

MIC19215 Dual Boost/SEPIC Evaluation Board User's Guide

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION. INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ \, \odot$ 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-1526-8

Object of Declaration: MCP19215 Dual Boost/SEPIC Evaluation Board

EU Declaration of Conformity

This declaration of conformity is issued by the manufacturer.

The development/evaluation tool is designed to be used for research and development in a laboratory environment. This development/evaluation tool is not a Finished Appliance, nor is it intended for incorporation into Finished Appliances that are made commercially available as single functional units to end users under EU EMC Directive 2004/108/EC and as supported by the European Commission's Guide for the EMC Directive 2004/108/EC (8th February 2010).

This development/evaluation tool complies with EU RoHS2 Directive 2011/65/EU.

This development/evaluation tool, when incorporating wireless and radio-telecom functionality, is in compliance with the essential requirement and other relevant provisions of the R&TTE Directive 1999/5/EC and the FCC rules as stated in the declaration of conformity provided in the module datasheet and the module product page available at www.microchip.com. For information regarding the exclusive, limited warranties applicable to Microchip products, please see Microchip's standard terms and conditions of sale, which are printed on our sales documentation and available at www.microchip.com. Signed for and on behalf of Microchip Technology Inc. at Chandler, Arizona, USA.

Derek Carlson

VP Development Tools

Carlson 11-100-16
Date

MCP19215 Dual Boost/SEPIC Evaluation Board User's Guide						
NOTES:						

Table of Contents

Preface	
Chapter 1. Product Overview	
1.1 Introduction	11
1.2 MCP19215 Device – Short Overview	11
1.3 What is the MCP19215 Dual Boost/SEPIC Evaluation Board?	12
1.4 What Does the MCP19215 Dual Boost/SEPIC	
Evaluation Board Kit Include?	13
Chapter 2. Installation and Operation	
2.1 Introduction	15
2.2 MCP19215 Dual Boost/SEPIC Evaluation Board Features	15
2.3 Getting Started	15
2.4 Setup Procedure	16
2.5 Operating the MCP19215 Dual Boost/SEPIC Evaluation Board	18
2.6 Typical Performance Data and Waveforms	20
Appendix A. Schematic and Layouts	
A.1 Introduction	25
A.2 Board – Schematic	26
A.3 Board – Top Silk	27
A.4 Board – Top Copper and Silk	27
A.5 Board – Top Copper	28
A.6 Board – Bottom Copper	28
A.7 Board – Bottom Copper and Silk	29
A.8 Board – Bottom Silk	
Appendix B. Bill of Materials (BOM)	31
Worldwide Sales and Service	23

MCP19215 Dual Boost/SEPIC Evaluation Board User's Guide				
OTES:				

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXXXXA", where "XXXXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE online help. Select the Help menu, and then Topics to open a list of available online help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP19215 Dual Boost/SEPIC Evaluation Board. Items discussed in this chapter include:

- · Document Layout
- · Conventions Used in this Guide
- · Recommended Reading
- The Microchip Web Site
- · Development Systems Customer Change Notification Service
- Customer Support
- · Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP19215 Dual Boost/SEPIC Evaluation Board as a development tool to emulate and debug firmware on a target board. The manual layout is as follows:

- Chapter 1. "Product Overview" Includes a short overview of the MCP19215 device, and a general description of the MCP19215 Dual Boost/SEPIC Evaluation Board.
- Chapter 2. "Installation and Operation" Includes instructions on how to get started with the MCP19215 Dual Boost/SEPIC Evaluation Board, a detailed description of the board, and the typical waveforms that are obtained from the board
- Appendix A. "Schematic and Layouts" Shows the schematic and layout diagrams for the MCP19215 Dual Boost/SEPIC Evaluation Board.
- Appendix B. "Bill of Materials (BOM)" Lists the parts used to build the MCP19215 Dual Boost/SEPIC Evaluation Board.

MCP19215 Dual Boost/SEPIC Evaluation Board User's Guide

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples	
Arial font:			
Italic characters	Referenced books	MPLAB [®] IDE User's Guide	
	Emphasized text	is the only compiler	
Initial caps	A window	the Output window	
	A dialog	the Settings dialog	
	A menu selection	select Enable Programmer	
Quotes	A field name in a window or dialog	"Save project before build"	
Underlined, italic text with right angle bracket	A menu path	File>Save	
Bold characters	A dialog button	Click OK	
	A tab	Click the Power tab	
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1	
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>	
Courier New font:			
Plain Courier New	Sample source code	#define START	
	Filenames	autoexec.bat	
	File paths	c:\mcc18\h	
	Keywords	_asm, _endasm, static	
	Command-line options	-Opa+, -Opa-	
	Bit values	0, 1	
	Constants	0xff, 'A'	
Italic Courier New	A variable argument	file.o, where file can be any valid filename	
Square brackets []	Optional arguments	<pre>mcc18 [options] file [options]</pre>	
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}	
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>	
	Represents code supplied by user	<pre>void main (void) { }</pre>	

RECOMMENDED READING

This user's guide describes how to use the MCP19215 Dual Boost/SEPIC Evaluation Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources:

