AP32300 (Infineon

Controller Area Network Controller (MultiCAN)
XMC1400, XMC4000

About this document

Scope and purpose

The Infineon MultiCAN/MultiCAN+ module contains independently operating CAN nodes with full CAN
functionality to meet the 1ISO11898_1 standard.

This document combines a brief overview of the MultiCAN module in the XMC™ family with a more detailed
description of the operation of different features, including:

e FIFO
e Gateway
e Baudrate detection

Note: Depending on the configuration of each microcontroller derivative that includes the
MultiCAN/MultiCAN+ module, the number of nodes and message objects might be different.

Applicable products

e XMC™ microcontroller family

References

The example code “AP32300_XMC_MultiCAN(+)_SW” can be downloaded from www.infineon.com/XMC.

For Application Kits and DAVE™, please refer to www.infineon.com/xmc-dev.

Application Note Please read the Important Notice and Warnings at the end of this document V1.1
www.infineon.com 2016-05

http://www.infineon.com/cms/en/product/microcontrollers/32-bit-xmc4000-industrial-microcontrollers-arm-registered-cortex-tm-m4/channel.html?channel=db3a30433580b3710135a03abaf9385e#ispnTab3
http://www.infineon.com/cms/en/product/microcontrollers/32-bit-xmc4000-industrial-microcontrollers-arm-registered-cortex-tm-m4/channel.html?channel=db3a30433580b3710135a03abaf9385e#ispnTab4

-
. [)
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
CAN protocol and the Infineon CAN module

Table of contents

ADOUL this dOCUMENT ...ttt ettt et e e e et e e e e e e e man et e e e e e e e e s mmmee e e e e e e e e s smmnnnes 1
1 CAN protocol and the Infineon CAN ModUle.........coceeneeeeeeiieieeeceeeeeee e e e e e e e eeneeeeeeeeas 3
1.1 TYPICAl CAN NOAE STIUCLUIE ...ttt et teeteesteesbeesteesaessbe s seesseesssessaesssesssasssessseeseenseens 5
1.2 CAN FramE FOIMIAT....cveieieieieeeee ettt ettt s bbb e e st et et et ese e e ssessessessensensansons 5
1.3 CAN NOAE SEALES ..ttt ettt ettt ettt et s bt st b e st e e bt e e s bt et e b e satebesbesatesseeneensensean 6
2 MultiCAN/MultiCAN+ in the XMC™ familycccec ettt ereee e e e e e e eeeeeeeeeeeeeenes 7
2.1 The changes from MultiCAN to MultiCAN+in XMC™ famili@S.......ccevuevirererenenienieieieieeeeeesiesaeneenne 8
2.1.1 MultiCAN+ supports different clock sources to the baudrate generator..........ccceeveeeevieneeceecienenns 8
2.1.2 Transmit disable on the CAN NOAE ...ttt ettt 9
2.13 ErrOr COUNE MO ..ttt ettt et s bt et e s b et e be s bt et e be et e besatetesbeeas 9
2.2 MULEICAN SEFUCTUIE .ttt ettt ettt et a et e st et e s b e et et e et et e e st et esbe s st ebeebe st eseenes 9
221 NOAE CONTIOL UNIT ..ttt ettt et ettt e st e et e sbe et e besae st e se e st e nbesanentansans 9
2.2.2 The INKed LISt CONEIOLLET ...c..ciuiiieieeeee ettt ettt et sbe st see s 11
2.2.3 The iNterruPt CONTIOLUNTt..cc.iiiieiieiieeteceeteet ettt se e sresre e sreesbe e s e e ssae s seesseessnessasssnesssessses 12
2.2.4 Node receive INPUL SELECTIONiciieeeieceeceee ettt et eve et e e b e e bessbe e bae s s e ssbessasssesnsnenns 13
2.2.5 MESSAZE CONEIOILEN 1.ttt ettt s it e e b e et e et e e reesaa e s s essbeessaesbasssessssesssassseessesnns 13
2.2.6 INterfaces and INEIrCONNECEScocui ittt ettt ettt ettt a e st esae e e eeeaas 13
2.2.7 Bt LN ettt ettt ettt et e et et e st e s at e st e st e st e e bt e st e e at e et e e eeeaeeane 15
2.3 Hardware handling of CAN frame reception and transmisSion.........ccccecvevveeeeciereevenieereereeneereesvennnas 17
2.4 Programming the MUItICAN MOAULE ...c..coiiiiiieieieeeteee ettt ettt et es 18
24.1 Software initialization Of MUILICANc..cciiiiiririeeeeeee ettt sa e 18
2.4.2 Software handling 0N CAN NOE.......c.uovieieiieieieceetetee ettt ettt ste e e e sae s e essesseesaessassnessessenns 19
243 Software control of a Message tranSTer ..ot 20
2.5 MUIEICAN SPECIALFRATUIESveevieeereteeteteeeetete ettt e et e s te e e e ae e e e aesse et e sessaessensasssassasssensansens 24
2.5.1 LOOP-DACK MOAE ...ttt ettt e et ebeeve e be e ba e s b e srbeeabaesbasssesssesssessseensennns 24
2.5.2 CAN @NALYZEI MOAEiiiiiiiiieitecteeeee ettt e ete e ste e teestaestaeesbessbaessaesseesssesssesssasssasssasseensasaseans 24
253 MULLICAN FIFO.c. ittt ettt ettt ettt ettt ettt b s b b et et et et et eneesassessensensennan 24
2.5.4 MULEICAN ZATEWAY ..envieiieiieieieeiteteete et ste et te st et e ste st eaeste et esse et e basasestassesssensesssensesssensansasssensanses 26
3 Implementing the @XamMPLle... ... ettt ettt e e e eeee e e e e e e e e s smen e e e e e e e e e e 29
3.1 ISt SO DS cteeetteete ettt ettt st e et e e s bt e et e e st e e et e e st e e et e s e st e e e bt e e e st e e e bae e s beenabaeesaaennee 29
3.2 Example_1: standard message object transmission and reCeIVEccvveevveevieereenieenivesriesnieesieeseenns 29
3.3 EXample_2: USING FECERIVE FIFO ..ottt ettt ettt ettt et ste st e sae s e esaessa e e ensasanen 29
3.4 Example_3: uSing tranSmit FIFOooiiiiiiiieeieeieccteetesteeteete st et eseesnesnesaesssaessaesssesssasssasssssnsennns 29
3.5 Example_4: using gateway WithOUL FIFOooiriiiiirieieieeteieeeeteee ettt sttt es 29
3.6 Example_5: using gateway With FIFOc.coiiiiiirierieeeeieeeetetese ettt ste e steste st este s e eaesseeaessasnnes 30
3.7 Example_6: baudrate det@CHiONccvieiieieciieecteeteeteeteee et sre e sve e s e e srr e s ae s bessbaesbnenns 30
4 DAVE™ @nd XMC™ LD ...ttt ettt e s e ste e e e s nee e e e s s mee e e e s mne e e e meaaesssnnee 32
4.1 Implementation With XMC™ LiDcc.eiciiiieciecieeie ettt cte et et eesaeeaesveebeessaesssesbessvesnsasnseenes 32
5 RUNNING @XAMPLE COA@ ..ttt ettt et e eeee et et e s e se s s s s snnnaeaeeeea s s nnnnnaeaesansssnnn 34
6 Y o] 01T 4 Vo 1 GO UUUUUSURPSURUPRPINt 35
6.1 KT INFOIMIATION ceeneiiieeceee ettt ettt e st et e a e st et esae et e besssesbenseessensaessensansenn 35
REVISTION HISEOTY ...ttt ceeee e e ee et et e eeeeeeaeesannn s aeaeaassnnnnnnssaessssssnnnnnsnasesssessnnnnnnnnanaes 36
Application Note 2 V1.1

2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

CAN protocol and the Infineon CAN module

1 CAN protocol and the Infineon CAN module

CAN is a multi-master bus system with broadcasting capability. In the CAN protocol, the bus nodes do not have
a specific address - instead, the address information is contained in the identifiers of the transmitted messages,
indicating the message content and the priority of the message for arbitration.

CAN is a low cost protocol for use in real-time applications requiring a high reliability. Nodes can be easily
connected or disconnected without disturbing the communication with the other nodes.

Uses
The CAN bus is most widely used in the automotive and industrial market segments:

e CANisused in the automotive industry to enable data exchange between ECUs anywhere within the vehicle.

e CANisused inindustrial automation to connect control units, sensors, and actuators. There are several
CAN-based high-layer protocols, including DeviceNet, CANopen, and J1939, which are internationally
standardized and their networks are used in a wide variety of application fields.

e CAN is used forinitialization, program and parameter up-/download, exchange of rated values / actual
values, and diagnosis including, for example, end-of-line or on-the-fly software updates.

