

FLS6617 Primary-Side-Regulation PWM with POWER MOSFET Integrated

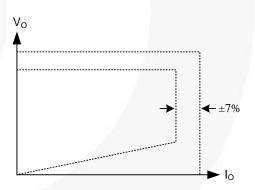
Features

- Low Standby Power under 30 mW
- High-Voltage Startup
- Fewest External Component Counts
- Constant-Voltage (CV) and Constant-Current (CC) Control without Secondary-Feedback Circuitry
- Green-Mode: Linearly Decreasing PWM Frequency with Cycle Skipping
- Fixed PWM Frequency at 50 kHz with Proprietary Frequency Hopping to Solve EMI Problem
- Peak-Current-Mode Control in CV Mode
- Cycle-by-Cycle Current Limiting
- V_{DD} Over-Voltage Protection with Auto Restart
- V_{DD} Under-Voltage Lockout (UVLO)
- Gate Output Maximum Voltage Clamped at 15 V
- Fixed Over-Temperature Protection with Auto Restart
- Available in the 7-Lead SOP Package

Applications

- Battery chargers for cellular phones, cordless phones, PDA, digital cameras, power tools, etc.
- Replaces linear transformers and RCC SMPS

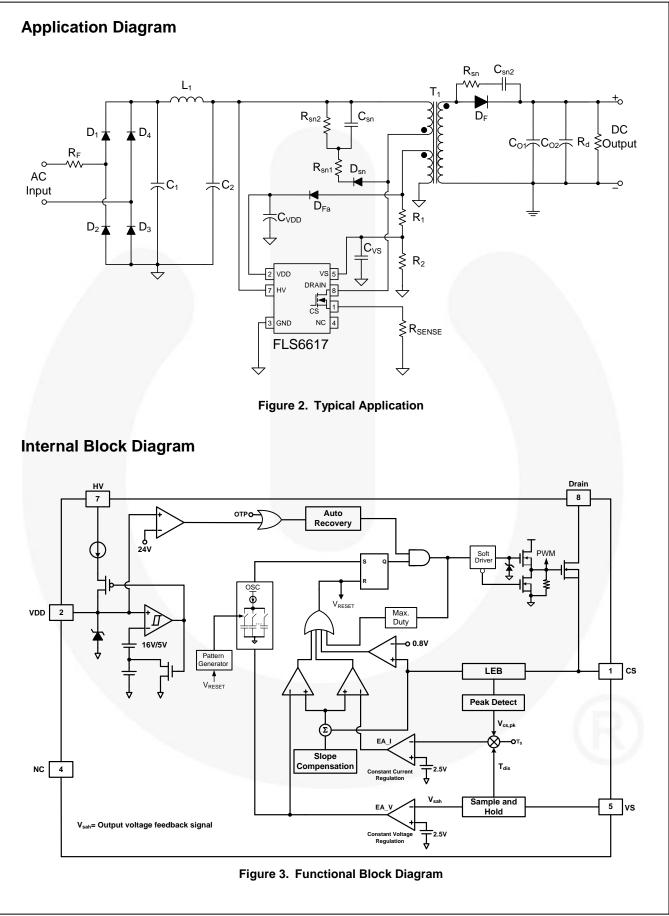
Related Resources

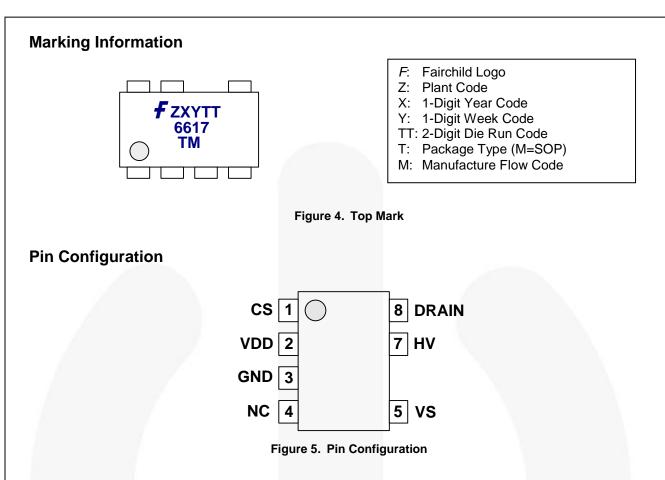

Fairchild Power Supply WebDesigner — Flyback Design & Simulation - In Minutes at No Expense

