Application Note No. 058 Predicting Distortion in PIN-Diode Switches

RF & Protection Devices

Never stop thinking

Edition 2006-10-20

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Application Note No. 058

Revision History: 2006-10-20, Rev. 2.1

Previous Version: Edition A02			
Page	Subjects (major changes since last revision)		
All	Document layout change		

1 Predicting Distortion in PIN-Diode Switches

This application note describes the orgin of distortion in PIN-diode switches. Distrotion is related to physical parameters of the diode and operating conditions and thus can be minimized by an appropriate diode selection. A simple relation to calculate the intercept point IP_3 from parameters given in the data sheet is provided and limits for prediction of intermodulation power from the intercept point are shown.

1.1 Intercept Point *IP*₃

Generally the orgin of distortion in electronic circuits is the nonlinear transfer characterictics of v_{in} to v_{out} . This response can be discribed by the power series:

$$v_{out} = A_1 v_{in} + A_2 v_{in}^2 + A_3 v_{in}^3 + \dots$$
 (1)
AN058_formula_1.vsd

Figure 1 Formula (1)

If two signals of equal amplitude v_0 and similar frequencies (f_1 and $f_1 \approx f_2$) are applied, parasitic frequency components occur in the output signal. Of these components, the third-order term in (1) is typically the troublesome one, since it gives components

$$A_{3}v_{in}^{3} = \frac{3}{4}A_{3}v_{0}^{3}\left[\cos[2\pi(2f_{1}-f_{2})t] + \cos[2\pi(2f_{2}-f_{1})t]...\right]$$
(2)
AN058_formula_2.vsd

Figure 2 Formula (2)

This third-order products occur at frequencies $2f_1 - f_2$ and $2f_2 - f_1$, which are so close to the desired signal, they typically cannot be filtered out.

Due to their cubic dependence on v_0 (2), third order intermodulation components are strongly dependent on the input power, Thus third-order inter-modulation is commonly characterized by the intercept-point IP_3 , a fictitious input power level, where the power of the third-order intermodulation product intercept with the power of the linear transfer component (**Figure 3**)

Figure 3 Intercept point

From a given intercept point (IP_3) and input power the inter-modulation distortion products can be easily determined (1). A PIN-diode is expected to exhibit the same distortion effects when the input level changes. However, as illustrated in **Figure 3**, above a certain power level the distortion in PIN-diode switches rises much more rapidly than predicted.

In the following we will relate the intermodulation distortion to physical parameters of the PIN-diode and show the limits of the basic IP_3 concept.

1.2 Third-Order Distortion in Forward-Biased PIN-Diodes

Origin of Distortion

If the PIN-diode is forward biased, as for example it is the case in the "on"-state of an antenna switch (Figure 6), electrons and holes are injected into the instrinsic region. Under this condition the steady state forward resistance of the instrinsic region is given by

$$r_f(f=0) = \frac{W^2}{(\mu_n + \mu_p) \tau I}$$
(3)
AN058 formula 3.vsd

Figure 4 Formula (3)

Where *W* denotes the width of the intrinsic zone, τ the carrier lifetime and μ_n and μ_p appropriate mobilities.

If a high-frequency AC-signal of frequency f is superimposed to the DC signal, the carrier concentration at the boundaries of the intrinsic zone is modulated (**Figure 6**). The spatial dependence of this concentration is determined by the AC-diffusion length, given by

$$L_{AC} = \sqrt{\frac{D\tau}{1 + j(2\pi f\tau)}}$$
(4)
AN058_formula_4.vsc

Figure 5 Formula (4)

Where *D* denotes the ambipolar diffusion constant. Assuming no depletion within the instrinsic zone during the half-cycle of the RF-signal.

Figure 6 AC-modulation of the carrier concentration in the intrinsic region of the PIN-diode

The high frequency diffusion region shows the current-voltage dependence.

$$i(t) = \sqrt{2\pi f D} \frac{\tau I}{W} \exp \frac{v(t)}{2v_T}$$
(5)
AN058_formula_5.vsc

Figure 7 Formula (5)

With *i*(t) and *v*(t) the time dependent current and voltage drop across the diffusion region, respectively; $v_T = kT / q$ denotes the thermal voltage. This non-linear i-v-characteristics is the main source of intermodulation distortion in the "on"-state of the PIN-diode.

