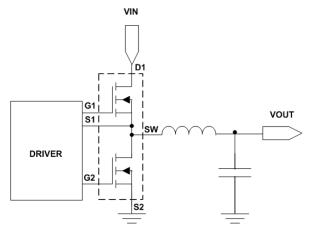
PowerPhase, Dual N-Channel SO8FL


30 V, High Side 20 A / Low Side 32 A

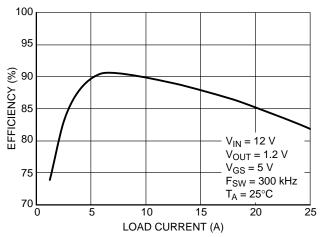
Features

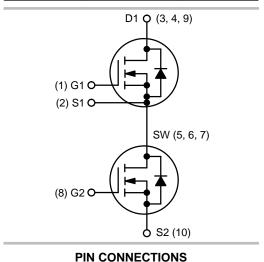
- Co-Packaged Power Stage Solution to Minimize Board Space
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

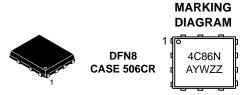
Applications

- DC-DC Converters
- System Voltage Rails
- Point of Load

Figure 1. Typical Application Circuit




Figure 2. Typical Efficiency Performance POWERPHASEGEVB Evaluation Board


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
Q1 Top FET	5.4 mΩ @ 10 V	20 A
30 V	8.1 mΩ @ 4.5 V	20 A
Q2 Bottom	2.6 mΩ @ 10 V	32 A
FET 30 V	3.4 mΩ @ 4.5 V	32 A

D1 4 5 SW D1 3 9 10 6 SW S1 2 7 SW G1 1 8 G2 (Bottom View)

4C86N = Specific Device Code
A = Assembly Location
Y = Year
W = Work Week

ZZ = Lot Traceability ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage	Q1	V _{GS}	±20	V		
Gate-to-Source Voltage	Q2					
Continuous Drain Current R _{0JA} (Note 1)		T _A = 25°C	Q1	I _D	14.8	
		T _A = 85°C	1		10.7	1
		T _A = 25°C	Q2		23.7	A
		T _A = 85°C	1		17.1	
Power Dissipation	1	T _A = 25°C	Q1	P_{D}	1.89	W
RθJA (Note 1)			Q2			
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s (Note 1)}$	1	T _A = 25°C	Q1	I _D	20.2	
		T _A = 85°C			14.5	A
	Steady	T _A = 25°C	Q2		32.3	
	State	T _A = 85°C	1		23.3	
Power Dissipation	1	T _A = 25°C	Q1	P_{D}	3.51	W
$R_{\theta JA} \le 10 \text{ s (Note 1)}$			Q2			
Continuous Drain Current	1	T _A = 25°C	Q1	I _D	11.3	
R _{θJA} (Note 2)		T _A = 85°C	1		8.1	1 .
		T _A = 25°C	Q2		18.1	A
		T _A = 85°C	1		13.0	
Power Dissipation	1	T _A = 25 °C	Q1	P_{D}	1.10	W
R _{θJA} (Note 2)			Q2			
Pulsed Drain Current	•	T _A = 25°C	Q1	I _{DM}	160	Α
		t _p = 10 μs	Q2		280	
Operating Junction and Storage Temperature	Q1	T _J , T _{STG}	-55 to +150	°C		
	Q2					
Source Current (Body Diode)	Q1	I _S	10	Α		
	Q2		10			
Drain to Source DV/DT		dV/dt	6	V/ns		
Single Pulse Drain-to-Source Avalanche Energy (T.	Q1	EAS	20	mJ		
$V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V}, L = 0.1 \text{ mH}, R_G = 25 \Omega$				EAS	80	
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T _L	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface—mounted on FR4 board using 1 sq—in pad, 2 oz Cu.