CAN protocol specification and history

e 2.0 A;specify "Standard CAN" - 11 bit message ID’s, total 2048 ID’s available

e 2.0 B; specify “Extended CAN” - 29 bit message ID’s, more than 536 million ID’s available
e 1S011898-1 as successor of 2.0 B

e TTCAN: Time-triggered communication on CAN

e CANFD integration into 1SO11898-1

Application Note 3 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

CAN protocol and the Infineon CAN module

Table 1 Infineon CAN implementations
Module name | Devices Nodes Message FIFO/ TTCAN CAN FD
objects Gateway
TwinCAN XC16x 2 32 yes - -
32 message objects can be individually assigned to one of the two CAN nodes.
FIFO participateina 2, 4, 8, 16, 32 buffer.
Analyzer Mode.
MultiCAN XC800 Max. 8 Max. 256 yes oncertain |-
XC2000/XE166 (flexibly devices
XMC4000 assigned)
TriCore
Message objects can be individually or dynamically assigned to one of the CAN nodes.
FIFO/Gateway buffer size is programmable.
Analyzer mode and bit timing mode.
The number of nodes, message objects and TTCAN features of the MultiCAN module in each
device vary. For details please refer to the appropriate data sheet.
MultiCAN+ AURIX™ Max. 8 Max. 256 yes on certain yes
(SO CAN FD) (flexibly devices
assigned)
XMC4700/4800 Max. 8 Max. 256 yes - -
XMC1400 (flexibly
(no CAN FD) assigned)
Application Note 4 V1.1

2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon

XMC1400, XMC4000
CAN protocol and the Infineon CAN module

1.1 Typical CAN node structure
CAN_H
CAN-Bus Usiin
CAN_L
CAMN-Transcever | | Physical layer
Tx R
CAN CAN
Cantroller mdule mdule
XMC XE1&6

! Data link layer
Application 3

application layer

Figure 1 Typical CAN node structure

CAN is insensitive to electromagnetic interference. The maximum CAN bus speed is 1 MBaud, which can be
achieved with a bus length of up to 40 meters when using a twisted pair wire.

1.2 CAN frame format

SOF RTR IDE ACK
111D Data m 11_ID |0 0|0 |DLC_4 bytes ‘CRC_15|1 |0 ‘1 ‘ EOF_7 ‘ IFS_3 | idle ‘

SOF RTR IDE ACK
111D Remate ‘u ‘ 111D |1 ‘u ‘ D ‘nu:_a. ‘CRC_15|1 |n ‘ 1 ‘ EOF 7 ‘ IFS_3 | idle ‘

IFS; interframe space

S0F SRR IDE RTR ACK
29_ID Data lO ‘ 11_ID | 1 l‘l ‘ 18_ID |0 l 0 l 0 l DLC_ 4 ‘ bytes ‘CRC_15 | 1 |i|‘| | EOF_7 ‘ IFS_3 | idle ‘

S0F SRR IDE RTR ACK
29_ID Remote lo ‘ 11_ID |1 |1 l 18_ID ‘1 lolu lDLc_4 ‘CRC_‘IS|1 |i|1 | EOF_7 | IFS_3 | idle ‘
Error frames transfer | 6 to 12 bits 8 bits IFS ransfer ‘ 5 bits ‘ 8 bits 1 Fs

Error flag field ~ Error delimiter Error flag field Error delimiter
field
fleld
Error frame of .error active” node Error frame of .error passive” node
Overload frame i 0.6 i
IFS 6 hits 8 bits IFS
bits.
Overload flag + Error delimiter
Superimpositon of field

active oveload flag

Figure 2 CAN frame formats (data, remote, error, overload frame)

Application Note 5

V1.1

2016-05

-
. [)
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
CAN protocol and the Infineon CAN module

1.3 CAN node states

e Each CAN node can enter one of three error states, depending on the value of their internal error counters:
- error active
- error passive
- bus-off

e Each CAN node implements one receive and one transmit error counter. Counting increments or
decrements in accordance with ISO 11898-1.

o The error-active state is the usual state after a reset. The bus node can then receive and transmit messages
and transmit active error frames (made of dominant bits) without any restrictions. An ‘error-active’ node
may access the bus as soon as the bus is free.

e Inthe error-passive state, messages can still be received and transmitted, although, after transmission of a
message the node must suspend transmission. It must wait 8 bit times longer than error-active nodes before
it may transmit another message. In terms of error signaling, only passive error frames (made of recessive
bits) may be transmitted by an error-passive node.

e Inthe bus-off state it is temporarily impossible for the node to participate in the bus communication. During
this state, messages can be neither received nor transmitted.

REC
128 |- — — —
REC>127 or . .
TEC>127 Restart request and 128 occurrences efror active error passive
REC<128 and of 11 consecute ,1" bits
TEC<128 TEC
256 [— — — — — — — — —
Error passive
128
TEC>255
error active error passive Bus off
Figure 3 CAN node states (error active, error passive, bus-off)
Application Note 6 V1.1

2016-05

Controller Area Network Controller (MultiCAN)
XMC1400, XMC4000
MultiCAN/MultiCAN+ in the XMC™ family

(infineon

2 MultiCAN/MultiCAN+ in the XMC™ family

The MultiCAN/MultiCAN+ module in the XMC4000/XMC1000 family supports the following functionality:

e Compliant with classical CAN as defined in 1SO 11898-1

e Baudrate programmable for each node

e FIFO/Gateway functionality
e Acceptance mask filtering for each MO
e Frame counter of each CAN node is selectable for frame count, the time stamp, or the bit-timing mode

e Freely assignable interrupt sources to interrupt nodes. 8 interrupt output lines are available

e Prioritization of message objects by ID or list number

Table 2 XMC™ derivatives with MultiCAN/MultiCAN+ implementation (Refer also to data sheet)
Derivative Package Nodes Message fcan (max. Interrupt | Module
(max.) objects (max.) | synchronous lines address
clock) SRx space
(max.)
XMC4500 PG-LFBGA-144 |3 64 feeripn =120 MHz | Note_A 4801 40004-
(MultiCAN) PG-LQFP-144 4801 TFFF
PG-LQFP-100
XMC440x PG-LQFP-100 |2 64 freripn =120 MHz
(MultiCAN) PG-LQFP-64
XMC4200 PG-LQFP-64 2 64 freripn =80 MHz
XMC4100 PG-VQFN-48
(MultiCAN)
XMC4108 PG-LQFP-64 1 32 freripn =80 MHz
(MultiCAN) PG-VQFN-48
XMC4800 PG-LFBGA-196 |6 256 freripn =144 MHz
XMC4700 PG-LQFP-144 see Figure 4
(MultiCAN+ PG-LQFP-100
no CAN FD)
XMC1400 PG-VQFN- 2 32 fuck =48 MHz Note_B 5404 0000y-
(MultiCAN+ 40/48/64 see Figure 4 5404 3FFFy
no CAN FD) PG-LQFP-64
Note: Note_A : XMC4000 family based on ARM® Cortex®-M4 core which NVIC supports total 112 interrupts
with programmable priority level of 0..63.
CAN.SR0..SR7 is connected to NVIC unit (IRQ number 76...83)
SRO0..SR4: for DMA service
Note: Note_B:XMC1000 family based on ARM® Cortex®-MO core which NVIC supports total 32 interrupts

with programmable priority level of 0..3.
CAN.SRO0..SR3 is connected to NVIC source selection unit (details about IRQ number assignment for
MultiCAN+ interrupt line please refer to the appropriate reference manual)

Application Note

V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
MultiCAN/MultiCAN+ in the XMC™ family

2.1 The changes from MultiCAN to MultiCAN+ in XMC™ families
2.1.1 MultiCAN+ supports different clock sources to the baudrate
generator

The clock input for the MultiCAN module is described in detail in section 2.2.6. The clock input of MultiCAN is
driven only from the synchronous clock source (fperiph)-

MultiCAN+ supports additional asynchronous clock sources for baudrate generation.

| |
| |
r] i | I
caE Clock select * | Fractional divider | °*" I
T (CAN_MCR CLKSEL) CAN FDR [™| Baudrate |
|
> !
' |
|
XMC clock control unit I ‘ |
, synchronous clock: | "PERFH | Clock conrol s _ _ [
fosc e I N A - T ™ can_cle | Module registers |
Tt > foe ! |
asynchronous clock: D paultican+ |
~ fUS-!'.' HF I ___________________________________
XMC peripheral reset control
MultiCAN+ resat signal: CAN_MCR.CLKSEL:
- bit PREET1/PRCLR1.MCANORS 0001 g: synchronous clock fa = feerien
0010g: asynchronous clock fa = faze e
XMC peripharal clack gating 0011 synchronous clock T, = T
MultiCAN+ clock gating control:
- bit CGATCLR1/CGATSET1.MCAND
in XMC4T00/XMC4800

| |
| |
| i ; |
- losck ealoet f . . -
| Clock select Fractional divider | I
I (CAM_MCR.CLKSEL) CAM_FDR - Baud rate :
| |
' [
AMC1400 clock system | |
fasc e synchronous clock: s ; :
—™1. DCO1- DCLK 3 fucux | Mk | Clock conrol sLe _ _
|~ fozc_we 2 DCLK 2 fipcu 1 - CAM_CLC »-| Module registers :
- . |
fca: (on-chip fl?;.r!'lf:hmnuus clock: | . |
oscilator) O5C_HP | MALItC AN+ |

