-ARDZ shield which is a single-supply,
low noise, portable gas detector circuit using an electrochemical sensor.

ANALOG

(TR THIRCD TR L]

W TE i

X Emwig o s E
e R R
by

The EVAL-CN0357-ARDZ shield circuit provides a potentiostatic circuit for biasing the electrochemical
sensor, along with a programmable TIA and 16-bit Sigma-Delta ADC. The TIA converts the small
currents passing in the sensor to a voltage that can be read by the ADC. The 16-bit ADC value is
received via SPI interface of the EVAL-ADICUP360 board, where the gas concentration is computed.

4 COMT:9600baud - Tera Term VT [T Lo A ¢

The ADC Data Register Ualue - BxBA7Fda

Input Uoltage input = —B.B81392 g
ADUCM360 demo! & Concentration = 2.322368 PPH
- ; Data Register Ualue = BxBA7Fda
_cn0357 ! Input u"urlca;-e input = —B.B@1392
application Concentration = 2.322368 PPM
: . Data Register Value = BxBA7Fda
configures the ADC Input Uglta;c input = —#.8@1392
necessary Concentration = 2.322368 FPPM
$ Data Register Ualue = BxBA7fda
components, : Input Uoltage input - —B.8@1392
processes ADC Concentration = 2.322368 FPPH
Data Register Ualue = BxBA7Fda
output value and : Input Uoltage input - -@.881392
make all necessaryl as Concentration = 2.322368 PPM
: : Data Register Ualue = BxBAYFda
conversions In | G Input Uoltage input = -B.881392 U

order to provide lGas Concentration = 2.322368 PPH

the gas
concentration. A UART interface (9600 baud rate and 8-bits data length) is used to send the results to
terminal window: ADC Data Register codes, ADC Input Voltage volts, and Gas Concentration Parts
Per Million(PPM) are the outputs provided in the terminal window.

At the start of the project, the software computes the necessary parameters and configure the digital
rheostat(AD5270) of the TIA. The required parameters are the sensor sensitivity and sensor range.
These can be modified by changing the values of the constants SENSOR_SENSITIVITY and
SENSOR_RANGE found in the CN0357.h header file of the project. See the “Project Structure”
section for more details.

Once configuration is complete, the software remains in a loop and continuously reads data from the
ADC. Data can be read from a terminal by pressing the <Enter> key on the computer's keyboard.

Setting up the hardware

Connect the EVAL-CN0357-ARDZ to the Arduino connectors P4, P5, P6, P7, P8 of the
EVAL-ADICUP360 board.

Extremely important to plug in an acceptable power supply to the barrel jack P11 to supply power for
the EVAL-CNO357-ARDZ. The boards will not work if you try only to power it from the DEBUG_USB or
the USER_USB.

In order to program the base board you need to use the DEBUG USB, and you will need to use the

USER USB to communicate with the serial terminal program. The important jumpers and switches
configurations are highlighted in red.

Arduing PAWRH Arduino PYWML Arduing Communication

USER U58
Q0 145

DEBUG USE

Q04Nd 321

DC Power
lack

Arduing Powes Arduing ADCL Arduing ADCH

The ADuCM360 _demo _cn0357 uses UART connection via P0.6/P0.7 and SPI1 channel of the
ADuCM360 to communicate with EVAL-CN0357-ARDZ board.

Obtaining the source code

We recommend not opening the project directly, but rather import it into Eclipse and make a local
copy in your Eclipse workspace.

The source code and include files of the ADUCM360_demo_cn0357 can be found on Github:

_&, ADUCM360_demo_cn0357 at Github

Importing the ADUCM360 demo _cn0357 project

The necessary instructions on how to import the ADUCM360_demo_cn0357 project form the
projects examples in the Git repository, can be found in How to import existing projects from the GIT
Repository page.

Debugging the ADuCM360 demo cn0357 project

- A debug configuration must be set up for this project in order to have the possibility to program and
to debug the ADuCM360_demo_cn0357 project. To do this, follow the instructions from Setting up
a Debug Configuration Page.

