HCPL062N
3.3V Dual Channel High Speed-10 MBit/s Logic Gate Optocouplers

Features
- Compact SO8 package
- Very high speed – 10MBit/s
- Superior CMR – 25kV/µs minimum (1,000 volts common mode)
- Logic gate output
- Wired OR-open collector
- Fixed threshold detector design minimizes thermal impact on switching times
- U.L. recognized (File # E90700)

Applications
- Ground loop elimination
- Field buses
- Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer-peripheral interface
- Instrumentation input/output isolation

Description
The HCPL062N optocouplers consist of an AlGaAs LED, optically coupled to a very high speed integrated photodetector logic gate consisting of bipolar transistors on a CMOS process for reduced power consumption. The output features an open collector, thereby permitting wired OR outputs. The devices are housed in a compact small-outline package. The coupled parameters are guaranteed over the temperature range of -40°C to +85°C. An internal noise shield and provides superior common mode rejection.

Package Dimensions

Note:
All dimensions are in inches (millimeters)
Note:
1. The V_{CC} supply to each optoisolator must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected no further than 3mm from the V_{CC} and GND pins of each device.

Truth Table (Positive Logic)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

A 0.1µF bypass capacitor must be connected between pins 8 and 5.
Absolute Maximum Ratings (No derating required up to 85°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>STG</sub></td>
<td>Storage Temperature</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>T<sub>OPR</sub></td>
<td>Operating Temperature</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
</tbody>
</table>

EMITTER

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>F</sub></td>
<td>DC/Average Forward Input Current (each channel)</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>V<sub>R</sub></td>
<td>Reverse Input Voltage (each channel)</td>
<td>5.0</td>
<td>V</td>
</tr>
<tr>
<td>P<sub>I</sub></td>
<td>Power Dissipation</td>
<td>45</td>
<td>mW</td>
</tr>
</tbody>
</table>

DETECTOR

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>CC</sub> (1 minute max)</td>
<td>Supply Voltage</td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td>I<sub>O</sub></td>
<td>Output Current (each channel)</td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>V<sub>O</sub></td>
<td>Output Voltage (each channel)</td>
<td>7.0</td>
<td>V</td>
</tr>
<tr>
<td>P<sub>O</sub></td>
<td>Collector Output Power Dissipation</td>
<td>85</td>
<td>mW</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>FL</sub></td>
<td>Input Current, Low Level</td>
<td>0</td>
<td>250</td>
<td>µA</td>
</tr>
<tr>
<td>I<sub>FH</sub></td>
<td>Input Current, High Level</td>
<td>6.3<sup>(2)</sup></td>
<td>15</td>
<td>mA</td>
</tr>
<tr>
<td>V<sub>CC</sub></td>
<td>Supply Voltage, Output</td>
<td>2.7</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>T<sub>A</sub></td>
<td>Operating Temperature</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>N</td>
<td>Fan Out (TTL load)</td>
<td>–</td>
<td>5</td>
<td>TTL Loads</td>
</tr>
<tr>
<td>R<sub>L</sub></td>
<td>Output Pull-up</td>
<td>330</td>
<td>4K</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Note:
2. 6.3mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0mA or less.
Electrical Characteristics \((T_A = -40°C \text{ to } +85°C \text{ Unless otherwise specified.})\)

Individual Component Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ. (^{(3)})</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMITTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_F)</td>
<td>Input Forward Voltage</td>
<td>(I_F = 10mA)</td>
<td></td>
<td>–</td>
<td>–</td>
<td>1.8 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B_{VR})</td>
<td>Input Reverse Breakdown Voltage</td>
<td>(I_R = 10\mu A)</td>
<td>5.0</td>
<td>–</td>
<td>–</td>
<td>– V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta V_F/\Delta T_A)</td>
<td>Input Diode Temperature Coefficient</td>
<td>(I_F = 10mA)</td>
<td>–</td>
<td>–1.5</td>
<td>–</td>
<td>mV/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETECTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{CCH})</td>
<td>High Level Supply Current</td>
<td>(I_F = 0mA, V_{CC} = 3.3V)</td>
<td>–</td>
<td>7.1</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CCL})</td>
<td>Low Level Supply Current</td>
<td>(I_F = 10mA, V_{CC} = 3.3V)</td>
<td>–</td>
<td>6.7</td>
<td>15</td>
<td>mA</td>
</tr>
</tbody>
</table>

