D.C. Milli-Ohm Meter

GOM-804 & GOM-805

USER MANUAL

GW INSTEK PART NO. 82OM-80500EA1
This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of the Good Will company.

The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the right to change specifications, equipment, and maintenance procedures at any time without notice.

Good Will Instrument Co., Ltd.
No. 7-1, Jhongsing Rd., Tucheng Dist., New Taipei City 236, Taiwan.
Table of Contents

SAFETY INSTRUCTIONS ... 5
 Safety Symbols ... 5
 Safety Guidelines ... 6

GETTING STARTED .. 9
 GOM-804/805 Characteristics ... 10
 Key Features ... 13
 Model Lineup ... 14
 Front Panel Overview ... 15
 TFT-LCD Overview ... 19
 Rear Panel Overview .. 21
 Set Up .. 23

MEASUREMENT ... 27
 Resistance Measurement .. 29
 Compare Function ... 41
 Binning Function ... 46
 Temperature Measurement ... 50
 Temperature Compensation ... 52
 Temperature Conversion .. 56
 Measurement Settings ... 60
 System Settings .. 69

HANDLER/SCAN INTERFACE ... 77
 Handler Overview ... 78
 Pin Definitions for the Handler Interface 80
 Scan Overview ... 82
 Configure Interface ... 90

SAVE/RECALL .. 99

COMMAND OVERVIEW ... 102
 Command Syntax ... 102
 Command List .. 105
BINNing Commands .. 108
Calculate Commands 113
Memory Commands .. 120
Sense Commands ... 122
Source Commands .. 126
Status Commands .. 127
System Commands .. 128
Temperature Commands 133
Trigger Commands ... 138
Userdefine Commands 141
IEEE 488.2 Common Commands 143
Status system ... 146

FAQ .. 147

APPENDIX .. 148
Function Selection Combinations 149
Temperature Measurement 150
Specifications ... 153
Dimensions .. 156
Declaration of Conformity 157

INDEX ... 158
SAFETY INSTRUCTIONS

This chapter contains important safety instructions that you must follow when operating the GOM-804/805 or when keeping it in storage. Read the following before any operation to insure your safety and to keep the GOM-804/805 in the best possible condition.

Safety Symbols

These safety symbols may appear in this manual or on the GOM-804/805.

- **WARNING**: Identifies conditions or practices that could result in injury or loss of life.
- **CAUTION**: Identifies conditions or practices that could result in damage to the instrument or to other properties.
- **DANGER**: High Voltage
- **Attention**: Refer to the Manual
- **Protective Conductor Terminal**
- **Earth (ground) Terminal**
- Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.
Safety Guidelines

General Guideline

![CAUTION]

- Do not place any heavy objects on the instrument.
- Avoid severe impact or rough handling that leads to damaging the instrument.
- Do not discharge static electricity to the instrument.
- Use only mating connectors, not bare wires, for the terminals.
- Do not disassemble the instrument unless you are qualified as service personnel.

(Note) EN 61010-1:2010 specifies the measurement categories and their requirements as follows. The GOM-804/805 doesn't fall under category II, III or IV.
- Measurement category IV is for measurements performed at the source of low-voltage installation.
- Measurement category III is for measurements performed in the building installation.
- Measurement category II is for measurements performed on the circuits directly connected to the low voltage installation.

Power Supply

![WARNING]

- AC Input voltage: 100 - 240 V AC, 50 - 60Hz, 25VA
- The power supply voltage should not fluctuate more than 10%.
- Connect the protective grounding conductor of the AC power cord to an earth ground, to avoid electrical shock.

Cleaning the GOM-804/805

- Disconnect the power cord before cleaning.
- Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid into the instrument.
- Do not use chemicals or cleaners containing harsh material such as benzene, toluene, xylene, and acetone.

Operation Environment

- Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)
- Temperature Range: 0~35°C, Relative Humidity: <80%RH; >35°C, Relative Humidity: <70%RH
- Altitude: < 2000m
- Operating Environment: 0°C to 40°C (operation)
- Pollution Degree 2
(Note) EN 61010-1:2010 specifies the pollution degrees and their requirements as follows. The GOM-804/805 falls under degree 2. Pollution refers to “addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity”.

- Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
- Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected.
- Pollution degree 3: Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.

Storage Environment
- Location: Indoor
- Storage Conditions: −10°C to 70°C
- Temperature Range: 0~35°C, Relative Humidity: <90%RH; >35°C, Relative Humidity: < 80%RH

Disposal
Do not dispose this instrument as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.
Power cord for the United Kingdom

When using the instrument in the United Kingdom, make sure the power cord meets the following safety instructions.

NOTE: This lead / appliance must only be wired by competent persons

⚠️ WARNING: THIS APPLIANCE MUST BE EARTHED

IMPORTANT: The wires in this lead are coloured in accordance with the following code:

- Green/ Yellow: Earth
- Blue: Neutral
- Brown: Live (Phase)

As the colours of the wires in main leads may not correspond with the coloured marking identified in your plug/appliance, proceed as follows:

The wire which is coloured Green & Yellow must be connected to the Earth terminal marked with either the letter E, the earth symbol ⊕ or coloured Green/Green & Yellow.

The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.

The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.

If in doubt, consult the instructions provided with the equipment or contact the supplier.

This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, a cable of 0.75mm² should be protected by a 3A or 5A fuse. Larger conductors would normally require 13A types, depending on the connection method used.

Any exposed wiring from a cable, plug or connection that is engaged in a live socket is extremely hazardous. If a cable or plug is deemed hazardous, turn off the mains power and remove the cable, any fuses and fuse assemblies. All hazardous wiring must be immediately destroyed and replaced in accordance to the above standard.
GETTING STARTED

This chapter describes the GOM-804/805 in a nutshell, including its main features as well as its front and rear panels. After going through the panel overview, follow the Power-up sequence before attempting to use the instrument.

Please note the information in this manual was correct at the time of printing. However, as GW Instek continues to improve its products, changes can occur at any time without notice. Please see the GW Instek website for the latest information and content.

Characteristics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOM-804/805 Characteristics</td>
<td>10</td>
</tr>
<tr>
<td>Key Features</td>
<td>13</td>
</tr>
<tr>
<td>Model Lineup</td>
<td>14</td>
</tr>
</tbody>
</table>

Panel Overview

<table>
<thead>
<tr>
<th>Panel Overview</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel Overview</td>
<td>15</td>
</tr>
<tr>
<td>TFT-LCD Overview</td>
<td>19</td>
</tr>
<tr>
<td>Rear Panel Overview</td>
<td>21</td>
</tr>
</tbody>
</table>

Setup

<table>
<thead>
<tr>
<th>Setup</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt Stand</td>
<td>23</td>
</tr>
<tr>
<td>Power Up</td>
<td>24</td>
</tr>
<tr>
<td>4 Wire Kelvin Connection</td>
<td>25</td>
</tr>
<tr>
<td>Zeroing (Relative Function)</td>
<td>26</td>
</tr>
</tbody>
</table>
GOM-804/805 Characteristics

GOM-804 and GOM-805 are modern high precision programmable DC Milli-ohm meters suitable for low resistance measurements of switches, relays, connectors, PCB tracks and a variety of other devices. The meters feature a color TFT-LCD screen with easy-to-read measurement results. With the easy-to-use features, superior performance and automatic test interfaces, these meters are dependable instruments for resistance measurements.

Easy to Use Features

Each test function on the GOM-804/805 can be easily activated by pressing a single front panel key. All the settings and measurement results are displayed and set on the TFT-LCD panel at the same time making each function naturally intuitive to use.

Each primary and secondary measurement result is displayed prominently on the display along with any corresponding settings. For sequential measurement results, such as those from the scan or binning function, are tabulated in an intuitive and easy-to-read format.

In addition, the meters can recall previously used settings upon startup, allowing the meter to be ready the next time it used in a matter of moments. The meters can also save or recall up to 20 sets of function settings.

Performance

The GOM-804/805 has nine selectable measurement ranges from 50mΩ to 5MΩ, a constant current source of 1uA to 1A, an accuracy of up to 0.05%, a 1uΩ resolution and performs measurements using four wire Kelvin connections for accurate, consistent measurements.

The ability to choose between high accuracy measurements at 10 samples/sec (full scale at 50000 counts) or high speed measurements at 60 samples/sec (full scale at 50000 counts), allows the GOM-804/805 the flexibility to fulfill a number of different measurement roles.
Advanced Temperature Measurements

The GOM-804/805 has a number of advanced temperature functions that can be used with the optional temperature probe, PT-100.

The temperature compensation function can extrapolate what the resistance of a DUT will be at a desired temperature, if the temperature coefficient of the DUT and the resistance of the DUT at ambient temperature are known.

The temperature conversion function can be used to extrapolate what the temperature rise of a DUT will be at specified resistance if the initial resistance, initial temperature and the constant for the DUT are known.

Drive Signals

The GOM-805 can select a number of different drive signals to suit a number of different measurement scenarios, for example the Pulse setting can be used to cancel the effects of thermoelectric EMF on the measurement results.

Dry Circuit Testing

Dry circuit testing allows the GOM-805 to measure the contact resistance of switches and connectors according to the DIN IEC 512 and ASTM B539 standards. The open circuit voltage will not exceed 20mV in this mode to prevent the oxidization layer on metal switches and connector points from breakdown. GOM-805 only.

Automatic Testing

For automatic testing The GOM-804/805 has a handler interface designed for automatic testing. The handler interface outputs the status of PASS, FAIL, HI, LO, READY and EOT signals and inputs a trigger control signal. Automatic testing is used with the binning, compare and scan functions.

For computer control applications, RS-232 and USB are standard remote interfaces, with GPIB as standard only for the GOM-805 and GOM-804G.
Applications

- Production testing for contact resistance of switches, relays, connectors, cables and printed circuit boards and other low resistance devices.
- Component testing of resistors, motors, fuses and heating elements.
- Incoming inspection and quality assurance testing.
- Conductivity evaluation for product design.
Key Features

- 50,000 counts
- Measurement Range: 50mΩ~5MΩ
- Accuracy of up to 0.05%
- Compare function
- Binning function
- Manual or Auto-ranging
- Continuous or Triggered measurement modes
- Temperature measurement, temperature compensation and temperature conversion
- Four-wire Kelvin measurement method
- Selectable power-on settings
- Diode test
- Alarm settings for function-specific PASS/FAIL test results
- Sampling rate: 10 or 60 sampling/sec
- Standard interfaces: USB/RS232/Scan/Handler/GPIB(GOM-805, GOM-804G)
- Save/Recall settings: 20 memory sets
- External I/O logic function
Model Lineup

<table>
<thead>
<tr>
<th>Feature / Model</th>
<th>GOM-804</th>
<th>GOM-804G*</th>
<th>GOM-805</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohm Measurement</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Compare Function</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Diode Measurement</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Temp. Compensation</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Temp. Conversion</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Temp Measurement</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Dry Circuit</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Drive Selection</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Binning Function</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIB Interface</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>RS-232 Interface</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>USB Device Interface</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Handler/EXT IO/Scan Interface</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Temperature Sensor Interface</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

* The GOM-804G is simply the GOM-804 with the factory-installed GPIB option. Please note that the GPIB option cannot be user-installed on the GOM-804. The option must be ordered prior to purchase.
Front Panel Overview

Power Switch

Turns On or Off the main power. For details about the power up sequence, see page 24.

Measurement Terminals

Source, Sense Terminals

Sense+ and Sense- terminals.

Current source terminals: Source+ and Source-.

CAUTION

When measuring components with polarity, connect Source+ to the positive potential and connect Source- to the negative potential of the component.

WARNING

Discharge any DUT before measurement to avoid damaging the GOM-804/805.
<table>
<thead>
<tr>
<th>GND Terminal</th>
<th>![GND Terminal]</th>
<th>Connect the GND (ground) terminal to the earth ground.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GUARD Terminal</td>
<td>![GUARD Terminal]</td>
<td>The GUARD terminal has the same potential as earth, but cannot be substituted for it. Connect the GUARD terminal to the cable shield layer of the test leads to help reduce noise.</td>
</tr>
<tr>
<td>Function Keys</td>
<td>![Ohm]</td>
<td>The Ohm key activates the resistance measurement function.</td>
</tr>
<tr>
<td></td>
<td>![Compare]</td>
<td>The Compare key activates the comparator function.</td>
</tr>
<tr>
<td></td>
<td>![Binning]</td>
<td>The Binning key activates the binning function to grade the DUTs into eight bins according to the tolerance settings. GOM-805 only.</td>
</tr>
<tr>
<td></td>
<td>![TC]</td>
<td>The TC key activates the TC (temperature compensation) function which calculates the resistance of a DUT at a specified temperature given the resistance of the DUT at the ambient temperature and the temperature coefficient of the DUT is known.</td>
</tr>
<tr>
<td></td>
<td>![TCONV]</td>
<td>The TCONV (Temperature Conversion) function calculates the temperature of a DUT given an initial temperature, initial resistance, measured resistance and a constant (inferred zero resistance temperature) for the DUT.</td>
</tr>
<tr>
<td></td>
<td>![TEMP]</td>
<td>The TEMP key activates the temperature measurement function.</td>
</tr>
</tbody>
</table>
The Speed key toggles between 10 samples per second and 60 samples per second (Slow rate and Fast rate).

The REL key is used to perform a zero adjustment to the test leads or a DUT.

The RT key is used to display the real-time (not averaged) measured resistance value.

The Scan key is used to turn on the Scan function.

The Dry key is used to turn on the dry circuit measurement mode which allows the GOM-805 to measure the contact resistance of switches and connectors according to DIN IEC 512 and ASTM B539 standards. GOM-805 only.

When in the internal trigger mode, pressing the Trigger key will turn on the external trigger mode. When in the external trigger mode, pressing the Trigger key will perform a manual trigger.

A long press of the Trigger key when in external trigger mode will reset the trigger mode back to the internal trigger mode.

The Display key toggles between the standard display mode and the simplified display mode (sans menus and display icons).

The LOCAL key will switch the milliohm meter between local and remote mode.

The Diode key is used to turn on the Diode measurement function.
The Drive key in conjunction with the up/down arrow keys is used to select the measuring signal: DC+, DC-, Pulse, PWM, Zero. In particular, the Zero setting can be used as a +/-10mV DC voltmeter to measure the EMF of passive components. See page 33 for details. GOM-805 only. The drive signal is fixed to DC+ on the GOM-804.

Long pressing the Range key will activate the auto ranging mode.

The Range key in conjunction with the up/down arrow keys is used to select the resistance measurement range.

When in auto ranging mode, pressing the Range key will activate the manual ranging mode.

The ESC key cancels the current setting and returns the cursor to its default location or returns to the previous menu, depending on the circumstances.

The arrow keys and Enter key are used to edit parameters, to navigate the menu system and to select parameter ranges.
TFT-LCD Overview

The function control indicators show all the currently active settings for the selected function mode:

<table>
<thead>
<tr>
<th>Function-Control Indicators</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Func</td>
<td>Currently selected function mode</td>
</tr>
<tr>
<td>Range</td>
<td>The measurement range. Auto indicates that auto ranging is active</td>
</tr>
<tr>
<td>Trigger mode</td>
<td>Int/Ext</td>
</tr>
<tr>
<td>Rate</td>
<td>Slow/Fast</td>
</tr>
<tr>
<td>Drive:</td>
<td>DC+, DC-, Pulse, PWM, Zero</td>
</tr>
<tr>
<td>Rel</td>
<td>Shows the relative (nominal) reference value</td>
</tr>
<tr>
<td>Avg</td>
<td>Number of samples used for the Average function</td>
</tr>
<tr>
<td>Dry</td>
<td>Indicates that the dry circuit function is active</td>
</tr>
<tr>
<td>Err</td>
<td>Indicates a remote command error</td>
</tr>
<tr>
<td>Main Measurement Display</td>
<td>Indicates that the unit is in remote control mode</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Mem No.</td>
<td>Indicates which memory setting has been recalled</td>
</tr>
</tbody>
</table>

| **Function Mode Settings** | Shows any function mode-specific settings. |

<table>
<thead>
<tr>
<th>Secondary Menus</th>
<th>The secondary menus show global menus (Meas. Setup, System, Memory) as well as function-specific secondary menus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meas. Setup</td>
<td>Goes to the global Measurement Setup menu.</td>
</tr>
<tr>
<td>System</td>
<td>Goes to the global System menu.</td>
</tr>
<tr>
<td>Memory</td>
<td>Allows you to save, recall and clear memory settings.</td>
</tr>
<tr>
<td>View</td>
<td>Shows the all results for all the channels when a scan has finished.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clears the measurement results in the Binning function when the display mode is set to Count.</td>
</tr>
</tbody>
</table>
Rear Panel Overview

AC Input

Accepts the power cord. AC 100 - 240Vac; 50 - 60Hz.

For the power up sequence, see page 24.

RS-232 Port

Accepts an RS-232C cable for remote control; DB-9 male connector.

For remote control details, see page 92.

GPIB Port

Accepts a GPIB cable for remote control. See page 93 for details.

USB Device Port

USB device port for remote control. See page 90 for details.

Handler / Scan / EXT I/O Port

The Handler / Scan / EXT I/O port is used to output pass/fail/high/low comparison results. This port is also used for the user-programmable EXT I/O pins.
<table>
<thead>
<tr>
<th>Temperature Sensor Port</th>
<th>TC SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The temperature sensor input is for the optional PT-100 temperature probe.</td>
</tr>
</tbody>
</table>
Set Up

Tilt Stand

Tilt To tilt, pull the legs forward, as shown below.

Stand Upright To stand the unit upright, push the legs back under the casing as shown below.
Power Up

1. Connection

Ensure that the input AC power voltage is within the range of 100~240 V.

Connect the power cord to the AC Voltage input.

⚠️ CAUTION

Ensure the ground connector of the power cord is connected to a safety ground. This will affect the measurement accuracy.

1. Power up

Press the main power switch on the front panel.

The display will light up and show the last setting used before the last shut down.

Example:
Resistance measurement mode
4 Wire Kelvin Connection

Background
The GOM-804/805 uses 4 wire Kelvin connections for accurate measurements.

Connection Diagram

![Diagram of 4 wire Kelvin connection](image)

Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Port</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source +</td>
<td>The Source + terminal carries the measuring current source. It is connected to the + side of the DUT.</td>
<td></td>
</tr>
<tr>
<td>Source -</td>
<td>The Source - terminal accepts the signal return current and connects to the – side of the DUT.</td>
<td></td>
</tr>
<tr>
<td>Sense +</td>
<td>Monitors the positive (+) potential.</td>
<td></td>
</tr>
<tr>
<td>Sense -</td>
<td>Monitors the negative (-) potential.</td>
<td></td>
</tr>
<tr>
<td>Guard</td>
<td>Grounds the shielding layer of the test lead cables to reduce noise.</td>
<td></td>
</tr>
<tr>
<td>GND</td>
<td>Provides a reference ground for the GOM-804/805.</td>
<td></td>
</tr>
</tbody>
</table>
Zeroing (Relative Function)

Background
The Relative function is used to perform a zero adjustment on the test leads.

After the Relative value is pre-set, each measurement that is displayed is equal to the actual value minus the relative preset value.

Note
The Relative function cannot be used with the Scan or Diode functions.