- MCP19214/5 "Digitally-Enhanced Power Analog, Dual Channel, Low-Side PWM Controller" (DS2000000) – This data sheet provides detailed information regarding the MCP19214/5 devices.
- MCP19214/5 Monitoring Graphical Interface User's Guide (DS5000000) –
 This User's Guide includes information on how to install, understand, and use the
 monitoring and calibration tool for the MCP19214/5 devices.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive an e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

The Development Systems product group categories are:

- Compilers The latest information on Microchip C compilers, assemblers, linkers and other language tools. These include all MPLAB C compilers; all MPLAB assemblers (including MPASM assembler); all MPLAB linkers (including MPLINK object linker); and all MPLAB librarians (including MPLIB object librarian).
- **Emulators** The latest information on Microchip in-circuit emulators. This includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.
- In-Circuit Debuggers The latest information on the Microchip in-circuit debuggers. This includes MPLAB ICD 3 in-circuit debuggers and PICkit 3 Debug Express.
- MPLAB IDE The latest information on Microchip MPLAB IDE, the Windows Integrated Development Environment for development systems tools. This list is focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and MPLAB SIM simulator, as well as general editing and debugging features.
- Programmers The latest information on Microchip programmers. These include production programmers such as MPLAB REAL ICE in-circuit emulator, MPLAB ICD 3 in-circuit debugger and MPLAB PM3 device programmers. Also included

MCP19215 Dual Boost/SEPIC Evaluation Board User's Guide

are nonproduction development programmers such as PICSTART Plus and PICkit 2 and 3 programmers.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (March 2017)

· Initial Release of this Document.

Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MCP19215 Dual Boost/SEPIC Evaluation Board and covers the following topics:

- MCP19215 Device Short Overview
- What is the MCP19215 Dual Boost/SEPIC Evaluation Board?
- What Does the MCP19215 Dual Boost/SEPIC Evaluation Board Kit Include?

1.2 MCP19215 DEVICE – SHORT OVERVIEW

The MCP19215 is a highly integrated digitally-enhanced Pulse Width Modulation (PWM) controller used for low-side switch PWM applications such as battery chargers, bidirectional converters and LED lighting systems.

Since the MCP19215 uses traditional analog control circuitry to regulate the output of the DC/DC converter, the integration of the PIC[®] controller mid-range core is used to provide complete customization of device operating parameters, start-up and shut-down profiles, protection levels and fault handling procedures.

The MCP19215 is designed to efficiently operate from a single 4.5V-42V supply. It features integrated synchronous drivers, a bootstrap device, an internal linear regulator and 8K word nonvolatile memory, all in a space-saving 32-pin, 5 x 5 mm QFN package.

After initial device configuration by using Microchip's MPLAB[®] X Integrated Development Environment (IDE) software, I²C communication can be used by a host to communicate with or modify the operation of the MCP19215.

An internal 5V rail provides power to the PIC controller, and is also present on the V_{DD} pin. It is recommended that a 1 μ F capacitor be placed between V_{DD} and P_{GND} . The V_{DD} pin may also be directly connected to the V_{DR} pin or connected through a low-pass RC filter. The V_{DR} pin provides power to the internal synchronous driver.

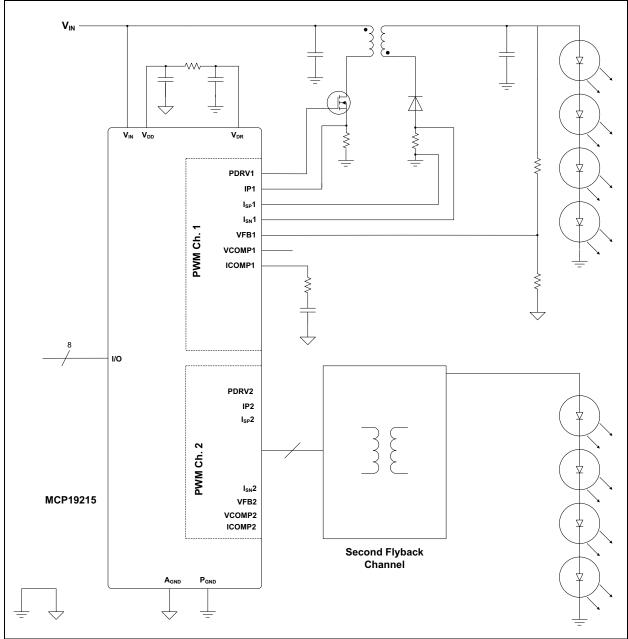


FIGURE 1-1: MCP19215 Typical Application Circuit.

1.3 WHAT IS THE MCP19215 DUAL BOOST/SEPIC EVALUATION BOARD?

The MCP19215 Dual Boost/SEPIC Evaluation Board demonstrates how the MCP19215 device operates in Boost and SEPIC topologies over a wide input voltage and load range. Nearly all operational and control system parameters are programmable by utilizing the integrated PIC controller.

For precise measurements of output current, a 0.1Ω shunt is used on each channel. Output current is measured using an internal op amp.

The Graphical User Interface (GUI) can be used to program the functioning parameters, and check operational status. To simplify the connection, a USB-to-I²C communication bridge is implemented on board, using the MCP2221-I/SL SOIC 14-Lead, allowing standard interface to any Microsoft[®] Windows[®] computer.