Switching Characteristics \((T_A = -40°C \text{ to } +85°C, V_{CC} = 3.3V, I_F = 7.5mA \text{ Unless otherwise specified.})\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>AC Characteristics</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ. (^{(3)})</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{PLH})</td>
<td>Propagation Delay Time to Output High Level</td>
<td>(R_L = 350\Omega, C_L = 15pF) (\text{Note 4, Fig. 10})</td>
<td>–</td>
<td>–</td>
<td>90</td>
<td>ns</td>
</tr>
<tr>
<td>(T_{PHL})</td>
<td>Propagation Delay Time to Output Low Level</td>
<td>(R_L = 350\Omega, C_L = 15pF) (\text{Note 5, Fig. 10})</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>ns</td>
</tr>
<tr>
<td>(</td>
<td>T_{PHL} - T_{PLH}</td>
<td>)</td>
<td>Pulse Width Distortion</td>
<td>(R_L = 350\Omega, C_L = 15pF) (\text{Fig. 10})</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(t_r)</td>
<td>Output Rise Time (10–90%)</td>
<td>(R_L = 350\Omega, C_L = 15pF) (\text{Note 6, Fig. 10})</td>
<td>–</td>
<td>16</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Output Fall Time (90–10%)</td>
<td>(R_L = 350\Omega, C_L = 15pF) (\text{Note 7, Fig. 10})</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(ICM_{HI})</td>
<td>Common Mode Transient Immunity (at Output High Level)</td>
<td>(R_L = 350\Omega, T_A = 25°C, I_F = 0mA, V_{CC} = 3.3V, V_{O(Min)} = 2V, V_{CM} = 1,000V) (\text{Notes 8, 11, Fig. 11})</td>
<td>25,000</td>
<td>–</td>
<td>–</td>
<td>V/µs</td>
</tr>
<tr>
<td>(ICM_{LI})</td>
<td>Common Mode Transient Immunity (at Output Low Level)</td>
<td>(R_L = 350\Omega, T_A = 25°C, I_F = 7.5mA, V_{CC} = 3.3V, V_{O(Max)} = 0.8V, V_{CM} = 1,000V) (\text{Notes 9, 11, Fig. 11})</td>
<td>25,000</td>
<td>–</td>
<td>–</td>
<td>V/µs</td>
</tr>
</tbody>
</table>
Transfer Characteristics (\(T_A = -40°C\) to \(+85°C\) Unless otherwise specified.)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>DC Characteristics</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.(3)</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OL})</td>
<td>Low Level Output Voltage</td>
<td>(V_{CC} = 3.3V, I_F = 5mA, I_{OL} = 13mA)</td>
<td>–</td>
<td>–</td>
<td>0.6</td>
<td>V</td>
</tr>
<tr>
<td>(I_{FT})</td>
<td>Input Threshold Current</td>
<td>(V_{CC} = 3.3V, V_O = 0.6V, I_{OL} = 13mA)</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Isolation Characteristics (\(T_A = -40°C\) to \(+85°C\) Unless otherwise specified.)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.(3)</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{I-O})</td>
<td>Input-Output Insulation Leakage Current</td>
<td>Relative humidity = 45% (T_A = 25°C), (t = 5) sec. (V_{I-O} = 3000) VDC, Note 10</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>µA</td>
</tr>
<tr>
<td>(V_{ISO})</td>
<td>Withstand Insulation Test Voltage</td>
<td>(R_H < 50%, T_A = 25°C) (I_{I-O} \leq 2\mu A, t = 1) min., Note 10</td>
<td>2500</td>
<td>–</td>
<td>–</td>
<td>(V_{RMS})</td>
</tr>
<tr>
<td>(R_{I-O})</td>
<td>Resistance (Input to Output)</td>
<td>(V_{I-O} = 500V), Note 10</td>
<td>–</td>
<td>10(^{12})</td>
<td>–</td>
<td>Ω</td>
</tr>
<tr>
<td>(C_{I-O})</td>
<td>Capacitance (Input to Output)</td>
<td>(f = 1MHz), Note 10</td>
<td>–</td>
<td>0.6</td>
<td>–</td>
<td>pF</td>
</tr>
</tbody>
</table>

Notes:
3. All typical values are at \(V_{CC} = 3.3V\), \(T_A = 25°C\) unless otherwise specified.
4. \(t_{PLH}\) – Propagation delay is measured from the 3.75 mA level on the HIGH to LOW transition of the input current pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
5. \(t_{PHL}\) – Propagation delay is measured from the 3.75 mA level on the LOW to HIGH transition of the input current pulse to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.
6. \(t_r\) – Rise time is measured from the 90% to the 10% levels on the LOW to HIGH transition of the output pulse.
7. \(t_f\) – Fall time is measured from the 10% to the 90% levels on the HIGH to LOW transition of the output pulse.
8. \(CM_H\) – The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state (i.e., \(V_{OUT} > 2.0V\)). Measured in volts per microsecond (V/µs).
9. \(CM_L\) – The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output state (i.e., \(V_{OUT} < 0.8V\)). Measured in volts per microsecond (V/µs).
10. Device considered a two-terminal device: Pins 1,2,3 and 4 shorted together, and Pins 5,6,7 and 8 shorted together.
11. The power supply bypass capacitors must be no further than 3mm from the leads of the opocoupler. A low inductance ground plane width of with \(\leq 5nH\) of series lead inductance is required.
Typical Performance Curves