2. Surface—mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Top) - Steady State (Note 3)	$R_{\theta JC}$	3.3	
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	66.0	°C/W
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	113.7	°C/VV
Junction-to-Ambient - (t ≤ 10 s) (Note 3)	$R_{\theta JA}$	35.6	

- 3. Surface–mounted on FR4 board using 1 sq–in pad, 2 oz Cu.
 4. Surface–mounted on FR4 board using the minimum recommended pad size of 100 mm².

FI FCTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)

Parameter	FET	Symbol Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS					•	•	•	
Drain-to-Source Break-	Q1	,,			30			V
down Voltage		V _{(BR)DSS}	$V_{GS} = 0 V$,	I _D = 250 μA	30			
Drain-to-Source Break-	Q1	V _(B,R) DSS				17		mV
down Voltage Temperature Coefficient	Q2	/T _J				16.5		°C
Zero Gate Voltage Drain	Q1	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1	
Current			$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	μΑ
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			1	
Gate-to-Source Leakage	Q1	I_{GSS}	I_{GSS} $V_{GS} = 0 \text{ V, VDS} = \pm 20 \text{ V}$				100	nA
Current	Q2						100	
ON CHARACTERISTICS (Not	e 5)							
Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1.3		2.2	V
	Q2				1.3		2.2	
Negative Threshold Temperature Coefficient	Q1	V _{GS(TH)} /				4.5		mV / °C
ature Coefficient	Q2	IJ				4.6		
Drain-to-Source On Resistance	Q1	R _{DS(on)}	$V_{GS} = 10 \text{ V}$	I _D = 30 A		4.3	5.4	
ance			$V_{GS} = 4.5 \text{ V}$	I _D = 18 A		6.5	8.1	
	Q2		$V_{GS} = 10 \text{ V}$	I _D = 30 A		1.7	2.6	mΩ
			$V_{GS} = 4.5 \text{ V}$ $I_D = 12.5 \text{ A}$			2.4	3.4	
CAPACITANCES								
Input Capacitance	Q1	C _{ISS}				1153		
піриї Сарасііапо с	Q2	USS				3050		
Output Capacitance	Q1	Coss	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MHz Vpa = 15 V		532		pF
Оприг Сараспапсе	Q2	- C _{OSS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, V}_{DS} = 15 \text{ V}$			1650		PF
	Q1					107		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

77

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

Reverse Capacitance

6. Switching characteristics are independent of operating junction temperatures.

Q2

 $\mathsf{C}_{\mathsf{RSS}}$

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

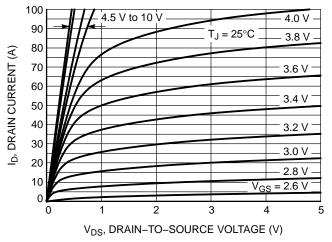
Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit	
CHARGES, CAPACITANCES	& GATE	RESISTANC	E				•		
T. 10 1 01	Q1					10.9			
Total Gate Charge	Q2	$Q_{G(TOT)}$				21.6			
T	Q1	_				1.2			
Threshold Gate Charge	Q2	Q _{G(TH)}	V 45VV	45.77.1 00.4		1.4			
0-1-1-0	Q1	_	$V_{GS} = 4.5 \text{ V}, V_{DS}$	= 15 V; I _D = 30 A		3.4		nC	
Gate-to-Source Charge	Q2	Q_GS				8.6			
Onto to Danie Observe	Q1	0				5.4			
Gate-to-Drain Charge	Q2	Q_GD				5.5			
T. 10 . 0	Q1			45.77.1 00.4		22.2			
Total Gate Charge	Q2	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS}$	= 15 V; I _D = 30 A		47.5		nC	
0 . 5	Q1	R_{G}	_			1.0			
Gate Resistance	Q2		I _A =	25°C		1.0		Ω	
SWITCHING CHARACTERIS	STICS (No	te 6)					•		
T 0 D T	Q1					8.9			
Turn-On Delay Time	Q2	t _{d(ON)}				8.3		1	
D: T	Q1					21.2		- ns	
Rise Time	Q2	t _r	V _{GS} = 4.5 V	V _{DS} = 15 V,		15.1			
T 0"P T	Q1	,	$I_D = 15 \text{ A},$	$V_{DS} = 15 V$, $R_G = 3.0 \Omega$		15.3			
Turn-Off Delay Time	Q2	t _{d(OFF)}	S(OFF)			19.3		1	
5 U.T.	Q1	,				4.4		1	
Fall Time	Q2	t _f				4.2		1	
SWITCHING CHARACTERIS	STICS (No	te 6)							
T O. Delevi T.	Q1					6.7			
Turn-On Delay Time	Q2	t _{d(ON)}				6.3			
D'e e T'e e	Q1					19.5			
Rise Time	Q2	t _r	V _{GS} = 10 V,	$V_{DS} = 15 \text{ V},$		13.8		1	
T 0"P T	Q1	,	$I_{\rm D} = 15 \rm A,$	$R_G = 3.0 \Omega$		20.1		ns	
Turn-Off Delay Time	Q2	t _{d(OFF)}				22.8			
	Q1					2.8		1	
Fall Time	Q2	t _f				3.2			
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS				-	<u>-</u>	<u>-</u>	
			V _{GS} = 0 V.	T _J = 25°C		0.80			
- W.	Q1	,,	$V_{GS} = 0 V$, $I_S = 10 A$	T _J = 125°C		0.60] , <i>,</i>	
Forward Voltage	6.5	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.78		V	
	Q2		I _S = 10 A	T _J = 125°C		0.62		1	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