- Make sure the target board is connected to the computer (via DEBUG USB) and using the tool bar,

navigate to the small Debug icon™ ~ and select the debugging session you created. The application
will programmed and the program execution will stop at the beginning of the main() function.

o
-

- Use step-by-step execution or directly run the program.

After completion of the steps above the program will remain written into the system flash and it will
run by default every time the board is powered up.

Project structure

The ADUCM360_demo_cn0357 project use ADuUCM36x C/C++ Project structure.

This project contains: system initialization part - disabling watchdog, setting system clock, enabling
clock for peripherals; port configuration for SPI1, UART via P0.6/P0.7; SPI, UART read/write functions,
AD7790 control, AD5270 control and gas concentration computation.

In the src and include folders you will find the source and header files related to CN0357 software
application. The Communication.c/h files contain SPI and UART specific data, the AD7790.c/h files
contain the ADC control, the AD5270.c/h files contain the rheostat control and the CN0357.c/h files
contain configurations and computations specific to the gas detector application.

4 5 ADUCM360_demo_cn0357
#__Pb Biraries In the appropriate header files you can configure

next parameters:

nit Includes

Fc

A

o
=

r

le] AD5270.c
] ADT790.c
Le] CN0357.c
.¢] Communication.c
lg] main.c

¢ Timer.c

system

[™
B

4 (= Include
= ADuCM360
(= arm
(= cmsis
(= cortexm
= diag

4 (= src
= ADuCM360
(= cmisis

(= cortexm

(= diag
(= newlib
(= Debug
s include
ls) AD5270.h
I ADT790.h
ln CN0357.h
I Communication.h
Il Tirmer.h

(= ldscripts

4 |

A

- Sensor Range - SENSOR RANGE - maximum value of the gas conentration (ppm) that can be
detected by the electrochemical gas sensor being used (CN0357.h).

#define SENSOR RANGE 2000

- Sensor Sensitivity - SENSOR_SENSITIVITY - sensitivity (nA/ppm) of the electrochemical sensor
being used (CN0357.h).

#define SENSOR SENSITIVITY 65

The system folder contains system related files (try not to change these files):

- ADUCM360 - contains low levels drivers for ADUCM360 microcontroller.

- CMSIS - contains files related to ADuCM360 platform, such as: ADuCM360.h (registers definitions),
system ADuCM360.c/h (system clock), vectors ADuCM360.c (interrupt vector table).

- cortexm - contains files for system management (start-up, reset, exception handler).

Help and Support

This page wants to help you when you have a specific issue which required a different approach or
when the wiki information are not enough.

ADuCM360 questions

If you have any questions regarding the base platform or any of the shields/pmods or are
experiencing any problems while using the boards or while following any of the user guides feel free
to ask us a question. Questions can be asked on our #EngineerZone support community.

When asking a question please take the time to give a detailed description of your problem. If you are
experiencing a problem please state the steps you have executed, the result you expected you would
get and the result you actually got. By doing so you enable us to provide you precise and detailed
answers in a timely manner.

Before asking questions please take the time to check if somebody else already asked the same
question and already got an answer.

IDE questions

If you need additional information about Eclipse IDE which is part of the EVAL-ADICUP360 Tool Chain
you can visit GNU ARM Eclipse page.

ADICUP360 Compliance Results

Introduction

WRegulatory compliance means conforming to a rule, such as a specification, policy, standard or law.
Most products that ships into a country need to pass a variety of tests and regulations specific to that
country.

Due to the increasing number of regulations, organizations are increasingly adopting the use of
consolidated sets of compliance controls. This means once you normally get one, you can have them

all.

Reports

The ADICUP360 passes all requirements of the W CE tests.

- ADICUP360 EMC emissions and immunity test report

What are all these logos?

- WCE Mark : a mandatory conformity marking for certain products sold within the European
Economic Area (EEA).

- WElectrical and Electronic Equipment Waste Directive : a European Community directive
2002/96/EC on waste electrical and electronic equipment (WEEE).

