Preface

The ATtiny416 Xplained Nano evaluation kit is a hardware platform to evaluate the ATtiny416 microcontroller.

Supported by the Atmel Studio integrated development platform, the kit provides easy access to the features of the ATtiny416 and explains how to integrate the device into a custom design.

The Xplained Nano series of evaluation kits include an on-board mini embedded programmer, and no external tools are necessary to program the ATtiny416.
Table of Contents

Preface.. 1

1. Introduction..4
 1.1. Features.. 4
 1.2. Kit Overview... 4

2. Getting Started.. 6
 2.1. Xplained Nano Quick Start.. 6
 2.2. Design Documentation and Relevant Links... 6

3. Xplained Nano... 7
 3.1. Mini Embedded Debugger... 7
 3.1.1. Xplained Nano Clock Output... 7
 3.2. Power Sources... 7
 3.3. Xplained Nano Standard Pinout... 8
 3.3.1. Standard Pinout for UPDI.. 8
 3.4. Disconnecting mEDBG.. 9

4. Hardware User Guide.. 11
 4.1. Connectors... 11
 4.1.1. ATtiny416 Xplained Nano Pinout... 11
 4.2. Current Measurement... 11
 4.3. Peripherals... 12
 4.3.1. LED... 12
 4.3.2. Mechanical Buttons.. 12

5. Embedded Debugger Implementation...13
 5.1. UPDI... 13
 5.2. Virtual COM Port.. 13

6. Hardware Revision History and Known Issues..14
 6.1. Identifying Product ID and Revision... 14
 6.2. Revision 4... 14

7. Document Revision History... 15

The Microchip Web Site... 16

Customer Change Notification Service.. 16

Customer Support... 16

Microchip Devices Code Protection Feature... 16

Legal Notice.. 17
1. **Introduction**

1.1 **Features**
- ATtiny416 microcontroller
- One yellow user LED
- One mechanical button
- mEDBG
 - Auto-ID for board identification in Atmel Studio
 - One green board status LED
 - Programming
 - Virtual COM port (CDC)
- USB powered

1.2 **Kit Overview**
The Microchip ATtiny416 Xplained Nano evaluation kit is a hardware platform to evaluate the Microchip ATtiny416.
Figure 1-1. ATtiny416 Xplained Nano Evaluation Kit Overview
2. Getting Started

2.1 Xplained Nano Quick Start

Steps to start exploring the Atmel Xplained Nano platform:
1. Download Atmel Studio.
2. Launch Atmel Studio.
3. Connect a USB cable (Standard-A to Micro-B or Micro-AB) between the PC and the USB port on the kit.

When the Xplained Nano kit is connected to your computer for the first time, the operating system will perform a driver software installation. The driver file supports both 32- and 64-bit versions of Microsoft® Windows® XP, Windows Vista®, Windows 7, Windows 8, and Windows 10. The drivers for the kit are included with Atmel Studio.

Once the Xplained Nano board is powered the green status LED will blink and Atmel Studio will auto detect which Xplained Nano board is connected. Atmel Studio will present relevant information like datasheets and kit documentation. The ATtiny416 device is programmed by the on-board Mini Embedded Debugger and therefore no external programmer tool is required.

2.2 Design Documentation and Relevant Links

The following list contains links to the most relevant documents and software for the ATtiny416 Xplained Nano.

- **Xplained products** - Xplained evaluation kits are a series of easy-to-use evaluation kits for Microchip microcontrollers and other Microchip products.
 - Xplained Nano - used for low pin-count devices and provides a minimalistic solution with access to all I/O pins of the target microcontroller.
 - Xplained Mini - used for medium pin-count devices and adds Arduino Uno compatible header footprint and a prototyping area.
 - Xplained Pro - used for medium to high pin-count devices that features advanced debugging and standardized extensions for peripheral functions.

 Note: All the above kits have on-board programmers/debuggers, which creates a set of low-cost boards for evaluation and demonstration of features and capabilities of different Microchip products.

- **Atmel Studio** - Free IDE for the development of C/C++ and assembler code for microcontrollers.

- **IAR Embedded Workbench® for AVR®** - This is a commercial C/C++ compiler that is available for 8-bit AVR. There is a 30 day evaluation version as well as a 4 KB code size limited kick-start version available from their website.