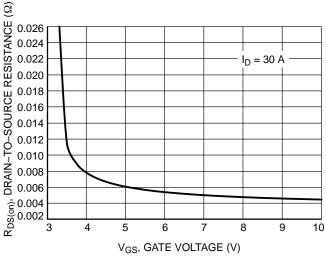
Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS							
Daviera Daviera Tima	Q1						
Reverse Recovery Time	Q2	t _{RR}			33.7		ns
Charma Time	Q1	ta			14.5		
Charge Time	Q2				17.4		
Dischause Times	Q1	4 la	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}, I_S = 30 \text{ A}$		14.6		
Discharge Time	Q2	tb			16.3		
Daviera Danas Chare	Q1	0			21		0
Reverse Recovery Charge	Q2	Q_{RR}			27.5		nC


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS - Q1

100

90


 $V_{DS} = 3 V$

80 ID, DRAIN CURRENT (A) 70 60 50 40 30 20 $T_J = 125^{\circ}C$ 10 $T_J = -55^{\circ}C$ $T_J = 25^{\circ}C$ 0.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5 1.0 1.5 2.0 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 3. On-Region Characteristics

Figure 4. Transfer Characteristics

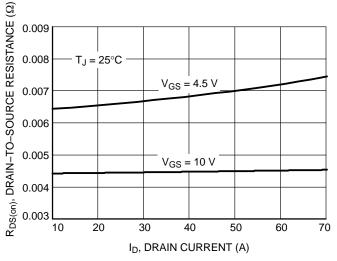
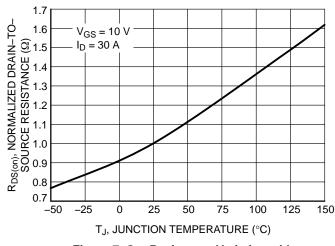