1. Short the cables
Short the test cables together as shown in the diagram below:

2. Set the Reference value
Press the REL key.

3. Relative mode display appears
Before REL

After REL

Rel: Indicates the Relative function is active
Measurement

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>Resistance Measurement</td>
</tr>
<tr>
<td></td>
<td>Select the Resistance Range</td>
</tr>
<tr>
<td>Drive Signal</td>
<td>Measuring Signal (Drive) Overview</td>
</tr>
<tr>
<td></td>
<td>Select Measuring Signal (Drive)</td>
</tr>
<tr>
<td>Rate</td>
<td>Select Measurement Rate</td>
</tr>
<tr>
<td>Display Mode</td>
<td>Display Mode</td>
</tr>
<tr>
<td>Real-Time</td>
<td>View Real-Time Measurement</td>
</tr>
<tr>
<td>Dry-Circuit</td>
<td>Dry-Circuit Measurement</td>
</tr>
<tr>
<td>Trigger</td>
<td>Using the Trigger Function</td>
</tr>
<tr>
<td>Diode</td>
<td>Diode Function</td>
</tr>
<tr>
<td>Compare Function</td>
<td>Compare Function</td>
</tr>
<tr>
<td>Binning Function</td>
<td>Binning Function</td>
</tr>
<tr>
<td>Temperature</td>
<td>Temperature Measurement</td>
</tr>
</tbody>
</table>

27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Compensation</td>
<td>52</td>
</tr>
<tr>
<td>Temperature Conversion</td>
<td>56</td>
</tr>
<tr>
<td>Measurement Settings</td>
<td></td>
</tr>
<tr>
<td>Average Function</td>
<td>60</td>
</tr>
<tr>
<td>Measure Delay</td>
<td>61</td>
</tr>
<tr>
<td>Trigger Delay</td>
<td>63</td>
</tr>
<tr>
<td>Trigger Edge</td>
<td>64</td>
</tr>
<tr>
<td>Temperature Unit</td>
<td>65</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>66</td>
</tr>
<tr>
<td>Line Frequency</td>
<td>67</td>
</tr>
<tr>
<td>PWM Setting</td>
<td>68</td>
</tr>
<tr>
<td>System Settings</td>
<td></td>
</tr>
<tr>
<td>System Information</td>
<td>69</td>
</tr>
<tr>
<td>Power On Status Setup</td>
<td>70</td>
</tr>
<tr>
<td>Interface</td>
<td>71</td>
</tr>
<tr>
<td>Brightness</td>
<td>72</td>
</tr>
<tr>
<td>User Define Pins</td>
<td>73</td>
</tr>
<tr>
<td>Handler Mode</td>
<td>74</td>
</tr>
<tr>
<td>Beep</td>
<td>76</td>
</tr>
</tbody>
</table>
Resistance Measurement

1. Select the Resistance function. Press Ohm to access the Resistance measurement mode.

2. Resistance mode display appears.

3. Connect the test lead and measure

4-wire resistance:
Use the SOURCE + and the SOURCE - terminal for measurement, and the SENSE +, and SENSE - terminal for sensing.

Note
When switching between measurement ranges, please allow a moment for the circuits to settle before measuring.
Select the Resistance Range

Background
The resistance range can be used with normal resistance measurement as well as the temperature compensation function.

Manual
Press the \textbf{Range} key and use the up and down arrow keys to manually select the resistance range.

Auto Range
Long press the \textbf{Range} key to turn on automatic ranging.

Selection List

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mΩ</td>
<td>1uΩ</td>
</tr>
<tr>
<td>500mΩ</td>
<td>10uΩ</td>
</tr>
<tr>
<td>5Ω</td>
<td>100uΩ</td>
</tr>
<tr>
<td>50Ω</td>
<td>1mΩ</td>
</tr>
<tr>
<td>500Ω</td>
<td>10mΩ</td>
</tr>
<tr>
<td>5kΩ</td>
<td>100mΩ</td>
</tr>
<tr>
<td>50kΩ</td>
<td>1Ω</td>
</tr>
<tr>
<td>500kΩ</td>
<td>10Ω</td>
</tr>
<tr>
<td>5MΩ</td>
<td>100Ω</td>
</tr>
</tbody>
</table>

\textbf{Note}
For detailed specifications, please see the specifications on page 153.
Measuring Signal (Drive) Overview

Background
Resistance measurement has 5 different measuring signals that can be applied to obtain a resistance measurement: DC+, DC-, Pulse, PWM, Zero. These 5 signals are described in below.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Drive Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC+</td>
<td>GOM-805</td>
<td>Default drive signal.</td>
</tr>
<tr>
<td>DC-</td>
<td>GOM-805</td>
<td>Negative drive signal.</td>
</tr>
<tr>
<td>Pulse</td>
<td></td>
<td>This mode can be used to eliminate the thermoelectric EMF formed on the contact between a test lead and a DUT.</td>
</tr>
<tr>
<td>PWM</td>
<td></td>
<td>This mode can be used to avoid heating up the DUT and thus avoid having the measurement accuracy compromised on temperature-sensitive DUTs.</td>
</tr>
<tr>
<td>Zero</td>
<td></td>
<td>In this mode, GOM-805 outputs no measuring signal on the Source loop; therefore, the Sense loop can be used as a voltage meter which can measure up to +/-10mV for thermoelectric EMF measurement. This function is useful for measuring the Vemf of thermocouple wires.</td>
</tr>
</tbody>
</table>

Note: The Drive function is only applicable to the GOM-805. The Drive signal for the GOM-804 is fixed to DC+.

DC+
- **V**
 - ~ +6.5V
 - 0V
 - Open circuit voltage
 - Default drive signal.

DC-
- **V**
 - 0V
 - ~ -6.5V
 - Open circuit voltage
 - Negative drive signal.

Pulse
- **V**
 - ~ +6.5V
 - 0V
 - ~ -6.5V
 - 50ms
 - This mode can be used to eliminate the thermoelectric EMF formed on the contact between a test lead and a DUT.

PWM
- **V**
 - ~ +6.5V
 - 0V
 - ON duty
 - This mode can be used to avoid heating up the DUT and thus avoid having the measurement accuracy compromised on temperature-sensitive DUTs.

Zero
- **V**
 - 0V
 - t
 - In this mode, GOM-805 outputs no measuring signal on the Source loop; therefore, the Sense loop can be used as a voltage meter which can measure up to +/-10mV for thermoelectric EMF measurement. This function is useful for measuring the Vemf of thermocouple wires.
A note about Thermoelectric EMF

When making low resistance measurements, thermoelectric electromotive force (Vemf) can affect measurement accuracy. Vemf is created at the junction of two dissimilar metals, such as the contact point of a test lead and the pin of a DUT. Vemf adds a small but measurable voltage to the measurement.

There are primarily two different methods to compensate for Vemf in low resistance measurements: Offset Compensation and Vemf Cancelling. The GOM-805 uses Vemf Cancelling with the pulse drive signal setting (see page 33).

The Pulse drive mode supplies a positive and a negative measurement current source.

This produces a positive and negative measurement voltage across the DUT, which also includes the Vemf (V1+Vemf & V2+Vemf).

To cancel the Vemf, V2 is deducted from V1 and divided by 2 to get the average measurement, as shown in the formula below:

\[
V_x = \frac{(V1 + Vemf) - (V2 + Vemf)}{2}
\]

Where \(V_x\) = measured voltage sans Vemf.
Select Measuring Signal (Drive)

Background Resistance measurement has 5 different measuring signals that can be applied to obtain a resistance measurement: DC+, DC-, Pulse, PWM, Zero.

⚠️ Note The Drive function is only applicable to the GOM-805. The drive signal for the GOM-804 is fixed to DC+.

The Drive function cannot be used with the Scan or Diode functions. In addition, the “Zero” drive setting is only available with the Ohm measurement function.

1. Select Drive Press the Drive key and use the up and down arrow keys to select a drive signal.

<table>
<thead>
<tr>
<th>Drive Range</th>
<th>DC+, DC-, Pulse, PWM, Zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Range in the display</td>
<td>DC+</td>
</tr>
<tr>
<td>Drive selection indicator</td>
<td>DC+</td>
</tr>
<tr>
<td>Set drive signal</td>
<td>DC+</td>
</tr>
</tbody>
</table>
Select Measurement Rate

Background

The resistance measurement speed has 2 ranges: slow and fast. Slow speed is the most accurate with 10 measurements/second. Fast speed has 60 measurements/second. Both have the same measurement resolution.

The rate selection function is not applicable in Diode measurement mode. When the PWM drive signal is used or when the Scan function is activated, the only available rate setting is fast.

1. Select Rate

Press the Speed key to toggle between the Slow and Fast rates.
Display Mode

Background

The Display key can be used to toggle between the normal and the simplified display mode. The simplified display mode clears all text, menus and function indicators from the screen except for the measurement and measurement mode indicators.

1. Toggle Display mode

Press the Display key to toggle the display between normal and simplified. The display will change accordingly.

Simplified Display Mode Example

Measurement mode

61.82 Ω

Measurement
View Real-Time Measurement

Background
When measurements are smoothed using the averaging function, the RT key can be used to view the real-time results in addition to the averaged results.

See page 60 for Average configuration.

1. Toggle Real-Time display
Press the RT key to toggle the real-time display on or off.

The real-time measurement will appear in the bottom left-hand corner.

![Real-time measurement](image)
Dry-Circuit Measurement

Background
The Dry Circuit measurement function is used where the maximum open-circuit voltage must be kept to a minimum for applications such as measuring the contact resistance of switches, relays and connectors. The GOM-805 provides a maximum of up to 20mV in this mode.

Note
Dry circuit testing is for switch and connector contact resistance. Switch and connector contact resistance measurement is in accordance with DIN IEC 512 and ASTM B539 which requires that the open circuit voltage of the measuring device should not exceed 20mV DC. Voltage at such low levels avoids the breakdown of any oxides that may be present on the contacts. In this mode the open circuit measuring voltage is limited <20mV, while modes like DC+ or pulse mode can have an open circuit measuring voltage as high as 6.5V.

The Dry Circuit function cannot be used with the Scan or Diode functions. In addition, when the Dry Circuit function is turned on, only 3 drive settings are available: DC+, DC- and Pulse.

Dry Limitations
When the Dry Circuit measurement function is turned on, the measurement range is reduced. See the specifications for more details.

<table>
<thead>
<tr>
<th>Range</th>
<th>Dry Mode</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mΩ</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>500mΩ</td>
<td>✔</td>
<td>Slow/Fast</td>
</tr>
<tr>
<td>5Ω</td>
<td>✔</td>
<td>Slow/Fast</td>
</tr>
<tr>
<td>50Ω</td>
<td>✔</td>
<td>Slow/Fast</td>
</tr>
<tr>
<td>500Ω</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>5kΩ</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>50kΩ</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>500kΩ</td>
<td>✗</td>
<td></td>
</tr>
<tr>
<td>5MΩ</td>
<td>✗</td>
<td></td>
</tr>
</tbody>
</table>
1. Toggle Dry mode on or off

Press the **Dry** key to toggle the dry circuit measurement mode on or off.

The DRY function indicator will appear in the middle of the display when active.

![Dry Circuit measurement mode indicator]

Using the Trigger Function

Background

The GOM-804/805 can use internal or manual triggering for the Resistance, Temperature, Temperature Compensation, Temperature Conversion, Binning, Handler and Scan modes. By default the GOM-804/805 is set to internal triggering mode.

1. Select Manual Trigger

Short press **Trigger** to switch to manual triggering mode.

The Ext indicator will be shown on the display when the manual trigger is active.

![Trigger source]

2. Manually Triggering Measurements

Short press the **Trigger** key each time you want to start a single measurement (when in the manual mode).
3. Internal Triggering

Long press [Trigger] to return the triggering mode back to internal mode.

The Int indicator will be shown on the display.

Internal trigger source
Diode Function

Background

The Diode function can be used to measure the forward bias voltage of a diode under test.

1. Select the Diode function.

Press Diode to access the Diode measurement mode.

2. Diode mode appears.

Diode function indicator

3. Connect the test lead and measure

Connect the Sense+, Source+ to the anode.
Connect the Sense-, Source- to the cathode.
Compare Function

Background

The compare function compares a measured value to a “Reference” value that has an upper (HI) and lower (LO) limit. If the measured value is within the upper and lower limit, then the measured value is judged as IN.

There are three compare modes that can be used to make a judgment: ABS, △% and % modes.

The ABS mode displays the absolute difference between the measured and the reference value (shown as △) and compares the measured value to the upper (HI) and lower (LO) limit. The upper and lower limits are set as absolute resistance values.

A measured value that falls within the upper and lower limits is considered IN (pass), a value that falls below the lower limits is considered LO, and a value that falls over the upper limit is a HI.

[Note that the reference value in the ABS mode is only for reference purposes and is not used to make a judgment.]
The $\triangle %$ compare function displays the deviation of the measured value from the reference value as a percentage.

$$\frac{(\text{Measured Value} - \text{Reference})}{\text{Reference}} \times 100\%$$.

The upper (HI) and low (LO) limits are set as a percentage from the reference value. (Identical to the $\triangle %$ compare mode)

A measured value that falls within the upper and lower limits is considered IN (pass), a value that falls below the lower limits is considered LO, and a value that falls over the upper limit is a HI.

The $%$ compare mode displays the measured value as a percentage of the reference value $\left(\frac{\text{Measured Value}}{\text{Reference Value}}\right) \times 100\%$.

The upper (HI) and low (LO) limits are set as a percentage from the reference value. (Identical to the $\triangle %$ compare mode)
A measured value that falls within the upper and lower limits is considered IN (pass), a value that falls below the lower limits is considered LO, and a value that falls over the upper limit is a HI.

For all the compare modes, IN, HI or LO will be shown on the display for each judgment.

1. Select the compare function
 Press \(\text{Compare}^*\) to access the compare mode, as shown above.

2. Select the compare mode
 Use the arrow keys to navigate to the Mode setting. Press the Enter key to toggle the compare mode.
3. Reference value setting

Use the arrow keys to navigate to the Reference setting and press Enter.

Use the left and right arrow keys to select a digit. Use the up and down arrow keys to edit the value of the selected digit and the unit. Press Enter to confirm the setting.

Range: 000.0001 ~ 999.9999 (mΩ/Ω/kΩ/MΩ)

Note

After setting the Reference value, the displayed △, % or △% values will be changed to reflect the new Reference value setting.

4. Upper & lower limit setting

Use the arrow keys to navigate to the Upper or Lower limit setting and press Enter.

Use the left and right arrow keys to select a digit. Use the up and down arrow keys to edit the value of the selected digit. Press Enter to confirm the setting.

Repeat for the other limit (Upper or Lower).

Setting Range: ABS mode: 000.0000 ~ 999.9999 (mΩ/Ω/kΩ/MΩ)
△% and % mode:
-999.99 ~ +999.99

Note

The upper limit must be higher than the lower limit. Not setting the upper limit higher than the lower limit is not allowed. Likewise the lower limit cannot be set higher than the upper limit.
5. Beep setting

Use the arrow keys to navigate to the Beep setting. Press Enter to toggle the beep setting.

Beep Setting: Off, Pass, Fail

Note

The Beep setting can also be set from the System>Utility>Beep>Compare menu.
Binning Function

Background

The Binning function is used to grade DUTs into eight different bins according to 8 sets of upper and lower limits. Two compare modes can be used in this function, ABS and △% modes.

1. Select the Binning function

Press the Binning key to access this function.

2. Select the compare mode

Use the arrow keys to go to the Mode setting. Press Enter to toggle between ABS or △% compare modes.

ABS Mode

The ABS mode allows you to set the upper and lower limits of each bin as absolute resistance values.

△ %

The Delta % mode allows you to set the upper and lower limits of each bin as percentage value from the reference value.
Note

For further details on the ABS or △% compare modes, see the description in the Compare section, page 41.

3. Reference value setting

Although the 8 bins have their own upper and lower limits, they still share a common reference value.

Use the arrow keys to go to the Reference setting and press Enter.

Use the left and right arrow keys to select a digit. Use the up and down arrow keys to edit the value of the selected digit and the unit. Press Enter to confirm the setting.

Range

000.0001 ~ 999.9999 (mΩ/Ω/kΩ/MΩ)

4. Upper & lower limit settings

Use the arrow keys to go to the upper limit of the first bin and press Enter.

Use the Left and Right arrow keys to select a digit. Use the Up and Down arrow keys to edit the value of the selected digit and unit. Press the Enter key to confirm the setting.

Repeat for the lower setting.

Repeat for the remaining bins.

Setting range

ABS mode: 000.0000 ~ 999.9999 (mΩ/Ω/kΩ/MΩ)
△% mode: -999.99 ~ +999.99
Note: The upper limit must be higher than the lower limit. Not setting the upper limit higher than the lower limit is not allowed. Likewise the lower limit cannot be set higher than the upper limit.

5. Beep setting

Use the arrow keys to navigate to the Beep setting.

Press Enter to toggle the beep setting.

Beep setting: Off, Pass, Fail

Note: The Beep setting can also be set from the System>Utility>Beep>Binning menu.

6. To start binning

The binning function starts automatically if you are in internal trigger mode.

If you are using the manual triggering mode, press the trigger button or apply a pulse on the trigger pin of the Handler interface to start binning.

See page 38 to set the triggering modes.

7. Display the binning results

There are two different display modes to view results.

The Comp (Compare) display mode is the default display mode. This mode will display the currently measured value and displays which of the bins (if any) the measured value is graded as.
The Count display mode tabulates the results on the right-hand side of the display and shows the bin settings on the left.

Upper and lower limits of Bin 1~8

To toggle the display mode, go to the Disp setting and press Enter.

8. How to clear the result count

When in the Count display mode, press the ESC key. Go to the Clear setting and press Enter. The accumulated results will be cleared from the display.
Temperature Measurement

Background

The temperature measurement function uses the optional PT-100 temperature probe. The measured temperature is displayed on the display. For more information on the optional PT-100 sensor, see the appendix on page 149.

There is only one range for the temperature function. However, the resistance measurement range can still be changed when in the temperature function.

Note:

The temperature measurement function is used in conjunction with the Ohm measurement function. The two measurements share the same display, so the Ohm readings stay on the display even after the temperature measurement function is activated. Thus when the Temperature function is selected, “Ohm+T” is shown as the selected function.

1. Select the Temperature function

Press TEMP to enter the temperature measurement function.

The temperature is displayed on the Ohm display.

2. Select the temperature units

From the bottom menu, go to Meas. Setup>Temperature Unit and select °C or °F.

See page 65 for setting details.
3. Ambient Temperature

The Ambient temperature setting should be turned off when using the temperature function.

From the bottom menu go to Meas. Setup > Ambient Temperature and turn the Ambient Temperature setting off.

See page 66 for setting details.

4. Temperature mode connection

The temperature sensor uses the rear panel TC Sensor port for input.

PT-100 temperature sensor
Temperature Compensation

Background

If the resistance of a DUT at a particular temperature is needed, the compensation function can be used. This function can simulate the resistance of a DUT at a desired temperature. If the ambient temperature and the temperature coefficient of the DUT are known, it is possible to determine the resistance of a DUT at any temperature.