XMC peripheral clock gating

MultiCAMN+ clock gating control: CAN MCR.CLKSEL:
- bit CGATCLR1/CGATSET . MCAND 00015 synchronous clock fa = fuck

D010s: asynchronous clock fa = fasc e

in XMCA400

Figure 4 MultiCAN+ clock source selection

This feature is selected via CAN_MCR.CLKSEL. After a power-on reset the clock (fc.c) for MultiCAN+ logic is
disabled. Therefore, to select an asynchronous clock input for baudrate generation the synchronous clock fc.c
must be previously switched on. To receive the same clock source as the one on the MultiCAN controller
CLKSEL has to be programmed to 00015.

Application Note 8 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

Note: Write access to the lowest byte of the MCR register is only available if the CCE bits of all CAN nodes
are set (NCRx.CCE bits).

2.1.2 Transmit disable on the CAN node

A new ‘rw’ bit (TXDIS) is implemented in register CAN_NCRKx (see section 2.2.1) of the XMC™ family’s MultiCAN+
module. Setting this bit stops the transmit activity of this node without affecting reception when bus-idle is
reached. The ‘ready available’ bit CANDIS completely disables the node for transmission as well as reception.

2.1.3 Error count mode

In MultiCAN each node is equipped with a frame counter with selectable modes (see section 2.4.2). MultiCAN+
provides a new “error count mode”. In this mode the frame counter is used for counting when an error frame is
received or an error is detected by the node. For details regarding register configuration please see section
2.4.2.

2.2 MultiCAN structure

2.2.1 Node control unit

Each CAN node consists of several sub-units:

e Bitstream processor
- Performs data, remote, error, and overload frame processing according to the 1ISO 11898 standard

- Checks bus-idle, adds SOF and EOF, controls the CRC generation and arbitration procedure, and
monitors the ACK slot. If an error mismatch is detected an error event is generated in register NSRx.

e Error handling unit

- Performs Tx/Rx error counting and sets node into an error-active/-passive and bus-off state according to
the ISO 11898 standard

e Bittimingunit

- Baudrate detection and resynchronization
e Node control bits

- Enable/disable CAN transfer on this node
e Interrupt control unit

- Node-specific events

Node control register NCRx
e INIT (‘wrh’)

- Set by hardware when the CAN node enters the bus-off state

- Cleared by software to enable the participation of the node in the CAN traffic
e CCE (Configuration Change Enable)

- Register NBCTRx, NECNTx, and NPCRx can only be written to when CCE=1

Note: A new ‘rw’ bit (TXDIS) is implemented in the register CAN_NCRx in MultiCAN+, see section 2.1.2.

Node status register NSRx

e ALERT (alert warning). An ALERT is set when there is:
- achange to bit NSRx.BOFF
- achange to bit NSRx.EWRN

Application Note 9 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

- alistlength error, which also sets bit NSRx.LLE
- alistobject error, which also sets bit NSRx.LOE

Note: Flag ALERT must be reset by software (write 0).

e EWRN and BOFF (Bus-off)
- Both are ‘rh’ bits
- They are updated by hardware

Bus-off recovery
REC is used to count 128x bus-idle (11x recessive bit)

TEC=>=0x80 or
REC=>=0x60

TEC<0x60 &
REC<0x60

REC=0
TEC=0 by HW

Figure5 Status flags changing of MultiCAN register NSR

Bus-off state and INIT state

In accordance with the CAN specification, in MultiCAN the bus-off state is activated if the transmit error counter
equals or exceeds the bus-off limit of 256. This state is reported by flag BOFF.

The “Bus-off recovery sequence” is started automatically when the CAN mode is in the bus-off state. Figure 5
shows CAN node states changing in MultiCAN.

e During the bus-off state, all control and message object registers hold their current values and the error
counters are reset
e 128 bus-idle events (11 consecutive ‘recessive’ bits) have to be detected, before the synchronization
sequence can be initiated. The monitoring of the bus-idle events is started by hardware immediately after
entering the bus-off state. The already-detected bus-idle events are counted and indicated by the receive
error counter. After completion of the bus-off recovery sequence, the MultiCAN clears the bit BOFF, while
INIT and ALERT will remain set.
e After 128 bus-idle events the INIT bit will be tested by hardware
— If INIT is still set, the affected CAN node controller waits until INIT is cleared and at least one bus-idle
event is detected on the CAN bus, before the node takes partin CAN traffic again; for example MultiCAN
enters a 'power-on' state
- IfINIT has already been cleared (software has reset INIT during or after the recovery phase), the message
transfer between the affected CAN node controller and its associated CAN bus is immediately enabled;
for example MultiCAN enters an 'idle' state

Application Note 10 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

2.2.2 The linked list controller

The message objects are organized in double-chained lists and benefit from a flexible allocation of message
objects for their CAN node.

ya Y i LY
¢ CAMnoded > < CAM node 1 > < CAM node 2 >
— < ve < ve Unallocated

» MSGs
PPREV=5
— MOS5 |PMEXT=11 1. MO in List 2 1. MO in List 3 1. MO in List 0
List=1
T ; L 1 L1 L7
PPREV=5 2. MO in List 2 2. MO in List 3 2. MO in ListD
MO11 |PNEXT=0

T T T T T

s T

PPREW=11

MOgS |PMNEXT=9
E List=1 l T l 1] 1
last MO in List 2 last MO in List 3 n. MO in List O
SIZE=3
L IBEGIN=5
END=9 List 3 i by i
- 1 15 IS5 on .'3"' in

Register LIST AMC4500

Figure6 The linked list

e FIFO and gateway message objects are based on a list structure
o Afterreset, all message objects are on the list (list 0) of unallocated elements

e After each write operation the bit PANCTR.BUSY must be checked in order to ensure correct list pointers in
each message object

Application Note 11 V1.1
2016-05

Controller Area Network Controller (MultiCAN)
XMC1400, XMC4000

(infineon

MultiCAN/MultiCAN+ in the XMC™ family

2.2.3

The interrupt control unit

The ICU controls the interrupt generation for different conditions. There are 140 hardware interrupt events.

e CAN node interrupts

- Each CAN node has 4 interrupt sources (alert, last error, Tx/Rx ok, CFC overflow)

e Message objectinterrupts

- Each message object has 2 interrupt sources (TxOk and RxOk)
MultiCAN contains 8 interrupt output lines (INT_0O0...7), which are assigned to the NVIC (CAN.SRO...SR7).

Table 3 MultiCAN interrupts
Flag Enabled by SRx selected by | Flag to be cleared | Indication
by software
CAN node
NSRx.TXOK NCRx.TRIE NIPRx.TRINP NSRx.TXOK=0 Frame has been transmitted on
the CAN node
NSRx.RXOK NCRx.TRIE NIPRx.TRINP NSRx.RXOK=0 Frame has been successfully
understood by the CAN node
NSRx.ALERT NCRx.ALIE NIPRx.ALINP NSRx.ALERT=0 Alert warning
NSRx.BOFF - - only by HW
NSRx.EWRN - - only by HW Rx/Tx level limit error
NSRx.LLE - - NSRx. LLE=0 List length error
NSRx.LOE - - NSRx.LOE=0 List object error
SRx.LEC NCRx.LECIE NIPRx.LECINP Only by HW. Last error code change has been
Any write to LEC will | updated.
resultin a Ox7
NFCRx.CFCOV NFCRx.CFCIE NIPRx.CFCINP NFCRx.CFCOV=0 Frame counter overflow
interrupt.
CAN frame counter mode:
Frame count mode.
Time stamp mode.
Bit timing mode.
Error count mode (new in
MultiCAN+, section 2.1.3)
Message Object
MOSTATN.RXPND | MOFCRn.RXIE | MOIPRn.RXINP MOCTRNn=0x1 Frame has been received in the
MO
MOSTATN.TXPND | MOFCRn.TXIE | MOIPRN.TXINP MOCTRn=0x2 Frame has been transmitted

from the MO

Application Note

12

V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

2.2.4 Node receive input selection

The MultiCAN module contains a switch in order to select different node receive / input lines via the Node Port
Control Register NPCRx. The selected input signal for each CAN node is made available by its internal signal
CANXINS, which is connected to other peripherals.

e Select theinput line via bit field NPCRx.RXSEL
e LBM=1:loop-back mode
e Theinternal signal CANXINS is connected to other peripherals (USIC), but it cannot trigger ERU directly

Note: In the XMC4000 family the internal signal CANXINS can not trigger ERU directly. Instead, the defined
CAN input pin triggers ERU directly.

l—— RXDCxA
—— RAXDCxB
CAN |
Node x I\‘\ .
e je—— RXDCxH
CANZING

NPCRx RXSEL

Figure 7 Node input control registers

2.2.5 Message controller

The message controller handles CAN frames between the node and the message RAM. It performs the following
functions:

e Receive acceptance filtering for storing the CAN frame received on the node into the message object
e Transmit acceptance filtering for detection and prioritization of the message object to be transmitted
e FIFO and gateway functionality

2.2.6 Interfaces and interconnects

The MultiCAN module interfaces with the clock, port, and interrupt/DMA connections are described here.