Description

This third-generation Primary Side Regulation (PSR) and highly integrated PWM controller provides several features to enhance the performance of low-power flyback converters. The proprietary TRUECURRENT[®] technology of FLS6617 enables precise CC regulation and simplified circuit design for battery-charger applications leading to lower-cost, smaller, and lighter chargers, compared to a conventional design or a linear transformer.

To minimize standby power consumption, the proprietary green mode provides off-time modulation to linearly decrease PWM frequency under light-load conditions. Green mode assists the power supply in meeting power conservation requirements.


By using the FLS6617, a charger can be implemented with few external components and minimized cost. A typical output CV/CC characteristic envelope is shown in Figure 1.



Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method	
FLS6617MX	-40°C to +125°C	7-Lead, Small Outline Package (SOP-7)	Tape & Reel	

FLS6617 — Primary-Side-Regulation PWM with POWER MOSFET Integrated

Pin Definitions

Pin #	Name	Description	
1	CS	Current Sense . This pin connects to current-sense resistor. Detect the MOSFET current for peak-current-mode control in CV mode and provide the output-current regulation in CC mode.	
2	VDD	Yer Supply . IC operating current and MOSFET driving current are supplied through this pin. pin is connected to an external V_{DD} capacitor of typically 10 μ F. The threshold voltages for up and turn-off are 16 V and 5 V, respectively. The operating current is lower than 5 mA.	
3	GND	Ground	
4	NC	No Connection	
5	VS	Voltage Sense. This pin detects the output voltage information and discharge time based on voltage of auxiliary winding.	
7	HV	High Voltage. This pin connects to bulk capacitor for high-voltage startup.	
8	DRAIN	Driver Output. Power MOSFET drain. This pin is the high-voltage power MOSFET drain.	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter				Max.	Units
V_{HV}	HV Pin Input Voltage			500	V	
V_{VDD}	DC Supply Voltage ^(1,2)				30	V
V _{VS}	VS Pin Input Voltage			-0.3	6.0	V
Vcs	CS Pin Input Voltage			-0.3	6.0	V
V _{COMV}	Voltage Error Amplifie	r Outp	out Voltage	-0.3	6.0	V
V _{COMI}	Current Error Amplifie	r Outp	out Voltage	-0.3	6.0	V
V _{DS}	Drain-Source Voltage				700	V
I _D	Continuous Drain Cur	ront	T _A =25°C		1	А
١D	T _A =100°C		T _A =100°C		0.6	А
I _{DM}	Pulsed Drain Current				4	А
E _{AS}	Single Pulse Avalanche Energy				50	mJ
AR	Avalanche Current				1	А
PD	Power Dissipation ($T_A < 50^{\circ}$ C)			660	mW	
θ _{JA}	Thermal Resistance (Junctio	on-to-Air)		147	°C/W
Ψ_{JT}	Thermal Resistance (Junctio	on-to-Case)		11	°C/W
TJ	Operating Junction Temperature		-40	+150	°C	
T _{STG}	Storage Temperature Range		-55	+150	°C	
TL	Lead Temperature (Wave Soldering or IR, 10 Seconds)			+260	°C	
ESD	Electrostatic Human Body Model, JEDEC-JESD22_A114 Discharge Capability Charged Device Model, JEDEC-JESD22_C101		4.0		kV	
LOD			2.0		ις v	

Notes:

1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.

2. All voltage values, except differential voltages, are given with respect to the GND pin.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Units
T _A	Operating Ambient Temperature		+125	°C

Electrical Characteristics

Unless otherwise specified, V_{DD} =15 V and T_A=25°C.