The Temperature Compensation works on the following formula:

\[
R_{t0} = \frac{R_t}{1 + a_{to}(t-t_0)}
\]

Where:
\(R_t \) = Measured resistance value (Ω)
\(R_{t0} \) = Corrected resistance value (Ω)
\(T_0 \) = Inferred absolute temperature
\(t_0 \) = Corrected temperature (°C)
\(t \) = Current ambient temperature (°C)
\(a_{to} \) = Temperature coefficient of resistance at the correct temperature.

\[
a_{to} = \frac{1}{|T_0| + t_0}.
\]
1. Select the Temperature Compensation mode

Press **TC** to access the Temperature Compensation function.

The temperature-compensated resistance measurement will appear on the display.

Temperature compensation function indicator

Extrapolated resistance measurement at the desired ("correct") temperature

Ambient temperature source

Correct Temperature, Temperature Coefficient settings

2. Ambient Temperature

The ambient temperature can be either measured with the PT-100 sensor or be set manually.

If using the PT-100 sensor the Ambient temperature setting should be turned off. If the PT-100 probe is not used, then the ambient temperature needs to be manually set.

From the bottom menu, go to Meas. Setup > Ambient Temperature and set the ambient temperature.

See page 66 for setting details.

Range

Off, -50.0 °C – 399.9°C
3. Temperature compensation

Use arrow keys to go to Correct Temperature or to Temperature Coefficient and press Enter to select the setting.

To edit the setting values use the left and right arrow keys to select a digit and use the up and down arrow keys to edit the digit. Press Enter to confirm the setting.

<table>
<thead>
<tr>
<th>Desired Temperature range</th>
<th>-50.0 ~ +399.9 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Coefficient range</td>
<td>-9999 ~ +9999 ppm</td>
</tr>
</tbody>
</table>

Below are the inferred zero resistance temperatures of some common conductors:

<table>
<thead>
<tr>
<th>Material</th>
<th>Inferred Absolute Temperatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>-243</td>
</tr>
<tr>
<td>Copper</td>
<td>-234.5</td>
</tr>
<tr>
<td>Gold</td>
<td>-274</td>
</tr>
<tr>
<td>Aluminium</td>
<td>-236</td>
</tr>
<tr>
<td>Tungsten</td>
<td>-204</td>
</tr>
<tr>
<td>Nickel</td>
<td>-147</td>
</tr>
<tr>
<td>Iron</td>
<td>-162</td>
</tr>
</tbody>
</table>
3. Temperature compensation connection

Sensor Connection:

Note: If the sensor is not connected, then the Ambient temperature needs to be manually set.

DUT connection:

4 wire Kelvin:
Temperature Conversion

Background

The Temperature Conversion function allows you to determine the temperature change of a DUT at any given resistance, if the initial temperature, the inferred zero resistance temperature for the DUT and the initial resistance of the DUT are known. The displayed result can also be extrapolated to calculate the final temperature (T) or the extrapolated temperature difference (\(\Delta T\))*.

Temperature Conversion function works on the following formula:

\[
\frac{R_2}{R_1} = \frac{t_0 + t_2}{t_0 + t_1}
\]

Where:

- \(R_2\) = resistance @ temperature \(t_2\)
- \(R_1\) = resistance @ temperature \(t_1\)
- \(t_0\) = inferred zero resistance temperature in °C**
- \(t_1\) = temperature at \(R_1\)
- \(t_2\) = temperature at \(R_2\)

The temperature conversion function is can be used to determine the temperature of transformer windings, electric motors, or other materials where it may not be practical to embed a temperature sensor.

*(T) Final temperature = \(t_2 = \Delta T + T_A\)

(\(T_A\)) Ambient temperature = Ambient temperature when \(R_2\) is measured. \(T_A\) can either by manually measured with the PT-100 sensor or it can be manually set.

(\(\Delta T\)) Extrapolated temperature difference = \(T - T_A\)

**“Constant” setting on the panel display is equivalent to the absolute value of the inferred zero resistance temperature.
Common inferred zero resistance temperatures

Metallic conductors show increased resistivity when temperature is increased, and likewise show reduced resistivity when temperature is reduced. Inferred zero resistance temperature is simply the inferred temperature at which the material will have no resistance. This value is derived from the temperature coefficient of the material. Note: the inferred zero resistance temperature is an ideal value, and not a real-world value.

<table>
<thead>
<tr>
<th>Material</th>
<th>Inferred zero resistance temp. in ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>-243</td>
</tr>
<tr>
<td>Copper</td>
<td>-234.5</td>
</tr>
<tr>
<td>Gold</td>
<td>-274</td>
</tr>
<tr>
<td>Aluminium</td>
<td>-236</td>
</tr>
<tr>
<td>Tungsten</td>
<td>-204</td>
</tr>
<tr>
<td>Nickel</td>
<td>-147</td>
</tr>
<tr>
<td>Iron</td>
<td>-162</td>
</tr>
</tbody>
</table>

1. Select the Temperature compensation mode.

Press TCONV to access the temperature compensation function.

The temperature-converted measurement will appear on the display.
2. Initial Resistance, Initial Temperature and Constant settings

Use the arrows keys to go to Initial Resistance, Initial Temperature or Constant (inferred initial resistance temperature) and press Enter.

Use the left and right arrow keys to select a digit and use the up and down arrow keys to edit the digit. Press Enter to confirm the edit.

<table>
<thead>
<tr>
<th>Initial Resistance</th>
<th>000.0001~999.9999 mΩ, Ω, kΩ, MΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Temperature</td>
<td>-50.0 ~ +399.9 °C</td>
</tr>
<tr>
<td>Constant</td>
<td>000.0~999.9</td>
</tr>
</tbody>
</table>

3. Display mode

Use the arrow keys to go to Disp. Press Enter to toggle between the T and \(\Delta T \) modes.

- \(T \) displays the extrapolated temperature at the measured resistance of the DUT.
- \(\Delta T \) displays the difference from the extrapolated temperature at the measured resistance of the DUT and the ambient temperature. Please refer to page 56 for further details.

3. Temperature compensation connection.

Sensor Connection:

PT-100 temperature sensor
DUT connection

4 wire Kelvin:
Measurement Settings

Background

The following measurement settings are used to configure the various measurement modes.

Average Function

Background

The average function smoothes measurements using a moving average. The average function sets the number of samples used for the moving average; a higher number results in smoother measurement results. The average function is turned off by default.

1. Select Average setting

From one of the main screens, press the ESC key so that the menu system at the bottom of the display has focus.

Go to Meas. Setup and press Enter.
Go to Average and press Enter.

2. Average setting appears

Use the arrow keys to turn Average on and set the average number. Press Enter to confirm the setting.

<table>
<thead>
<tr>
<th>Average settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure Setup</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>ON, OFF</td>
</tr>
<tr>
<td>Measure Delay</td>
</tr>
</tbody>
</table>

Average OFF, ON: 2–100

Note

Pressing ESC before pressing ENTER will exit the Average function settings.
Measure Delay

Background

The Measure Delay setting inserts a delay time between each measurement. Measure delay is turned off by default.

The measure delay setting is useful for measuring components that need some time to charge if the default measurement start time is not adequate. An adequate delay time allows the meter to avoid the effects of transient disturbances that are usually seen when measuring reactive DUTs with a current source.

1. Select Measure Delay setting

From one of the main screens, press the ESC key so that the menu system at the bottom of the display has focus.

Go to Meas. Setup and press Enter.

Go to Measure Delay and press Enter.

2. Measure Delay setting appears

Use the arrow keys to turn Measure Delay on and set the delay time. Press Enter to confirm the setting.

Measure Delay* OFF, ON: 000.000 ~ 100.000s

* When the set value is > 0.1s, the resolution is 0.1s. When the set value is < 0.1s, the resolution is 1mS.
Note

Pressing ESC before pressing ENTER will exit the Measure Delay settings.
Trigger Delay

Background

The Trigger Delay setting adds a delay to when an external trigger signal is recognized. Normally the external trigger is recognized when there is no contact bounce in the signal for a fixed length of time, this time is known as the bounce monitoring window. This ensures that the external trigger signal is stable before it is recognized. The Trigger Delay time starts right after the bounce monitoring window ends.

The Trigger Delay setting is turned off by default.

Note

Pin 2 of the Handler/Scan/Ext I/O interface is used for external triggering, See page 77 for pinout details.

1. **Select Trigger Delay setting**

From one of the main screens, press the `ESC` key so that the menu system at the bottom of the display has focus.

Go to Meas. Setup and press Enter.

Go to Trigger Delay and press Enter.
2. Trigger Delay setting appears

Use the arrow keys to turn Trigger Delay on and set the delay time. Press Enter to confirm the settings.

```
<table>
<thead>
<tr>
<th>Trigger Delay setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF, ON: 0 ~ 1000ms</td>
</tr>
</tbody>
</table>
```

⚠️ Note

Pressing ESC before pressing ENTER will exit the Trigger Delay settings.

Trigger Edge

Background

The Trigger Edge setting sets the external trigger edge as rising or falling. By default the trigger edge is set to rising.

1. Select Trigger Edge setting

From one of the main screens, press the ESC key so that the menu system at the bottom of the display has focus.

Go to Meas. Setup and press Enter.
Go to Trigger Edge and press Enter.

2. Trigger Edge setting appears

Use the arrow keys to set the Trigger Edge. Press Enter to confirm the setting.

```
<table>
<thead>
<tr>
<th>Trigger Edge setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rising, Falling</td>
</tr>
</tbody>
</table>
```

⚠️ Note

Pressing ESC before pressing ENTER will exit the Trigger Edge settings.
Temperature Unit

Background

Temperature units can be set to Fahrenheit or Celsius for all temperature measurements.

1. Select Temperature Unit setting

From one of the main screens, press the **ESC** key so that the menu system at the bottom of the display has focus.

Go to Meas. Setup and press Enter.

Go to Temperature Unit and press Enter.

2. Temperature Unit setting appears

Use the arrow keys to set the Temperature Unit. Press Enter to confirm the setting.

<table>
<thead>
<tr>
<th>Temperature Unit</th>
<th>Fahrenheit, Celsius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meas. Setup menu icon</td>
<td>Move Setup System More</td>
</tr>
<tr>
<td>Move</td>
<td></td>
</tr>
<tr>
<td>Enter</td>
<td></td>
</tr>
</tbody>
</table>

Note

Pressing ESC before pressing ENTER will exit the Temperature Unit setting.
Ambient Temperature

Background

The Ambient Temperature setting is used to set the ambient (room temperature) for the Temperature Compensation or Temperature Conversion function in the absence of the PT-100 temperature sensor. See page 52 and 56 respectively for details.

1. Select Ambient Temperature setting

From one of the main screens, press the key so that the menu system at the bottom of the display has focus.

Go to Meas. Setup and press Enter.

Go to Ambient Temperature and press Enter.

2. Ambient Temperature setting appears

Use the arrow keys to set the Ambient Temperature. Press Enter to confirm the setting.

Ambient Temperature Off, On: -50ºC ~ 399.9ºC

Note

Pressing ESC before pressing ENTER will exit the Ambient Temperature setting.
Line Frequency

Background
The Line Frequency setting selects the appropriate line filter to reduce the influence of the AC line frequency on the milliohm measurements. This setting is set to AUTO by default.

1. **Select Line Frequency setting**
 From one of the main screens, press the **ESC** key so that the menu system at the bottom of the display has focus.
 Go to Meas. Setup and press Enter.
 Go to Line Frequency and press Enter.

2. **Line Frequency setting appears**
 Use the arrow keys to set the Line Frequency. Press Enter to confirm the setting.

 Line Frequency:
 - Auto
 - 50Hz
 - 60Hz

 Note
 Pressing ESC before pressing ENTER will exit the Line Frequency setting.
PWM Setting

Background

The PWM setting will set the duty of the PWM Drive setting. The duty is set with ON and OFF times for the waveform.

See page 31 for Drive setting details.

1. Select PWM setting

From one of the main screens, press the Esc key so that the menu system at the bottom of the display has focus.

Go to Meas. Setup and press Enter.

Go to PWM and press Enter.

2. PWM setting appears

Use the arrow keys to set the ON and OFF time for the duty. Press Enter to confirm the setting.

<table>
<thead>
<tr>
<th>Line frequency</th>
<th>1 Time Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>60Hz</td>
<td>16.6mS</td>
</tr>
<tr>
<td>50Hz</td>
<td>20mS</td>
</tr>
</tbody>
</table>

*The ON time setting is set in “time units”, not milliseconds. The amount of time in a time unit depends on the line frequency settings (see page 67).

Note

Pressing ESC before pressing ENTER will exit the PWM setting.
System Settings

Background
The System settings are used to view the system information, set the power on state, the remote interface, screen brightness, external interface and beep settings as well as access the calibration menu.

System Information

Background
The System Information will show the manufacturer, model, software version and serial number of the unit. The system information is the equivalent of the return string from the *idn? query (page 144).

1. View System Information
From one of the main screens, press the key so that the menu system at the bottom of the display has focus.

Go to System and press Enter.
System information will be displayed at the top of the System menu.

Note
Pressing ESC will exit from the System menu.
Power On Status Setup

Background
The Power On Status Setup allows you to either load the previous settings or the default settings on startup.

1. Select Power On Status setting
From one of the main screens, press the ESC key so that the menu system at the bottom of the display has focus.
Go to System and press Enter.
Go to Power On Status Setup and press Enter.

2. Power On Status Setup appears
Use the arrow keys to set Power ON Status Setup. Press Enter to confirm the setting.

Note
Pressing ESC before pressing ENTER will exit the Power On Status Setup.

Power On Status Recall Previous Settings, Load Default
Interface

Background
The remote interface can be set to RS232, GPIB or USB.

⚠️ Note
The GPIB interface is only available on the GOM-804G and the GOM-805.

1. Select Interface setting
From one of the main screens, press the ESC key so that the menu system at the bottom of the display has focus.
Go to System and press Enter.
Go to Utility and press Enter.
Go to Interface and press Enter.

2. Interface setting appears
Use the arrow keys to choose an interface and to set the baud rate (RS232) or primary address (GPIB). The EOL (end of line) character can also be set. Press Enter to confirm the settings.

<table>
<thead>
<tr>
<th>Interface</th>
<th>GPIB, Primary Address (1 ~ 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RS232, Baud Rate (1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200)</td>
</tr>
<tr>
<td></td>
<td>USB</td>
</tr>
<tr>
<td>EOL</td>
<td>LF, CR, CR+LF, LF+CR (default = LF)</td>
</tr>
</tbody>
</table>

See page 104 for further details.

⚠️ Note
Pressing ESC before pressing ENTER will exit from the Interface settings.
Brightness

Background
The Brightness setting sets the backlight brightness of the TFT-LCD panel.

1. Select Brightness setting
From one of the main screens, press the key so that the menu system at the bottom of the display has focus.
Go to System and press Enter.
Go to Utility and press Enter.
Go to Brightness and press Enter.

2. Brightness setting appears
Use the arrow keys to set the brightness level. Press Enter to confirm the setting.

![System menu icon]

![Brightness]

Brightness 01 (dim) ~ 05 (bright)

Note
Pressing ESC before pressing ENTER will exit from the Brightness settings.
User Define Pins

Background

The External I/O User Define Pin settings set the logic and the active level for the Define 1 and Define 2 pins on the Handler/Scan/EXT I/O port on the rear panel. The External I/O pins are used with the compare or bin functions. The logic settings can be based on the pass, fail, high, low or bin grade results of the selected function.

1. Select External I/O Setting

From one of the main screens, press the **ESC** key so that the menu system at the bottom of the display has focus.

Go to System and press Enter.

Go to Utility and press Enter.

Go to External I/O and press Enter.

2. External I/O Menu Appears

Use the arrow keys to choose either User Define 1 or User Define 2 and press Enter.

Use the arrow keys to set the active level of the pin when the logic conditions are true and to set the logic settings. Press Enter to confirm the settings.

User Define 1/2:

- **Pin Active:** High, Low

Logic:

<table>
<thead>
<tr>
<th>Operand1</th>
<th>Operator</th>
<th>Operand2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail</td>
<td>Logical OR, Logical AND, OFF*</td>
<td>Fail</td>
</tr>
<tr>
<td>Pass</td>
<td>Logical OR, Logical AND, OFF*</td>
<td>Pass</td>
</tr>
<tr>
<td>Low</td>
<td>Logical OR, Logical AND, OFF*</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>Logical OR, Logical AND, OFF*</td>
<td>High</td>
</tr>
<tr>
<td>Bin O**</td>
<td>Logical OR, Logical AND, OFF*</td>
<td>Bin O**</td>
</tr>
<tr>
<td>Bin 1 ~ 8</td>
<td>Logical OR, Logical AND, OFF*</td>
<td>Bin 1 ~ 8</td>
</tr>
</tbody>
</table>
*The OFF operator sets the Logic as true when Operand1 is true.

** Bin O is defined as outside bin 1~8.

Note
The Bin logic settings are not available for the GOM-804.
Pressing ESC before pressing ENTER will exit from the selected External I/O setting.

Handler Mode

Background
The Handler Mode setting determines the behavior of the result signals from the handler interface. There are two settings, Clear and Hold. The Clear setting will clear the results of the previous test before starting the succeeding one and the Hold setting will keep the test result of the previous test until the succeeding test has completed.

The timing diagrams below are used as examples. All the result signals in the examples are active high.

Clear example
Clear: All result signals (PASS, Fail, High and Low) are cleared at the falling edge of EOT and the results from the current test are output at the rising edge of the EOT signal.
Hold example

Hold: The results of the previous tests are held until the current test has completed.

1. Select External I/O setting

From one of the main screens, press the ESC key so that the menu system at the bottom of the display has focus.

Go to System and press Enter.
Go to Utility and press Enter.
Go to External I/O and press Enter.

2. External I/O menu appears

Use the arrow keys to choose Handler Mode and press Enter.

Use the arrow keys to set the handler mode. Press Enter to confirm the setting.

Pressing ESC before pressing ENTER will exit from the Handler Mode setting.
Beep

Background
The Beep setting will configure the beeper sound for the key presses, the Compare function and the Binning function.

For the Compare and Binning function the beep can be configured to beep on a pass or fail judgment.

1. Select Beep setting
From one of the main screens, press the **ESC** key so that the menu system at the bottom of the display has focus.

Go to System and press Enter.
Go to Utility and press Enter.
Go to Beep and press Enter.

2. Beep menu appears
Use the arrow keys to choose a beep setting and press Enter.

Use the arrow keys to set the selected setting and press Enter to confirm.

Beep Settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Key Click</th>
<th>Compare</th>
<th>Binning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Click</td>
<td>On, Off</td>
<td>Off. Pass, Fail</td>
<td>Off. Pass, Fail</td>
</tr>
<tr>
<td>Compare</td>
<td>Off. Pass, Fail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binning</td>
<td>Off. Pass, Fail</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note
Pressing ESC before pressing ENTER will exit from the selected Beep setting.
Handler/Scan Interface

Handler Overview
- Handler Overview..78
- Pin Definitions for the Handler Interface.........................80
- Handler Interface for Binning and Compare Functions80

Scan Overview
- Scan Overview...82
- Pin Definitions for the SCAN Interface...............................83
- Scan Interface ...83
- Scan Setup ..84
- Scan Output ...88

GOM-802 Compatibility
- GOM-802 Compatibility for Scan and Handler Interfaces89
- GOM-805 to GOM-802 Handler/Scan Interface89

Remote Interface
- Configure USB Interface...90
 - Install USB Driver ...91
 - Configure RS-232 Interface...92
 - Configure GPIB Interface ...93
 - RS232/USB Function Check ..93
 - Using Realterm to Establish a Remote Connection94
- GPIB Function ...96
Handler Overview

Background

The Handler interface is used to help grade components based on the Compare or Binning function test results. The appropriate pins on the handler interface are active when the Compare or Binning function is used.