Alternatively, users can program the MCP19215 using their own firmware, further tailoring it to the application, using the MPLAB[®] X Integrated Development Environment (IDE) and a PICkit™ 3 Programmer/Debugger on the J5 Header (see Figure 2-1).

The MCP19215 Dual Boost/SEPIC Evaluation Board board is equipped with headers for In-Circuit Serial Programming $^{\text{TM}}$ (ICSP $^{\text{TM}}$), a mini-USB type B for communication, and test point pads on each GPIO pin.

The MCP19215 Dual Boost/SEPIC Evaluation Board is also intended to demonstrate an optimized Printed Circuit Board (PCB) layout that minimizes parasitic noise while increasing efficiency and power density. Proper PCB layout is critical to achieve optimum MCP19215 operation, as well as power train efficiency and noise minimization.

The MPLAB X (IDE), the MCP19215 monitoring graphical user interface, and example firmware are available for download from the Microchip web site, at www.microchip.com.

1.4 WHAT DOES THE MCP19215 DUAL BOOST/SEPIC EVALUATION BOARD KIT INCLUDE?

This MCP19215 Dual Boost/SEPIC Evaluation Board kit includes:

- The MCP19215 Dual Boost/SEPIC Evaluation Board (ADM00799)
- USB A to Mini-USB Type B Cable
- · Important Information Sheet

MCP19215 Dual Boost/SEPIC Evaluation Board User's Guide	
NOTES:	-

Chapter 2. Installation and Operation

2.1 INTRODUCTION

This chapter provides a detailed description of the MCP19215 Dual Boost/SEPIC Evaluation Board, instructions on how to begin using the board, and lists the typical waveforms obtained from the board.

The chapter is laid out as follows:

- MCP19215 Dual Boost/SEPIC Evaluation Board Features
- Getting Started
- Setup Procedure
- Operating the MCP19215 Dual Boost/SEPIC Evaluation Board
- · Typical Performance Data and Waveforms

2.2 MCP19215 DUAL BOOST/SEPIC EVALUATION BOARD FEATURES

The MCP19215 Dual Boost/SEPIC Evaluation Board was developed to provide a compact, low-cost and highly-efficient DC/DC conversion for low-to-medium output currents.

The key features of the MCP19215 Dual Boost/SEPIC Evaluation Board include:

- input voltage range: 8V-5V
- output voltage: 20V for both channels (can be software adjusted from input voltage + 1V-4V for channel 1, and 9V-24V for channel 2)
- maximum output current: 1A (can be software adjusted from 0A to 1A; the board default setting is 0.2A)
- 300 kHz switching frequency (can be software adjusted from 100 kHz to 2 MHz)
- on-board high performance power MOSFET transistors
- · overcurrent and overvoltage protection
- status report (including errors, input voltage, output voltage and current) via I²C communication
- under voltage lockout (UVLO) with programmable thresholds (via software)

2.3 GETTING STARTED

The MCP19215 Dual Boost/SEPIC Evaluation Board is fully assembled and tested to evaluate and demonstrate the MCP19215 device capabilities.

2.3.1 Necessary Instruments and Tools Required for Operation

- Adjustable DC power supply with 0V-5V/2 A_{DC} range output capability
- · Electronic load with at least 2A current capability and load stepping capability
- Digital oscilloscope with a minimum bandwidth of 50 MHz
- Digital voltmeter/ammeter
- Wires for connections; these wires must sustain high currents:
 - 4A for the connection between the adjustable DC power supply and board
 - 2A for the connection between the board and the electronic load

2.4 SETUP PROCEDURE

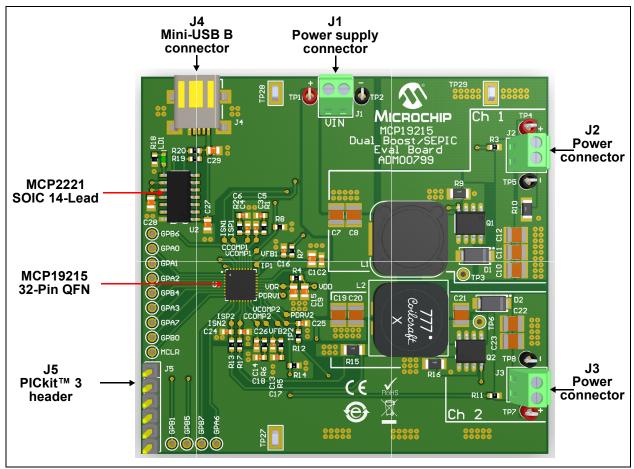


FIGURE 2-1: MCP19215 Dual Boost/SEPIC Evaluation Board – Top View.

To power up the MCP19215 Dual Boost/SEPIC Evaluation Board, the following steps must be completed:

- 1. connect the electronic load to the J2 and/or J3 connector on the board by observing the polarity; the positive (+) and negative (-) connector pins are marked on the board silkscreen (refer to Figure 2-1).
- 2. connect the adjustable DC power supply to the J1 connector on the board by matching the polarity to the positive (+) and negative (-) connector pins marked on the board silkscreen (refer to Figure 2-1).
- 3. set the DC voltage supplied by the adjustable DC power supply to 12V.