Symbol	Para	Condition	Min.	Тур.	Max.	Unit	
V _{DD} Section						1	
V _{OP}	Continuously Operating Voltage					23	V
V _{DD-ON}	Turn-On Threshold Vol	tage		15	16	17	V
V _{DD-OFF}	Turn-Off Threshold Vol	tage		4.5	5.0	5.5	V
I _{DD-OP}	Operating Current				2.5	5.0	mA
IDD-GREEN	Green-Mode Operating	Supply Current			0.95	1.2	mA
V _{DD-OVP}	V _{DD} Over-Voltage-Prote	ection Level (OVP)			24		V
t _{D-VDDOVP}	V _{DD} Over-Voltage-Prote	ection Debounce Time		90	200	350	μs
HV Startup	Current Source Section						
V _{HV-MIN}	Minimum Startup Voltag	ge on HV Pin ⁽³⁾				50	V
I _{HV}	Supply Current Drawn	from HV Pin	V _{AC} =90 V (V _{DC} =100 V), V _{DD} =0 V	1	2.0	5.0	mA
IHV-LC	Leakage Current after S	Leakage Current after Startup			0.5	3.0	μA
Oscillator S	ection						
	Normal Frequency 1	Center Frequency		44	50	56	kHz
		Frequency Hopping Range	>Vo*0.78	±1.6	±3.4	±5.2	
fosc		Center Frequency			36		
	Normal Frequency 2	Frequency Hopping Range	<vo*0.78< td=""><td></td><td>±2.5</td><td></td></vo*0.78<>		±2.5		
V _{F-JUM-53}			50 kHz→36 kHz, Vs	1.75	1.95	2.15	V
V _{F-JUM-35}	Frequency Jumping Po	bint	36 kHz→50 kHz, Vs	2.05	2.25	2.45	V
fosc-n-min	Minimum Frequency at	No-Load	V	270	395	520	Hz
fosc-cm-min	Minimum Frequency at	ССМ			13		kHz
V _{S-F-SKIPH}	COMV Level for High C Change ⁽³⁾	cycle Skipping Period			1.14	1	V
V _{S⁻F-SKIPL}	COMV Level for Low Cycle Skipping Period Change ⁽³⁾				0.80		V
-			V _{S-F-SKIPH} <comv<v<sub>N</comv<v<sub>		240		ms
T _{SKIP-CV}	Cycle skipping period ⁽³⁾		V _{S-F-SKIPL} >COMV		160		ms
f _{DV}	Frequency Variation vs. V _{DD} Deviation		V _{DD} =10 V, 25 V		1	2	%
f _{DT}	Frequency Variation vs	. Temperature Deviation	T _A =-40°C to 105°C			15	%
Voltage-Ser	nse Section						
I _{tc}	IC Bias Current				10		μA
V _{BIAS-COMV}	Adaptive Bias Voltage	Dominated by V _{COMV}	R _{VS} =20 kΩ		1.4		V

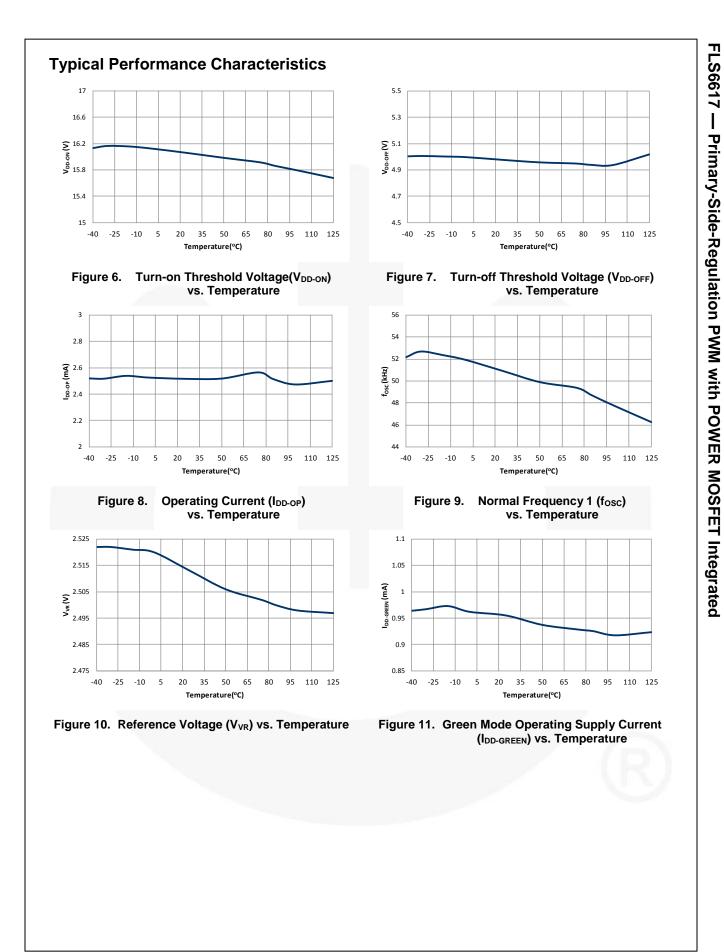
Continued on the following page...

