HCPL0700, HCPL0701, HCPL0730, HCPL0731
Low Input Current High Gain Split Darlington Optocouplers

Single Channel: HCPL0700, HCPL0701, Dual Channel: HCPL0730, HCPL0731

Features
- Low input current: 0.5mA
- Superior CTR: 2000%
- Superior CMR – 10 kV/µs
- CTR guaranteed 0°C to 70°C
- U.L. Recognized (file# E90700)
- VDE 0884 recognized (file# 136616)
 – approval pending for HCPL0730/0731
- BSI recognized (file# 8661, 8662)
 – HCPL0700/0701 only

Applications
- Digital logic ground isolation
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- µP bus isolation
- Current loop receiver

Description
The HCPL0700, HCPL0701, HCPL0730 and HCPL0731 optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector housed in a compact 8-pin small outline package. The HCPL0730 and HCPL0731 devices have two channels per package for optimum mounting density.

The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler.

The combination of a very low input current of 0.5mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements.

Schematics

Truth Table

<table>
<thead>
<tr>
<th>LED</th>
<th>VO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>LOW</td>
</tr>
<tr>
<td>OFF</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings (TA = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSTG</td>
<td>Storage Temperature</td>
<td>-40 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>TOPR</td>
<td>Operating Temperature</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Reflow Temperature Profile (Refer to page 12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMITTER

- IF (avg) DC/Average Forward Input Current 20 mA
- IF (pk) Peak Forward Input Current (50% duty cycle, 1 ms P.W.) 40 mA
- IF (trans) Peak Transient Input Current - (≤1 µs P.W., 300 pps) 1.0 A
- VR Reverse Input Voltage 5 V
- PD Input Power Dissipation 35 mW

DETECTOR

- IO (avg) Average Output Current (Pin 6) 60 mA
- VEBR Emitter-Base Reverse Voltage 0.5 V
- VCC, VO Supply Voltage, Output Voltage
 - HCPL0700/HCPL0701 -0.5 to 7 V
 - HCPL0700/HCPL0730 -0.5 to 18 V
- PD Output power dissipation 100 mW
Electrical Characteristics \((T_A = 0 \text{ to } 70°C \text{ unless otherwise specified})\)

Individual Component Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Device</th>
<th>Min.</th>
<th>Typ.*</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMITTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_F)</td>
<td>Input Forward Voltage</td>
<td>(I_F = 1.6, \text{mA}) (T_A = 25°C)</td>
<td>HCPL0700/01</td>
<td>1.0</td>
<td>1.25</td>
<td>1.7</td>
<td>V</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>HCPL0730/31</td>
<td> </td>
<td>1.35</td>
<td> </td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>All</td>
<td> </td>
<td> </td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>(B V_R)</td>
<td>Input Reverse Breakdown Voltage</td>
<td>(T_A = 25°C, I_R = 10, \mu\text{A})</td>
<td>All</td>
<td>5.0</td>
<td> </td>
<td> </td>
<td></td>
</tr>
</tbody>
</table>

Transfer Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Device</th>
<th>Min.</th>
<th>Typ.*</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C T R)</td>
<td>COUPLED Current Transfer Ratio (Note 1, 2)</td>
<td>(I_F = 0.5, \text{mA}, V_O = 0.4, \text{V}, V_{CC} = 4.5, \text{V})</td>
<td>HCPL0701/31</td>
<td>400</td>
<td>5000</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>HCPL0700</td>
<td>300</td>
<td>2600</td>
<td> </td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>HCPL0701</td>
<td>500</td>
<td>2600</td>
<td> </td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>HCPL0730</td>
<td>300</td>
<td>5000</td>
<td> </td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>HCPL0731</td>
<td>500</td>
<td>5000</td>
<td> </td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Logic Low Output Voltage</td>
<td>(I_F = 0.5, \text{mA}, I_O = 2, \text{mA}, V_{CC} = 4.5, \text{V})</td>
<td>HCPL0701</td>
<td>0.4</td>
<td> </td>
<td>V</td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>HCPL0731</td>
<td> </td>
<td>0.4</td>
<td> </td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td>0.4</td>
<td> </td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td>0.4</td>
<td> </td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
<td>0.4</td>
<td> </td>
<td></td>
</tr>
</tbody>
</table>