- WFederal Communications Commission : is an independent agency of the United States
government, this logo means we pass part 15, class B.

http://en.wikipedia.org/wiki/Regulatory_compliance
http://en.wikipedia.org/wiki/Regulatory_compliance
http://en.wikipedia.org/wiki/CE_marking
http://en.wikipedia.org/wiki/CE_marking
https://wiki.analog.com/_media/resources/eval/user-guides/eval-adicup360/eval-adicup360-emc_emissions_and_ce_test_report.pdf
http://en.wikipedia.org/wiki/CE_marking
http://en.wikipedia.org/wiki/CE_marking
http://en.wikipedia.org/wiki/Waste_Electrical_and_Electronic_Equipment_Directive
http://en.wikipedia.org/wiki/Waste_Electrical_and_Electronic_Equipment_Directive
http://en.wikipedia.org/wiki/Federal_Communications_Commission
http://en.wikipedia.org/wiki/Federal_Communications_Commission
http://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/oet62/oet62rev.pdf
https://wiki.analog.com/resources/eval/user-guides/eval-adicup360/help_and_support
https://wiki.analog.com/resources/eval/user-guides/eval-adicup360
http://www.analog.com

	1&2
	2
	Introduction

	2c
	Tool Chain for EVAL-ADICUP360
	Pre-Requisites and Requirements List
	Windows Tool Chain Installer Instructions
	Linux Tool Chain Installer Instructions

	2d
	Tool Chain Setup User Guide
	Workspace and Projects

	Using the Tool Chain
	Importing a Project
	How to Import Existing Projects within the Installer Package
	How to Import Existing Projects from the GIT Repository

	Building the .ELF/.HEX Files
	Setting up a Debug Configuration for the Project
	Debugging an Application
	Creating a New Project
	Options available for "Hello World" template only

	Assign Device to the Project using Packs

	3
	3a
	Hardware

	3b
	EVAL-ADICUP360 Base Board
	Connectors
	Jumper Configuration
	Jumper P12
	Jumper REFnSel
	Jumpers J1, J2, J3, J4, J5

	USB/Connector Multiplexer
	Switches S1, S2, S3, S4
	Switch Schematic

	Buttons
	Schematics, PCB Layout, Bill of Materials
	Software examples

	3d
	EVAL-CN0216-ARDZ Shield
	Connectors and Jumper Configurations
	Sensor Connector
	Bridge Configuration
	Chip Select

	Schematic, PCB Layout, Bill of Materials

	3f
	EVAL-CN0357-ARDZ Shield
	Connectors and Jumper Configurations
	Sensor Footprint
	Chip Select

	Schematic, PCB Layout, Bill of Materials
	Software

	4
	4a
	Reference Designs

	4b
	Blinking LEDs demo
	General description
	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_blink project
	Debugging the ADuCM360_demo_blink project
	Project structure

	4c
	Command Line Interpreter Demo
	General description
	Available commands

	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cli project
	Debugging the ADuCM360_demo_cli project
	Project structure

	4d
	Weigh Scale Measurement Demo
	General description
	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0216 project
	Debugging the ADuCM360_demo_cn0216 project
	Project structure

	4e
	pH Monitor with Temperature Compensation Demo
	General description
	Semihosting with ARM

	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0326 project
	Debugging the ADuCM360_demo_cn0326 project
	Project structure

	4f
	Data Acquisition for Input Current Demo
	General description
	Semihosting with ARM

	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0336 project
	Debugging the ADuCM360_demo_cn0336 project
	Project structure
	Test procedure

	4g
	RTD Temperature Measurement Demo
	General description
	Piecewise Linear Approximation Method

	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0337 project
	Debugging the ADuCM360_demo_cn0337 project
	Project structure
	Test procedure

	4h
	Toxic Gas (CO) Measurement Demo
	General description
	Setting up the hardware
	Obtaining the source code
	Importing the ADuCM360_demo_cn0357 project
	Debugging the ADuCM360_demo_cn0357 project
	Project structure

	5&6
	5
	Help and Support
	ADuCM360 questions
	IDE questions

	6
	ADICUP360 Compliance Results
	Introduction
	Reports
	What are all these logos?