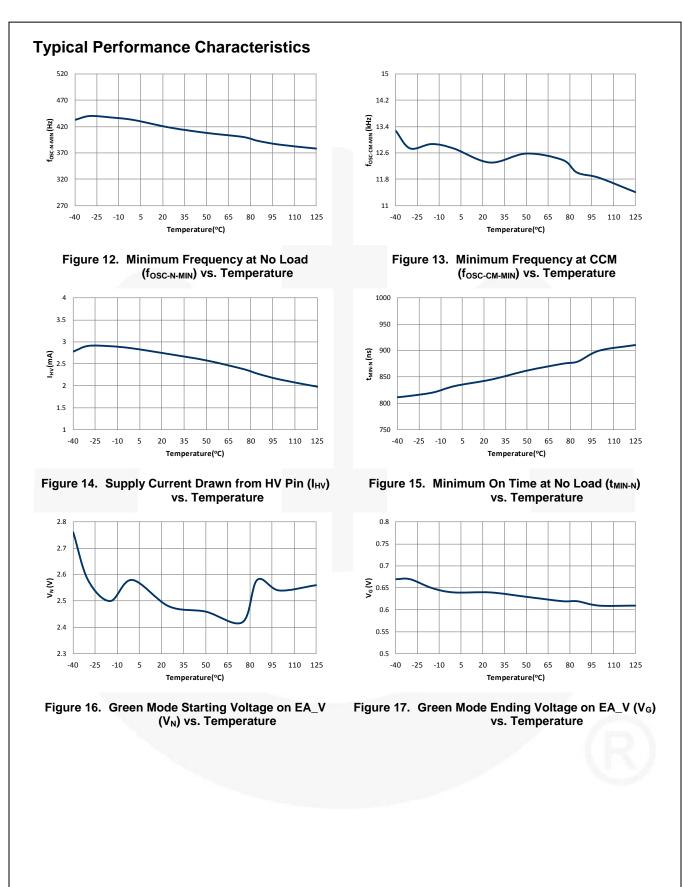
Notes: 3. Guaranteed by design.

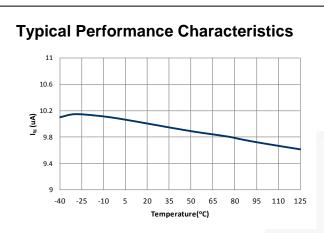
4. These parameters, although guaranteed, are not 100% tested in production.