4. connect the board to a PC (on which the MCP19214/5 Monitoring GUI is installed) via the USB-A to mini-USB type B cable supplied, by using the J4 connector on the board.

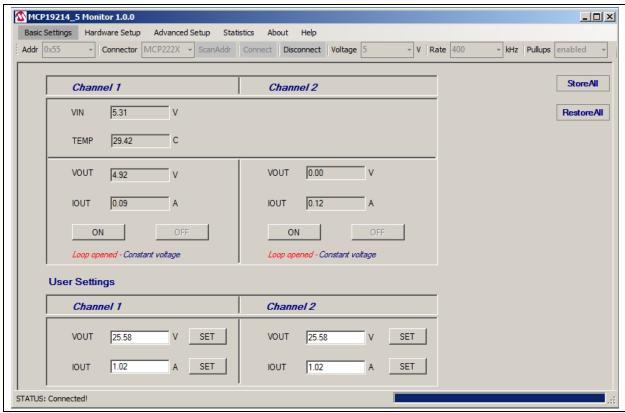


FIGURE 2-2: MCP19214/5 Monitoring GUI.

- 5. after powering up, the output voltage is automatically enabled on for both channels. Alternatively, the output voltage may be enabled or disabled individually for each channel by using the GUI ON and OFF buttons.
- 6. the board is factory set to deliver 20V at 1A maximum, with the loop adjusted for optimum performance, and current measurement performed via the internal op amp.
 - If different settings are desired, changes may be performed in two ways:
 - via the I²C-to-USB on-board interface. Refer to the MCP19214/5 Monitoring GUI User Guide for details.
 - by the user's own software that can be loaded into the MCP19215 by connecting J5 on the board to a PICkit™3 or another suitable programming tool (see Figure 2-1).

2.5 OPERATING THE MCP19215 DUAL BOOST/SEPIC EVALUATION BOARD

Figure 2-3 shows the board typical test setup.

FIGURE 2-3: MCP19215 Dual Boost/SEPIC Evaluation Board – Typical Test Setup.

Table 2-1 lists all the available test points on the board.

The user can connect various instruments to the listed test points to evaluate the parameters of the converter. The typical performance data, curves and waveforms are presented in **Section 2.6**.

TABLE 2-1: TEST POINTS DESCRIPTION

Label	Function	Description	
TP1_GND TP2_GND TP3_GND	GND	Power GND	
TP1	V _{IN (+)}	Input Voltage (+)	
TP2	V _{IN (-)}	Input Voltage (-)	
TP3	SW1	Switching Node for Channel 1	
TP4	V _{OUT1 (+)}	Output Voltage (+) for Channel 1	
TP5	V _{OUT1 (-)}	Output Voltage (-) for Channel 1	
TP6	SW2	Switching Node for Channel 2	
TP7	V _{OUT2 (+)}	Output Voltage (+) for Channel 2	

Note 1: Refer to the MCP19214/5 data sheet, for a detailed description of the port pin functions.

TABLE 2-1: TEST POINTS DESCRIPTION (CONTINUED)

Function	Description		
V _{OUT2 (-)}	Output Voltage (-) for Channel 2		
PDRV1	Driver Signal for Channel 1		
I _{SN1}	Output Current Sense Measurement (-) for Channel 1		
I _{SP1}	Output Current Sense Current Measurement (+) for Channel 1		
CCOMP1	Current Loop Compensation Circuitry for Channel 1		
VCOMP1	Voltage Loop Compensation Circuitry for Channel 1		
VFB1	Voltage Feedback for Channel 1		
IP1	Primary Inductor Current Sense Input for Channel 1		
PDRV2	Driver Signal for Channel 2		
I_{SN2}	Output Current Sense Measurement (-) for Channel 2		
I _{SP2}	Output Current Sense Current Measurement (+) for Channel 2		
CCOMP2	Current Loop Compensation Circuitry for Channel 2		
VCOMP2	Voltage Loop Compensation Circuitry for Channel 2		
VFB2	Voltage Feedback for Channel 2		
IP2	Primary Inductor Current Sense Input for Channel 2		
V_{DD}	Linear Regulator Output (5V)		
V_{DR}	Input for Driver Supply (5V)		
MCLR (1)	_		
GPA0 ⁽¹⁾	GPA0 or Analog Test Output		
GPA1 ⁽¹⁾	_		
GPA2 ⁽¹⁾	_		
GPA3 ⁽¹⁾	_		
GPA6 ⁽¹⁾	_		
GPA7 ⁽¹⁾	Clock Signal for I ² C		
GPB0 ⁽¹⁾	Data Signal for I ² C		
GPB1 (1)	_		
GPB4 ⁽¹⁾	Data Signal for ICSP™		
GPB5 ⁽¹⁾	Clock Signal for ICSP		
GPB6 ⁽¹⁾	_		
GPB7 ⁽¹⁾	_		
	V _{OUT2 (-)} PDRV1 I _{SN1} I _{SP1} CCOMP1 VCOMP1 VFB1 IP1 PDRV2 I _{SN2} I _{SP2} CCOMP2 VCOMP2 VFB2 IP2 VODD VDR MCLR (1) GPA1 (1) GPA3 (1) GPA3 (1) GPA7 (1) GPA7 (1) GPB0 (1) GPB1 (1) GPB1 (1) GPB1 (1) GPB5 (1)		

Note 1: Refer to the MCP19214/5 data sheet, for a detailed description of the port pin functions.