Considering a simple diode-switch with equivalent circuit shown in **Figure 11** and expanding (5) in a power series, yields for the third-order intermodulation product at frequency $2f_1 - f_2$, dependent on the power P_0 of the fundamental

$$P_{IM3} = \frac{3}{4} \frac{v_T^2}{Z_0^4} \left[\frac{W}{I \tau \sqrt{2\pi f_1 D}} \right]^6 P_0^3$$
(6)
AN058_formula_6.vsc

Figure 8 Formula (6)

Where $r_{\rm f} \ll Z_0$ has been assumed. This gives for the intercept-point

$$IP3 = \sqrt{\frac{4}{3}} \frac{1}{v_T} Z_0^2 \left[\frac{2\pi I D \tau f}{W^2} \right]^{3/2}$$
(7)
AN058_formula_7.vsc

Figure 9 Formula (7)

Equations (6) and (7) show that lower third-order distortion with forward biased PIN-diode can be achieved with diodes of short intrinsic region, and higher carrier lifetime. Another important relationship is that the IP_3 can be improved by increasing the diode operating current.

From a given IP_3 level, the intermodulation power at any level of input power can be determined by

$$\log P_{IM3} = 3\log P_0 - 2\log IP3$$
(8)

AN058_formula_8.vsc

Figure 10 Formula

Figure 11 High-frequency equivalent circuit of a PIN-diode switch

Figure 12 Comparison of *IP*₃ measurement results with calculation results based on PIN-diode datasheet parameters

However, when P_0 exceeds a certain limit, as specified by

$$P_{\text{max}} = \frac{\pi}{2} Z_0 I^2 \left(\frac{D}{W}\right)^2 f \tau^2$$
(9)
AN058_formula_9.vsc

Figure 13 Formula (9)

Third-order distortion increases much more rapidly than described by relation (6) (see Figure 3). Above this power, the AC-modulation of the carrier concentration leads to a depletion of the intrinsic zone in the negative half-cycle and thus to an even stronger non-linear i-v-characteristic. In this region, assumptions which led to the derivation of (6) are not valid anymore and thus the IP_3 concept for calculation of the third-order distortion fails. As a consequence, to suppress third-order distortion, the diode should always be operated in regions where $P_0 < P_{max}$ is fulfilled. For given P_0 and a certain diode this requires at least a minimum operating current.

Calculation of IP_3 and P_{max} from PIN-Diode Data Sheet Parameters

For most PIN-diodes the current in the region of interest is rather determined by surface recombination and recombination in the p⁺⁺and n⁺⁺ regions than by bulk recombination in the intrinsic region. Thus the electron and hole charge in the intrinsic region is proportional to τ sqrt (*I*). With (3) for *IP*₃ and *P*_{max} follows:

(10)

AN058_formula_10.vsc

Figure 14 Formula 10

$$P_{\max} = \frac{1}{2} Z_0 v_T \left(\frac{2\pi f \tau_L I}{r_f - R_s} \right)^2$$
(11)

AN058_formula_11.vsc

Figure 15 Formula 11

Here τ_{L} and r_{f} denote the effective lifetime and resistance available from the diode data sheet. R_{s} denotes the series resistance of highly doped p⁺⁺ and n⁺⁺ regions as well as the package resistance. With the typical value of $R_{s} = 0.2 \Omega$, P_{max} can be estimated from PIN-diode data sheet parameters.

 $IP3 = \sqrt{2v_T} Z_0^2 \left[\frac{2\pi f \tau_L I}{r_f - R_s} \right]^{3/2}$

In **Figure 12** measurement results for a variety of PIN-diodes at different operation currents are compared to results of our simple model. The comparison shows that third-order inter-modulation for $P_0 < P_{max}$ can be well predicted with (10) from the diode data sheet parameters.

Figure 16 shows third-order inter-modulation for the PIN-diode BAR65-03W at different bias currents. Our model shows good agreement with measurement results. For an input power higher than P_{max} intermodulation increases more rapidly than predicted with our model.