Isolation Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Characteristics</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.*</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{I-O})</td>
<td>Input-Output Insulation Leakage Current</td>
<td>Relative humidity = 45%, (T_A = 25°C, t = 5, \text{s}, V_{I-O} = 3000, \text{VDC}) (Note 4)</td>
<td>1.0</td>
<td> </td>
<td> </td>
<td>V</td>
</tr>
<tr>
<td>(V_{ISO})</td>
<td>Withstand Insulation Test Voltage</td>
<td>(R_H \leq 50%, T_A = 25°C, I_{I-O} \leq 2, \mu\text{A}, t = 1, \text{min.}) (Note 4, 5)</td>
<td>2500</td>
<td> </td>
<td> </td>
<td>(V_{RMS})</td>
</tr>
<tr>
<td>(R_{I-O})</td>
<td>Resistance (Input to Output)</td>
<td>(V_{I-O} = 500, \text{VDC}) (Note 4)</td>
<td> </td>
<td> </td>
<td>(10^{12})</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

*All typicals at \(T_A = 25°C \)
Electrical Characteristics \((T_A = 0 \text{ to } 70^\circ C \text{ unless otherwise specified})\)

Switching Characteristics \((V_{CC} = 5V)\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Device</th>
<th>Min.</th>
<th>Typ.*</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{PHL})</td>
<td>Propagation Delay</td>
<td>(R_L = 4.7k\Omega, I_F = 0.5mA)</td>
<td>HCPL0701</td>
<td>30</td>
<td>120</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time to Logic Low</td>
<td>(T_A = 25^\circ C)</td>
<td>HCPL0701</td>
<td>3</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 270 \Omega, I_F = 12mA)</td>
<td>HCPL0701</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td>HCPL0701</td>
<td>0.3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 2.2k\Omega, I_F = 1.6mA)</td>
<td>HCPL0700</td>
<td>15</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td>HCPL0730/0731</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(TP_{PHL} = 4.7k\Omega, I_F = 0.5mA)</td>
<td>HCPL0701/31</td>
<td>90</td>
<td>35</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td>HCPL0701/31</td>
<td>12</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 270 \Omega, I_F = 12mA)</td>
<td>HCPL0701</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td>HCPL0701</td>
<td>1.6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 2.2k\Omega, I_F = 1.6mA)</td>
<td>HCPL0700/30/31</td>
<td>50</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td>ALL</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{PLH})</td>
<td>Propagation Delay</td>
<td>(R_L = 4.7k\Omega, I_F = 0.5mA)</td>
<td>HCPL0701/31</td>
<td>90</td>
<td>35</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time to Logic High</td>
<td>(T_A = 25^\circ C)</td>
<td>HCPL0701/31</td>
<td>12</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 270 \Omega, I_F = 12mA)</td>
<td>HCPL0701</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td>HCPL0701</td>
<td>1.6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(R_L = 2.2k\Omega, I_F = 1.6mA)</td>
<td>HCPL0700/30/31</td>
<td>50</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 25^\circ C)</td>
<td>ALL</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>CM_H</td>
<td>)</td>
<td>Common Mode</td>
<td>(I_F = 0mA,</td>
<td>V_{CM}</td>
<td>= 10V_{P-P}, T_A = 25^\circ C, R_L = 2.2k\Omega)</td>
<td>ALL</td>
</tr>
<tr>
<td></td>
<td>Transient Immunity at Logic High</td>
<td>(R_L = 2.2k\Omega, R_{CM} = 2V_{P-P})</td>
<td>(T_A = 25^\circ C)</td>
<td>1,000</td>
<td>10,000</td>
<td>V/µs</td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>CM_L</td>
<td>)</td>
<td>Common Mode</td>
<td>(I_F = 1.6mA,</td>
<td>V_{CM}</td>
<td>= 10V_{P-P}, T_A = 25^\circ C, R_L = 2.2k\Omega)</td>
<td>ALL</td>
</tr>
<tr>
<td></td>
<td>Transient Immunity at Logic Low</td>
<td>(R_L = 2.2k\Omega, R_{CM} = 2V_{P-P})</td>
<td>(T_A = 25^\circ C)</td>
<td>1,000</td>
<td>10,000</td>
<td>V/µs</td>
<td></td>
</tr>
</tbody>
</table>

*All typicals at \(T_A = 25^\circ C\)

Notes:
1. Current Transfer Ratio is defined as a ratio of output collector current, \(I_O\), to the forward LED input current, \(I_F\), times 100%.
2. Pin 7 open. Use of a resistor between pins 5 and 7 will decrease gain and delay time.
3. Common mode transient immunity in logic high level is the maximum tolerable (positive) \(dV_{CM}/dt\) on the leading edge of the common mode pulse signal, \(V_{CM}\), to assure that the output will remain in a logic high state (i.e., \(V_O > 2.0\text{V}\)). Common mode transient immunity in logic low level is the maximum tolerable (negative) \(dV_{CM}/dt\) on the trailing edge of the common mode pulse signal, \(V_{CM}\), to assure that the output will remain in a logic low state (i.e., \(V_O < 0.8\text{V}\)).
4. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
5. 2500 VAC RMS for 1 minute duration is equivalent to 3000 VAC RMS for 1 second duration.
Typical Performance Curves