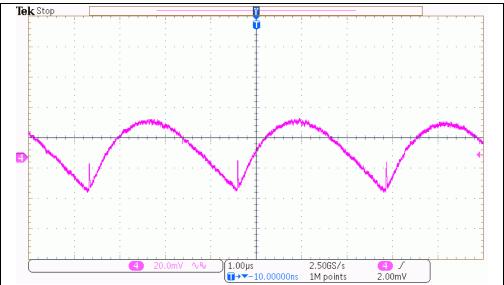
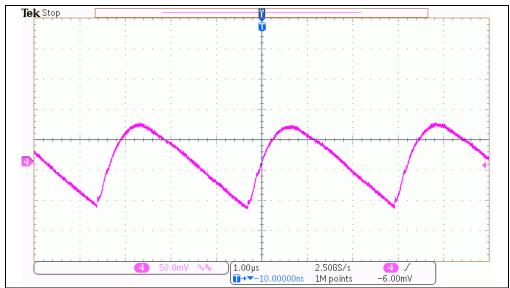

2.6 TYPICAL PERFORMANCE DATA AND WAVEFORMS

Table 2-2 describes the converter parameters.


TABLE 2-2: MCP19215 CONVERTER PARAMETERS

Parameter	Value	Comments
Input Voltage Range (V)	8 – 15	_
Output Voltage (V)	18	± 2.5% tolerance
Maximum Output Current (A)	0.75	Steady state output current
Channel 1 Output Voltage Ripple (mV)	< 100	V _{IN} = 12V, I _{OUT} = 250 mA
Channel 2 Output Voltage Ripple (mV)	< 200	V _{IN} = 12V, I _{OUT} = 500 mA
Input Voltage Ripple (mV)	< 50	V _{IN} = 12V, I _{OUT} = 750 mA
Switching Frequency (kHz)	305 kHz (typical)	_

Figure 2-4 through 2-9 show the typical waveforms that are obtained from the evaluation board.

FIGURE 2-4: Output Voltage Ripple/Noise Channel 1 ($V_{IN} = 12V$, $I_{OUT1} = 250$ mA, BW = 20 MHz).

FIGURE 2-5: Output Voltage Ripple/Noise Channel 2 ($V_{IN} = 12V$, $I_{OUT2} = 500$ mA, BW = 20 MHz).

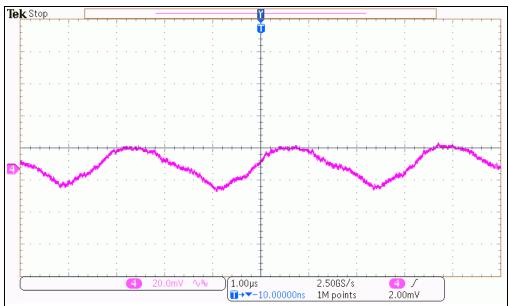
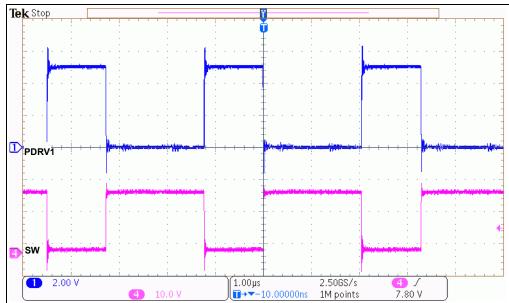



FIGURE 2-6: Input Voltage Ripple/Noise ($V_{IN} = 12V$, $I_{OUT} = 750$ mA, BW = 20 MHz).

FIGURE 2-7: SW1, PDRV1 Signals ($V_{IN} = 12V$, $I_{OUT1} = 250$ mA, BW = 300 MHz).