There are 17 TTL outputs and 1 TTL inputs. The Handler interface is only applicable with the Binning function or Compare measurement modes.

⚠️ Note

Please see following pages for related functions and settings:
- Compare function: 41
- Binning function: 46
- Ext I/O settings: 73
- Handler mode settings 74

Interface and pin assignment

25-Pin D-SUB (Female)

<table>
<thead>
<tr>
<th>Pin assignment</th>
<th>TRIGGER</th>
<th>READY</th>
<th>EOT</th>
<th>BIN 1~8</th>
<th>BIN OUT</th>
<th>LOW</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Starts the trigger for a single measurement.</td>
<td>High when the measurement has finished. The instrument is ready for the next trigger.</td>
<td>High when the AD conversion has completed. The DUT is ready to be changed.</td>
<td>High when the sorting result is in one of the eight bin grades. Bin1~8 (pass).</td>
<td>High when the sorting result is out of all the eight bin grades (Bin1~8). The status of this pin reflects either a HI or LO result (fail).</td>
<td>High when the compare result is deemed LO.</td>
<td>High when the compare result is deemed HI.</td>
</tr>
</tbody>
</table>
FAIL
High when the compare result is either HI or LO (fail).

PASS
High when the compare result is IN (pass).

For the full pin definition, please refer to the table listed below.

| Note | The output current from all the pins and the VINT(+5V) pin cannot exceed 60mA. |
Pin Definitions for the Handler Interface

As this interface is used for the handler and scan functions, the interface pinout depends on the function mode. The following pinout is only applicable when using the Binning or Compare function.

HANDLER / SCAN / EXT I/O

![Interface Diagram]

Handler Interface for Binning and Compare Functions

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
<th>Active modes</th>
<th>In/Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 17</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Trigger</td>
<td>Trigger for a single measurement.</td>
<td>All</td>
<td>In</td>
</tr>
<tr>
<td>3, 14, 18</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fail</td>
<td>High when the compare result is either HI or LO (fail).</td>
<td>Compare</td>
<td>Out</td>
</tr>
<tr>
<td>5</td>
<td>High</td>
<td>High when the compare result is deemed HI.</td>
<td>Compare</td>
<td>Out</td>
</tr>
<tr>
<td>6</td>
<td>Pass</td>
<td>High when the compare result is IN (pass).</td>
<td>Compare</td>
<td>Out</td>
</tr>
<tr>
<td>7</td>
<td>EOT</td>
<td>High when the AD conversion has completed. The DUT is ready to be changed.</td>
<td>Ext trigger mode</td>
<td>Out</td>
</tr>
<tr>
<td>8</td>
<td>VINT</td>
<td>Internal DC Voltage +5V.</td>
<td></td>
<td>Out</td>
</tr>
<tr>
<td>9</td>
<td>Bin1</td>
<td>High when the binning sorting result is within the bin1 setting range.</td>
<td>Binning</td>
<td>Out</td>
</tr>
<tr>
<td>10</td>
<td>Bin2</td>
<td>High when the binning sorting result is within the bin2 setting range.</td>
<td>Binning</td>
<td>Out</td>
</tr>
<tr>
<td>11</td>
<td>Bin3</td>
<td>High when the binning sorting result is within the bin3 setting range.</td>
<td>Binning</td>
<td>Out</td>
</tr>
<tr>
<td>12</td>
<td>Bin4</td>
<td>High when the binning sorting result is within the bin4 setting range.</td>
<td>Binning</td>
<td>Out</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Bin5</td>
<td>High when the binning sorting result is within the bin5 setting range.</td>
<td>Binning</td>
<td>Out</td>
</tr>
<tr>
<td>15</td>
<td>Userdefine2</td>
<td>High or low when the user define2 logic conditions are met.</td>
<td>Compare, Binning</td>
<td>Out</td>
</tr>
<tr>
<td>16</td>
<td>Userdefine1</td>
<td>High or low when the user define1 logic conditions are met.</td>
<td>Compare, Binning</td>
<td>Out</td>
</tr>
<tr>
<td>19</td>
<td>VEXT</td>
<td>External DC Voltage, acceptable range is +5V.</td>
<td></td>
<td>In</td>
</tr>
<tr>
<td>20</td>
<td>Ready</td>
<td>High when the measurement has finished. The instrument is ready for the next trigger.</td>
<td>Ext trigger mode</td>
<td>Out</td>
</tr>
<tr>
<td>21</td>
<td>Bin6</td>
<td>High when the binning sorting result is within the bin6 setting range.</td>
<td>Binning</td>
<td>Out</td>
</tr>
<tr>
<td>22</td>
<td>Low</td>
<td>High when the compare result is deemed LO.</td>
<td>Compare</td>
<td>Out</td>
</tr>
<tr>
<td>23</td>
<td>Bin7</td>
<td>High when the binning sorting result is within the bin7 setting range.</td>
<td>Binning</td>
<td>Out</td>
</tr>
<tr>
<td>24</td>
<td>Bin8</td>
<td>High when the binning sorting result is within the bin8 setting range.</td>
<td>Binning</td>
<td>Out</td>
</tr>
<tr>
<td>25</td>
<td>Bin Out</td>
<td>High when the binning sorting result is out of all the bin setting ranges.</td>
<td>Binning</td>
<td>Out</td>
</tr>
</tbody>
</table>

For backwards compatibility with the GOM-802 handler interface, please see page 89.
Scan Overview

Background

The Scan function is used to automatically bin groups of up to 100 components. The associated pins in the handler interface are active when the Scan function is activated.

There are a total of 6 outputs, 3 inputs as well as a GND and power (+5V) pin.

<table>
<thead>
<tr>
<th>Interface and pin assignment</th>
<th>25Pin D-SHELL (Female)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pin Assignment</th>
<th>Relay</th>
<th>Pass</th>
<th>Low</th>
<th>High</th>
<th>Clock</th>
<th>STRB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pass signal. Indicates the compare result is IN(pass).</td>
<td>Low signal. Indicates a LO compare result.</td>
<td>High signal. Indicates a HI compare result.</td>
<td>The clock signal will pulse high when each group of output signals (Relay, Pass, Low, High) are ready. There are up to 100 groups of output signals.</td>
<td>After all (100) output groups are ready, the STRB signal will pulse high.</td>
</tr>
</tbody>
</table>
Pin Definitions for the SCAN Interface

As this interface is used for the handler and scan functions, the interface pinout depends on the function mode. The following pinout is only applicable when using the Scan function.

Scan Interface

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
<th>In/Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,9-13,15-17,21,23-25</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Trigger</td>
<td>Start for Scan measurement.</td>
<td>In</td>
</tr>
<tr>
<td>3,14,18</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>High signal. Indicates a HI compare result.</td>
<td>Out</td>
</tr>
<tr>
<td>5</td>
<td>Clock</td>
<td>The clock signal will pulse high when each group of output signals (Relay, Pass, Low, High) are ready. There are up to 100 groups of output signals.</td>
<td>Out</td>
</tr>
<tr>
<td>6</td>
<td>Low</td>
<td>Low signal. Indicates a LO compare result.</td>
<td>Out</td>
</tr>
<tr>
<td>7</td>
<td>Pass</td>
<td>Pass signal. Indicates an IN compare result (pass).</td>
<td>Out</td>
</tr>
<tr>
<td>8</td>
<td>VINT</td>
<td>Internal DC Voltage +5V.</td>
<td>Out</td>
</tr>
<tr>
<td>19</td>
<td>VEXT</td>
<td>External DC Voltage, acceptable range is +5V.</td>
<td>In</td>
</tr>
<tr>
<td>20</td>
<td>Relay</td>
<td>Controls the relay output.</td>
<td>Out</td>
</tr>
<tr>
<td>22</td>
<td>STRB</td>
<td>After all (up to 100) output groups are ready, the STRB signal will pulse high.</td>
<td>Out</td>
</tr>
</tbody>
</table>

For backwards compatibility with the GOM-802 scanner interface, please see page 89.
Scan Setup

Background

The Scan function sequentially scans up to 100 channels and grades the resistance of the DUT on each channel to a reference value. An automated handler or test fixture is required to interface the DUTs to the measurement terminals and the scan interface that controls the timing of each scan.

Note: The automated handler/test fixture is user-supplied. Please see your distributor for support and technical details.

Grading of each DUT is essentially the same as the compare function (page 41), the difference being the Scan function will compare up to 100 DUTs sequentially, whereas the Compare function will compare only one DUT at a time.

The scan function compares a measured value to a “Reference” value that has an upper (HI) and lower (LO) limit. If the measured value is within the upper and lower limit, then the measured value is judged as IN.

There are two modes that can be used to make a judgment: ABS and △% modes.

The ABS mode compares the measured value to the upper (HI) and lower (LO) limits. The upper and lower limits are set as absolute resistance values.

The △% compare function compares the deviation of...
the measured value from the reference value as a percentage.
\[\left(\frac{\text{Measured Value} - \text{Reference}}{\text{Reference}} \right) \times 100 \% \].

A measured value that falls within the upper and lower limits is considered IN (pass), a value that falls below the lower limits is considered LO, and a value that falls over the upper limit is a HI.

For both scan modes, the IN, HI or LO will be shown on the display for each judgment (if the time between each judgment is not too fast).

Display Overview

1. **Select the Scan function**
 - Press Scan Scan to access the scan mode, as shown above.

2. **Select the compare mode**
 - Use the arrow keys to navigate to the Mode setting. Press the Enter key to toggle the compare mode.

<table>
<thead>
<tr>
<th>Range</th>
<th>Abs, △ %</th>
<th>Move</th>
<th>Toggle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Channel setting

The Channel setting sets the number of DUT channels that are used.

Use the arrow keys to navigate to the Channel setting and press Enter.

Use the left and right arrow keys to select a digit. Use the up and down arrow keys to edit the value of the selected digit. Press Enter to confirm the setting.

Channel Range: 01 ~ 100

4. Delay setting

The Delay setting adds a pause between each channel measurement.

The Use the arrow keys to navigate to the Delay setting and press Enter.

Use the left and right arrow keys to select a digit. Use the up and down arrow keys to edit the value of the selected digit. Press Enter to confirm the setting.

Delay Range: 400ms ~ 30000ms

5. Start the scan.

Press the Trigger key or input a pulse signal on the Trigger pin of the SCAN interface port to start a scan test.

Note

See page 64 to set the external trigger edge as a rising or falling leading edge.

The results will be displayed on the screen as each test is performed. The results will also be output through the scan port until the scan has finished.
6. View Results

After the last SCAN test has finished, press the ESC key so that the menu system at the bottom of the display has focus.

Go to View and press Enter to view the results of each channel.

Use the Previous and Next soft-keys to view each page.

Use the Back soft-key to return to the previous window.
Scan Output

Background The timing diagrams for the scan output under different conditions are shown below.

<table>
<thead>
<tr>
<th>Ready message displayed…</th>
<th>After the manual trigger key is pressed…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay</td>
<td>Relay</td>
</tr>
<tr>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Clock</td>
<td>Clock</td>
</tr>
<tr>
<td>STRB</td>
<td>STRB</td>
</tr>
</tbody>
</table>

Scan channel 1. Delay time has elapsed.

Scan channel n. Delay time has elapsed.

Scan Channel 100. Delay time has elapsed.

Scan output signal timing.
GOM-802 Compatibility for Scan and Handler Interfaces

As the handler interface on GOM-802 is a 9-pin D-sub and the GOM-805 is a 25-pin D-sub, the GOM-805 handler interface cannot be used with existing GOM-802 ATE equipment or environments without modification.

For backwards compatibility with the GOM-802 handler interface, please refer to the chart below:

GOM-805 to GOM-802 Handler/Scan Interface

<table>
<thead>
<tr>
<th>GOM-805 Handler Interface</th>
<th>GOM-802 Handler Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Handler</td>
</tr>
<tr>
<td>1, 17</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>Trigger</td>
</tr>
<tr>
<td>3, 14, 18</td>
<td>GND</td>
</tr>
<tr>
<td>4</td>
<td>Fail</td>
</tr>
<tr>
<td>5</td>
<td>High</td>
</tr>
<tr>
<td>7</td>
<td>EOT</td>
</tr>
<tr>
<td>8</td>
<td>VINT</td>
</tr>
<tr>
<td>9</td>
<td>Bin1</td>
</tr>
<tr>
<td>10</td>
<td>Bin2</td>
</tr>
<tr>
<td>11</td>
<td>Bin3</td>
</tr>
<tr>
<td>12</td>
<td>Bin4</td>
</tr>
<tr>
<td>13</td>
<td>Bin5</td>
</tr>
<tr>
<td>15</td>
<td>Userdefine2</td>
</tr>
<tr>
<td>16</td>
<td>Userdefine1</td>
</tr>
<tr>
<td>19</td>
<td>VEXT</td>
</tr>
<tr>
<td>20</td>
<td>Ready</td>
</tr>
<tr>
<td>21</td>
<td>Bin6</td>
</tr>
<tr>
<td>22</td>
<td>Low</td>
</tr>
<tr>
<td>23</td>
<td>Bin7</td>
</tr>
<tr>
<td>24</td>
<td>Bin8</td>
</tr>
<tr>
<td>25</td>
<td>Bin Out</td>
</tr>
</tbody>
</table>
Configure Interface

Overview
The RS-232 and USB interfaces are standard for all models, however the GPIB interface is only applicable for the GOM-804G and GOM-805. The remote control interfaces allow the GOM-804/805 to be programmed for automatic testing.

For more information on remote control programming, please see the Command Overview chapter on page 102.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>USB Device</td>
</tr>
<tr>
<td>RS-232</td>
<td>DB-9 male port</td>
</tr>
<tr>
<td>GPIB</td>
<td>24 pin female GPIB port (GOM-804G, GOM-805 only)</td>
</tr>
</tbody>
</table>

Configure USB Interface

Background
The Type B USB port on the rear panel is used for remote control. This interface creates a virtual COM port when connected to a PC.

Note
The USB interface requires the USB driver to be installed. See page 91 to install the USB driver.

1. Connect and configure to USB.
Configure the interface to USB in System>Utility>Interface menu. Page 71

Connect the Type A-B USB cable to the rear panel USB B port on the GOM-804/805.

Connect the other end to the Type A port on the PC.
Install USB Driver

Background
The USB driver needs to be installed when using the USB port for remote control. The USB interface creates a virtual COM port when connected to a PC.

1. Select the USB driver.
Configure the interface to USB in System>Utility>Interface menu.

Connect the Type A-B USB cable to the rear panel USB B port on the GOM-804/805. Connect the other end to the Type A port on the PC.

Go to the Windows Device Manager. For Windows 7 go to:
Start Menu > Control Panel > Hardware and Sound > Device Manager

The GOM-804/805 will appear as an unknown Virtual Com Port under “Other Devices”.

Right-click Other Devices and select “Update Driver Software”.

Select “Browse my computer for driver software” and select the driver on the User Manual CD.

The GOM-805 and the COM port that it is assigned to will now appear in under the Ports (COM & LPT) node.
Configure RS-232 Interface

Background
The GOM-804/805 can also use an RS-232C connection for remote control. When connecting to a PC ensure the correct baud rate, parity, data bits, stop bit and data control settings are used.

<table>
<thead>
<tr>
<th>Settings</th>
<th>Baud rate</th>
<th>1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Stop bit</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Data flow control</td>
<td>None</td>
</tr>
</tbody>
</table>

1. Select the RS-232 baud rate
Configure the interface to RS232 and set the baud rate in System>Utility>Interface menu.

Connect the RS-232C cable to the rear panel RS232 port.

RS-232 pin assignment
Pin 2: RxD
Pin 3: TxD
Pin 5: GND
Pin 1, 4, 6 ~ 9: No Connection

PC – GOM RS-232C connection
The RS232C connection uses a Null-modem connection, in which transmit (TxD) and receive (RxD) lines are cross-linked.
Configure GPIB Interface

Background
The GPIB interface is SCPI-1994, IEEE488.1 and IEEE488.2 compliant.

Note
The GPIB interface is only available on the GOM-804G and GOM-805.

1. **Select the GPIB address**
 Configure the interface to GPIB and set the GPIB address in System>Utility>Interface menu.

 Connect one end of the GPIB cable to the computer and the other end to the GPIB port on the GOM-805.

RS232/USB Function Check

Operation
Invoke a terminal application such as Realterm.

For RS-232, set the COM port, baud rate, stop bit, data bit and parity accordingly.

To check the COM settings in Windows, see the Device Manager. For example, in WinXP go to the Control panel → System → Hardware tab.

Run this query from the terminal.

*idn?

This should return the Manufacturer, Model number, and Firmware version.

GWINSTEK,GOM805,GXXXXXXXXX,V1.00

Note
If you are not familiar with using a terminal application to send/receive remote commands from the serial port or via a USB connection, please page 94 (Using Realterm to Establish a Remote Connection) for more information.
Starting a Remote Connection

Background

Realterm is a terminal program that can be used to communicate with a device attached to the serial port of a PC or via an emulated serial port via USB.

The following instructions apply to version 2.0.0.70. Even though Realterm is used as an example to establish a remote connection, any terminal program can be used that has similar functionality.

Note

Realterm can be downloaded on Sourceforge.net free of charge.

For more information please see http://realterm.sourceforge.net/

1. **Install Realterm**

 Download Realterm and install according to the instructions on the Realterm website.

2. **Configure connection**

 Connect the GOM-804/805 via USB (page 90) or via RS232 (page 92).

 If using RS232, make note of the configured baud rate.

 Go to the Windows device manager and find the COM port number for the connection. For example in Windows 7, go to the Start menu > Control Panel > Hardware and Sound > Device Manager.

 Double click the Ports icon to reveal the connected serial port devices and the COM port for each connected device.

 ![Portable Devices]
 ![Ports (COM & LPT)]
 ![GOM-804/5 CDC (COM34)]
 ![Processors]
 ![Smart card readers]
 ![Sound, video and game controllers]

 If using USB, the baud rate, stop bit and parity settings can be viewed by right-clicking connected device and selecting the Properties option.
2. Run Realterm

Start Realterm on the PC as an administrator.
Click:
Start menu> All Programs> RealTerm> realterm

Tip: to run as an administrator, you can right click the Realterm icon in the Windows Start menu and select the Run as Administrator option.

After Realterm has started, click on the Port tab.
Enter the Baud, Parity, Data bits, Stop bits and Port number configuration for the connection.

The Hardware Flow Control and Software Flow Control options can be left at the default settings.

Press Open to connect to the GOM-804/805.
3. Test remote command

Click on the Send tab.

In the EOL configuration, check on the +CR and +LF check boxes.

Enter the query:

* idn?

Click on Send ASCII.

The terminal display will return the following:

GWINSTEK,GOM805,GXXXXXXX,V1.00

(manufacturer, model, serial number, version)

4. Errors or Problems

If Realterm fails to connect to the GOM-804/805, please check all the cables and settings and try again.