- **http://start.atmel.com/** - Atmel START is an online tool that helps the user to select and configure software components and tailor your embedded application in a usable and optimized manner.

- **Microchip sample store** - Microchip sample store where you can order samples of devices.

- **Data Visualizer** - Data Visualizer is a program used for processing and visualizing data. The Data Visualizer can receive data from various sources such as the Embedded Debugger Data Gateway Interface found on Xplained Pro boards and COM Ports.

- **ATtiny416 Xplained Nano website** - Kit information, latest user guide and design documentation.

- **ATtiny416 Xplained Nano on Microchip Direct** - Purchase this kit on Microchip Direct.
3. **Xplained Nano**

Xplained Nano is an evaluation platform that provides a set of small boards with access to all microcontroller I/O's. The platform consists of a series of low pin-count Microcontroller (MCU) boards, which are integrated with Atmel Studio to present relevant user guides, application notes, data sheets, and example code through Atmel Studio. The platform also features a Virtual COM port for serial communication to a host PC.

3.1 **Mini Embedded Debugger**

The ATtiny416 Xplained Nano contains the Mini Embedded Debugger (mEDBG) for on-board programming and debugging. The mEDBG is a composite USB device of two interfaces; a debugger and a Virtual COM Port.

Together with Atmel Studio, the mEDBG debugger interface can program and debug the ATtiny416. On ATtiny416 Xplained Nano, the UPDI interface is connected between the mEDBG and the ATtiny416. The Virtual COM Port is connected to a UART on the ATtiny416 and provides an easy way to communicate with the target application through the terminal software. It offers variable baud rate, parity, and stop bit settings.

Note: The settings on the ATtiny416 must match the settings given in the terminal software.

Info: The virtual COM port in the mEDBG requires the terminal software to set the data terminal ready (DTR) signal to enable the UART pins connected to the ATtiny416. If the DTR signal is not enabled the UART pins on the mEDBG are kept in high-z (tri-state) rendering the COM port unusable. The DTR signal is automatically set by some terminal software, but it may have to be manually enabled in your terminal.

The mEDBG controls one status LED on the ATtiny416 Xplained Nano. The table below shows how the LED is controlled in different operation modes.

Table 3-1. mEDBG LED Control

<table>
<thead>
<tr>
<th>Operation mode</th>
<th>Status LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power up</td>
<td>LED is briefly lit</td>
</tr>
<tr>
<td>Normal operation</td>
<td>LED is not lit</td>
</tr>
<tr>
<td>Programming</td>
<td>Activity indicator; the LED flashes when programming/debugging with the mEDBG</td>
</tr>
</tbody>
</table>

3.1.1 **Xplained Nano Clock Output**

The mEDBG output its CPU clock to the CLK pin 8 as shown in Xplained Nano Standard Pinout. The clock output can be used to feed the target device with a more accurate clock if this is needed for the application.

3.2 **Power Sources**

The kit can be powered by different sources. By default the kit will have a 5V supply and the voltage is taken directly from the USB port through a 500 mA PTC fuse. The voltage from the USB connector can vary between 4.4V to 5.25V (according to USB spec).
If other voltages are required, the kit must be disconnected from the USB to avoid damage or contention to the USB power. The mEDBG must also be disconnected from the target section of the board. The board can be powered by applying a voltage to one of the power connections on the board, according to the table below. To avoid any power leakage through the mEDBG, this should also be disconnected by removing the resistors shown in Figure 3-3. For placement of power connections, see Xplained Nano Standard Pinout.

Table 3-2. Power Connections

<table>
<thead>
<tr>
<th>Power Connection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VUSB</td>
<td>USB Voltage output when USB is connected (behind a PTC fuse). Can be used as power input when USB is not used.</td>
</tr>
<tr>
<td>VREG</td>
<td>Regulated voltage from VUSB. If the kit does not have a regulator, this is directly connected to VUSB.</td>
</tr>
<tr>
<td>VCC</td>
<td>Target voltage supply. By default connected to VREG through a 0Ω resistor. Apply external voltage here if the resistor is removed.</td>
</tr>
</tbody>
</table>

Figure 3-1. Power Supply Block Diagram

3.3 Xplained Nano Standard Pinout

Xplained Nano kits have a standard pinout in the mEDBG section as shown in the tables and figure below. The program/debug pins will change depending on the target interface but will remain at the same locations.