Clock input

Clock feeripn from the XMC4000 Clock Control Unit (CCU) is used as the MultiCAN module clock input. In the
XMC4000 family all peripherals can be individually controlled via the registers PRSETx/PRCLRXx.

After power-on-reset, a MultiCAN module clocked with fperpn Will remain in a reset state. To release MultiCAN
from reset, PRCLR1.MCANORS must be set to 1.

fcic is used for internal logic and register operation.
fcan is used for baudrate generation.

In order to get a maximum of accesses to the MultiCAN module the fc = frerpn should use the maximum fpy,.

Note: Clock Interface of MultiCAN+ see please section 2.1.1

Application Note 13 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
MultiCAN/MultiCAN+ in the XMC™ family

XMC clock control unit

fose_we |SyNchronous clock: Trgqupr Clock contral | Fete Fractional divid
—w - o P fovs P Trerien —|—.-- CD:NDF:MLED - rﬂgmanﬁg B - Baud rate

|

|

¥MC peripheral reset control |
MultiCAM reset signal: |
- bit PRSET1/PRCLR1.MCANORS |
|

|

|

|

I

= Module registers

XMC peripheral clock gating
MuliiCAM clock gating: MALIC AN
- bit CGATCLRVCGATSETI.MCAND | L L o o o o o o e e e e e e e e |
(nat available in XMC4500)

In XMC4500 XM 4400 MC4 200 X C41 0l

Figure 8 MultiCAN clock generation

Interrupt trigger (to DMA, to other peripherals, to Interrupt Control Unit)
e MultiCAN module interrupt lines CAN.SRO ... SR7 connect to NVIC unit (IRQ number 76...83).
- CAN.SRO through to SR3 can be used for DMA service.
e Theinterrupt priority level and enable/disable are controlled by the NVIC unit in the XMC family.

Note: For interrupt interface of MultiCAN/MultiCAN+ in different XMC4000/XMC1000 family devices please
see “Interrupt subsystems”

Port pin and I/0O lines control
The interconnections between the MultiCAN and the port /O port lines are controlled in the port logic.

For each CAN node, its input receive pin, selected via NPCRx.RXSEL should be initialized as a “direct input” with
Pn_IOCRy.PCx=00000g to receive the CAN frame, while the transmit output pin must be configured as an
alternate output pin by Pn_IOCRy.PCx=100xxg in a push-pull driven mode.

In the XMC4000, up to 4 alternate output functions (ALT1/2/3/4) can be mapped to a single port pin. Usually the
MultiCAN transmit output pin uses ALT1/2. (Please refer to the appropriate Reference Manual or Data Sheet).

Note: In XMC1000 family up to 9 alternate output functions (ALT1...9) can be mapped to a single port pin.
For details please refer to the appropriate Reference Manual.

Application Note 14 V1.1
2016-05

http://www.infineon.com/dgdl/Infineon-ApplicationNote-AP32331-XMCx000-Interrupt-subsystem-AN-v01_00-EN.pdf?fileId=5546d46253f65057015471bc641e77da

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
MultiCAN/MultiCAN+ in the XMC™ family

2.2.7 Bit timing

In the ISO 11898-1 classical CAN part, one CAN bit time is sub-divided into 4 segments and contains 8-25 time
quanta t,.
e Synchronization segment (Tsync= 1xtg)
- Used to synchronize the various CAN nodes on the bus, an edge is expected within this segment
e Propagation time segment (Tprop=1 ... 8xtg)
- Used to compensate for signal delays of the actual network
e Phase buffer segment (To1 =1 ... 8xtq)
- Used to compensate for a mismatch between transmitter and receiver clock phases detected in Tsync
- It may be lengthened by re-synchronization
e Phase buffer segment (To2=1... Th1):
- Same as T

- It may be shortened by re-synchronization

The lengthening and shortening amount of Te: and To2is determined by the maximum value given by the SJW.

teeripr

—
feeripH I”””““”“l”

Fractional divider (FOR.DM and FDR.STEF)
fean = fpepeq if DM=1 and STEP=1023

) —

oo [TV UUTTRAAARRRT
Baudrate Prescaler (BTR.DIVE and BTR.BPR)
tg=(BRP + 1)/ foay if DIVE=0
time guanta J
t(: >
| | | | | | | | | | -
[[| [[[[[| [t
Tsag: = (TSEG1 + 1) x 1, Tseg = (TSEG2 + 1) x 1
CAN bit period 7 | [SY1C Tseg1 (user definable) Tseg2
(fixed) | | | | | | | (usgr definaple)
[[| [[| [A | [
Sample Point
——Tpop L Toi re Toy———
1 Bit Time

Figure9 MultiCAN bit timing

Application Note 15 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

The bit rate, the sample point, and SJW are user programmable in MultiCAN.

e CAN bittime
- This is sub-divided into the three, non-overlapping segments Tsync, Tsegr aNd Tseg,
— Terop and To1 are summed up to Tseq:
- tq=(BRP +1) /fcan (if DIV8=0) or 8 x (BRP + 1) /fcan (if DIV8=1)
= Tsyne = 1xtq
~ Tseq = (TSEGL +1) xt,
~ Tseg = (TSEG2 +1) xt,
Bit time = Tsync+ Tseg1 + Tseg2
Sample point = (Tsync + Tseq1) / Bit time
e Thesample pointis an important parameter

- Choosing a later sample pointin the bit period results in more tolerance with respect to propagation
delay and therefore greater bus length. Conversely, choosing a sample point closer to the mid-point of
the bit period will allow a greater oscillator tolerance for each node in the system.

- Obviously a large allowable oscillator tolerance and a long bus length are conflicting goals, which can
only be accomplished through optimization of the bit timing parameters. A good general rule is to set the
sample point to about 80% of the bit timing.

e The control register BTR is used to set up the bit timing parameters
- Number of time quanta for SJW (Nrgju): 1 < Nrgjw < 4 and Nrsjw SN7sego

On the internet you can find possible MultiCAN register values for CAN bit rates (see CAN Bit Time Calculation).
The next table gives some typical bit timing parameters.

Table 4 MultiCAN bit time settings (SJW=1, SP=80%)

Baudrate |fsys BRP Niq Nrsegi= 1+ (14#TSEG1) | Nysego= (1+TSEG2) NBTR
(8..25) (3..16) (2..8)
1000 120 6 20 1+15 4 0x3E06
8 15 1+11 3 0x2A07
10 10 1+7 2 0x160B
500 120 12 20 1+15 4 0x3E0B
16 15 1+11 3 0x2A0F
24 10 1+7 2 0x1617
Application Note 16 V1.1

2016-05

http://www.can-wiki.info/bittiming/tq.html

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
MultiCAN/MultiCAN+ in the XMC™ family

2.3 Hardware handling of CAN frame reception and transmission

The following figure illustrates the MultiCAN hardware handling of a CAN frame reception and a CAN frame
transmission.

|
Start receiving Get data from
CAN frame gateway/FIFO source | T
| Milestones
> ®
Ctjed! wirs | S s p— - - =
e Time
Mestones| internl Wareend buler
@ |
B e e | MSGVAL & TXRQ &
THEND & TXEN1 = 1
| continuosy valid
|
|
|
|
=] @
Copy frame to |
A== b e 1@
|
|
|
SCaB> l
no g |
NEWDAT :=1 |
RXPND = 1
= @ |
|
|
|
|
MCADEITS |
|
|
CAN frame reception | CAN frame transmissin

Figure 10 CAN frame reception and transmission by the MultiCAN node

Transmission process

The transmission process of a message object (DIR="1’ or DIR="0’) starts after winning the transmit acceptance
filtering.