5. Pulse test: pulse width \leq 300 µs, duty cycle \leq 2%.

6. When the over-temperature protection is activated, the power system enter auto-restart mode and output is disabled.


(© 2015 Fairchild Semiconductor Corporation
	FLS6617 • Rev. 1.1


FLS6617 -
— Primary-S
ide-Regulati
ion PWM wi
th POWER
OWER MOSFET In
tegrated


Electrical Characteristics

Unless otherwise specified, V_{DD} =15 V and T_A =25°C.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Current-Sen	se Section					
t _{PD}	Propagation Delay to GATE Output			90	200	ns
t _{MIN-N}	Minimum On Time at No-Load		700	850	1050	ns
V _{TH}	Threshold Voltage for Current Limit			0.8		V
Voltage Erro	or Amplifier Section					
V _{VR}	Reference Voltage		2.475	2.500	2.525	V
V _N	Green-Mode Starting Voltage on EA_V	f _{osc} =Normal Frequency1 - 2 kHz		2.5		V
V _G	Green-Mode Ending Voltage on EA_V	f _{osc} =1 kHz		0.5		V
Current Erro	or Amplifier Section					
V _{IR}	Reference Voltage		2.475	2.500	2.525	V
Internal MOS	SFET Section ⁽⁴⁾					
DCYMAX	Maximum Duty Cycle		60	75	85	%
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250 μA, V _{GS} =0 V	700		900	V
$\Delta \text{BV}_{\text{DSS}} / \Delta \text{T}_{\text{J}}$	Breakdown Voltage Temperature Coefficient	$I_D=250 \ \mu A$, Referenced to $T_A=25^{\circ}C$		0.53		V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	I _D =0.5 A, V _{GS} =10 V		13	16	Ω
I _S	Maximum Continuous Drain-Source Diode Forward Current				1	А
	Durin Course Lockers Courset	V _{DS} =700 V, T _A =25°C			10	μA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =560 V, T _A =100°C			100	μA
t _{D-ON}	Turn-On Delay Time	_VDS=350 V, ID=1 A, RG=25 Ω ⁽⁵⁾		10	30	ns
t _{D-OFF}	Turn-Off Delay Time	RG=25 Ω ⁽⁵⁾		20	50	ns
CISS	Input Capacitance	V_{GS} =0 V, V_{DS} =25 V, f_{S} =1 MHz		175	200	pF
C _{OSS}	Output Capacitance			23	25	pF
Over-Tempe	erature-Protection Section					
T _{OTP}	Threshold Temperature for OTP ⁽⁶⁾			+140		°C

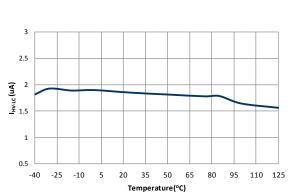
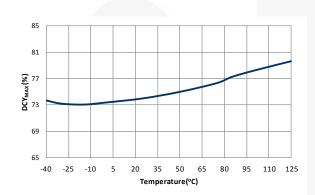
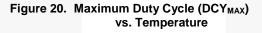




Figure 19. Leakage Current after Startup (I_{HV-LC}) vs. Temperature

Functional Description

Figure 21 shows the basic circuit diagram of primaryside regulated flyback converter, with typical waveforms shown in Figure 22. Generally, Discontinuous Conduction Mode (DCM) operation is preferred for primary-side regulation because it allows better output regulation. The operation principles of DCM flyback converter are as follows:

During the MOSFET on time (t_{ON}), input voltage (V_{DL}) is applied across the primary-side inductor (L_m). Then MOSFET current (I_{ds}) increases linearly from zero to the peak value (I_{pk}). During this time, the energy is drawn from the input and stored in the inductor.

When the MOSFET is turned off, the energy stored in the inductor forces the rectifier diode (D) to be turned on. While the diode is conducting, the output voltage (V_o), together with diode forward-voltage drop (V_F), is applied across the secondary-side inductor ($L_m \times N_s^2 / N_p^2$) and the diode current (I_D) decreases linearly from the peak value (I_{pk}×N_p/N_s) to zero. At the end of inductor current discharge time (t_{DIS}), all the energy stored in the inductor has been delivered to the output.

When the diode current reaches zero, the transformer auxiliary winding voltage (V_w) begins to oscillate by the resonance between the primary-side inductor (L_m) and the effective capacitor loaded across the MOSFET.

During the inductor current discharge time, the sum of output voltage and diode forward-voltage drop is reflected to the auxiliary winding side as $(V_o+V_F) \times N_a/N_s$. Since the diode forward-voltage drop decreases as current decreases, the auxiliary winding voltage reflects the output voltage best at the end of diode conduction time where the diode current diminishes to zero. Thus, by sampling the winding voltage at the end of the diode conduction time, the output voltage information can be obtained. The internal error amplifier for output voltage regulation (EA_V) compares the sampled voltage with internal precise reference to generate error voltage (V_{COMV}), which determines the duty cycle of the MOSFET in CV mode.