Xplained Nano kits have a target section where all I/O pins will be available and fanned out. Except for the VCC and GND pins with fixed positions, there are no defined pin functions in this area. The first pin in the target area is the VCC pin, located right next to the VREG pin of the standard section. The last pin is GND, and it's located next to the CDC RX pin in the standard section. For reference, see the figure below.

3.3.1 Standard Pinout for UPDI

Table 3-3. Xplained Nano Standard Pinout for UPDI

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>No Connect</td>
</tr>
<tr>
<td>2</td>
<td>UPDI</td>
<td>UPDI program/debug line</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No Connect</td>
</tr>
<tr>
<td>Pin Number</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>No Connect</td>
</tr>
<tr>
<td>5</td>
<td>VREG</td>
<td>Regulated voltage or VUSB if no regulator present</td>
</tr>
<tr>
<td>6</td>
<td>UART RX</td>
<td>mEDBG UART RX line</td>
</tr>
<tr>
<td>7</td>
<td>UART TX</td>
<td>mEDBG UART TX line</td>
</tr>
<tr>
<td>8</td>
<td>CLK</td>
<td>mEDBG clock output</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>10</td>
<td>VUSB</td>
<td>USB voltage</td>
</tr>
</tbody>
</table>

Figure 3-2. Xplained Nano Standard Pinout for UPDI

3.4 **Disconnecting mEDBG**

The target device can be completely separated from the mEDBG, but this requires some small modifications to the board using a soldering iron. By removing the resistors in the sections shown in the figure below, the mEDBG is completely disconnected from the target controller. If desired to connect the mEDBG again, solder in 0Ω resistors or solder in 100-mil headers on the header footprints and use wire-straps to connect the interfaces.
Figure 3-3. Kit Modifications
4. Hardware User Guide

4.1 Connectors

4.1.1 ATtiny416 Xplained Nano Pinout

The ATtiny416 Xplained Nano has a direct fan-out of the I/O pins of the device and all I/O's are accessible at the edge connectors.

<table>
<thead>
<tr>
<th>Table 4-1. Edge Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Connector</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

4.2 Current Measurement

The power to the target controller ATtiny416 is connected from the VREG supply to the target’s VCC supply with a 0Ω resistor as shown in the figure below. To measure the power consumption of the device,
remove the 0Ω resistor and replace it with an ammeter. The ammeter can be connected between the VREG and VCC pads for easy measurement.

Tip: To connect the two power domains again, solder in a 0Ω resistor on the footprint or a 100-mil header on the header footprint at the edge of the board and place a jumper between VREG and VCC.

Caution: Removing the resistor while the kit is powered without an ammeter or jumper may cause the ATtiny416 to be powered through its I/O pins. This may cause permanent damage to the device.

Figure 4-1. Current Measurement

4.3 Peripherals

4.3.1 LED
There is one yellow LED available on the ATtiny416 Xplained Nano board that can be turned ON and OFF. The LED can be activated by driving the connected I/O line to GND.

Table 4-2. LED Connection

<table>
<thead>
<tr>
<th>ATtiny416 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB5</td>
<td>Yellow LED0</td>
<td>Edge connector</td>
</tr>
</tbody>
</table>

4.3.2 Mechanical Buttons
ATtiny416 Xplained Nano contains one mechanical button. This is a generic user configurable button and when a button is pressed it will drive the I/O line to GND.

Info: There is no pull-up resistor connected to the generic user button. Remember to enable the internal pull-up in the ATtiny416 to use the button.

Table 4-3. Mechanical Button

<table>
<thead>
<tr>
<th>ATtiny416 Pin</th>
<th>Description</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB4</td>
<td>User button</td>
<td>Edge connector</td>
</tr>
</tbody>
</table>
5. **Embedded Debugger Implementation**

ATtiny416 Xplained Nano contains a Mini Embedded Debugger (mEDBG) that can be used to program the ATtiny416 using Tiny Program Interface (TPI). The mEDBG also include a Virtual Com port interface over UART. Atmel Studio can be used as a front-end for the Mini Embedded Debugger.