A message object with the following settings wins an ‘effective transmit request’:

e MSGVAL=Y’
e TXENO=1
e TXEN1=1’
e TXRQ=Y

e PRII=‘0

A trigger transmission request in a transmit message object (DIR="1’) generates a data frame.
A trigger transmission request in a receive message object (DIR="0’) generates a remote frame.

Application Note 17 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

Reception process

The reception process of a message object (DIR="0’ or DIR="1") starts after winning the receive acceptance
filtering.

A message object is qualified for reception of a frame if the following conditions are fulfilled:

e MSGVAL=Y’

e RXEN=Y

e DIR="1"accepts only remote frame; DIR="0 accepts only data frame

e MIDE=0" accepts both 11_IDs and 29_IDs; MIDE =’1’ accepts only its specified IDs via MOARN.IDE

e The ID of the message object matches the received ID through the acceptance mask (MOAMRN.AM)

e PRII=‘0’

Incoming remote frames are stored in a corresponding transmit message object (DIR="1’).

Arriving data frames are saved in a matching receive message object (DIR="0’).

Resolution of multiple message objects

If several message objects assigned on the CAN node meet the conditions above, the message object with the
highest PRI wins the transmit/receive acceptance filtering.

2.4 Programming the MultiCAN module
This section explains how to program the MultiCAN module for some typical use cases.
The following software tasks are processed in the CAN application:

e Configuration of CAN node

o Allocate message objects via list commands

e Initialization of associated message objects

e Controlling a message transfer

e CAN error monitoring and restarting the CAN module

2.4.1 Software initialization of MultiCAN

The initialization routine should process the following tasks:

e Enable clock for MultiCAN module (see Figure 9)
- Release the MultiCAN clock gating via clear register bit CGATCLR1. MCANO (not in XMC4500)
- Release the MultiCAN peripheral via clear register bit PRCLR1.MCANORS

- Switch clock fcc on via clear register bit CAN_CLC.DISR and wait until flag CAN_CLC.DISS =0, which
indicates the MultiCAN has been enabled

- Configure the module clock fcay via register FDR for the bit timing configuration
Note:

1. Two modes, normal divider mode and fractional divider mode, can be used via CAN_FDRx.DM. In
general the fractional divider mode provides the average output clock frequency with a simulated
higher accuracy than the normal divider mode, but fs, can have a maximum period jitter of one
feeripn period. It is NOT advised to use the fractional divider mode. If the fractional divider is used,
one feeripn cycle has to be added to the jitter calculation.

Application Note 18 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

2. After the clock has been switched on, the CAN RAM is automatically initialized. The end of this CAN
RAM initialization is indicated by bit PANCTR.BUSY becoming inactive. Due to synchronization
effects, it is advised to read back the previous register write (FDR), so that the BUSY bit is polled,
when it has already been set the first time.

o Configuration of CAN nodes

- Set bit CAN_NCRx.CCE and INIT to active configuration mode of the CAN node without participation in
the CAN traffic. Configuration Mode is activated when bit NCRx.CCE is set to 1.

- Write CAN_NBTR for CAN baudrate configuration

- Select CAN input pin or loopback mode via CAN_NPCRx

- Interrupts and special node frame nodes can optionally be initialized via CAN_NIPRx and CAN_NFCRXx
e Initialization of message objects

- Allocate message objects to the corresponding CAN node via register CAN_PANCTR

- Define and configure message objects for different tasks via register MOCTRn (DIR="1’ or ‘0’)

- Program message objects identifier (MOARN) and acceptance mask for filtering (MOAMRN)

- Initialize data length code (MOFCRn.DLC) and data value TX message object

- Enable interrupt for message object transmission and reception via register MOFCRn

e Initialize interfaces of MultiCAN, such as port pins for alternate function and interrupts, using CMSIS
functions

e Setbit CCE to protect against unintended modification. Reset bit INIT to enable the participation of the CAN
node in the CAN traffic.

2.4.2 Software handling on CAN node

The software can use the bit TXOK/RXOK and all error flags for evaluation of the node status.
In MultiCAN each node is equipped with a frame counter with the following selectable modes:

e Frame count mode

- The default setting is that frame counter NFCRx. CFC is incremented upon reception/transmission of
defined frames (depending of NFCRx.CFSEL).

e Bittiming mode
- CFCis used for analysis of the bit timing. Together with the CAN analyzer this feature is used for baudrate
detection. Example code is provided (see Example_6: baudrate detection).
e Time-stamp mode

- CFCis used to count bit times. The frame counter is continuously incremented (internally) with the
beginning of a new bit time. Its value is permanently sampled in the NFCRx. CFC field while the bus is idle.
The value sampled just before the SOF bit of a new frame is detected is written to the corresponding
message object. When the treatment of a message object is finished, the sampling continues.
e Error count mode

- CFCisincremented when an error frame has been received or a selected error type is detected by the
node.

Application Note 19 V1.1
2016-05

Controller Area Network Controller (MultiCAN)

XMC1400, XMC4000

(infineon

MultiCAN/MultiCAN+ in the XMC™ family

Table 5 Frame counter modes

Mode Flag NFCRx.CFCOV | Function selection | Interrupt SRx Frame count value
(NFCRx.CFMOD) | generated by NFCR.CFSEL NFCRx.CFC

00g: Frame count | Transition from Selectable: Selectable: Frame count value
mode OXFEFE to 0x0000 XX1g/X1Xp/1XXg SRO...SR7

01g: Time stamp | Transition from Only 000s Selectable: Captured bit time
mode OXFEFE to 0x0000 SRO...SR7 countvalue

10g: Bit time Update event of Selectable xxxg, e.g. | Fixed on SRx, where | fc.c clock cycles
mode CFC 000g: baudrate x is the CAN node

detection

number

11g: Error count Transition from 001g: stuff error Selectable: The total amount of
mode OXFEFE to 0x0000 010g: form error SRO...SR7 error frames received
(onlyin 011 ACK error or error detected by
MultiCAN+) 100g: bitl error the node.

101;: bit0 error

110g: CRC error
2.4.3 Software control of a message transfer

Table 2 ists the maximum number of message objects in XMC4000 derivatives and the message objects that
can be set up for transmit or receive operations according to the selected value for control bit DIR.

e TX message object (DIR=1); Set for data frames transmission and for remote frames reception
e RX message object (DIR=0); Set for data frames reception and for remote frames transmission

Note:

To enable CAN (data or remote) frame reception, bit RXEN must be set. For example, if RXEN="0"in

a TX message object (DIR="1’) then a remote frame from CAN bus cannot be stored in this object.

Software handling of a transmit message object

Figure 11 demonstrates the software handling of a transmit (TX) message object (DIR="1’).

If automatic handling is requested, bit TXENO must be initialized with ‘1’.

Together with TXEN1=1, the data transmission is started when flag TXRQ has been set by the hardware because
a received remote frame has a matching identifier.

Software handling of a receive message object

Figure 12 demonstrates the software handling of a receive (RX) message object (DIR="0’).

RXEN must be set in a RX message object to enable receive data frame.

The reception of a data frame by hardware is indicated by NEWDAT="1" and RXPND="1".

Software processing of a received data frame should start by clearing NEWDAT and RXPND, after scanning
MSGLST. In an overwrite situation, the received information should be copied to an application data bufferin
order to release the message object for a new data frame.

Finally, NEWDAT and RXUPD should be checked again to ensure that the processing was based on a consistent
set of data and not on a part of the new message.

Application Note

20

V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

The software initialization or reconfiguration of the message object properties always starts with disabling via
MSGVAL="reset’. After reconfiguration to activate the message object, bit MSGVAL must be reset using RTSEL.

Bits TXENO and TXEN1 are software control bits used for different tasks:
e Bit TEXNO is defined for software control of the CAN frame trigger. For example:

- If aremote frame has been received in a TX message object, the send request TXRQ is set by hardware
automatically. When TXENO=0 the transmission of a data frame from this TX message object is suspended
untilitis re-enabled by software by setting TXENO.

- In the gateway structure, TXRQ is set in the destination object by hardware automatically when bit GDFS
=‘1’in the source object is initialized

e Bit TXEN1 is defined to select the active TX message object in TxFIFO structure. TXEN1 with value ‘1’ moves
along the TxFIFO structure as a token by hardware automatically

Application Note 21 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
MultiCAN/MultiCAN+ in the XMC™ family

Clock/Peripheral enabled
CAN node initialization

Allocate message objects

I
>

r

message object configuration in initialization phase
re-configuration during CAN operation

Clear MSGWVAL

DIR = 1"

Identifier AR:= application specific

Mask AM/MIDE: (for remote frame reception)
TXIE/RXIE:= application specific

Priority PRl:= 1 (recommended)
THXEMNO/TXEMN1:= application specific
RXEN:= 1 {for remote frame reception)
DLC:= application specific

Data:= application specific

NEWDAT:=1

Clear RTSEL and set MSGWVAL

Remote frame

-
received
Send datz@
2

Tx message object
updated by HWW
(TXRQ is set by HW)

b

TXRQ is set ?