Fig. 1 Propagation Delay vs. Temperature (HCPL0700, HCPL0701)

![Graph showing Propagation Delay vs. Temperature for HCPL0700 and HCPL0701.](image)

Fig. 2 Propagation Delay vs. Temperature (HCPL0700, HCPL0701)

![Graph showing Propagation Delay vs. Temperature for HCPL0700 and HCPL0701.](image)

Fig. 3 Propagation Delay vs. Temperature (HCPL0700, HCPL0701)

![Graph showing Propagation Delay vs. Temperature for HCPL0700 and HCPL0701.](image)

Fig. 4 Logic High Output Current vs. Temperature (HCPL0700, HCPL0701)

![Graph showing Logic High Output Current vs. Temperature for HCPL0700 and HCPL0701.](image)

Fig. 5 Propagation Delay vs. Input Forward Current (HCPL0730, HCPL0731)

![Graph showing Propagation Delay vs. Input Forward Current for HCPL0730 and HCPL0731.](image)

Fig. 6 Output Current vs. Input Forward Current (HCPL0700, HCPL0701)

![Graph showing Output Current vs. Input Forward Current for HCPL0700 and HCPL0701.](image)
Typical Performance Curves (Continued)

Fig. 7 Input Forward Current vs. Forward Voltage
(HCPL0700, HCPL0701)

Fig. 8 Input Forward Current vs. Forward Voltage
(HCPL0730, HCPL0731)

Fig. 9 Logic Low Supply Current vs. Input Forward Current
(HCPL0700, HCPL0701)

Fig. 10 Supply Current vs. Input Forward Current
(HCPL0730, HCPL0731)

Fig. 11 DC Transfer Characteristics
(HCPL0700, HCPL0701)

Fig. 12 DC Transfer Characteristics
(HCPL0730, HCPL0731)
Fig. 13 Current Transfer Ratio vs. Input Forward Current (HCPL0700, HCPL0701)

- \(V_{CC} = 5V \)
- \(V_O = 0.4V \)

- \(T_A = 85^\circ C \)
- \(T_A = 70^\circ C \)
- \(T_A = 25^\circ C \)
- \(T_A = 0^\circ C \)
- \(T_A = -40^\circ C \)
Test Circuits

Fig. 14 Switching Time Test Circuit

Test Circuit for HCPL-0700 and HCPL-0701

Test Circuit for HCPL-0730 and HCPL-0731

Fig. 15 Common Mode Immunity Test Circuit
Ordering Information

<table>
<thead>
<tr>
<th>Option</th>
<th>Part Number Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>HCPL0700V</td>
<td>VDE 0884</td>
</tr>
<tr>
<td>R2</td>
<td>HCPL0700R2</td>
<td>Tape and reel (2500 units per reel)</td>
</tr>
<tr>
<td>R2V</td>
<td>HCPL0700R2V</td>
<td>VDE 0884, Tape and reel (2500 units per reel)</td>
</tr>
</tbody>
</table>

Marking Information

Definitions

1. Fairchild logo
2. Device number
3. VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)
4. One digit year code, e.g., ‘3’
5. Two digit work week ranging from ‘01’ to ‘53’
6. Assembly package code
Carrier Tape Specification

Dimensions in mm

User Direction of Feed
Reflow Profile

<table>
<thead>
<tr>
<th>Profile Feature</th>
<th>Pb-Free Assembly Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Min. (Tsmin)</td>
<td>150°C</td>
</tr>
<tr>
<td>Temperature Max. (Tmax)</td>
<td>200°C</td>
</tr>
<tr>
<td>Time (ts) from (Tsmin to Tmax)</td>
<td>60–120 seconds</td>
</tr>
<tr>
<td>Ramp-up Rate (tL to tp)</td>
<td>3°C/second max.</td>
</tr>
<tr>
<td>Liquidous Temperature (T_L)</td>
<td>217°C</td>
</tr>
<tr>
<td>Time (t_L) Maintained Above (T_L)</td>
<td>60–150 seconds</td>
</tr>
<tr>
<td>Peak Body Package Temperature</td>
<td>260°C ±0°C / –5°C</td>
</tr>
<tr>
<td>Time (tp) within 5°C of 260°C</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Ramp-down Rate (T_p to T_L)</td>
<td>6°C/second max.</td>
</tr>
<tr>
<td>Time 25°C to Peak Temperature</td>
<td>8 minutes max.</td>
</tr>
</tbody>
</table>
NOTES:

A) NO STANDARD APPLIES TO THIS PACKAGE
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS.
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.
E) DRAWING FILENAME: MKT-M08Erev5