GPIB Function

Background

Please use the National Instruments Measurement & Automation Controller software to confirm GPIB/LAN functionality.

1. Operation

Start the NI Measurement and Automation Explorer (MAX) program.

Using Windows, press:
Start>All Programs>National Instruments>Measurement & Automation

Step a. From the Configuration panel access;
My System>Devices and Interfaces>GPIB0

Step b. Press the Scan for Instruments button.

Step c. In the Connected Instruments panel the GOM-804/805 should be detected as Instrument 0 with the address the same as that configured on the unit.

Step d. Double click the Instrument 0 icon.

Step e. Click on the Attributes tab at the bottom.

Step f. Click on Communicate with Instrument.
Step g. In the NI-488.2 Communicator window, ensure *IND? is written in the Send String: text box. Click on the Query button to send the *IDN? query to the instrument.

Step h. The String Received text box will display the query return:

GWINSTEK,GOM805,GXXXXXXXXX, V1.00

(manufacturer, model, serial number, version)

The function check is complete.
SAVE/RECALL

The settings for all the major functions can be saved and recalled from 20 memory slots.

Settings can saved/recalled for the following functions: Ohm, Compare, Binning, TC, TCONV, TEMP, Scan, Diode.

Save/Recall Settings

Background

The save function saves the current function as well the settings related to that function.

There are 20 memory slots that can be used to save and recall settings on the GOM-804/805.

1. Enter the Memory menu

When you are in the desired function mode, press the ESC key (if necessary) to so that the menu system at the bottom of the display has focus.

Use the arrow keys to navigate to the Memory setting and press Enter.

Function mode
The Recall/Save Setup menu will appear.

2. Save/Recall/Clear Memory

The No. setting should be already highlighted when entering the Recall/Save Setup menu. If not, use the Left/Right arrow keys to highlight the No. setting.

Use the up and down arrow keys to select a memory space.

Range 01~20

*If a memory space has been used before, the settings for that memory slot will also be shown on the display.

To Save:
Use the arrow keys to go to Save and press Enter.

To Recall:
Use the arrow keys to go to Recall and press Enter.

To Clear:
Use the arrow keys to go to Clear and press Enter.
Press Enter again when asked to confirm the selected operation.

After saving the settings, press ESC to return to the current function mode.

After recalling settings, the unit will automatically go to the recalled setting function.

⚠️ Note

Pressing ESC before pressing Enter will exit the Save/Recall/Clear operation.

View memory slot availability

Press the Enter key when the No. setting is highlighted to see which memory slots are empty.

The status of memory slots 01 ~ 20 are shown at the bottom of the display.

Memory slots in red are empty slots while those in black have already been used.

Press Enter again to exit from this view.

⚠️ Note

The memory number can also be selected when in the above view using the arrow keys.
Command Overview

The Command overview chapter lists all the programming commands in alphabetical order. The command syntax section shows you the basic syntax rules you have to apply when using commands.

Command Syntax

<table>
<thead>
<tr>
<th>Compatible Standard</th>
<th>IEEE488.2</th>
<th>Partial compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCPI, 1994</td>
<td>Partial compatibility</td>
<td></td>
</tr>
</tbody>
</table>

Command Structure

SCPI (Standard Commands for Programmable Instruments) commands follow a tree-like structure, organized into nodes. Each level of the command tree is a node. Each keyword in an SCPI command represents each node in the command tree. Each keyword (node) of an SCPI command is separated by a colon (:).

For example, the diagram below shows an SCPI sub-structure and a command example.

![Command Structure Diagram](image)

Command Types

There are a number of different instrument commands and queries. A command sends instructions or data to the unit and a query receives data or status information from the unit.

<table>
<thead>
<tr>
<th>Command Types</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>A single command with/without a parameter</td>
</tr>
<tr>
<td>Example</td>
<td>SENSE:FUNCtion OHM</td>
</tr>
</tbody>
</table>

102
Query

A query is a simple or compound command followed by a question mark (?). A parameter (data) is returned.

Example

SENSe:RANGe?

Command Forms

Commands and queries have two different forms, long and short. The command syntax is written with the short form of the command in capitals and the remainder (long form) in lower case.

The commands can be written either in capitals or lower-case, just so long as the short or long forms are complete. An incomplete command will not be recognized.

Below are examples of correctly written commands.

<table>
<thead>
<tr>
<th>Long form</th>
<th>Short form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCulate:COMPutate:BEEPer</td>
<td>calc:comp:beep</td>
</tr>
<tr>
<td>CALCULATE:COMPARE:BEEPER</td>
<td>calculate:compare:beeper</td>
</tr>
</tbody>
</table>

Command Format

1. Command header
2. Space
3. Parameter

Common Input Parameters

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><Boolean></td>
<td>boolean logic</td>
<td>0,1</td>
</tr>
<tr>
<td><NR1></td>
<td>integers</td>
<td>0,1,2,3</td>
</tr>
<tr>
<td><NR2></td>
<td>decimal numbers</td>
<td>0.1,3.14,8.5</td>
</tr>
<tr>
<td><NR3></td>
<td>floating point with exponent</td>
<td>4.5e-1,8.25e+1</td>
</tr>
<tr>
<td>Message Terminator (EOL)</td>
<td><NRf></td>
<td>Any of NR1,2,3,1.1.5,4.5e-1</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>----------------------------</td>
</tr>
<tr>
<td><string></td>
<td>ASCII text string</td>
<td>TEST_NAME</td>
</tr>
</tbody>
</table>

Marks the end of a command line. The following messages are in accordance with IEEE488.2 standard.

<table>
<thead>
<tr>
<th>Remote Command</th>
<th>LF, CR, CR+LF, LF+CR</th>
<th>The most common EOL character is CR+LF</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Return Message</th>
<th>LF</th>
<th>User configurable (excluding GPIB) See page 71.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Message Separator</th>
<th>EOL or ;</th>
<th>Command separator.</th>
</tr>
</thead>
</table>
Command List

Binning Commands (GOM-805 only)

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINNing:COUNT:CLEar</td>
<td>108</td>
</tr>
<tr>
<td>BINNing:COUNT:TOTal</td>
<td>108</td>
</tr>
<tr>
<td>BINNing:COUNT:OUT</td>
<td>108</td>
</tr>
<tr>
<td>BINNing<X>:COUNT:RESult</td>
<td>108</td>
</tr>
<tr>
<td>BINNing<X>:LIMIT:LOWer</td>
<td>109</td>
</tr>
<tr>
<td>BINNing<X>:LIMIT:UPPer</td>
<td>109</td>
</tr>
<tr>
<td>BINNing<X>:PERCent:LOWer</td>
<td>110</td>
</tr>
<tr>
<td>BINNing<X>:PERCent:UPPer</td>
<td>110</td>
</tr>
<tr>
<td>BINNing:LIMIT:BEEPer</td>
<td>111</td>
</tr>
<tr>
<td>BINNing:LIMIT:DISP</td>
<td>111</td>
</tr>
<tr>
<td>BINNing:LIMIT:MODE</td>
<td>111</td>
</tr>
<tr>
<td>BINNing:LIMIT:REFERENCE</td>
<td>112</td>
</tr>
<tr>
<td>BINNing:LIMIT:RESULT</td>
<td>112</td>
</tr>
</tbody>
</table>

Calculate Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCulate:COMPARE:BEEPer</td>
<td>113</td>
</tr>
<tr>
<td>CALCulate:COMPARE:LIMIT:LOWer</td>
<td>113</td>
</tr>
<tr>
<td>CALCulate:COMPARE:LIMIT:MODE</td>
<td>114</td>
</tr>
<tr>
<td>CALCulate:COMPARE:LIMIT:REFERENCE</td>
<td>114</td>
</tr>
<tr>
<td>CALCulate:COMPARE:LIMIT:RESULT</td>
<td>115</td>
</tr>
<tr>
<td>CALCulate:COMPARE:LIMIT:UPPER</td>
<td>115</td>
</tr>
<tr>
<td>CALCulate:COMPARE:MATH:DATA</td>
<td>115</td>
</tr>
<tr>
<td>CALCulate:COMPARE:PERCent:LOWer</td>
<td>116</td>
</tr>
<tr>
<td>CALCulate:COMPARE:PERCent:UPPER</td>
<td>116</td>
</tr>
<tr>
<td>CALCulate:SCAN:CHANNEL</td>
<td>116</td>
</tr>
<tr>
<td>CALCulate:SCAN:DELAY</td>
<td>117</td>
</tr>
<tr>
<td>CALCulate:SCAN:LIMIT:LOWer</td>
<td>117</td>
</tr>
<tr>
<td>CALCulate:SCAN:LIMIT:MODE</td>
<td>117</td>
</tr>
<tr>
<td>CALCulate:SCAN:LIMIT:REFERENCE</td>
<td>118</td>
</tr>
<tr>
<td>CALCulate:SCAN:LIMIT:UPPER</td>
<td>118</td>
</tr>
<tr>
<td>CALCulate:SCAN:PERCent:LOWer</td>
<td>119</td>
</tr>
<tr>
<td>CALCulate:SCAN:PERCent:UPPER</td>
<td>119</td>
</tr>
</tbody>
</table>

Memory Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMory:CLEar</td>
<td>120</td>
</tr>
<tr>
<td>MEMory:RECall</td>
<td>120</td>
</tr>
<tr>
<td>MEMory:SAVE</td>
<td>120</td>
</tr>
<tr>
<td>MEMory:STATe</td>
<td>120</td>
</tr>
</tbody>
</table>
Sense Commands
SENSe:AUTo .. 122
SENSe:DISPlay .. 122
SENSe:FUNCtion ... 122
SENSe:RANGE .. 123
SENSe:SPEed .. 123
SENSe:REL:DATa .. 124
SENSe:REL:STATe ... 124
SENSe:REALtime:STATe ... 124

Source Commands
SOURce:DRY .. 126
SOURce:DRIVe ... 126

Status Commands
STATus:PRESet .. 127
STATus:QUEStionable:ENABle 127
STATus:QUEStionable:EVENt 127

System Commands
SYSTem:AVERage:DATa ... 128
SYSTem:AVERage:STATe ... 128
SYSTem:BRIGHTness .. 128
SYSTem:ERRor ... 129
SYSTem:HANDler .. 129
SYSTem:KEYClick:BEEPer .. 129
SYSTem:LFRequency ... 130
SYSTem:LOCal .. 130
SYSTem:MDELay:DATa ... 130
SYSTem:MDELay:STATe .. 131
SYSTem:PWM:ON .. 131
SYSTem:PWM:OFF .. 132
SYSTem:SERial .. 132
SYSTem:VERSion .. 132

Temperature Commands
TEMPerature:AMBient:DATa 133
TEMPerature:AMBient:STATe 133
TEMPerature:COMPensate:COEFFicient 134
TEMPerature:COMPensate:CORRect 134
TEMPerature:CONVersion:CONStant 134
TEMPerature:CONVersion:DISP 135
TEMPerature:CONVersion:MATH:DATa 135
<table>
<thead>
<tr>
<th>Command Type</th>
<th>Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPerature:CONVersion:RESiristance</td>
<td>135</td>
</tr>
<tr>
<td>TEMPerature:CONVersion:TEMPerature</td>
<td>136</td>
</tr>
<tr>
<td>TEMPerature:DATa</td>
<td>136</td>
</tr>
<tr>
<td>TEMPerature:STATe</td>
<td>136</td>
</tr>
<tr>
<td>TEMPerature:UNIT</td>
<td>137</td>
</tr>
<tr>
<td>Trigger Commands</td>
<td></td>
</tr>
<tr>
<td>READ</td>
<td>138</td>
</tr>
<tr>
<td>MEASure<X></td>
<td>138</td>
</tr>
<tr>
<td>SHOW</td>
<td>138</td>
</tr>
<tr>
<td>TRIGger:EDGE</td>
<td>139</td>
</tr>
<tr>
<td>TRIGger:DElay:DATa</td>
<td>139</td>
</tr>
<tr>
<td>TRIGger:DElay:STATe</td>
<td>139</td>
</tr>
<tr>
<td>TRIGger:SOURce</td>
<td>140</td>
</tr>
<tr>
<td>Userdefine Commands</td>
<td></td>
</tr>
<tr>
<td>USERdefine<X>:ACTive</td>
<td>141</td>
</tr>
<tr>
<td>USERdefine<X>:FIRStdata</td>
<td>141</td>
</tr>
<tr>
<td>USERdefine<X>:LOGic</td>
<td>141</td>
</tr>
<tr>
<td>USERdefine<X>:SEConndata</td>
<td>142</td>
</tr>
<tr>
<td>Common Commands</td>
<td></td>
</tr>
<tr>
<td>*CLS</td>
<td>143</td>
</tr>
<tr>
<td>*ESE</td>
<td>143</td>
</tr>
<tr>
<td>*ESR</td>
<td>143</td>
</tr>
<tr>
<td>*IDN</td>
<td>144</td>
</tr>
<tr>
<td>*OPC</td>
<td>144</td>
</tr>
<tr>
<td>*RST</td>
<td>144</td>
</tr>
<tr>
<td>*SRE</td>
<td>144</td>
</tr>
<tr>
<td>*STB</td>
<td>145</td>
</tr>
<tr>
<td>*TRG</td>
<td>145</td>
</tr>
</tbody>
</table>
BINning Commands

Binning commands are only applicable to GOM-805.

BINning:COUNt:CLEar

- **Description**: Clear all bin sorting function test result counts.
- **Syntax**: BINning:COUNt:CLEar
- **Parameter/Query**: <None>

BINning:COUNt:TOTal

- **Description**: Returns the total number (count total) of test bin results.
- **Query Syntax**: BINning:COUNt:TOT?
- **Return parameter**: <NR1> 0~999999999
- **Example**: BINN:COUN:TOT? >150
 Indicates that the total number (count total) of test results (pass and fail) is 150.

BINning:COUNt:OUT

- **Description**: Returns the number of failed (judged OUT) test results for the bin sorting function test.
- **Query Syntax**: BINning:COUNt:OUT?
- **Return parameter**: <NR1> 0~999999999
- **Example**: BINN:COUN:OUT? >50
 Indicates that the number of failed test results is 50.

BINning<X>:COUNt:RESult

- **Description**: Returns the number of passed (judged IN) test results for the selected bin.
- **Query Syntax**: BINning<X>:COUNt:RESult?
COMMAND OVERVIEW

<table>
<thead>
<tr>
<th>Parameter</th>
<th><X></th>
<th>1~8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return parameter</td>
<td><NR1></td>
<td>0~99999999</td>
</tr>
</tbody>
</table>

Example

BINN1:COUN:RES?

>100

Indicates that bin1 has a pass count of 100.

BINNing<X>:LIMit:LOWer

Description
Sets or returns the lower limit value (absolute value) for the selected bin.

Syntax

Query Syntax

```
BINNing<X>:LIMit:LOWer {<NRf>[,<String>]}  
```

Parameter

<table>
<thead>
<tr>
<th><X></th>
<th>1~8</th>
</tr>
</thead>
<tbody>
<tr>
<td><NRf></td>
<td>000.0000~999.9999</td>
</tr>
<tr>
<td><String></td>
<td>mohm/ohm/kohm/maohm,unit</td>
</tr>
</tbody>
</table>

If the unit is not set, the unit will be automatically set by the present range.

Return parameter

| <NR3> | 000.0000~999.9999E±X |

Example

BINN1:LIM:LOW 23.8,kohm
Sets the bin1 lower limit value to 23.8kΩ.
BINN1:LIM:LOW?

>23.8000E+3
Returns the lower limit as 23.8kΩ.

BINNing<X>:LIMit:UPPer

Description
Sets or returns the upper limit value (absolute value) for the selected bin.

Syntax

Query Syntax

```
BINNing<X>:LIMit:UPPer {<NRf>[,<String>]}  
```

Parameter

<table>
<thead>
<tr>
<th><X></th>
<th>1~8</th>
</tr>
</thead>
<tbody>
<tr>
<td><NRf></td>
<td>000.0000~999.9999</td>
</tr>
<tr>
<td><String></td>
<td>mohm/ohm/kohm/maohm,unit</td>
</tr>
</tbody>
</table>

If the unit is not set, the unit will be automatically set by the present range.

Return parameter

| <NR3> | 000.0000~999.9999E±X |
Example BINN1:LIM:UPP 0.95,maohm
Sets bin1 upper limit value to 0.95MΩ.
BINN1:LIM:UPP?
>0.9500E+6
Returns the upper limit as 0.95MΩ.

BINNing<X>:PERCent:LOWer

Description
Sets or returns the lower value percentage value for the selected bin. The value is a percentage offset from the reference value.

Syntax
Query Syntax
BINNing<X>:PERCent:LOWer <NRf>
BINNing<X>:PERCent:LOWer?

Parameter
<table>
<thead>
<tr>
<th><X></th>
<th>1~8</th>
</tr>
</thead>
<tbody>
<tr>
<td><NRf></td>
<td>000.00~999.99</td>
</tr>
</tbody>
</table>

Return parameter

| <NR2> | 000.00~999.99 |

Example
BINN1:PERC:LOW 10.15
Sets the bin1 lower limit percent value to -10.15%.
BINN1:PERC:LOW?
>10.15
Returns the lower limit percentage value as -10.15%.

BINNing<X>:PERCent:UPPer

Description
Sets or returns the upper value percentage value for the selected bin. The value is a percentage offset from the reference value.

Syntax
Query Syntax
BINNing<X>:PERCent:UPPer <NRf>
BINNing<X>:PERCent:UPPer?

Parameter
<table>
<thead>
<tr>
<th><X></th>
<th>1~8</th>
</tr>
</thead>
<tbody>
<tr>
<td><NRf></td>
<td>000.00~999.99</td>
</tr>
</tbody>
</table>

Return parameter

| <NR2> | 000.00~999.99 |

Example
BINN1:PERC:UPP 150.95
Sets the bin1 upper limit percent value to +150.95%.
BINN1:PERC:UPP?
>150.95
Returns the upper limit percentage value as +150.95%.
BINning:LIMit:BEEPer

Description
Sets or returns beeper mode for the bin sorting function.

Syntax
- BINning:LIMit:BEEPer {OFF|PASS|FAIL}
- BINning:LIMit:BEEPer?

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Turns the beeper off.</td>
</tr>
<tr>
<td>PASS</td>
<td>The beeper will sound on a pass test result.</td>
</tr>
<tr>
<td>FAIL</td>
<td>The beeper will sound on a fail test result.</td>
</tr>
</tbody>
</table>

Example
- BINN:LIM:BEEP OFF
 - Turns the beeper off.

BINning:LIMit:DISP

Description
Sets or returns the bin sorting function display mode.

Syntax
- BINning:LIMit:DISP {COMP|COUNT}
- BINning:LIMit:DISP?

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP</td>
<td>The display is set to compare mode.</td>
</tr>
<tr>
<td>COUNT</td>
<td>The display is set to count mode.</td>
</tr>
</tbody>
</table>

Example
- BINN:LIM:DISP COMP
 - Sets the bin sorting function display mode to compare.

BINning:LIMit:MODE

Description
Sets or returns the setting mode for upper and lower limits (absolute or Δ%).

Syntax
- BINning:LIMit:MODE {ABS|DPER}
- BINning:LIMit:MODE?