Trigger send request

no

THXEMNO & TXEN1= 17
Set TXRQ, TXKEND, TXEN1

Send data frame triggered
automatically by HW

yes

Update message ?

Figure11 Software handling of a TX message object (DIR="1’)

Application Note 22 V1.1
2016-05

Controller Area Network Controller (MultiCAN)
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

infineon

Clock/Peripheral enabled
CAN node initialization

¥

Allocate message objects

YEes

Update message 7

P
g

A

message object configuration/re-configuration

Clear MSGWVAL

DIR= 0"

Identifier AR:= application specific
Mask AMR/MIDE:= application specific
TXIE/RXIE:= application specific
Priarity PRI:= 1 (recommended)
THXEMNO/TXEN1:= application specific
RXEN:=1

DLC:= don't care

Data:= don't care

Clear RTSEL and set MSGWVAL

F
Want o send
Remote frame 7

F

/ Data frame received

Rx message object
updated by HW
(TXRQ is set by HW)

"

Trigger send request

>
Ll
b

r

T

ata frame received 7
Set TKRQ, TEXEND, TXEN1 (RXPND="1' or >
NEWDAT="1")

YEes

SW handling

Clear NEWDAT and RXPMND

Process message contents:
If (MSGLST)

; averwritten
else

; copy to SW buffer

If (NEWDAT==0 and RXUPD=0)
; Ok
else
; an inconsistent info

Figure12 Software handling of a RX message object (DIR="0’)

Application Note

23

V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

2.5 MultiCAN special features

2.5.1 Loop-back mode
Loop-back mode is used for internal testing.
In this mode the software driver can be developed and tested without being connected to a CAN bus system, or

safety tests can be run without being visible to the outside.

2.5.2 CAN analyzer mode

This mode is used for baudrate detection (see Example_6: baudrate detection). The hardware setting and
software initialization are the same as in a normal CAN system.

Bit CAN_NCRx.CALM must be set to activate the analyzer mode.

In analyzer mode, data and remote frames are monitored without an active participation in any CAN transfer
(the CAN transmit pin is held on recessive level).

In this mode the data and remote frame can still be received and stored in the corresponding message object,
and interrupts are also generated, when this CAN frame is acknowledged by at least one other CAN node.

2.5.3 MultiCAN FIFO

MultiCAN FIFO is based on the list structure; i.e. FIFO size is up to the maximum available message objects (64
message objects in XMC4500 device).

As with the standard TX/RX message object, all FIFO elements must be assigned to the CAN node via panel
commands first. After assignment, all FIFO objects are chained together in a list structure; each element has its
previous (PPREV) and next (PNEXT) message object.

A FIFO structure can have only one base object and several slave objects. The base object defines the FIFO size
with the point TOP and BOT, and additionally the CUR points to the active object for the next process.

Software programming for TxFIFO structure

In the TXFIFO structure the base and slave objects can be initialized with different IDs (including mask register)
and data contents. Each element is active for qualification in transmit acceptance filtering.

The right-hand side of Figure 13 shows the FIFO structure in one common list and the initialization of TxFIFO
message objects:

e Allocate FIFO elements in a common list.

e Configure TXFIFO base object and TxFIFO slave objects

e Setin all message objects except the CUR pointed object:
- TXEN1=0

e Setin all message objects:

- TXRQ=0 if an automatic transmit process through TxFIFO via only one trigger request in the base object is
requested

After the initialization routine, test software sets TXRQ in CUR pointed object.

The data frame information stored in this object will be sent on the CAN bus via token TXEN1, through all
TXFIFO elements.

Application Note 24 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
MultiCAN/MultiCAN+ in the XMC™ family

In this example CUR moves MO8 ->M0O9 - MO10 - MO11 -> MOS...

Additionally, by initialization with the point SEL= MO8 in the base object, the FIFO overflow interrupt is
generated if CUR becomes equal to SEL;i.e. MO8...MO11 have finished their data frame transmission.

Note: For the TxFIFO structure the FIFO overflow interrupt is shared with the receive interrupt. In the
example above it triggers the MO8 receive interrupt.

|
i
< CAN bus x | CAN bus x
i : A
|
|
data frames from CAN bus | data frames from MOB...MO11
|
|
T A ﬁlilr______v___ ___________ |
| CAN node x | | | CAN node x [
|
| RxFIFO base I TxFIFO base :
| DIR=0 BN DIR=1 |
| MMC=1 I MMC=2
| MO8 1D, IDs mask, MIDE : : | MO8 1D, DLC, data... |
| .BOT=MO8, TOP=MO11, CUR=MOS8 L BOT=MO8, TOP=MC11, CUR=MO8 |
| — RXEN=1 | | TXEN1=1 |
| X : a [X |
| L RxFIFO slave : | TxFIFO slave |
MMC=0 L DIR=1 |
doubld-chained list| MO9 [Mog | MMC=3
| .CUR don't care 0 ID, DLC, data... |
| . RXEN=0 | .CUR=MO8 |
| T Pl TXEN1=0 |
| P [y |
| L RxFIFO slave [
| .MMC=0 || | TxFIFO slave |
| MO10 Bl DIR=1 [
.CUR don't care . . MMC=3
! 'RXEN=0 qouplg-chained list | MO10 | "\n ') & oy :
| 5 Bl .CUR=MOS8
| | TXEN1=0 |
| RXFIFO slave . |
MMC=0 L t |
! MO11 0 TXFIFO slave
| .CUR don't care R DIR=1 :
| RXEN=0 [MMC=3
| L MOT1| b, bLC, data... |
| o .CUR=MO8 |
[TXEN1=0
gMoso By |
| pxMea00 |
|
RxFIFO | TXFIFO
|

Figure 13 MultiCAN FIFO in one common list

Software programming for RxFIFO structure
In the RXFIFO structure:

e The base object s specified with MMC=0001¢

e The message object with MMC = 0000 is implicitly assumed for the slave object; i.e. slave objects perform a
standard RX message object delivery. This property creates an RxFIFO structure to store CAN frames with
different IDs.

Application Note 25 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

Note: In order to avoid direct reception of a message by a slave message object, as if it was an
independent message object and not a part of a FIFO, the bit RXEN of each slave object must be
cleared. In this case only the base object is active to qualify in receive acceptance filtering.

The left-hand side of Figure 12 shows the FIFO structure in one common list and initialization of RxFIFO
message objects:

e Allocate FIFO elements in a common list
e Configure the RxFIFO base object and the RxFIFO slave object

Note: TXENO and TXEN1 have to be considered only when RxFIFO is used for transmitting remote frames.

In this example all received data frames with a matching identifier specified in MO8 (via MOARn and MOAMR)
are stored in the RxFIFO buffer.

The CUR moves MO8 »>M0O9 > M0O10 - MO11 - MOS...

Additionally, by initialization with the point SEL= MO8 in the base object, the RxFIFO interrupt is generated if
CUR becomes equal to SEL; i.e. MO8...MO11 has been filled.

Note: For the RxFIFO structure the FIFO overflow interrupt is shared with the transmit interrupt. In the
example above, it triggers the MO8 transmit interrupt.

2.5.4 MultiCAN gateway

The gateway feature allows an automatic CAN frame rerouting between two independent CAN buses without
CPU interaction.

The gateway in MultiCAN operates on the message object level; i.e. CAN frame information can be modified
including its identifier, baudrate, and data information for example, during transfer between two CAN bus
systems.

As with the FIFO, the gateway structure in MultiCAN is realized by the list structure. A message object in the
Gateway structure is named ‘Gateway Source Object’ and ‘Gateway Destination Object’.

The ‘Gateway Source Object’ behaves as a standard message object with the following additional, selectable
actions:

Table 6 MultiCAN gateway feature (configured by the Gateway Source Object)

Source object Destination object

MOFCR;oyrce.IDC = ‘1’ MOARgestination Updated with MOARsoyrce
MOFCRsource.DLCC =1’ | MOFCRyestination.DLC updated with MOFCRsoyrce.DLC
MOFCRsource.DATC = ‘1’ | MODATAH)/Lgestination COpied from MODATAH/Lsource
MOFCRsource.GDFS =1’ | TXRQ is set in the ‘destination object’

Note: The actual destination object is activated by CUR point of the source object.

Use case 1:

e Gateway Source Object: DIR=‘0’ and Gateway Destination Object: DIR=1’
o Dataframe reception on source object side and transfer through gateway to destination side
e Figure 14 shows gateway use case for data frame reception.