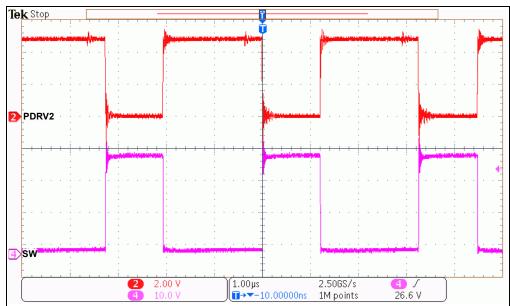
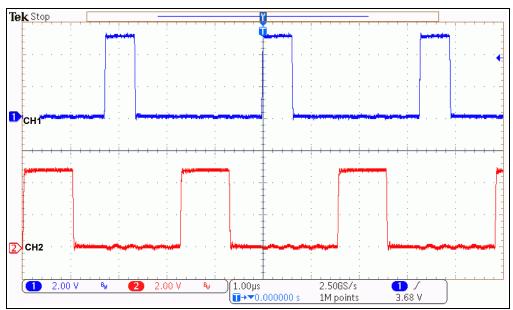
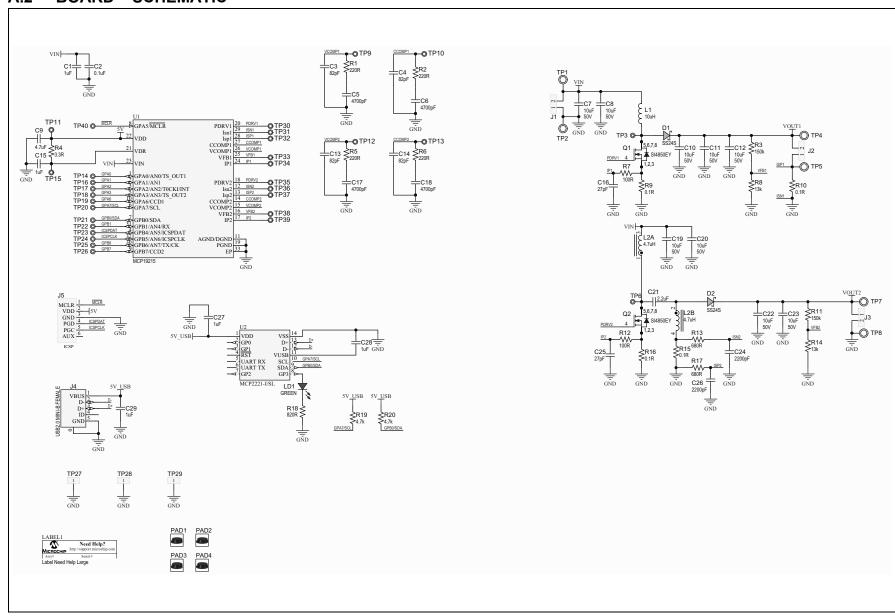



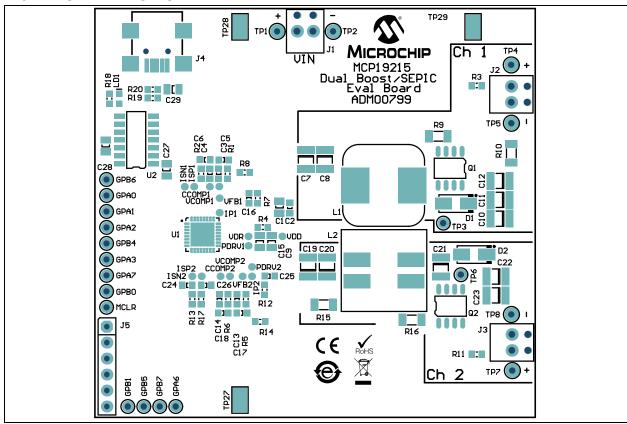
FIGURE 2-8: SW2, PDRV2 Signals ($V_{IN} = 12V$, $I_{OUT2} = 500$ mA, BW = 300 MHz).

FIGURE 2-9: LDRV and HDRV Signals ($V_{IN} = 12V$, $I_{OUT} = 15A$, BW = 300 MHz).

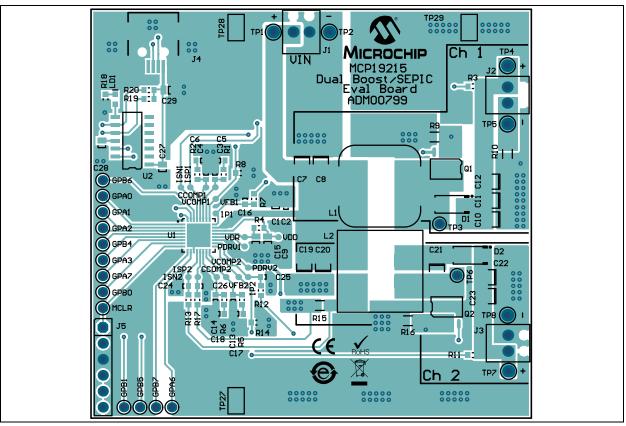
MCP19215 Dual Boost/SEPIC Evaluation Board User's Guide
NOTES:

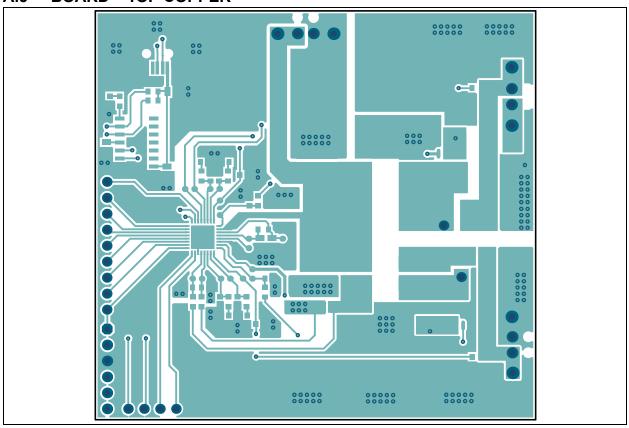

Appendix A. Schematic and Layouts

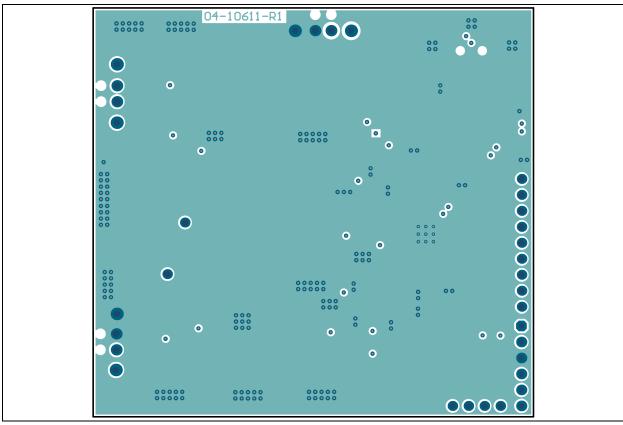
A.1 INTRODUCTION

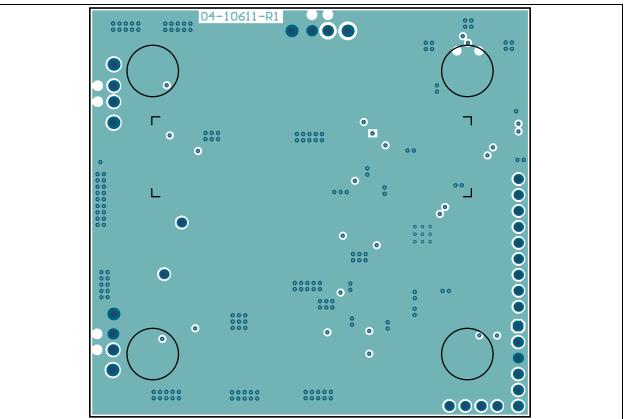

This appendix contains the following schematics and layouts for the MCP19215 Dual Boost/SEPIC Evaluation Board (ADM00799):

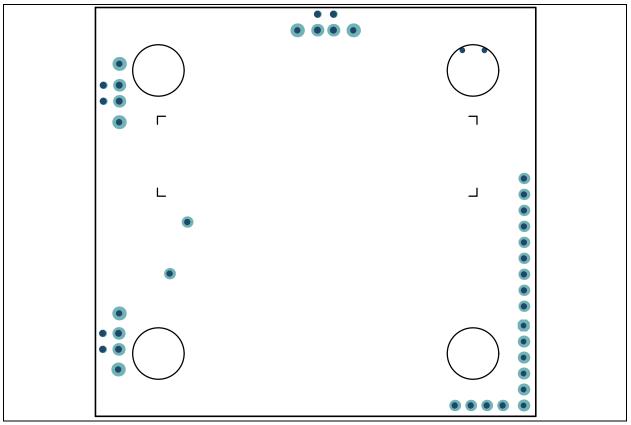
- Board Schematic
- Board Top Silk
- Board Top Copper and Silk
- Board Top Copper
- Board Bottom Copper
- Board Bottom Copper and Silk
- Board Bottom Silk


A.2 BOARD - SCHEMATIC


A.3 BOARD - TOP SILK


A.4 BOARD - TOP COPPER AND SILK


A.5 BOARD - TOP COPPER


A.6 BOARD - BOTTOM COPPER

A.7 BOARD - BOTTOM COPPER AND SILK

A.8 BOARD - BOTTOM SILK

MCP19215 Dual Boost/SEPIC Evaluation Board User's Guide						
NOTES:						

Appendix B. Bill of Materials (BOM)

TABLE B-1: MCP19215 DUAL BOOST/SEPIC EVALUATION BOARD (ADM00799) BILL OF MATERIALS (Note 1)