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>The test results are judged from absolute values.</td>
</tr>
<tr>
<td>DPER</td>
<td>The test results are judged from a reference value ± a percentage offset. (delta percent)</td>
</tr>
</tbody>
</table>
Example

BINN:LIM:MODE DPER
Sets the mode to Δ%.

BINNing:LIMit:REFerence

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns the limit reference value for the bin sorting function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>BINNing:LIMit:REFerence {<NRf>[,<String>]} BINNing:LIMit:REFerence?</td>
</tr>
</tbody>
</table>
| Parameter | **<NRf>** 000.0001~999.9999
<String> mohm/ohm/kohm/maohm/unit
If the unit is not set, the unit will be automatically set by the present range. |
| Return parameter | **<NR3>** 000.0001~999.9999E±X |

Example

BINN:LIM:REF 100
Sets the limit reference value to 100Ω.
BINN:LIM:REF?
>100.0000E+0
Returns the reference as 100Ω.

BINNing:LIMit:RESult

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the bin sorting function test result.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Syntax</td>
<td>BINNing:LIMit:RESult?</td>
</tr>
</tbody>
</table>
| Return parameter | **<NR1>** 1~8: Bin1~Bin8
9: Bin Out |

Example

BINN:LIM:RES?
>1
Indicates a pass for bin1.
Calculate Commands

CALCulate:COMPare:BEEPer

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns the compare function beeper mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CALCulate:COMPare:BEEPer {OFF</td>
</tr>
<tr>
<td>Query Syntax</td>
<td>CALCulate:COMPare:BEEPer?</td>
</tr>
<tr>
<td>Parameter/Return parameter</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>PASS</td>
</tr>
<tr>
<td></td>
<td>FAIL</td>
</tr>
</tbody>
</table>

Example

CALC:COMP:BEEP FAIL
Sets the beeper on when the test result is a fail.

CALCulate:COMPare:LIMit:LOWer

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns the lower limit value for the compare function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CALCulate:COMPare:LIMit:LOWer {<NRf> [.<String>]}</td>
</tr>
<tr>
<td>Query Syntax</td>
<td>CALCulate:COMPare:LIMit:LOWer?</td>
</tr>
<tr>
<td>Parameter</td>
<td><NRf> 000.0000~999.9999</td>
</tr>
<tr>
<td></td>
<td><String> mohm/ohm/kohm/maohm,unit</td>
</tr>
<tr>
<td></td>
<td>If the unit is not set, the unit will be automatically set by the present range.</td>
</tr>
<tr>
<td>Return parameter</td>
<td><NR3> 000.0000~999.9999E±X</td>
</tr>
</tbody>
</table>

Example

CALC:COMP:LIM:LOW 0.123,maohm
Sets the lower limit value to 0.123MΩ.
CALC:COMP:LIM:LOW?
>0.1230E+6
Returns the lower limit as 0.123MΩ.
CALCulate:COMParE:LIMit:MODE

Description: Sets or returns the compare mode for the compare function.

Syntax
Query Syntax: CALCulate:COMParE:LIMit:MODE {ABS|DPER|PER} CALCulate:COMParE:LIMit:MODE?

Parameter/Return parameter:

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>The test results are judged from absolute values.</td>
</tr>
<tr>
<td>DPER</td>
<td>The test results are judged from a reference value ± a percentage offset. (delta percentage)</td>
</tr>
<tr>
<td>PER</td>
<td>The test results are displayed as a percentage of the reference value.</td>
</tr>
</tbody>
</table>

Example:

CALC:COM:LI:M:MODE ABS
Sets test results as absolute values for the compare function.

CALCulate:COMParE:LIMit:REFerence

Description: Sets or returns the limit reference value for the compare function.

Syntax

Parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NRf></td>
<td>0.000001~999.9999</td>
</tr>
<tr>
<td><String></td>
<td>mohm/ohm/kohm/maohm,unit If unit is not set, the unit will be automatically set by the present range.</td>
</tr>
</tbody>
</table>

Return parameter:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR3></td>
<td>0.000001~999.9999E±X</td>
</tr>
</tbody>
</table>

Example:

CALC:COM:LI:M:REF 10.00,mohm
Sets the limit reference value to 10.00mΩ.
CALC:COM:LI:M:REF?
>10.0000E-3
Returns the limit as 10.00mΩ.
CALCulate:COMPare:LIMit:RESult

Description
Returns the compare function test result.

Query Syntax
CALCulate:COMPare:LIMit:RESult?

Return parameter

| <NR1> | 0: LO | 1: IN | 2: HI |

Example
CALC:COMP:LIM:RES?
>2
Indicates that the test result is HI.

CALCulate:COMPare:LIMit:UPPer

Description
Sets or returns the upper limit value for the compare function.

Syntax
CALCulate:COMPare:LIMit:UPP {<NRf> [, <String>]}

Query Syntax
CALCulate:COMPare:LIMit:UPP?

Parameter

| <NRf> | 000.0000~999.9999 |
| <String> | mohm/ohm/kohm/maohm,unit |

If unit is not set, the unit will be automatically set by the present range.

Return parameter

| <NR3> | 000.0000~999.9999E±X |

Example
CALC:COMP:LIM:UPP 0.95,kohm
Sets the upper limit value to 0.95kΩ.
CALC:COMP:LIM:UPP?
>0.9500E+3
Returns the upper limit as 0.95kΩ.

CALCulate:COMPare:MATH:DATa

Description
Returns the deviation value for the compare function.

Query Syntax
CALCulate:COMPare:MATH:DATa?

Return parameter

| <NR3> | ±0.0000~9.9999E±X |

Example
CALC:COMP:MATH:DAT?
>+0.3658E+2
Returns the deviation as 36.58%.
CALCulate:COMPare:PERCent:LOWer

Description
Sets or returns the lower limit percent value for the compare function.

Syntax
CALCulate:COMPare:PERCent:LOWer <NRf>
CALCulate:COMPare:PERCent:LOWer?

Parameter
- **<NRf>**
 - 000.00~999.99

Return parameter
- **<NR2>**
 - 000.00~999.99

Example
CALC:COMP:PERC:LOW 10.00
Sets the lower limit percent value to -10.00%.
CALC:COMP:PERC:LOW?
>10.00
Returns the lower limit as -10.00%.

CALCulate:COMPare:PERCent:UPPer

Description
Sets or returns the upper limit percent value for the compare function.

Syntax
CALCulate:COMPare:PERCent:UPPer <NRf>
CALCulate:COMPare:PERCent:UPPer?

Parameter
- **<NRf>**
 - 000.00~999.99

Return parameter
- **<NR2>**
 - 000.00~999.99

Example
CALC:COMP:PERC:UPP 90.00
Sets the upper limit percent value to +90.00%.
CALC:COMP:PERC:UPP?
>90.00
Returns the upper limit as +90.00%.

CALCulate:SCAN:CHANnel

Description
Sets or returns the channel for the scan function.

Syntax
CALCulate:SCAN:CHANnel <NR1>
CALCulate:SCAN:CHANnel?

Parameter/Return parameter
- **<NR1>**
 - 1~100
Example

Example
CALC:SCAN:CHAN 5
Sets the channel to 5.

CALCulate:SCAN:DELay

Description
Sets or returns the interval delay for the scan function.

Syntax
- **Query Syntax**
 - CALCulate:SCAN:DELay <NR1>
 - CALCulate:SCAN:DELay?

Parameter/Return parameter
- **<NR1>**
 - **400 ~ 30000**
 - **Unit:** ms

Example
CALC:SCAN:DEL 500
Sets interval delay of the scan to 500 ms.

CALCulate:SCAN:LIMit:LOWer

Description
Sets or returns the lower limit value for the scan function.

Syntax
- **Query Syntax**
 - CALCulate:SCAN:LIMit:LOWer {<NRf>,<String>}
 - CALCulate:SCAN:LIMit:LOWer?

Parameter
- **<NRf>**
 - **0.0000~999.9999**

- **<String>**
 - mohm/ohm/kohm/maohm, unit
 - If unit is not set, the unit will be automatically set by the present range.

Return parameter
- **<NR3>**
 - **0.0000~999.9999E±X**

Example
CALC:SCAN:LIM:LOW 0.123,maohm
Sets the lower limit value to 0.123 MΩ.
CALC:SCAN:LIM:LOW? >0.1230E+6
Returns the lower limit as 0.123 MΩ.

CALCulate:SCAN:LIMit:MODE

Description
Sets or returns the scan function compare mode.

Syntax
- **Query Syntax**
 - CALCulate:SCAN:LIMit:MODE {ABS|DPER}
 - CALCulate:SCAN:LIMit:MODE?

Parameter/Return parameter
- **ABS**
 - The test results are judged from absolute values.
The test results are judged from a reference value ± a percentage offset. (delta percent)

Example

CALCulate:SCAN:LIM:MODE ABS
Sets compare mode to absolute values.

Set

CALCulate:SCAN:LIM:REFerence

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns the reference limit for the scan function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CALCulate:**SCAN:**LIM:IT:RE****Ference {<NRf>[,<String>]}</td>
</tr>
<tr>
<td>Query Syntax</td>
<td>CALCulate:**SCAN:**LIM:IT:RE****Ference?</td>
</tr>
</tbody>
</table>

Parameter

<table>
<thead>
<tr>
<th><NRf></th>
<th>000.0000~999.9999</th>
</tr>
</thead>
<tbody>
<tr>
<td><String></td>
<td>mohm/ohm/kohm/maohm,unit If unit is not set, the unit will be automatically set by the present range.</td>
</tr>
</tbody>
</table>

Return parameter

| <NR3> | 000.0000~999.9999E±X |

Example

CALC:SCAN:**LIM:**REF 10.00,mohm
Sets the reference limit to 10.00mΩ.

CALC:SCAN:**LIM:**REF?
>10.0000E-3
Returns the reference limit as 10.00mΩ.

Set

CALCulate:SCAN:LIM:UPPer

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns upper limit of the scan function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CALCulate:**SCAN:**LIM:**UPPPeer {<NRf>[,<String>]}</td>
</tr>
<tr>
<td>Query Syntax</td>
<td>CALCulate:**SCAN:**LIM:**UPPPeer?</td>
</tr>
</tbody>
</table>

Parameter

<table>
<thead>
<tr>
<th><NRf></th>
<th>000.0000~999.9999</th>
</tr>
</thead>
<tbody>
<tr>
<td><String></td>
<td>mohm/ohm/kohm/maohm,unit If unit is not set, the unit will be automatically set by the present range.</td>
</tr>
</tbody>
</table>

Return parameter

| <NR3> | 000.0000~999.9999E±X |

Example

CALC:SCAN:**LIM:**UPP 1.37,kohm
Sets the upper limit to 1.37kΩ.

CALC:SCAN:**LIM:**UPP?
>1.3700E+3
Returns the upper limit as 1.37kΩ.
CALCulate:SCAN:PERCent:LOWer

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns lower limit percent value for the scan function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CALCulate:SCAN:PERCent:LOWer <NRf></td>
</tr>
<tr>
<td>Query Syntax</td>
<td>CALCulate:SCAN:PERCent:LOWer?</td>
</tr>
<tr>
<td>Parameter</td>
<td><NRf> 000.00~999.99</td>
</tr>
<tr>
<td>Return parameter</td>
<td><NR2> 000.00~999.99</td>
</tr>
<tr>
<td>Example</td>
<td>CALC:SCAN:PERC:LOW 10.00</td>
</tr>
<tr>
<td></td>
<td>Sets the lower limit percent value to -10.00%.</td>
</tr>
<tr>
<td></td>
<td>CALC:SCAN:PERC:LOW?</td>
</tr>
<tr>
<td></td>
<td>>10.00</td>
</tr>
<tr>
<td></td>
<td>Returns the lower limit as -10.00%.</td>
</tr>
</tbody>
</table>

CALCulate:SCAN:PERCent:UPPer

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns the upper limit percent value for the scan function.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>CALCulate:SCAN:PERCent:UPPer <NRf></td>
</tr>
<tr>
<td>Query Syntax</td>
<td>CALCulate:SCAN:PERCent:UPPer?</td>
</tr>
<tr>
<td>Parameter</td>
<td><NRf> 000.00~999.99</td>
</tr>
<tr>
<td>Return parameter</td>
<td><NR2> 000.00~999.99</td>
</tr>
<tr>
<td>Example</td>
<td>CALC:SCAN:PERC:UPP 90.00</td>
</tr>
<tr>
<td></td>
<td>Sets the upper limit percent value to +90.00%.</td>
</tr>
<tr>
<td></td>
<td>CALC:SCAN:PERC:UPP?</td>
</tr>
<tr>
<td></td>
<td>>90.00</td>
</tr>
<tr>
<td></td>
<td>Returns the upper limit as +90.00%.</td>
</tr>
</tbody>
</table>
Memory Commands

MEMory:CLEar

<table>
<thead>
<tr>
<th>Description</th>
<th>Clears the data from the selected memory slot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MEMory:CLEar <NR1></td>
</tr>
<tr>
<td>Parameter</td>
<td><NR1> 1~20</td>
</tr>
<tr>
<td>Example</td>
<td>MEM:CLE 1</td>
</tr>
<tr>
<td></td>
<td>Clear data from memory slot 1.</td>
</tr>
</tbody>
</table>

MEMory:RECall

<table>
<thead>
<tr>
<th>Description</th>
<th>Recalls the settings from the selected memory slot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MEMory:RECall <NR1></td>
</tr>
<tr>
<td>Parameter</td>
<td><NR1> 1~20</td>
</tr>
<tr>
<td>Example</td>
<td>MEM:REC 1</td>
</tr>
<tr>
<td></td>
<td>Recall the settings from memory slot 1.</td>
</tr>
</tbody>
</table>

MEMory:SAVe

<table>
<thead>
<tr>
<th>Description</th>
<th>Saves the settings to the selected memory slot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>MEMory:SAVe <NR1></td>
</tr>
<tr>
<td>Parameter</td>
<td><NR1> 1~20</td>
</tr>
<tr>
<td>Example</td>
<td>MEM:SAV 1</td>
</tr>
<tr>
<td></td>
<td>Saves the settings to memory slot 1.</td>
</tr>
</tbody>
</table>

MEMory:STATe

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the status of all the memory slots.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Syntax</td>
<td>MEMory:STATe?</td>
</tr>
<tr>
<td>Return parameter</td>
<td><String> 23 Characters composed of “N” or “F”, where “N” indicates “Not used” and “F” indicates “Full”.</td>
</tr>
<tr>
<td>Example</td>
<td>MEM:STAT?</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>> NFFNN-NNNNN-NNNNN-NNNNN</td>
</tr>
<tr>
<td></td>
<td>Indicates that memory slots 2 and 3 have data and that all other memory slots are empty.</td>
</tr>
</tbody>
</table>
Sense Commands

SENSe:AUTo

Description: Sets or returns the auto-range state.

Syntax
Query Syntax: SENSE:AUTo <NR1> | {OFF|ON}
SENSe:AUTo?

Parameter/Return parameter:
- <NR1>: 0:OFF, 1:ON
- OFF: Auto-Range is off.
- ON: Auto-Range is on.

Example: SENS:AUT ON
Sets auto-range mode on.

SENSe:DISPlay

Description: Sets or returns the display mode. There are two display modes, normal and simple.

Syntax
Query Syntax: SENSE:DISP <NR1> | {OFF|ON}
SENSe:DISP?

Parameter/Return parameter:
- <NR1>: 0:OFF, 1:ON
- OFF: Display mode is normal.
- ON: Display mode is simple.

Example: SENS:DISP OFF
Sets the display mode to normal.

SENSe:FUNCtion

Description: Sets or returns the function mode.

Syntax
Query Syntax: SENSE:FUNCtion
{OHM|COMP|BIN|TC|TCONV|SCAN|DIODE}
SENSe:FUNCtion?
Parameter/Return parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter/Return parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHM</td>
<td>OHM MODE</td>
</tr>
<tr>
<td>COMP</td>
<td>COMP MODE</td>
</tr>
<tr>
<td>BIN</td>
<td>BIN MODE</td>
</tr>
<tr>
<td>TC</td>
<td>TC MODE</td>
</tr>
<tr>
<td>TCONV</td>
<td>TCONV MODE</td>
</tr>
<tr>
<td>SCAN</td>
<td>SCAN MODE</td>
</tr>
<tr>
<td>DIODE</td>
<td>DIODE MODE</td>
</tr>
</tbody>
</table>

Example

SENS:FUNC OHM
Sets ohm mode on.

SENSE:RANGe

Description
Sets or returns the range of the present function.

Syntax

- **Query Syntax**
 - SENSE:RANGe <NRF>
 - SENSE:RANGe?

- **Parameter**
 - <NRF> 5E-2 ~ 5E+6

- **Return parameter**
 - <NR3> 5E-2 ~ 5E+6

Example

SENS:RANG 0.05
Sets range to 50mΩ.
SENS:RANG?
>5.0000E-2
Returns the range as 50mΩ.

SENSE:SPEed

Description
Sets or returns the measurement speed.

Syntax

- **Query Syntax**
 - SENSE:SPEed {SLOW|FAST}
 - SENSE:SPEed?

- **Parameter/Return parameter**
 - SLOW Measurement speed is slow.
 - FAST Measurement speed is fast.

Example

SENS:SPE FAST
Sets measurement speed to the fast rate.
SENSE:REL:DATa

Description: Sets or returns the relative value for the relative function.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NRf></td>
<td>0.0000~500.00 The unit will be auto set by the present range.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR3></td>
<td>±0.0000~5.1000E±X</td>
</tr>
</tbody>
</table>

Example
- **SENSe:REL:DAT 490.32**
 - Sets the relative function value to 490.32Ω.
 - **SENSe:REL:DAT?**
 - >4.9032E+2
 - Returns the relative value (490.32Ω).

SENSE:REL:STATE

Description: Sets or returns the relative function state.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>0:OFF. 1:ON.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Turn the relative function off.</td>
</tr>
<tr>
<td>ON</td>
<td>Turn the relative function on.</td>
</tr>
</tbody>
</table>

Example
- **SENSe:REL:STAT OFF**
 - Sets the relative function off.

SENSE:REALtime:STATE

Description: Sets or returns the real time function state.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>0:OFF. 1:ON.</td>
</tr>
</tbody>
</table>

Example
- **SENSe:REALtime:STAT OFF**
 - Sets the relative function off.
<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th><NR1></th>
<th>0:OFF.</th>
<th>1:ON.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td></td>
<td>Turn the real time function off.</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td></td>
<td>Turn the real time function on.</td>
<td></td>
</tr>
</tbody>
</table>

Example

SENS:REAL:STAT ON
Turns the real time function on.
Source Commands

SOURce:DRY

Description
Sets or returns the dry circuit test mode. Only applicable to the GOM-805.

Syntax
SOURce:DRY {<NR1> | {OFF|ON}}
SOURce:DRY?

Parameter/Return parameter

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>0:OFF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>1:ON.</td>
</tr>
<tr>
<td>ON</td>
<td></td>
</tr>
</tbody>
</table>

Example
SOUR:DRY On
Turns the dry circuit test mode on.

SOURce:DRIVe

Description
Sets or returns the drive mode.

Syntax
SOURce:DRIVe <NR1>
SOURce:DRIVe?