Meanwhile, the output current can be estimated using the peak drain current and inductor current discharge time because output current is same as the average of the diode current in steady state.

The output current estimator identifies the highest value of the drain current with a peak detection circuit and calculates the output current using the inductor discharge time (t_{DIS}) and switching period (t_s). This output information is compared with an internal precise reference to generate error voltage (V_{COMI}), which determines the duty cycle of the MOSFET in CC Mode. With Fairchild's innovative TRUECURRENT® technique, constant current (CC) output can be precisely controlled.

Among the two error voltages, V_{COMV} and V_{COMI}, the smaller one determines the duty cycle. Therefore, during constant voltage regulation mode, V_{COMV} determines the duty cycle while V_{COMI} is saturated to HIGH. During

constant current regulation mode, V_{COMI} determines the duty cycle while V_{COMV} is saturated to HIGH.

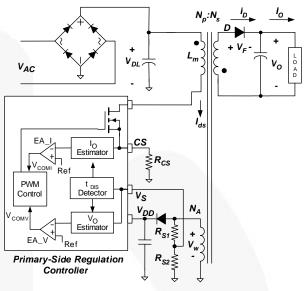
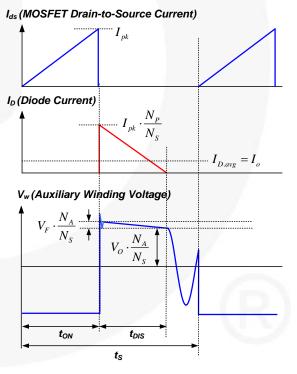



Figure 21. Simplified PSR Flyback Converter Circuit

Operating Current

The FLS6617 operating current is as small as 2.5 mA, which results in higher efficiency and reduces the V_{DD} hold-up capacitance requirement. Once FLS6617 enters "deep" green mode, the operating current is reduced to 0.95 mA, assisting the power supply in meeting power conservation requirements.

Green-Mode Operation

The FLS6617 uses voltage regulation error amplifier output (V_{COMV}) as an indicator of the output load and modulates the PWM frequency as shown in Figure 23. The switching frequency decreases with cycle skipping as the load decreases. In heavy load conditions, the switching frequency is fixed at 50 kHz. Once V_{COMV} decreases below V_N , the PWM frequency linearly decreases with cycle skipping from 50 kHz to reduce switching losses.

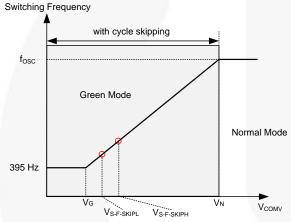


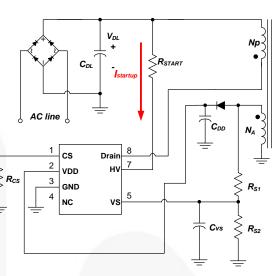
Figure 23. Switching Frequency in Green Mode

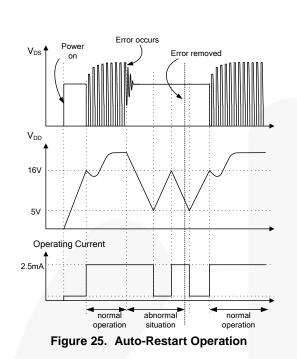
Frequency Hopping

EMI reduction is accomplished by frequency hopping, which spreads the energy over a wider frequency range than the bandwidth measured by the EMI test equipment. FLS6617 has a proprietary internal frequency hopping circuit that changes the switching frequency between 44 kHz and 56 kHz.