Application Note 26 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

MultiCAN/MultiCAN+ in the XMC™ family

Use case 2:

e Gateway Source Object: DIR=‘1’ and Gateway Destination Object: DIR=‘0’
e Remote frame reception on source object side and transfer through gateway to destination side

Note: In the gateway structure the ‘Gateway Source Object’ and ‘Gateway Destination Object’ must be
assigned to two different CAN nodes.

MMC=0100g specifies the ‘Gateway Source Object’.

As with the base object in FIFO structure, the ‘Gateway Source Object’ configures the gateway destination
structure via TOP, BOT, and CUR. The gateway destination structure may contain a single message objectora
FIFO structure.

Initialization of gateway message objects
o Allocate the Gateway Source Object and the Gateway Destination Objects in separate lists.
e Configure Gateway Source Object (DIR="0") and parameters (IDC, DLCC, DATC, GDFS).
e Configure Gateway Destination Objects (DIR="1").
- Single Gateway Destination Object with MOFCRn.MMC = ‘0000¢’.
- Gateway Destination Objects in TXFIFO (TxFIFO base object + TxFIFO slave objects).

Note:

1. Clear RXEN bit in the Gateway Destination Objects in order to avoid direct remote frame receive.

2. Clear NEWDAT and TXRQ in the Gateway Destination Objects in order to avoid conflict with trigger signal
from the Gateway Source Object.

Application Note 27 V1.1
2016-05

Controller Area Network Controller (MultiCAN)
XMC1400, XMC4000

infineon

MultiCAN/MultiCAN+ in the XMC™ family

< CAN bus A >
A
Data frame
| ______ e !
| CAN node x CAN node y :
| Rx data (DIR=0) I
| MMC=4 (gateway source) I Tx data (DIR=1) |
I 1D, mask, MIDE... MMC=0 (Standard) |
| 1DC: application specific MO20 D, DLC, data...
| MO10 | .DATC: application specific .CUR don't care |
| .DLCC: application specific TXENO, TXEN1: application specific |
GDFS: application specific |
I CUR=BOT=TOP=MO20 |
| RXEN=1 i
I
I
 XMC40000 Data frame |
CAN bus B >
Example_4: single gateway destination object
CAN bus A >
A
Data frame
A 2 'i
| CAN node x CAN node y |
I
_ TxFIFO base (DIR=1) I
I Rx data (DIR=0) _
| MMC=4 (source) . ':UI!!MSLE data |
ID, mask, MIDE... MO20 'CIJR—M’O;:% I
| IDC: application specific .BOT—_MOQO TOP=MO21 |
I Mo10 | ‘DATC: application specific XENI= |
| DLCC: application specific TXENO: application specific |
| .GDFS: application specific ' - app P
| .CUR=MO20 |
.BOT=MO20, .TOP=MO21 TXFIFO slave (DIR=1) |
I RXEN=1
: : - MMC=3 I
D, DLC, data... |
| MO2T | cUR=MO20 |
| TXEN1=0
| XMC4000 .TXENQO: application specific :
e] I -
/Data frame v
< CAN bus B
Example_5: gateway destination in FIFQ structure
Figure 14 MultiCAN gateway
Application Note 28 V1.1

2016-05

o _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

Implementing the example

3 Implementing the example

All example code (‘..\Examples_MultiCAN_XMCnoDAVECode\SourceCode\’) supplied with this document can be
integrated directly in compiler tools and run on XMC4200, XMC4400, XMC4500 kit with MultiCAN module.

Infineon provides freeware tool DAVE™, which integrates code generation, flash programming and debugging.

3.1 First steps

e Create a new “simple main project” in the DAVE™ tool
e Copy the example *.h and *.c files into the project directory.
e Select macro definition in main.h for one of XMC4200, XMC4400, XMC4500 kit.

3.2 Example_1: standard message object transmission and receive

e |Initialization:
- CAN_node0: MO8: TX message object (RXEN=1: receive remote frame).
- CAN_nodel: MO16: RX message object.
e Test_l:settrigger TXRQ (with TXENO=1 and TXEN1=1) in MO8 to send data frame.
e Test_2:settrigger TXRQ (with TXENO=1 and TXEN1=1) in MO16 to send remote frame.

33 Example_2: using receive FIFO

e |Initialization:
- CAN_node0: M016...M019 RxFIFO structure within MO16 = RxFIFO base object for store data frame.
- CAN_nodel: MO8: TX message object.

e Test: load transmission data in MO8 and trigger send request afterwards for several times, and check the
received data in RxFIFO message objects.

3.4 Example_3: using transmit FIFO

¢ Initialization:

- CAN_node0: M0O8...MO11 TxFIFO within MO8 = TxFIFO base object. Each object has different 11bit_IDs,
DLC and data information, and prepared as before.

- CAN_nodel: MO16...MO19 RxFIFO structure within MO16=RxFIFO base object.

e Test:in this test TXRQ is set in MO9...MO11 during initialization routine so that all four data frames from
TXFIFO are transmitted by single trigger request in MO8 automatically.

3.5 Example_4: using gateway without FIFO

Data frames with 11bit_ID=0x444 are received on CAN_node2 and transmitted on CAN_nodel with modification
of ID=0x777 via the Gateway feature.

e Initialization:

- CAN_node0: MO10: Gateway Source Object with ID=0x444 and DATC=1, DLCC=1, IDC=0, GDFS=1(copy data
bytes including DLC and set TXRQ).

- CAN_nodel: MO20: Gateway Destination Object with 11bit_ID=0x777 (TXENO=1, TXEN1=1 for automatic
trigger if data frame forwarded from source side).

- CAN_node2: test object MO50 (DIR=1, ID=0x444) and MO51 (DIR=0, ID=0x777).

Application Note 29 V1.1
2016-05

http://www.infineon.com/dave

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

Implementing the example

e Test: data frames with 11bit_ID=0x444 are created for MO10 on the bus (connected on CAN_node2). It will
be forwarded to MO20 (gateway destination side) and transmitted on CAN_nodel automatically without
any software control.

Note:

1. CAN_node2 with MO50, MO51 is defined here for a simple test of the gateway function in loop-back mode,
because on the XMC4000 kit only the CAN_TX/_RX pin of CAN_node2 are available.

2. Because this example code uses loop-back mode, all RX message objects have dedicated IDs (with
acceptance mask on) in order to avoid endless transmit due to unintended message object storage.

3.6 Example_5: using gateway with FIFO

Data frames with 11bit_ID=0x444 are received on CAN_node2 and transmitted on CAN_nodel with modification
of ID=0x777 via the gateway feature.

e |Initialization:
- CAN_node0: MO10 Gateway Source Object with ID=0x444 and DATC=1, DLCC=1, IDC=0, GDFS=0 (copy data
bytes including DLC, but do not set TXRQ).
- CAN_nodel: MO20/M021 Gateway Destination Objects in FIFO structure with ID=0x777 (TXENO=0 in
MO2/M021: Sending on Destination side is controlled by software).
- CAN_node2: test objects MO50 (DIR=1, ID=0x444) and MO51 (DIR=0, ID=0x777).
e Test: data frames with 11bit_ID=0x444 are created for MO10 on the bus (connected on CAN_node2). The

software checks information in MO20/M021 (gateway destination side). At the end the data frame in
M020/M021 is sent out on the bus (connected on CAN_nodel) and via set TXENO in MO20/MO21.

3.7 Example_6: baudrate detection

In some applications it is necessary to detect the baudrate without any influence on the bus. The MultiCAN
analyzer can be used to monitor bus transfer without any activity on the bus itself.

The main point of baudrate detection is to detect the minimum time (one bit ‘0’ and one bit ‘1’) of a whole CAN
frame. This requires a specific ID or data field (byte 0x55) from the active CAN node.

The bit timing frame mode is implemented in MultiCAN. In setting NCRn.CFMOD=10; with NFCRn.CFCSEL=000¢,
the clock cycles of fcay counts up at the dominant edge monitored on the CAN receive input line, and is then
stored in the NFCRn.CFC.

1DI ..‘\ll Iﬂ_l 1DI I.1l 1DI

h 4

counts up and cycles of fcan is stored into NFCRn.CFC

Figure 15 Baudrate detection

Application Note 30 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

Implementing the example

In this example the minimum duration is calculated after 200 samples. The recorded minimum value is used for
the baudrate calculation.

One CAN bit must be from 8 to 25 time quanta. In test software, typical values for the bit timing setting (register
BTR.TSEG1, TSEG2 for 8...25 t,) are predefined and used for searching a suitable BTR parameter.

Due to PLL jitter, in this test the MultiCAN clock links directly to the external oscillator clock (fosc=12 MHz).

The following table shows register BTR settings inside MultiCAN module when baudrate has been detected in
test.