Parameter/Return parameter

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>1: the DC+ mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2: the DC- mode.</td>
</tr>
<tr>
<td></td>
<td>3: the PULSE mode.</td>
</tr>
<tr>
<td></td>
<td>4: the PWM mode.</td>
</tr>
<tr>
<td></td>
<td>5: the ZERO mode.</td>
</tr>
</tbody>
</table>

Example
SOUR:DRIV 3
Sets the drive mode to pulse.
Status Commands

STATus:PRESet

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets the QUESTionable enable register to zero.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>STATus:PRESet <NONE></td>
</tr>
<tr>
<td>Parameter</td>
<td><None></td>
</tr>
</tbody>
</table>

STATus:QUESTionable:ENABLE

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns the Questionable Data Enable register.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>STATus:QUESTionable:ENABLE <NR1></td>
</tr>
<tr>
<td>Query Syntax</td>
<td>STATus:QUESTionable:ENABLE?</td>
</tr>
<tr>
<td>Parameter/Return parameter</td>
<td><NR1></td>
</tr>
<tr>
<td>Example</td>
<td>STAT:QUES:ENAB 2560</td>
</tr>
<tr>
<td></td>
<td>Sets the Questionable Data Enable register to 0001010000000000.</td>
</tr>
</tbody>
</table>

STATus:QUESTionable:EVENt

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the contents of the Questionable Data Event register.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Syntax</td>
<td>STATus:QUESTionable:EVENt?</td>
</tr>
<tr>
<td>Return parameter</td>
<td><NR1></td>
</tr>
<tr>
<td>Example</td>
<td>STAT:QUES:EVEN?</td>
</tr>
<tr>
<td></td>
<td>>512</td>
</tr>
<tr>
<td></td>
<td>512 indicates that the Questionable Data Event register=0000001000000000000.</td>
</tr>
</tbody>
</table>
System Commands

SYSTem:AVERage:DATa

Description: Sets or returns the number of measurements used for the average function.

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| <NR1> | Sets or returns the number of measurements used for the average function.

Syntax

Query Syntax

- SYSTem:AVERage:DATa <NR1>
- SYSTem:AVERage:DATa?

Parameter/Return parameter

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>2~100</td>
</tr>
</tbody>
</table>

Example

```
SYST:AVer:DAT 5
5 measurements are used to perform the average function.
```

SYSTem:AVERage:STATe

Description: Sets or returns the average function state.

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>Sets or returns the average function state.</td>
</tr>
</tbody>
</table>

Syntax

Query Syntax

- SYSTem:AVERage:STATe <NR1> | {OFF|ON}
- SYSTem:AVERage:STATe?

Parameter/Return parameter

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>0:OFF. 1:ON.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Turn the average function off.</td>
</tr>
<tr>
<td>ON</td>
<td>Turn the average function on.</td>
</tr>
</tbody>
</table>

Example

```
SYST:AVer:STAT OFF
Turns the average function off.
```

SYSTem:BRIGhtness

Description: Sets or returns the brightness level.

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>Sets or returns the brightness level.</td>
</tr>
</tbody>
</table>

Syntax

Query Syntax

- SYSTem:BRIGhtness <NR1>
- SYSTem:BRIGhtness?

Parameter/Return parameter

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>1(dim)~5(bright)</td>
</tr>
</tbody>
</table>

Example

```
```
SYSTem:ERRor

Description
Returns the current system error, if any.

Query Syntax
SYSTem:ERRor?

Return parameter
| <String> | Error number,”Error message” |

Example
SYST:ERR?
>0,"No error”.
Indicates that there is no error message.

SYSTem:HANDler

Description
Sets or returns the handler state.

Syntax
SYSTem:HANDler \{CLEAR | HOLD\}
SYSTem:HANDler?

Parameter/Return parameter
| Clear | It clears the last result before executing measurement. |
| HOLD | It holds the test result and changes when a different result appears. |

Example
SYST:HAND HOLD
Sets the test result to the hold state.

SYSTem:KEYClicK:BEEPer

Description
Sets or returns the keyclick beeper state.

Syntax
SYSTem:KEYClicK:BEEPer <NR1> | \{OFF | ON\}
SYSTem:KEYClicK:BEEPer?

Parameter/Return parameter
<NR1>	0:OFF.
	1:ON.
OFF	Turn the keyclick beeper off.
ON	Turn the keyclick beeper on.

Example
SYST:KEYC:BEEP OFF
Sets the keyclick beeper off.
SYSTem:LFRequency

Description: Sets or returns the frequency setting for the line filter.

Syntax
Query Syntax: SYSTem:LFRequency {AUTO | 50 | 60}
SYSTem:LFRequency?

Parameter/Return parameter:
- AUTO: The frequency setting for the line filter is automatically detected.
- 50: The frequency is 50Hz.
- 60: The frequency is 60Hz.

Example:
- SYST:LFR 60
 Sets the line frequency to 60Hz.
- SYST:LFR?
 >60Hz
 Returns the line frequency as 60Hz.

SYSTem:LOCal

Description: Enables local control (front panel control) and disables remote control.

Syntax: SYSTem:LOCal

Parameter: <None>

SYSTem:MDELay:DATa

Description: Sets or returns the measurement delay time.

Syntax
Query Syntax: SYSTem:MDELay:DATa <NRf>
SYSTem:MDELay:DATa?

Parameter/Return parameter:
- <NRf>: 0.000~100.000
 - Unit: ms
 - For values under 1s, the unit resolution is 1ms.
 - For values above 1s, the unit resolution is 0.1s.
SYSTem:MDELay:STATe

Description
Sets or returns the measurement delay function state.

Syntax
SYSTem:MDELay:STATe <NR1> | {OFF|ON}
SYSTem:MDELay:STATe?

Parameter/Return parameter

<table>
<thead>
<tr>
<th><NR1></th>
<th>0:OFF.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:ON.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OFF</th>
<th>Turn the measurement delay off.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Turn the measurement delay on.</td>
</tr>
</tbody>
</table>

Example
SYST:MDel:STAT OFF
Turns the measurement delay function off.

SYSTem:PWM:ON

Description
Sets or returns the duty ON period for the PWM drive mode.

Note
PWM drive mode is only available for the GOM-805.

Syntax
SYSTem:PWM:ON <NR1>
SYSTem:PWM:ON?

Parameter/Return parameter

| <NR1> | 3~99 Unit: time units. For 60Hz LF, each unit is equal 16.6ms. For 50Hz LF, each unit is equal to 20.0ms. |

Example
SYST:PWM:ON 5
Sets the duty ON time to 5 adc units.
SYSTem:PWM:OFF

Description
Sets or returns the duty OFF period for the PWM drive mode.

Syntax

<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
<th>Unit:</th>
<th>100~9999</th>
</tr>
</thead>
</table>

Query Syntax

- `SYSTem:PWM:OFF <NR1>`
- `SYSTem:PWM:OFF?`

Example

- `SYST:PWM:OFF 200`
 Sets the duty OFF period to 200 ms.

SYSTem:SERial

Description
Returns the serial number.

Query Syntax

- `SYSTem:SERial?`

Return parameter

| <String> | 9 characters |

Example

- `SYST:SER?`
 > GXXXXXXXX

SYSTem:VERSion

Description
Returns the SCPI version of the device.

Query Syntax

- `SYSTem:VERSion?`

Return parameter

| <String> | 10 characters |

Example

- `SYST:VERS?`
 > SCPI1994.0.
 SCPI version: 1994
Temperature Commands

TEMPPerature:AMBient:DATa

Description
Sets or returns the user-set ambient temperature value for the temperature compensation and the temperature conversion function.

Syntax

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NRf></td>
<td>-50.0~399.9 (Unit: °C)</td>
</tr>
</tbody>
</table>

Return parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR2></td>
<td>-50.0~399.9 (Unit: °C)</td>
</tr>
</tbody>
</table>

Example

TEMP:AMB:DAT 25.6
Sets the user ambient temperature value to +25.6°C.
TEMP:AMB:DAT?
>25.6
Returns the set ambient temperature as 25.6°C.

TEMPPerature:AMBient:STATe

Description
Sets or returns the state of the user-set ambient temperature.

Syntax

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>0:OFF. 1:ON.</td>
</tr>
</tbody>
</table>

Example

TEMP:AMB:STAT OFF
Disables the user-set ambient temperature.
TEMPerature:COMPensate:COEFFicient

Description
Sets or returns the temperature coefficient for temperature compensation function.

Syntax
- **Query Syntax**

  ```plaintext
  TEMPerature:COMPensate:COEFFicient <NR1>
  TEMPerature:COMPensate:COEFFicient?
  ```

Parameter/Return parameter
- `<NR1>`
- `-9999~+9999`

Example
- `TEMP:COMP:COEF 3930`
 Sets the temperature coefficient to 3930 ppm.

TEMPerature:COMPensate:CORRect

Description
Sets or returns the reference temperature for the temperature compensation function.

Syntax
- **Query Syntax**

  ```plaintext
  TEMPerature:COMPensate:CORRect <NRf>
  TEMPerature:COMPensate:CORRect?
  ```

Parameter
- `<NRf>`
- `-50.0~399.9` (Unit: °C)

Return parameter
- `<NR2>`
- `-50.0~399.9` (Unit: °C)

Example
- `TEMP:COMP:CORR 25.5`
 Sets the reference temperature to 25.5°C.

TEMPerature:CONVersion:CONSTant

Description
Sets or returns the temperature constant for the temperature conversion function.

Syntax
- **Query Syntax**

  ```plaintext
  TEMPerature:CONVersion:CONSTant <NRf>
  TEMPerature:CONVersion:CONSTant?
  ```

Parameter
- `<NRf>`
- `0.0~999.9`

Return parameter
- `<NR2>`
- `0.0~999.9`

Example
- `TEMP:CONV:CONS 235`
 Sets the temperature constant to 235.
TEMPerature:CONVersion:DISP

Description
Sets or returns the temperature display mode for the temperature conversion function.

Syntax
Query Syntax
TEMPPerature:CONVersion:DISP <NR1>
TEMPPerature:CONVersion:DISP?

Parameter/Return parameter

| <NR1> | 1: ΔT | 2:T |

Example
TEMP:CONV:DISP 1
Sets the temperature display mode for the temperature conversion function is ΔT.

TEMPerature:CONVersion:MATH:DATa

Description
Returns conversion function deviation value.

Query Syntax
Query Syntax
TEMPPerature:CONVersion:MATH:DATa?

Return parameter

| <NR3> | ±0.000~9.999E±X |

Example
TEMP:CONV:MATH:DAT?
Returns 1.250E+2.

TEMPerature:CONVersion:RESistance

Description
Sets or returns the initial resistance for the temperature conversion function.

Syntax
Query Syntax
TEMPPerature:CONVersion:RESistance {<NRf>[,<String>]}
TEMPPerature:CONVersion:RESistance?

Parameter

| <NRf> | 000.0001~999.9999 |
| <String> | mohm/ohm/kohm/maohm,unit |
| If the unit is not set, the unit will be automatically set by the present range. |

Return parameter

| <NR3> | 000.0001~999.9999E±X |
Example

TEMP:CONV:RES 10.00,maohm
Sets initial resistance value to 10.00MΩ.
TEMP:CONV:RES?
>10.0000E+6
Returns the initial resistance as 10.00MΩ.

TEMPerature:CONVersion:TEMPerature

Description
Sets or returns the initial temperature for the temperature conversion function.

Syntax
Query Syntax

```
TEMPerature:CONVersion:TEMPerature <NRf>
TEMPerature:CONVersion:TEMPerature?
```

Parameter
<NRf>

-50.0~399.9 (Unit: ºC)

Return parameter
<NR2>

-50.0~399.9 (Unit: ºC)

Example
TEMP:CONV:TEMP 25.6
Sets the initial temperature to +25.6ºC.

TEMPerature:DATa

Description
Returns the PT-100 sensor temperature measurement in degrees Celsius.

Query Syntax
TEMPerature:DATa?

Return parameter
<NR3>

-50.0~399.9

Example
TEMP:DAT?
>0.250E+2
Returns the temperature as 25ºC.

TEMPerature:STATe

Description
Sets or returns the temperature function state.

Syntax
Query Syntax

```
TEMPerature:STATe {<NR1>|OFF|ON}
TEMPerature:STATe?
```

Parameter/Return parameter
<NR1>

0:OFF
1:ON

OFF
Turn the temp function off.
ON
Turn the temp function on.
Example | TEMP:STAT ON
Sets the temp function on.

TEMPerature:UNIT

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns the temperature unit. (Only used for the display readback.)</th>
</tr>
</thead>
</table>
| Syntax | TEMPerature:UNIT {DEGC|DEGF}
TEMPerature:UNIT? |
| Parameter/ | DEGC
DEGF |
| Return parameter | °C
°F |
| Example | TEMP:UNIT DEGF
Sets temperature unit to °F (Fahrenheit). |
Trigger Commands

READ

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the measurement value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Syntax</td>
<td>READ?</td>
</tr>
<tr>
<td>Return parameter</td>
<td><code><NR3></code> ±0.0000~5.1000E±X</td>
</tr>
</tbody>
</table>
| Example | READ?
> +2.2012E+0
Returns the measurement. |

MEASure<X>

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the results of the selected channel in the scan mode, including HI/LO/IN and value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Syntax</td>
<td>MEASure<X>?</td>
</tr>
<tr>
<td>Parameter</td>
<td><code><X></code> Channel 1~100</td>
</tr>
<tr>
<td>Return parameter</td>
<td>0</td>
</tr>
</tbody>
</table>
| Example | MEAS1?
>1,+0.9978E+1
Returns channel 1 as 9.978Ω. |

SHOW

<table>
<thead>
<tr>
<th>Description</th>
<th>Returns the judgments of all (up to 100) channels in the scan mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query Syntax</td>
<td>SHOW?</td>
</tr>
<tr>
<td>Return parameter</td>
<td><String> 100 characters 0:LO 1:IN 2:HI _:Channel not active</td>
</tr>
</tbody>
</table>
TRIGger:EDGE

Description
Sets or returns the trigger edge (falling or rising edge).

Syntax
Query Syntax
```
TRIGger:EDGE {RISING|FALLING}
TRIGger:EDGE?
```

Parameter/Return parameter
<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISING</td>
<td>Select rising trigger.</td>
</tr>
<tr>
<td>FALLING</td>
<td>Select falling trigger.</td>
</tr>
</tbody>
</table>

Example
TRIG:EDGE FALLING
Sets the trigger to falling edge.

TRIGger:DELay:DATa

Description
Sets or returns the trigger delay time.

Syntax
Query Syntax
```
TRIGger:DELay:DATa <NR1>
TRIGger:DELay:DATa?
```

Parameter/Return parameter
<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>0~1000</td>
</tr>
<tr>
<td></td>
<td>Unit:ms</td>
</tr>
</tbody>
</table>

Example
TRIG:DEL:DAT 100
Sets the trigger delay time to 100ms.

TRIGger:DELay:STATe

Description
Sets or returns the trigger delay function state.

Syntax
Query Syntax
```
TRIGger:DELay:STATe <NR1> | {OFF|ON}
TRIGger:DELay:STATe?
```

Parameter/Return parameter
<table>
<thead>
<tr>
<th>Parameter/Return parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><NR1></td>
<td>0:ON</td>
</tr>
<tr>
<td></td>
<td>1:OFF</td>
</tr>
<tr>
<td>OFF</td>
<td>Turn the trigger delay function off.</td>
</tr>
<tr>
<td>ON</td>
<td>Turn the trigger delay function on.</td>
</tr>
</tbody>
</table>
Example: TRIG:DEL:STAT OFF
Turns the trigger delay function off.

TRIGger:SOURce

<table>
<thead>
<tr>
<th>Description</th>
<th>Sets or returns current trigger source.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>TRIGger:SOURce {INT</td>
</tr>
<tr>
<td>Query Syntax</td>
<td>TRIGger:SOURce?</td>
</tr>
<tr>
<td>Parameter/Return</td>
<td>INT</td>
</tr>
<tr>
<td>Return parameter</td>
<td>EXT</td>
</tr>
<tr>
<td>Example</td>
<td>TRIG:SOUR EXT</td>
</tr>
</tbody>
</table>
Userdefine Commands

USERdefine<X>:ACTive

Description
Sets or returns the active output state of the selected Userdefine pin.

Syntax
USERdefine<X>:ACTive <NR1>
USERdefine<X>:ACTive?

Parameter/Return parameter
- `<X>`: Userdefine pin 1~2
- `<NR1>`: 1: active low state
 2: active high state

Example
USER1:ACT 1
Sets the userdefine1 pin 1O to active low state.

USERdefine<X>:FIRSTdata

Description
Sets or returns the first operand for the selected user define pin.

Syntax
USERdefine<X>:FIRSTdata <NR1>
USERdefine<X>:FIRSTdata?

Parameter/Return parameter
- `<X>`: Userdefine pin 1~2
- `<NR1>`: 1~8: bin1~bin8 state
 9: bin out state
 10: hi state
 11: low state
 12: pass state
 13: fail state

Example
USER1:FIRS 12
Sets first operand of userdefine1 as pass state.

USERdefine<X>:LOGic

Description
Sets or returns operator for the selected user define pin.
Query Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
<th>USERdefine<X>:LOGic <NR1></th>
<th>USERdefine<X>:LOGic?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter/Return parameter</td>
<td><X></td>
<td>Userdefine pin 1~2</td>
</tr>
</tbody>
</table>
| | <NR1> | 1:off (only judge first data)
| | | 2:logical and.
| | | 3:logical or. |

Example

USER1:LOG 1
Sets the operator of userdefine1 to off. (i.e., only the first operand determines the output of userdefine1.)

Description

Sets or returns the second operand for the selected user define pin.

Syntax

<table>
<thead>
<tr>
<th>Syntax</th>
<th>USERdefine<X>:SEConddata <NR1></th>
<th>USERdefine<X>:SEConddata?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter/Return parameter</td>
<td><X></td>
<td>1~2</td>
</tr>
</tbody>
</table>
| | <NR1> | 1~8:bin1~bin8 state
| | | 9:bin out state
| | | 10:hi state
| | | 11:low state
| | | 12:pass state
| | | 13:fail state |

Example

USER1:SEC 3
Sets the last operand of userdefine1 as the state of the bin3 result.
IEEE 488.2 Common Commands

CLS

Description
Cleans the Event Status register (Output Queue, Operation Event Status, Questionable Event Status, Standard Event Status).

Syntax
CLS

Parameter
<None>

ESE

Description
Sets or returns the ESER (Event Status Enable Register) contents.

Syntax
ESE <NR1>
ESE?

Parameter/Return parameter
<NR1>
0~255

Example
*ESE 65
Sets the ESER to 01000001
*ESE?
>130
ESER=10000010

ESR

Description
Returns SESR (Standard Event Status Register) contents.

Syntax
ESR?

Example
*ESR?
>198
SESR=11000110
*IDN

Description:
Returns the manufacturer, model No., serial number and system version number.

Query Syntax:
*IDN?

Return parameter:
<String> 31 characters

Example:
*IDN?
>GWINSTEK,GOM805,GXXXXXXXX,V1.00.

*OPC

Description:
Sets or returns the operation complete bit (bit0) in SERS (Standard Event Status Register) when all pending operations are completed.