Fig. 1 Forward Current vs. Forward Voltage

- V_F – FORWARD VOLTAGE (V)
- I_F – FORWARD CURRENT (mA)

V_F vs I_F curves for different T_A values:
- $T_A = 100^\circ C$
- $T_A = 85^\circ C$
- $T_A = 40^\circ C$
- $T_A = 0^\circ C$
- $T_A = 25^\circ C$

Fig. 2 High Level Output Current vs. Ambient Temperature

- I_{OH} – HIGH LEVEL OUTPUT CURRENT (mA)
- $V_O = V_{CC} = 3.3V$
- $I_F = 250\mu A$

I_{OH} vs T_A curves for different V_O values:
- $V_O = V_{CC} = 3.3V$
- $V_O = 0.6V$

Fig. 3 Low Level Output Current vs. Ambient Temperature

- I_{OL} – LOW LEVEL OUTPUT CURRENT (mA)
- $V_{OL} = 0.6V$
- $R_L = 350\Omega, 1k\Omega, 4k\Omega$

I_{OL} vs T_A curves for different V_{OL} values:
- $V_{OL} = 0.6V$
- $V_{OL} = 3.3V$

Fig. 4 Input Threshold Current vs. Temperature

- I_{TH} – INPUT THRESHOLD CURRENT (mA)

I_{TH} vs T_A curves for different V_{CC} values:
- $V_{CC} = 3.3V$
- $V_{CC} = 5V$
- $V_{CC} = 12V$

T_A values:
- $T_A = -40^\circ C$
- $T_A = 0^\circ C$
- $T_A = 25^\circ C$
- $T_A = 40^\circ C$
- $T_A = 85^\circ C$
- $T_A = 100^\circ C$
Typical Performance Curves (Continued)

Fig. 5 Pulse Width Distortion vs. Ambient Temperature

- $V_{CC} = 3.3V$
- $I_F = 7.5mA$
- $R_L = 350\Omega$

Fig. 6 Propagation Delay vs. Pulse Input Current

- $V_{CC} = 3.3V$
- $I_F = 7.5mA$
- $R_L = 350\Omega$

- $T_A = 25^\circ C$

Fig. 7 Propagation Delay vs. Ambient Temperature

- $V_{CC} = 3.3V$
- $I_F = 7.5mA$
- $R_L = 350\Omega$

Fig. 8 Rise and Fall Times vs. Ambient Temperature

- $V_{CC} = 3.3V$
- $I_F = 7.5mA$
- $R_L = 350\Omega$
Typical Performance Curves (Continued)

Fig. 9 Low Level Output Voltage vs. Ambient Temperature

- $V_{CC} = 3.3V$
- $I_O = 13mA$
- $I_P = 5mA$

$V_{OL} -$ LOW LEVEL OUTPUT VOLTAGE (V)

$T_A - AMBIENT TEMPERATURE (°C)$

V_{OL} varies slightly with T_A.
Test Circuits

Fig. 10 Test Circuit and Waveforms for t_{PLH}, t_{PHL}, t_r, and t_f

Fig. 11 Test Circuit and Waveforms for Common Mode Transient Immunity
Footprint
8-Pin Small Outline

- Width: 0.024 (0.61) in
- Height: 0.275 (6.99) in
- Lead spacing: 0.050 (1.27) in
- Lead height: 0.155 (3.94) in

Dimensions in inches and millimeters.
Ordering Information

<table>
<thead>
<tr>
<th>Option</th>
<th>Order Entry Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Suffix</td>
<td>HCPL062N</td>
<td>Shipped in tubes (50 units per tube)</td>
</tr>
<tr>
<td>R1</td>
<td>HCPL062NR1</td>
<td>Tape and Reel (500 units per reel)</td>
</tr>
<tr>
<td>R2</td>
<td>HCPL062NR2</td>
<td>Tape and Reel (2500 units per reel)</td>
</tr>
</tbody>
</table>

Marking Information

Definitions

1. Fairchild logo
2. Device number
3. One digit year code, e.g., '3'
4. Two digit work week ranging from '01' to '53'
5. Assembly package code
Carrier Tape Specification

Reflow Profile

- Time above 183°C = 90 Sec
- 1.822°C/Sec Ramp up rate
- 33 Sec
- >245°C = 42 Sec
- 260°C

User Direction of Feed

Dimensions:
- 3.50 ± 0.20
- 8.3 ± 0.10
- 8.0 ± 0.10
- 2.0 ± 0.05
- Ø1.5 MIN
- 1.75 ± 0.10
- 0.30 MAX
- 6.40 ± 0.20
- Ø1.5 ± 0.1/-0
- 5.20 ± 0.20
- 5.5 ± 0.05
- 12.0 ± 0.3
- 8.0 ± 0.10
- 0.1 MAX
NOTES:

A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE MOLD
FLASH OR BURRS.
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.
E) DRAWING FILENAME: MKT-M08Erev5