Table 7 The BTR value in XMC4000/XMC1400 by testing

CAN frame with baudrate from BTR value (with fcay=12 MHz) | BTR value (with fcay=20 MHz)

host CAN (e.g. CANalyzer) XMC4000 kits XMC1400 kit

1000K 0x27C0 0x3ECO

500K 0x6FCO 0x3EC1

250K 0x6FC1 0x3EC3

125K 0x6FC3 Ox3ECT7

100K 0x6FC4 0x4FC8

Application Note 31 V1.1

2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
DAVE™ and XMC™ Lib

4 DAVE™ and XMC™ Lib

All example code supplied with this document is created in DAVE™ (Version 4) by using XMC™ Lib. You will find
information about using the MultiCAN XMC™ Lib in the source code.

Under directory ‘..\Examples_MultiCAN(+)_XMCLib\’ there are examples for the XMC4500 series with the
MultiCAN module and for the XMC1400 & XMC4800 series with the MultiCAN+ module.

4.1 Implementation with XMC™ Lib

This section will provide a guide to set up a basic project for CAN communication using the Infineon XMC™ Lib.

Definition and configuration:
e Global CAN frequency definition:
#define CAN FREQUENCY 120 120000000

e CAN bit timing configuration:
XMC_CAN NODE NOMINAL BIT TIME CONFIG t CanBaud cfg=

{
.can_frequency = CAN FREQUENCY 120, // fCAN=120MHz

.baudrate = (1000 * 1000), // baudrate=1000K
.sample point = (80 * 100), // Sample point=80%
.sjw = 2 // SJW=1+1

bi
e User CAN message object definition:
XMC CAN MO t wuserSW1 MO8 Tx = {

.can _mo_type = XMC CAN MO TYPE TRANSMSGOBJ,
.can_id_mode = XMC CAN FRAME TYPE STANDARD 11BITS,
.can_priority = XMC CAN ARBITRATION MODE ORDER BASED PRIO 1,
.can_identifier = (uint32 t)O0x111,
.can_id mask = (uint32 t)O0Ox7ff,
.can_ide mask = 10U,
.can_mo_ ptr = (CAN MO TypeDef*)CAN MOS8,
.can _data length = (uint8 t)S8§,
.can_datal[l] = 0x88888888,
.can_data[0] = (0x88888888
}i
Initialization:

e Globalinitialization:
// release MultiCAN module via PRSTATI,
// Configuration of CAN clock:

Application Note 32 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000
DAVE™ and XMC™ Lib

// registers: CAN->CLC and CAN->FDR, fcan=120Mhz

XMC CAN Init ((CAN GLOBAL TypeDef*)CAN, CAN FREQUENCY 120);

e CAN nodeinitialization:

// CAN node configuration and message object configuration

XMC CAN NODE NominalBitTimeConfigure (CAN NODE2, &CanBaud cfg);
XMC CAN NODE EnableConfigurationChange (CAN NODEZ2) ;

XMC CAN NODE EnableLoopBack (CAN NODEZ2) ;

XMC_ CAN NODE DisableConfigurationChange (CAN NODEZ2) ;

e Initialization Message object initialization
// Configuration of the CAN Message Object List Structure:
XMC CAN AllocateMOtoNodeList ((CAN GLOBAL TypeDef*)CAN, 2, 8);

// Configuration of the CAN Message Objects:
XMC CAN MO Config(&userSWl MO8 Tx);

e Disable configuration mode and enable CAN node

// Start the CAN Nodes:

XMC CAN NODE DisableConfigurationChange (CAN NODE2) ;
XMC_CAN_NODE_ResetInitBit (CAN_NODE2) ;

Definition and configuration function implementation:

e Dataframe transmission: the following code is usually called for data frame transmission

// test value

uint8 t TestSW1l TxData[8]={0x00, Ox11l, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77}

// load DLC and TxData bytes

userSW1l MO8.can data length = 8;

for (i=0; 1i<8; i++)

userSW1l MO8.can data byte[i] =TestSW1l TxDatali];
XMC CAN MO UpdateData (&userSW1 MOS8) ;

// set trigger

XMC CAN MO Transmit (&userSW1l MOS8) ;

o Dataframe reception

// update all information defined in user CAN message object SW MO
XMC CAN MO Receive (&userSW1l MOl6 Rx);

// update only data bytes in user CAN message object SW MO

XMC CAN MO ReceiveData (&userSWl MOl6 Rx);

Application Note 33 V1.1
2016-05

o~ _.
Controller Area Network Controller (MultiCAN) |n f| neon
XMC1400, XMC4000

Running example code

5 Running example code

To run the Example_6: baudrate detection, an XMC4x00 CPU kit and COM_ETH are required. See Table 8 for
the different CAN pins on XMC4x00 CPU kits and XMC1400 boot kit.

Other examples use loop-back mode, and only one XMC4x00 CPU kit is required.

Running in loop-back mode:

e XMC4x00 CPU kit in the normal boot mode (switch: BSL=OFF, CAN/UART=does not matter).
e Connect the on-board USB connector (for power supply and debug tool) to the PC USB port.
e Startthe DAVE™ tool, start the compiler, download the code and run it.

Running Example_6: baudrate detection

e Allhardware should be connected as in Figure 16.

e XMC4x00 CPU kit in the normal boot mode (switch: BSL=OFF, CAN/UART=does not matter).

e Connect the on-board USB connector (for power supply and debug tool) to the PC USB port.

e Connect CAN cable CANH/CANL between host device (the CANalyzer tool for example) and XMC4x00 board:

In CANalyzer tool (host device):

e Setthe baudrate and active setting ACK.
e Insertagenerator block and create one data frame (recommended: ID=0x555, bytes=0x55).

After all of the steps above have been successfully completed, the tool can be started:

e Startthe DAVE™ tool, start the compiler, download the code and run it.
e Start the CANalyzer and trigger a data frame.

CAN kBaud @_‘ \ \
1 S0 Oriine

\.‘E
B A

Key &

u-o -w

CANalyzer
£ & :l CANHICANL
D\

Setting in CANalyzer tool

|/ On-board USB debugger

Figure 16 Running the baudrate detection example

Application Note 34 V1.1
2016-05

Controller Area Network Controller (MultiCAN)

(infineon

XMC1400, XMC4000

Appendix

6 Appendix

6.1 Kit information

Infineon provides several XMC4000/XMC1000 application kits. The CAN interfaces use different pins (hard-
wired) on different board versions.

Table 8 XMC4000 application kit signal connections
Host board kits

CAN node (in the normal boot mode) LED External

Crystal

CPU_45A_V3 CAN connector is not available on CPU_45A_V3. P3.9 12 MHz
(XMC4500_AC) CAN pins must be connected via COM pin connector.

CAN2_TxD=P1.9 =>Pin28

CAN2_RxD=P1.8 => Pin30
CPU_44A_V2 CAN connector is not available on kit. P1.8 12 MHz
(XMC4400_AB) CAN pins must be connected via COM pin connector.

CAN1_TxD=P1.12 =>Pin28

CAN1_RxD=P1.4 =>Pin30
COM pin connector Pin connector between CPU kit and COM_ETH kit.
COM_ETH_V1 CAN transceiver with CAN connector (DE-9).

CAN signal:

Pin28=CAN_TXD

Pin30=CAN_RXD
CPU_42A V1 CAN transceiver is available on kit: CAN connector (DE-9). P2.1 12 MHz
(XMC4200_AA) CAN1_TxD=P1.5

CAN1_RxD=P1.4

Note: P1.5 and P1.4 are disconnected from the CAN

transceiver via signal line CANDIS# when the on-
chip debugger is used

XMC4700_Relax kit CAN transceiver is available on kit: CANH/CANL pin P5.9 12 MHz

CAN1_TxD=P1.12

CAN1_RxD=P1.13
XMC1400 Boot Kit CAN transceiver is available on kit: CANH/CANL pin P4.1 20 MHz

CAN1_TxD=P4.9

CAN1_RxD=P4.8
Application Note 35 V1.1

2016-05

http://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-registered-cortex-registered-m/32-bit-xmc1000-industrial-microcontroller-arm-registered-cortex-registered-m0/xmc-development-tools-kits-and-boards/channel.html?channel=db3a30433d5e5530013d64397b0c2043

Controller Area Network Controller (MultiCAN)
XMC1400, XMC4000

Revision History

Revision History

Major changes since the last revision

(infineon

Page or reference | Description of change
V1.0 Initial version
V1.1 MultiCAN+in XMC4700/4800 and XMC1400
V1.2 Style format and link update
Application Note 36 V1.1

2016-05

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™,
i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,

thinQ!™, TRENCHSTOP™, TriCore™.

Trademarks updated August 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-05
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference
AP32300

IMPORTANT NOTICE

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal

injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