5.1 **UPDI**

The Unified Program Debug Interface (UPDI) use one pin to communicate with the target. For further information on how to use the programming capabilities of the mEDBG, see Mini Embedded Debugger.

Table 5-1. UPDI Connections

<table>
<thead>
<tr>
<th>ATtiny416 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA0</td>
<td>UPDI</td>
<td>mEDBG</td>
</tr>
</tbody>
</table>

5.2 **Virtual COM Port**

The Embedded Debugger acts as a Virtual Com Port gateway by using one of the ATtiny416 UARTs. For further information on how to use the Virtual COM port, see Mini Embedded Debugger.

Table 5-2. Virtual COM Port Connections

<table>
<thead>
<tr>
<th>ATtiny416 Pin</th>
<th>Function</th>
<th>Shared Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA1</td>
<td>UART0 TXD (ATTiny416 TX line)</td>
<td>mEDBG CDC RX</td>
</tr>
<tr>
<td>PA2</td>
<td>UART0 RXD (ATTiny416 RX line)</td>
<td>mEDBG CDC TX</td>
</tr>
</tbody>
</table>
6. **Hardware Revision History and Known Issues**

This user guide provides the latest available revision of the kit. This chapter contains information about known issues, a revision history of older revisions, and how older revisions differ from the latest revision.

6.1 **Identifying Product ID and Revision**

The revision and product identifier of Xplained Nano boards can be found in two ways; either through Atmel Studio or by looking at the sticker on the bottom side of the PCB.

By connecting an Xplained Nano board to a computer with Atmel Studio running, an information window will pop up. The first six digits of the serial number, which is listed under kit details, contain the product identifier and revision.

The same information can be found on the sticker on the bottom side of the PCB. Most kits will print the identifier and revision in plain text as A09-nnnnrr, where nnnn is the identifier and rr is the revision. Boards with limited space have a sticker with only a QR-code, which contains a serial number string.

The serial number string has the following format:

```
"nnnnrrssssssssssss"

n = product identifier
r = revision
s = serial number
```

The product identifier for ATtiny416 Xplained Nano is A09-2795.

6.2 **Revision 4**

Revision 4 is the initially released revision.
7. Document Revision History

<table>
<thead>
<tr>
<th>Doc. rev.</th>
<th>Date</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10/2017</td>
<td>Initial document release.</td>
</tr>
</tbody>
</table>
The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BittCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliiMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestiC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
</table>
| **Corporate Office**
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-918-7423
Fax: 972-918-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-984-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Fax: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-3326-8000
Fax: 86-21-3326-8021
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8780
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

- Austria - Wels
 Tel: 43-7242-2244-39
 Fax: 43-7242-2244-393
- Denmark - Copenhagen
 Tel: 45-4450-2828
 Fax: 45-4485-2829
- Finland - Espoo
 Tel: 358-9-4520-820
- France - Paris
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79
- France - Saint Cloud
 Tel: 33-1-30-60-70-00
- Germany - Garching
 Tel: 49-9931-9700
- Germany - Haan
 Tel: 49-2129-3766400
- Germany - Heilbronn
 Tel: 49-7131-67-3636
- Germany - Karlsruhe
 Tel: 49-721-625370
- Germany - Munich
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44
- Germany - Rosenheim
 Tel: 49-8031-354-560
- Israel - Ra’anana
 Tel: 972-9-744-7705
- Italy - Milan
 Tel: 39-0331-742611
 Fax: 39-0331-466781
- Italy - Padova
 Tel: 39-049-7625286
- Netherlands - Drunen
 Tel: 31-416-690399
 Fax: 31-416-690340
- Norway - Trondheim
 Tel: 47-7289-7561
- Poland - Warsaw
 Tel: 48-22-3325737
- Romania - Bucharest
 Tel: 40-21-407-87-50
- Spain - Madrid
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91
- Sweden - Gothenberg
 Tel: 46-31-704-60-40
- Sweden - Stockholm
 Tel: 46-8-9000-4654

© 2017 Microchip Technology Inc.