Qty.	Reference	Description	Manufacturer	Part Number
5	C1, C15 C27-C29	1 μF 50V Ceramic Capacitor X7R 0805 (2012 Metric) 0.079 L x 0.049" W (2.00 mm x 1.25 mm)	Murata Electronics, Inc.	GRM21BR71H105KA12L
1	C2	0.10 µF 50V Ceramic Capacitor X7R 0603 (1608 Metric) 0.063" L x 0.031" W (1.60 mm x 0.80 mm)	Murata Electronics, Inc.	GRM188R71H104KA93D
4	C3, C4 C13, C14	82 pF 50V Ceramic Capacitor C0G, NP0 0603 (1608 Metric) 0.063" L x 0.031" W (1.60 mm x 0.80 mm)	Murata Electronics, Inc.	GRM1885C1H820JA01D
4	C5, C6 C17, C18	4700 pF 50V Ceramic Capacitor X7R 0603 (1608 Metric) 0.063" L x 0.031" W (1.60 mm x 0.80 mm)	KEMET	C0603C472K5RACTU
9	C7, C8 C10-C12 C19, C20 C22, C23	10 μF 50V Ceramic Capacitor X7R 1210 (3225 Metric) 0.126" L x 0.098" W (3.20 mm x 2.50 mm)	TDK Corporation	C3225X7R1H106M250AC
1	C9	4.7 μF 25V Ceramic Capacitor X7R 0805 (2012 Metric) 0.079" L x 0.049" W (2.00 mm x 1.25 mm)	TDK Corporation	C2012X7R1E475K125AB
2	C16, C25	27 pF 50V Ceramic Capacitor C0G, NP0 0603 (1608 Metric) 0.063" L x 0.031" W (1.60 mm x 0.80 mm)	KEMET	C0603C270J5GACTU
1	C21	2.2 µF 100V Ceramic Capacitor X7R 1210 (3225 Metric) 0.126" L x 0.098" W (3.20 mm x 2.50 mm)	KEMET	C1210C225K1RACTU
2	C24, C26	2200 pF 50V Ceramic Capacitor X7R 0603 (1608 Metric) 0.063" L x 0.031" W (1.60 mm x 0.80 mm)	KEMET	C0603C222K5RACTU
2	D1, D2	Diode Schottky 40V 2A Surface Mount DO-214AC (SMA)	Vishay/Dale	SS24S-E3/61T
3	J1-J3	2 Position Wire-to-Board Terminal Block Horizontal with Board 0.100" (2.54 mm) Through Hole	PHOENIX CONTACT	1725656
1	J4	Connector USB 2.0 Mini-B Female SMD R/A	Hirose Electric Co., Ltd.	UX60-MB-5ST
1	J5	6 Positions Header, Unshrouded Connector 0.100" (2.54 mm) Through Hole Gold or Gold, GXT™	Amphenol Commercial	68001-106HLF
1	L1	Surface Mount Power Inductor 10 µH 4A 20% SMD L12.3W12.3H6	Coilcraft	MSS1260-103MLD

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

MCP19215 Dual Boost/SEPIC Evaluation Board User's Guide

TABLE B-1: MCP19215 DUAL BOOST/SEPIC EVALUATION BOARD (ADM00799) BILL OF MATERIALS (Note 1) (CONTINUED)

Qty.	Reference	Description	Manufacturer	Part Number
1	L2	Shielded Coupled Power Inductor 4.7 µH 3.16A 20% SMD L12.3W12.3H6	Coilcraft	MSD1260-472MLB
1	LD1	Green 571nm LED Indication - Discrete 2V 0603 (1608 Metric)	Lite-On [®] , Inc.	LTST-C191KGKT
2	Q1, Q2	MOSFET N-CH 60V 6A 8-SOIC	Vishay Siliconix	SI4850EY-T1-E3
4	PAD1-PAD4	Bumper Cylindrical, Tapered 0.312" Dia (7.92 mm) Polyurethane Black	3M	SJ61A11
1	РСВ	MCP19215 Dual Boost/SEPIC Evaluation Board – Printed Circuit Board	_	04-10611
4	R1, R2 R5, R6	RES SMD 220 OHM 5% 1/10W 0603	ROHM Semiconductor	MCR03EZPJ221
2	R3, R11	RES TKF 150k 1% 1/8W SMD 0603	KOA Speer Electronics, Inc.	SG73S1JTTD1503F
1	R4	RES SMD 3.3 OHM 1% 1/10W 0603	Panasonic - ECG	ERJ-3RQF3R3V
2	R7, R12	RES SMD 100 OHM 5% 1/10W 0603	Vishay/Dale	CRCW0603100RJNEA
2	R8, R14	RES SMD 13K OHM 1% 1/10W 0603	Panasonic - ECG	ERJ-3EKF1302V
4	R9, R10 R15, R16	RES TKF 0.1R 1% 1/2W SMD 1206	Bourns [®] , Inc.	CRM1206-FX-R100ELF
2	R13, R17	RES SMD 680 OHM 1% 1/10W 0603	Panasonic - ECG	ERJ-3EKF6800V
1	R18	RES SMD 820 OHM 5% 1/10W 0603	Panasonic - ECG	ERJ-3GEYJ821V
2	R19, R20	RES SMD 4.7K OHM 5% 1/10W 0603	Panasonic - ECG	ERJ-3GEYJ472V
3	TP1, TP4 TP7	Red PC Test Point, Miniature 0.100" Dia x 0.180" L (2.54 mm x 4.57 mm) Phosphor Bronze, Silver Plating 0.040" (1.02 mm) Hole Diameter Mounting Type	Keystone Electronics Corp.	5000
3	TP2, TP5 TP8	Black PC Test Point, Miniature 0.100" Dia x 0.180" L (2.54 mm x 4.57 mm) Phosphor Bronze, Silver Plating 0.040" (1.02 mm) Hole Diameter Mounting Type	Keystone Electronics Corp.	5001
3	TP27-TP29	Natural PC Test Point 0.128" x 0.065" x 0.079" (3.25 mm x 1.65 mm x 2.00 mm) Brass, Tin Plating Surface-Mount Mounting Type	Harwin Plc.	S1751-46R
1	U1	Analog Dual PWM Controller 2 MHz MCP19215-E/S8 QFN-32	Microchip Technology, Inc.	MCP19215-E/S8
1	U2	Interface USB I ² C/UART MCP2221-I/SL SOIC-14	Microchip Technology, Inc.	MCP2221-I/SL

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA

Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY

Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 **China - Shanghai**

Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399

Fax: 31-416-690340 **Norway - Trondheim** Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820