High-Voltage Startup

Figure 24 shows the HV-startup circuit for FLS6617 applications. The HV pin is connected to the line input or bulk capacitor through a resistor, R_{START} (100 k Ω recommended). During startup status, the internal startup circuit is enabled. Meanwhile, line input supplies the current, $I_{STARTUP}$, to charge the hold-up capacitor, C_{DD} , through R_{START} . When the V_{DD} voltage reaches V_{DD-ON} , the internal startup circuit is disabled, blocking $I_{STARTUP}$ from flowing into the HV pin. Once the IC turns on, C_{DD} is the only energy source to supply the IC consumption current before the PWM starts to switch. Thus, C_{DD} must be large enough to prevent V_{DD} from dropping down to V_{DD-OFF} before the power can be delivered from the auxiliary winding.




Figure 24. HV Startup Circuit

Under-Voltage Lockout (UVLO)

The turn-on and turn-off thresholds are fixed internally at 16 V and 5 V, respectively. During startup, the hold-up capacitor must be charged to 16 V through the startup resistor to enable the FLS6617. The hold-up capacitor continues to supply V_{DD} until power can be delivered from the auxiliary winding of the main transformer. V_{DD} is not allowed to drop below 5 V during this startup process. This UVLO hysteresis window ensures that hold-up capacitor properly supplies V_{DD} during startup.

Protections

The FLS6617 has several self-protection functions, such as Over-Voltage Protection (OVP), Over-Temperature Protection (OTP), and pulse-by-pulse current limit. All the protections are implemented as auto-restart mode. Once the abnormal condition occurs, the switching is terminated and the MOSFET remains off, causing V_{DD} to drop. When V_{DD} drops to the V_{DD} turn-off voltage of 5 V, internal startup circuit is enabled again and the supply current drawn from the HV pin charges the hold-up capacitor. When V_{DD} reaches the turn-on voltage of 16 V, normal operation resumes. In this manner, the auto-restart alternately enables and disables the switching of the MOSFET until the abnormal condition is eliminated (see Figure 25).

V_{DD} Over-Voltage Protection (OVP)

 V_{DD} over-voltage protection prevents damage from overvoltage conditions. If the V_{DD} voltage exceeds 24 V at open-loop feedback condition, OVP is triggered and the PWM switching is disabled. The OVP has a debounce time (typically 200 μs) to prevent false triggering due to switching noises.

Over-Temperature Protection (OTP)

The built-in temperature-sensing circuit shuts down PWM output if the junction temperature exceeds 140°C.

Pulse-by-pulse Current Limit

When the sensing voltage across the current-sense resistor exceeds the internal threshold of 0.8 V, the MOSFET is turned off for the remainder of switching cycle. In normal operation, the pulse-by-pulse current limit is not triggered since the peak current is limited by the control loop.

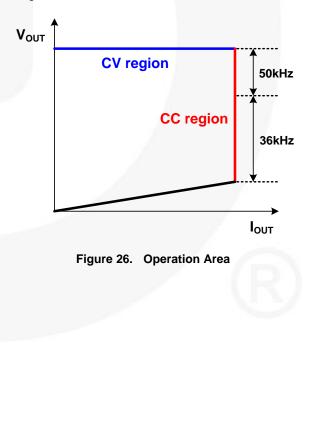
Leading-Edge Blanking (LEB)