Figure 16 Third-order inter-modulation

1.3 Distortion in Reverse-Biased PIN-Diodes

The RF-characteristics of the reverse biased PIN-diode is primarily determined by the (small signal) depletion capacitance C_d . This capacitance generally depends only slightly on the reverse-voltage. These variations give rise to another generation of intermodulation products. For a diode switch within this simple model the intercept point for the third-order intermodulation poduct is given by (2)

$$IP3 = \frac{1}{32} \left[\frac{d^2 C_d}{d V_R^2} Z_0^2 (2\pi f) \right]^{-1}$$
(12)
AN058_formula_12.vsc

Figure 17 Formula 12

The voltage-dependence of the capacitance is due to the variation of the depletion region with increasing reversebias and therefore mainly determind by the diffusion tails of the highly doped p^{++} and n^{++} contact regions of the PIN-diode. Since this dependence decreases with the width of the intrinsic region, inter-modulation is weaker for thicker PIN-diodes.

If the diode gets forward biased during the half-wave of the RF-signal, carrier injection into the intrinsic region significantly reduces the width of the depletion region. Thus for power-levels higher than [Formula 13] diodes with small intrinsic region might show a major increase of inter-modulation.

Summary

$$P_{\max,rev.} = \frac{V_R^2}{2Z_0}$$
(13)
AN058_formula_13.vsc

Figure 18 Formula 13

Also worth mentioning is that intermodulation of the reverse biased PIN-diode increases for higher frequencies. This is in contrast to intermodulation in the on-state of the diode being reduced with increasing frequency.

PIN-Diode	<i>IP</i> ₃ [dBm] Forward Bias		<i>IP</i> ₃ [dBm] Reverse Bias	τ _L [μs]	r _f (10 mA) [Ω]
	I _F = 2 mA	<i>I</i> _F = 10 mA	V _R = 15 V		
BA592	> 67	> 67	44	0.12	0.4
BAR63-03W	61	> 67	50	0.1	1
BAR65-03W	64	> 67	47	0.08	0.56
BA595	67	> 67	> 73	1.6	4.5
BA885	> 67	> 67	> 73	1.6	0.4
BAR14	63	> 67	> 73	1	8
BAR66	67	> 67	58	0.7	1
BAR64	> 67	> 67	73	1.4	2

Table 1	Third-order inter-modulation for a variety	y of PIN-diodes ¹⁾
---------	--	-------------------------------

1) f = 900 MHz / Input Power 20 dBm

1.4 Appropriate Diode Selection

In **Table 1** intercept-points for forward and reverse bias are summarised for a variety of PIN-diodes. The table shows that intermodulation robustness in forward-bias might be contrary to the robustness in reverse bias. This is due to the fact, that IP_3 in forward-bias decreases with increasing epi-thickness, while IP_3 in reverse-bias increases. So dependent on the application and system specifications an appropriate choice of the diode is required.

2 Summary

Reducing inter-modulation distortion in PIN-diode applications requires a careful choice of the appropriate diode and its operating point. In this note a model has been introduced to estimate third-order distortion in the "on"-state of the diode from diode parameters given in the data sheet. For the case of a forward biased as well as a reverse biased diode, maximum power levels are given, which, for reason of moderate inter-modulation, should not be exceeded.

3 References

- R.Caverly and G. Hiller, "Predict Intercept Points in PIN-Diode Switches", Microwaves & RF, Dec. 1985
- R. H. Caverly and G. Hiller, "Distortion in Microwave and RF Switches by Reverse Biased PIN-Diodes", Proceedings in the *IEEE MTTS International Microwave Symposium*, Long Beach, Ca, 1989

References

Nomenclature

V _{out}	Output voltage
V _{in}	Input voltage
A_1, A_2, A_3	Taylor coefficients of device transfer characteristics
f_1, f_2	Input frequencies
r _F	High-frequency resistance of the PIN-diode intrinsic region
μ _n , μ _p	Electron and hole mobility
W	Intrinsic region thickness
τ	Carrier lifetime in the intrinsic region
D	Ambipolar diffusion-coefficient
\overline{f}	Frequency
L _{AC}	AC difussion-length
V _T	Thermal-voltage
P _{IM3}	Third-order inter-modulation power
IP ₃	Intercept point power
P ₀	Power of fundamental frequency
Z_0	Characterictic (wave) impedance
P _{max,IP3}	Power limit for the validity of the IP3-concept
R _S	PIN-diode series resistance
τ	PIN-diode recovery time available from the data sheet
C _d	PIN-diode small signal depletion capacitance
V _R	Reverse voltage
P _{max,rev.}	Maximum power in reverse mode for prevention of intermodulation increase