Figure 5. On-Resistance vs. Gate-to-Source Voltage

Figure 6. On-Resistance vs. Drain Current and Gate Voltage

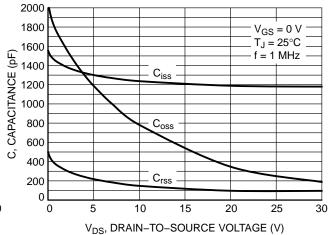


Figure 7. On–Resistance Variation with Temperature

Figure 8. Capacitance Variation

TYPICAL CHARACTERISTICS - Q1

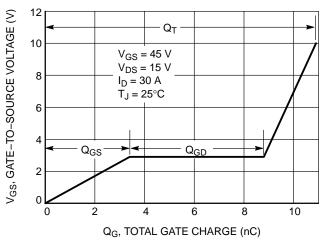


Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

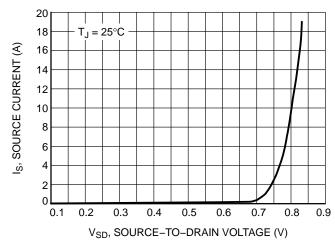


Figure 10. Diode Forward Voltage vs. Current

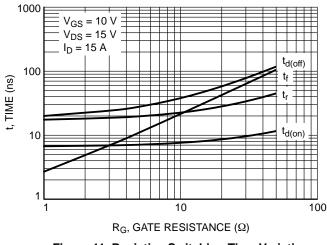


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

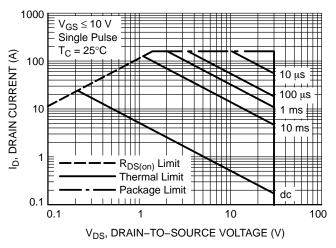


Figure 12. Maximum Rated Forward Biased Safe Operating Area

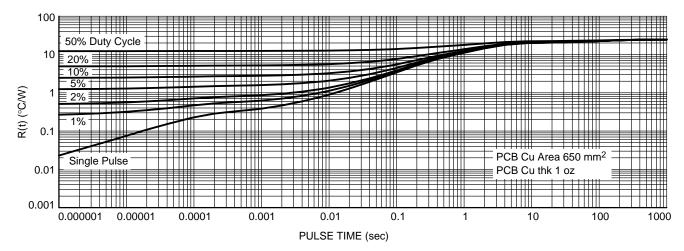
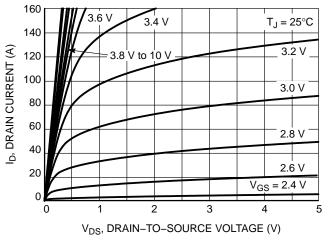
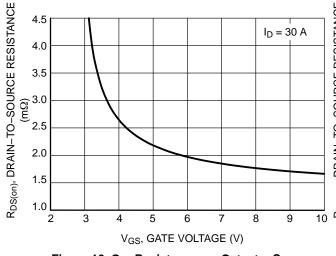



Figure 13. Thermal Characteristics

TYPICAL CHARACTERISTICS - Q2


160

 $V_{DS} = 3 V$ 140 ID, DRAIN CURRENT (A) 120 100 80 60 $T_{.J} = 125^{\circ}C$ 40 -55°C 20 $T_J = 25^{\circ}C$ 0 0.5 0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 14. On-Region Characteristics

Figure 15. Transfer Characteristics

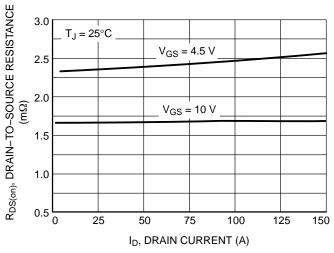
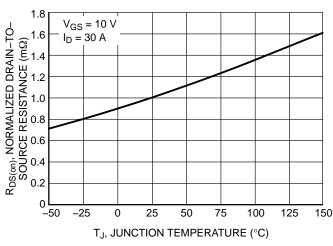



Figure 16. On-Resistance vs. Gate-to-Source Voltage

Figure 17. On–Resistance vs. Drain Current and Gate Voltage

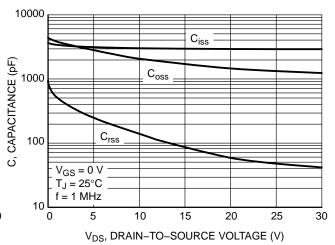


Figure 18. On–Resistance Variation with Temperature

Figure 19. Capacitance Variation

TYPICAL CHARACTERISTICS - Q2

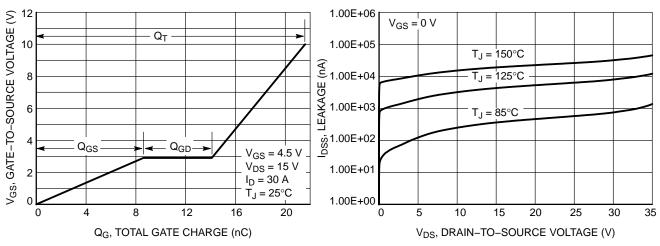


Figure 20. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 21. Drain-to-Source Leakage Current vs. Voltage