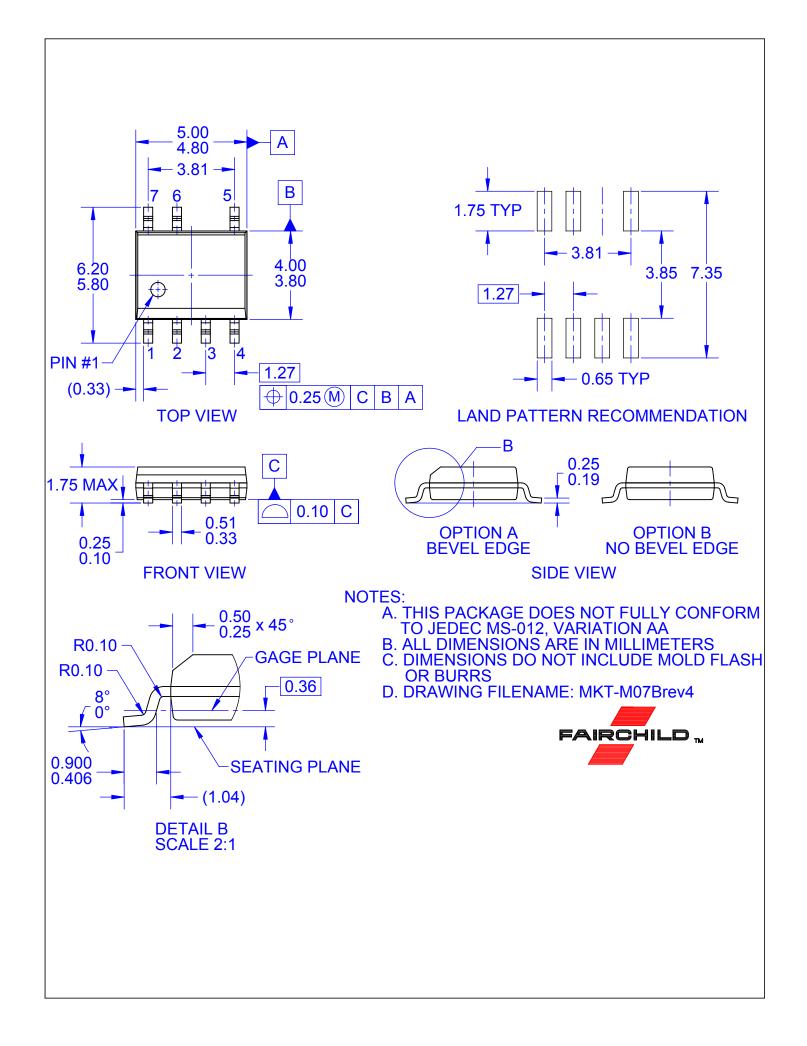
Each time the power MOSFET switches on, a turn-on spike occurs at the sense resistor. To avoid premature termination of the switching pulse, a leading-edge blanking time is built in. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver. As a result conventional RC filtering can be omitted.

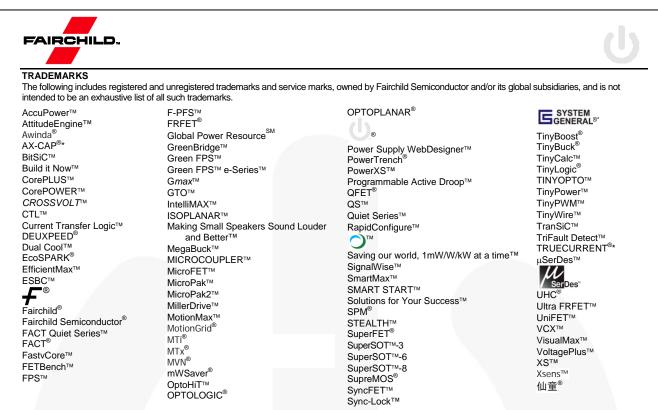
Gate Output

The FLS6617 output stage is a fast totem-pole gate driver. Cross conduction has been avoided to minimize heat dissipation, increase efficiency, and enhance reliability. The output driver is clamped by an internal 15 V Zener diode to protect the power MOSFET transistors against undesired over-voltage gate signals.

Built-In Slope Compensation


The sensed voltage across the current-sense resistor is used for current mode control and pulse-by-pulse current limiting. Built-in slope compensation improves stability and prevents sub-harmonic oscillations due to peak-current mode control. The FLS6617 has a synchronized, positive-slope ramp built-in at each switching cycle.


Noise Immunity


Noise from the current sense or the control signal can cause significant pulse width jitter, particularly in continuous-conduction mode. While slope compensation helps alleviate these problems, further precautions should still be taken. Good placement and layout practices should be followed. Avoiding long PCB traces and component leads, locating compensation and filter components near the FLS6617, and increasing the power MOS gate resistance are advised.

Operation Area

Figure 26 shows operation area. FLS6617 has two switching frequency (f_s) in constant current mode. In order to ensure IC can normally work at DCM under constant current mode, frequency will jump to lower level(36 kHz) when system is operated at low output voltage.

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms	Definition of Terms					
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 177