Syntax

<table>
<thead>
<tr>
<th>Query Syntax</th>
<th>Parameter</th>
<th>Return parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>*OPC</td>
<td><None></td>
<td><NR1></td>
</tr>
</tbody>
</table>

Example:
*OPC?
Returns 1.

*RST

Description:
Recalls default panel setup.

Syntax

| Parameter | <None> |

*SRE

Description:
Sets or returns the SRER (Service Request Enable Register) contents.
COMMAND OVERVIEW

SRE

Syntax
SRE <NR1>

Query Syntax
SRE?

Parameter/Return parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0~255</th>
</tr>
</thead>
</table>

Example

SRE 7
Sets the SRER to 0000011

SRE?

>3
SRER=00000011

STB

Query

Description
Returns the SBR (Status Byte Register) contents.

Query Syntax
SSTB?

Return parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>0~255</th>
</tr>
</thead>
</table>

Example

SSTB?

>81
SESR=01010001

TRG

Set

Description
Manually triggers the instrument.

Syntax
TRG

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th><None></th>
</tr>
</thead>
</table>

145
Status system

The diagram below is a description of the status system.

For the following command sets, please refer to the diagram above:

STAT: QUES: EVEN?
STAT: QUES: ENAB
STAT: QUES: ENAB?
*ESR?
*ESE
*ESE?
*STB?
*SRE
*SRE?
FAQ

- What are the different measurement speeds?

- The GOM-804/805 performance does not match the specifications.

What are the different measurement speeds?

There are two measurement speeds for both resistance and temperature measurement. At the slow measurement rate, the measurement speed is 10 samples/s and at the fast measurement rate the measurement speed is at 60 samples/s.

The GOM-804/805 performance does not match the specifications.

Make sure the device is powered on for at least 30 minutes, is operated at the slow measurement rate and is within +18°C~+28°C with a humidity not exceeding 80%. This is necessary to stabilize the unit to match the specifications.

If there is still a problem, please contact your local dealer or GWInstek at marketing@goodwill.com.tw.
APPENDIX

<table>
<thead>
<tr>
<th>Function Combinations</th>
<th>Function Selection Combinations</th>
<th>149</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Measurement</td>
<td>Reference Temperature Table</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>RTD Sensors</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Optional Platinum Sensor</td>
<td>151</td>
</tr>
<tr>
<td>Specifications</td>
<td>Resistance Measurement</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Dry Resistance Measurement</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Temperature Measurement</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Temperature Correction Function</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>Interface</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Environmental</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
<td>156</td>
</tr>
<tr>
<td>CE Declaration</td>
<td>Declaration of Conformity</td>
<td>157</td>
</tr>
</tbody>
</table>
Function Selection Combinations

Function Combination Table

The following table shows which functions can be used with the Relative, Drive and Dry Circuit functions.

<table>
<thead>
<tr>
<th>Function</th>
<th>Rel</th>
<th>Dry(^{(*1)})</th>
<th>Drive(^{(*2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohm</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Comp</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Bin</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>TC</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tconv</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Temp</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Scan</td>
<td>✘</td>
<td>✘</td>
<td>✘</td>
</tr>
<tr>
<td>Diode</td>
<td>✘</td>
<td>✘</td>
<td>✘</td>
</tr>
</tbody>
</table>

*1. When the Dry Circuit measurement function is turned on, only the DC+, DC- and Pulse signals can be selected. Please refer to page 37 for limitations on the range selection when using the Dry Circuit measurement function.

*2. The “Zero” drive setting is only available for the Ohm measurement function.
Reference Temperature Table

Overview

The International Temperature Scale (ITS) is based on the following table. The table has 17 fixed calibration points as of 1990.

<table>
<thead>
<tr>
<th>Element</th>
<th>Type</th>
<th>Temperature</th>
<th>°K</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H₂)</td>
<td>Hydrogen</td>
<td>Triple point</td>
<td>13.8033</td>
<td>-259.3467</td>
</tr>
<tr>
<td>(Ne)</td>
<td>Neon</td>
<td>Triple point</td>
<td>24.5561</td>
<td>248.5939</td>
</tr>
<tr>
<td>(O₂)</td>
<td>Oxygen</td>
<td>Triple point</td>
<td>54.3584</td>
<td>218.7916</td>
</tr>
<tr>
<td>(Ar)</td>
<td>Argon</td>
<td>Triple point</td>
<td>83.8058</td>
<td>-189.3442</td>
</tr>
<tr>
<td>(Hg)</td>
<td>Mercury</td>
<td>Triple point</td>
<td>234.325</td>
<td>-38.8344</td>
</tr>
<tr>
<td>(H₂O)</td>
<td>Water</td>
<td>Triple point</td>
<td>273.16</td>
<td>+0.01</td>
</tr>
<tr>
<td>(Ga)</td>
<td>Gallium</td>
<td>Melting point</td>
<td>302.9146</td>
<td>29.7646</td>
</tr>
<tr>
<td>(In)</td>
<td>Indium</td>
<td>Freezing point</td>
<td>429.7485</td>
<td>156.5985</td>
</tr>
<tr>
<td>(Sn)</td>
<td>Tin</td>
<td>Freezing point</td>
<td>505.078</td>
<td>231.928</td>
</tr>
<tr>
<td>(Zn)</td>
<td>Zinc</td>
<td>Freezing point</td>
<td>692.677</td>
<td>419.527</td>
</tr>
<tr>
<td>(Al)</td>
<td>Aluminum</td>
<td>Freezing point</td>
<td>933.473</td>
<td>660.323</td>
</tr>
<tr>
<td>(Ag)</td>
<td>Silver</td>
<td>Freezing point</td>
<td>1234.93</td>
<td>961.78</td>
</tr>
<tr>
<td>(Au)</td>
<td>Gold</td>
<td>Freezing point</td>
<td>1337.33</td>
<td>1064.18</td>
</tr>
</tbody>
</table>
RESISTIVE THERMAL DEVICES (RTDS) are commonly used as temperature sensors. RTDs change resistance linearly over a specific range of temperature. The table below shows some of the inherent features of RTDs compared to thermocouples.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>Higher accuracy</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1~1.0°C, higher resolution</td>
</tr>
<tr>
<td>Speed of response</td>
<td>Slower</td>
</tr>
<tr>
<td>Self-heating</td>
<td>Yes</td>
</tr>
<tr>
<td>Long term stability</td>
<td>Good</td>
</tr>
<tr>
<td>Output characteristics</td>
<td>Approx. 0.4ohm/°C, near linear</td>
</tr>
</tbody>
</table>

Optional Platinum Sensor

Introduction

The optional platinum sensor is a PT-100 sensor. The PT-100 sensor meets the German DIN43760: 1968 3 wire measurement specification.

These sensors are one of the most common temperature sensors used in industry. These sensors have a nominal resistance of 100Ω at 0°C.

The relationship between temperature and resistance for the PT-100 sensor can be described with the Gallendarvan Dusen equation shown below:

\[
R_{RTD} = R_0 [1 + AT + BT^2 + CT^3 (T - 100)]
\]

Where:
- \(R_{RTD}\) is the calculated resistance of the RTD.
- \(R_0\) is the known RTD resistance at 0°C.
- \(T\) is the temperature in °C
- \(A\) = \(\alpha [1 + (\delta/100)]\)
- \(B\) = \(-\alpha(\delta)(1e-4)\)
- \(C\) = \(-\alpha(\beta)(1e-8)\)

The Alpha (\(\alpha\)), Beta (\(\beta\)), Delta (\(\delta\)) values for the...
PT-100 sensor are listed below:

<table>
<thead>
<tr>
<th>Type</th>
<th>Standard</th>
<th>Alpha</th>
<th>Beta</th>
<th>Delta</th>
<th>Ω @ 0°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT-100</td>
<td>ITS90</td>
<td>0.003850</td>
<td>0.10863</td>
<td>1.49990</td>
<td>100Ω</td>
</tr>
</tbody>
</table>

Temperature Calculation Example

Example—Calculating the resistance of a PT-100 RTD at 100°C (T). The following R_0 (Ω at 0°C), alpha, beta, and delta values are used for the PT-100 RTD:

$$T=100 ^\circ C$$

$$R_0 \ (\Omega \ \text{at} \ 0 ^\circ C) = 100 \Omega$$

$$\text{Alpha}=0.003850$$

$$\text{Beta}=0.10863$$

$$\text{Delta}=1.49990$$

A, B, and C are calculated according to equations listed above:

$$A=0.00391$$

$$B=5.77e-7$$

$$C=4.18e-12$$

The resistance of the RTD at 100°C (R_{100}) is then calculated as follows:

$$R_{100} = R_0 [1 + AT + BT^2 + CT^3 (T - 100)]$$

$$= 100 \times [1 + ((0.00391) (100)) + [(5.77e-7) (100^2)] + [(4.18e-12) (100^3) (100 - 100)]]$$

$$= 138.5 \Omega$$
Specifications

Conditions

The specifications are applicable under the following conditions:

- An operating temperature of 18 to 28 °C (64.4 to 82.4 °F).
- Relative humidity not exceeding 80%.
- Accuracy is expressed as ±(percentage of reading + percentage of range).
- The instrument requires 30 minutes warm-up time and must be operated at the slow measurement rate to achieve rated accuracy.
- The power cord protective grounding conductor must be connected to ground.

Resistance Measurement

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>*Measuring Current</th>
<th>Accuracy</th>
<th>Open-Terminal Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mΩ</td>
<td>1μΩ</td>
<td>1A</td>
<td>±(0.1%+0.02%)</td>
<td>~6.5V</td>
</tr>
<tr>
<td>500mΩ</td>
<td>10μΩ</td>
<td>100mA</td>
<td>±(0.05%+0.02%)</td>
<td>~6.5V</td>
</tr>
<tr>
<td>5Ω</td>
<td>100μΩ</td>
<td>100mA</td>
<td>±(0.05%+0.02%)</td>
<td>~6.5V</td>
</tr>
<tr>
<td>50Ω</td>
<td>1mΩ</td>
<td>10mA</td>
<td>±(0.05%+0.02%)</td>
<td>~6.5V</td>
</tr>
<tr>
<td>500Ω</td>
<td>10mΩ</td>
<td>1mA</td>
<td>±(0.05%+0.008%)</td>
<td>~6.5V</td>
</tr>
<tr>
<td>5kΩ</td>
<td>100mΩ</td>
<td>100μA</td>
<td>±(0.05%+0.008%)</td>
<td>~6.5V</td>
</tr>
<tr>
<td>50kΩ</td>
<td>1Ω</td>
<td>100μA</td>
<td>±(0.05%+0.008%)</td>
<td>~6.5V</td>
</tr>
<tr>
<td>500kΩ</td>
<td>10Ω</td>
<td>10μA</td>
<td>±(0.05%+0.008%)</td>
<td>~6.5V</td>
</tr>
<tr>
<td>5MΩ</td>
<td>100Ω</td>
<td>1μA</td>
<td>±(0.2%+0.008%)</td>
<td>~6.5V</td>
</tr>
</tbody>
</table>

*When the instrument is set to 50mΩ or 500mΩ ranges, the resistance value will be changed while connecting or disconnecting the test lead to the panel due to the different temperature between internal and external parts of the instrument. Therefore, please wait 1 minute in order to obtain an accurate value after the test leads have been connected or disconnected.

* When Kelvin clips are used to resume testing after a long period of time, please wait for a short time to stabilize the measurement.

*Fast and Slow measurement rates have the same specifications. However, the Slow rate is more accurate as it will correct for any errors associated with temperature drift that occurs from the difference between the measurement.
temperature and the calibration temperature.

*Accuracy for Measuring current is ± 3%.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Four-terminal method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-ranging</td>
<td>Provided.</td>
</tr>
<tr>
<td>Over input range</td>
<td>“-----” indicates over range</td>
</tr>
<tr>
<td>Comparator</td>
<td>20 sets of comparator status can be selected.</td>
</tr>
<tr>
<td>Buzzer mode</td>
<td>switchable OFF, PASS, FAIL</td>
</tr>
</tbody>
</table>

Dry Resistance Measurement

<table>
<thead>
<tr>
<th>Range</th>
<th>Measuring Current</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>500mΩ</td>
<td>100mA</td>
<td>±(0.3%+0.05%)</td>
</tr>
<tr>
<td>5Ω</td>
<td>10mA</td>
<td>±(0.3%+0.05%)</td>
</tr>
<tr>
<td>50Ω</td>
<td>1mA</td>
<td>±(0.3%+0.05%)</td>
</tr>
</tbody>
</table>

Temperature Measurement

<table>
<thead>
<tr>
<th>Temperature sensor (option)</th>
<th>Platinum resistor. Lead length: 1.5m approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10°C ~40°C</td>
<td>0.3%±0.5°C</td>
</tr>
<tr>
<td>Other</td>
<td>0.3%±1.0°C</td>
</tr>
</tbody>
</table>

Temperature Correction Function

<table>
<thead>
<tr>
<th>Reference temperature range</th>
<th>-50.0°C~399.9°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal coefficient range</td>
<td>±9999 ppm</td>
</tr>
<tr>
<td>Temperature range</td>
<td>Accuracy of temperature compensation for 3930 ppm/Cu wire.*</td>
</tr>
<tr>
<td>-10°C~40.0°C</td>
<td>0.3%+resistance measurement accuracy.</td>
</tr>
<tr>
<td>Other</td>
<td>0.6%+resistance measurement accuracy.</td>
</tr>
</tbody>
</table>

*The temperature coefficient for the other settings must be calculated individually according to different conditions.
*If the temperature coefficient or the difference between the environmental temperature and the required temperature exceeds normal operation, after calculating the compensation, the variation to the reading value will be significant.
*When using the PT-100 temperature sensor for temperature measurements, the accuracy of the sensor (typical accuracy of <±0.5°C) should also be taken into account and calculated for.
Interface

| Handler interface* | Signal: Trigger: TTL input
<table>
<thead>
<tr>
<th></th>
<th>Signal: LOW, HIGH, FAIL, PASS, EOT, READY, BIN 1~8, BIN OUT: total 15 TTL outputs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan*</td>
<td>Signal: RELAY, PASS, LOW, HIGH, CLOCK, STRB total 6 TTL outputs.</td>
</tr>
</tbody>
</table>
| Communication | GOM-804: USB/RS-232
| Interfaces | GOM-804G: USB/RS-232/GPIB
| | GOM-805: USB/RS-232/GPIB |

*The Scan and Handler interface use the same connector.

Environmental

| Operation Environment | Indoor use, altitude up to 2000m.
| Operation Environment: 0˚C to 40˚C.
| Temperature Range: 0 ~ 35˚C, Relative Humidity: <80%RH; >35˚C, Relative Humidity: <70%RH.
| Pollution Degree | 2 |
| Storage Conditions | -10˚C to 70˚C.
| Temperature Range: 0 ~ 35˚C, Relative Humidity: <90%RH; >35˚C, Relative Humidity: <80%RH |

General

| Power source | AC 100-240V±10%, 50-60Hz, 25VA |
| Accessories | Power cord x1
| Test lead: GTL-308 x1
| User manual x1 (CD)
| Safety instruction sheet x1
| USB cable (option): GTL-246
| Temperature sensor (option): PT-100 |
| Dimension | 223(W)×102(H)×283(D) mm |
| Weigh | Approx. 3 kg |
Dimensions

[Diagram showing dimensions]

- Front: 275.5, 282.9
- Side: 214.0, 222.8
- Top: 101.5, 85.9

[Measurement details]
Declaration of Conformity

We
GOOD WILL INSTRUMENT CO., LTD.
No.7-1, Jhongsing Rd., Tucheng Dist., New Taipei City, Taiwan
GOOD WILL INSTRUMENT (SUZhou) CO., LTD.
No. 69, Lu San Road, Suzhou New District, Jiangsu, China

declare, that the below mentioned product
Type of Product: DC Milliohm Meter
Model Number: GOM-804, GOM-805

are herewith confirmed to comply with the requirements set out in the

For the evaluation regarding the Electromagnetic Compatibility and Low
Voltage Equipment Directive, the following standards were applied:

<table>
<thead>
<tr>
<th>EMC</th>
<th>EN 61326-1</th>
<th>EN 61326-2-1</th>
<th>EN 61326-2-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric equipment for measurement,</td>
<td>Electrical</td>
<td>Electrostatic</td>
<td>Electrostatic</td>
</tr>
<tr>
<td>control and laboratory use -- EMC</td>
<td>requirements (2013)</td>
<td>Discharge</td>
<td>Discharge</td>
</tr>
<tr>
<td></td>
<td>EN 61000-4-2: 2009</td>
<td>EN 61000-4-2: 2009</td>
<td>EN 61000-4-2: 2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Fluctuation</td>
<td>EN 61000-3-3: 2013</td>
<td>Electrical Fast Transients</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN 61000-4-4: 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Surge Immunity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN 61000-4-5: 2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conducted Susceptibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN 61000-4-6: 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Frequency Magnetic Field</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN 61000-4-8: 2010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voltage Dip/ Interruption</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EN 61000-4-11: 2004</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety Requirements</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

157
INDEX

Binning function
setting ... 46
Characteristics 10
Compare function
setting ... 41
Declaration of conformity 157
Dimensions 156
Diode ... 40
Display mode 35
Disposal instructions 7
Drive overview 31
Drive setting 33
function combinations 149
Dry circuit 37
function combinations 149
EN 61010
measurement category 6
pollution degree 7
Environment
operation ... 6
storage ... 7
External IO 73
FAQ ... 147
Front panel overview 15
Function selection combinations 149
Getting Started chapter 9
Handler
compatibility 89
overview ... 78
pinout ... 80
Handler mode 74
Interface
GPIB
function check 96
setting ... 93
overview ... 90
RS232
function check 93
Realterm example 94
setting ... 92
USB
driver ... 91
function check 93
Realterm example 94
setting ... 90
Measurement settings
ambient temperature 66
average ... 60
line frequency 67
measure delay 61
PWM duty .. 68
setting ... 60
temperature unit 65
trigger delay 63
trigger edge 64
Power supply safety instructions 6
Power up .. 24
PT-100 sensor temperature calculation 151
PWM duty .. 68
Range .. 30
Rate
setting ... 34
Real time display 36
Rear panel overview 21
Recall settings 99
Reference temperature table 150
Relative function
connection .. 26
function combinations 149
Remote control
binning commands 108
calculate commands 113
Command list 105
color command 102
common commands 143
memory commands 120
sense commands 122
source commands 126
status commands 127
system commands 128
temperature commands 133
trigger commands 138
user define commands 141
Resistance
range .. 30
setting ... 29, 40
Resistance measurement
connection .. 25
RT display .. 36
Safety instruction
Guidelines 6
Safety instructions
power supply 6
symbol ... 5
Save settings 99
Scan
GOM-802 compatibility 89

158
output .. 88
overview .. 82
pinout ... 83
setup .. 84
Service contact 147
Specifications 153
Status system 146
System settings
 beep .. 76
 brightness .. 72
 external IO ... 73
 handler mode 74
 interface ... 71
 power on settings 70
 system information 69
Table of contents 3

Temperature
 setting .. 50
Temperature compensation
 setting .. 52
Temperature conversion
 setting .. 56
Temperature measurement
 reference ... 150
TFT-LCD overview 19
Tilt stand ... 23
Trigger
 setting .. 38
United Kingdom power cord 8
Zeroing
 connection .. 26