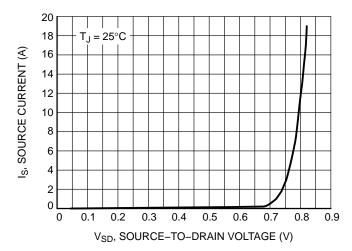


Figure 22. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS - Q2

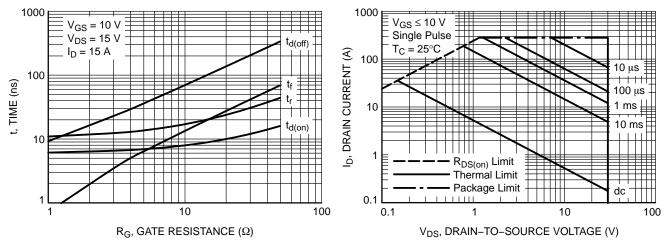


Figure 23. Resistive Switching Time Variation vs. Gate Resistance

Figure 24. Maximum Rated Forward Biased Safe Operating Area

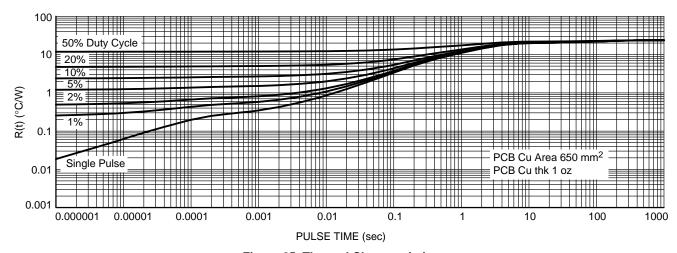
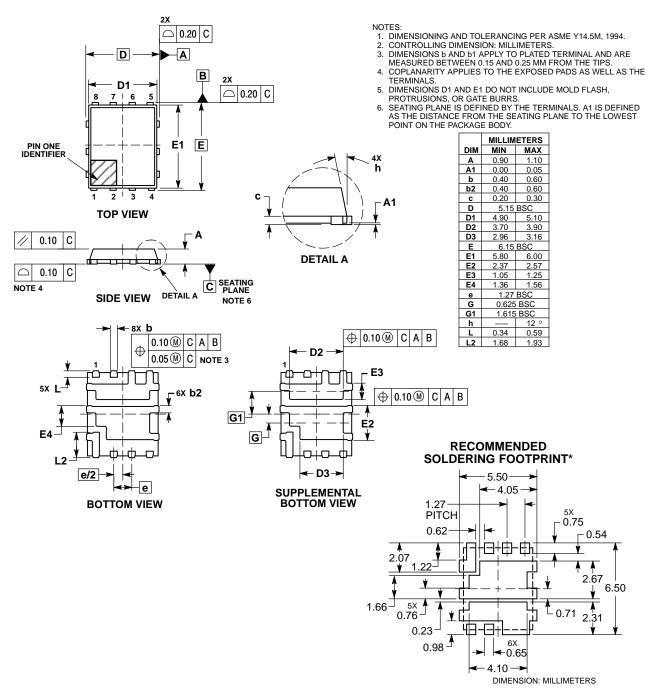


Figure 25. Thermal Characteristics

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFD4C86NT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4C86NT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P PowerPhase FET

CASE 506CR ISSUE C

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding t

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

N. American Technical Support: 800-282-9855 Toll Free

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative