
Data Logging of Power Profiles from
Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit
Bench/System Multimeter
––
APPLICATION NOTE

http://www.tek.com
http://www.tek.com/keithley

Introduction
Generally, data logging is the capture of data for a specific

duration of time. The data is then analyzed to determine

the performance of a circuit board, module, or a product.

The duration of time can last for minutes to months and

often involves testing the product in extreme environmental

conditions to accelerate the aging process, such as with

highly-accelerated life testing (HALT) and highly-accelerated

stress testing (HASS). During the development and testing of

electrical devices, current, voltage, power, and temperature

are all common data points that may need to be stored. For

simple devices with stable output under consistent load

conditions, incremental data sampling at intervals of seconds

to minutes is more than adequate. Devices with many, short

duration power states may require much faster sampling.

For wireless devices, such as Internet of Things (IoT) devices,

power consumption is of utmost importance. These devices

may be left unattended for long periods of time, possibly in

hard to reach locations and without access to line power.

This will be familiar to designers of biosensors, remote

detectors, or battery-powered home products. These

wireless devices will operate for long periods in sleep or

standby modes, ideally drawing only hundreds of nanoamps

to tens of microamps of current. However, these same

devices transition into active modes where the processor will

wake the device and perform tasks such as reading sensors,

executing self-check operations, flashing an LED, and

sending a radio frequency transmission (via Bluetooth, LoRa,

Wifi, etc.). These activities are more power-intensive and

can require hundreds of milliamps or more, though for very

short durations. Because of this, fast measurement sampling

is necessary to test these devices so that short-duration

current spikes do not go undetected, giving a misleading

representation of the power consumption of the device.

Understanding the power profile of IoT devices across varied

states is essential not only to ensure proper behavior but also

to optimize the battery life for the device.

While most digital multimeters (DMMs) can take static or

slowly changing measurements, they cannot adequately

capture the short duration load current bursts that occur

when the wireless device transmits. The Keithley DMM6500

addresses this need by having a 16-bit sampling A-to-D

converter for digitizing current or voltage measurements

Simplified block diagram of measuring power of a wireless IoT device

2 | WWW.TEK.COM/KEITHLEY

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

at up to 1 MSample/s. This 1 µs sampling interval allows

capture of ultra-fast load current bursts and helps to show

any unwanted transients in the load current. The digitizing

functions cover the same measurement ranges as the DMM’s

traditional DC voltage and current functions of 100 mV to

1000 V or 10 µA to 3 A. Digitizing sensitivity is a low 10 µV and

10 nA for voltage and current, respectively. The DMM6500

also features a full 5 in. (12.7 cm) multi-touch screen display

for interacting with recorded data on the instrument with fully-

featured graphing and data analysis tools. Collecting logged

data can be as simple as inserting a USB drive or transmitting

readings during the test to a computer.

This application note illustrates different methodologies that

can be used for capturing the load current characteristics

of a device or the voltage discharge profile of a battery. We

start with an example of a simple data logging method that

shows a slower, simpler collection of measured data over

time using one of the trigger model templates available

on the DMM6500. We then use the DMM6500 in its high-

speed digitizing mode, triggering on an active-state device

waveform and show how to quickly determine the average

current of the signal. We then investigate the idea of

streaming measurement data from the DMM6500 directly to

a PC and introduce a method to simplify some of the analysis

that would be required

Performing Traditional Data Logging
Simple data logging applications are concerned with

monitoring one or more electrical signals for extended

periods at specific intervals. An engineer may be evaluating

the stability of a design that performs just a few modest tasks

and want to monitor its behavior long term.

The DMM6500 provides tools to help simplify the setup and

execution of the data logging described above. The following

example uses a built-in trigger model template to log a

DC voltage for one hour, sampling the signal at 1-second

intervals. Finally, the entirety of the data is exported to a USB

drive for viewing on your PC.

Logging Voltage Readings from the DMM6500
Front Panel

For this example, we assume we are monitoring the voltage

across a lithium-ion coin cell battery while it is inside a

device under its fully-loaded conditions. We wish to observe

the signal for a one-hour period, capturing a reading every

second. The DMM6500 can be quickly setup to measure in

the manner described above using one of its built-in trigger

models. The graph function will be utilized to view the results,

and you will capture a screenshot of the display image.

Finally, you will export the data to a USB drive.

1. Press the POWER button on the front panel to turn on

the instrument.

2. On the FUNCTIONS swipe screen, select DCV to select

the DC Voltage function.

3. Press the MENU key.

4. Select Templates under the Trigger header.

5. Select the SimpleLoop as the Trigger Model.

6. Set the Count to 3600 (60 sec x 60 min, for a reading

each second for an hour).

7. Set the Delay to 1 second.

8. Press the TRIGGER button. You will be prompted

to change the measurement method – respond by

selecting Yes.

9. From the dialog presented, select Initiate

Trigger Model.

10. Press the MENU key.

11. Select Graph under the Views header.

12. The graph will be set to SmartScale by default, this

scaling shows you a close-up of the most recently

acquired data.

13. Select the Scale tab.

14. Set the X-axis Method to All.

WWW.TEK.COM/KEITHLEY | 3

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

15. Select the Graph tab to view the entire data set as it

is acquired. You will see Buffer Stats, statistics of the

acquired data, at the bottom of the graph. These are

automatically generated for all graphed data.

16. Swipe right-to-left on the Buffer Stats information to see

the Cursor information.

17. Select None to add vertical cursors.

18. Select one of the cursors to move it around the graph.

Notice that the cursor statistics update automatically at

the bottom.

19. Insert a USB drive to the front panel of the unit.

20. Hold the HOME key, and press the ENTER key to save a

screen capture of the display to the USB drive.

21. Press the MENU key.

22. Select Reading Table under Views.

23. Drag across the image of the graph to the far right to

see the numerical values of the acquired data as it

is measured.

24. Select the menu icon, , in the top left of the screen.

25. Select Save to USB.

26. Disable Reading Format, Status, and Channel.

27. You can change how time stamps for each reading are

shown. Relative is the default and gives the amount

of time elapsed from the start of the trigger model for

each reading.

28. Select OK.

29. Unplug the USB drive and insert it into a computer you

would like to use to analyze the data

The data is saved in a .csv format and accessible by most

spreadsheet and analysis programs.

This method of data logging is effective in many cases,

and the sampling rate for this example is established by

the applied delay in the trigger model (1 second). For better

resolution on the signal, you could remove the delay and

adjust the aperture time to the minimum allowed while the

DMM6500 is in integrated measurement mode, 8.333 µs.

To sample even faster and provide even more details on the

signal in question, you can use the digitizing functions of the

DMM6500 to achieve 1 µs interval sampling.

Figure 1: Portion of CSV file output. Figure 2: Using the Vertical Cursors on the Graph.

4 | WWW.TEK.COM/KEITHLEY

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

Performing Data Logging with Digitizing
Functions
Microprocessor-driven remote wireless devices interact with

integrated sensors, radio frequency (RF) transceivers, and

power management integrated circuits (PMICs) and have

varying degrees of impact on the battery that powers them.

The designer will want knowledge of transitions in to and out

of all device operating states (sleep, standby, sense, transmit,

etc.) to build a proper power profile applicable to the device

and ensure that it meets their power budget.

A power profile can be simplified to determine a current

profile (or average current) for each of the states in question.

To properly measure a current profile, you will want to use a

high-speed digitizer to observe and account for any transient

behavior – intended or not. The DMM6500 is capable

of digitizing current or voltage signals at a rate of up to

1 MSample/s and provides level-triggering tools for capturing

specific, needed instances.

Some engineers want to observe the power profile of

the device over the long-term, streaming all digitized

measurement data to a computer for analysis. The Keithley

DMM6500 can be controlled by a remote PC using a high-

speed communications connection (usually USB or Ethernet)

and perform this streaming operation. However, depending

on the period over which you want to stream, this can

generate gigabytes worth of data that you may not have time

to compile and analyze. We recommend using the digitizer,

but using the processing power of the DMM6500 to acquire

and calculate the cumulative Amp- or Watt-Hours values that

you hope to gain.

The following examples show how to perform waveform

capture to determine the average current of the signal of

interest and how TSP scripting can help to offset or eliminate

the need for deep data analysis on streamed results.

Capturing a Current waveform with the
Digitizing Function

As noted before, making use of a high-speed digitizer will

help you to evaluate the current profile of each operating

mode of your device, getting you closer to verifying that it will

meet the target power budget. The digitizing functions of the

DMM6500 offer the same current and voltage measurement

ranges as the traditional DMM functions, but the sampling

rate is much higher at 1MS/s. This will help to expose high

resolution details on the select signals (both raw data and

graphically) that will either give you confidence in your design

or provide insight on what might need to be corrected to

meet your requirements.

This example will set up a level trigger to automatically

capture the current waveform of a Bluetooth device. The

DMM6500 is connected in series to a wireless device and

its battery as shown in the figure below. A trigger model

will be setup to capture the current waveform event of

Bluetooth device.

Figure 3: Connections between the DMM and the device

1. Press the POWER button on the front panel to turn on

the instrument.

2. In the upper right corner of the display, select the

annunciator reading CONT, and change the triggering to

Manual Triggering Mode.

3. On the FUNCTIONS swipe screen select Digi I for the

digitize current function.

4. Press the MENU key.

5. Select Reading Buffers under the Measure header.

6. Set the Capacity of defBuffer1 to 1,000,000.

7. Press the MENU key.

WWW.TEK.COM/KEITHLEY | 5

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

8. Select Graph under Views.

9. Select the Trigger tab.

10. Set the Event Source to Waveform.

11. Select Analog Edge.

12. Set the Level to an appropriate amount for the waveform

you are trying to capture, in this case, 10 mA.

13. Press the TRIGGER key to initiate the digitizing.

14. Activate the event on your device and the DMM will

capture the event, as well as half the buffer (500,000

readings) before the event.

Figure 4: Use the vertical cursors to determine the average current
over a portion of the waveform

Select the Graph tab to view the captured waveform. Pinch

the graph to zoom into one of the individual waveforms. From

here, you can use the cursors to gather more information

or export the data just as in the previous example. By

placing Vertical cursors around a portion of the waveform,

you can use the automatically calculated VCursor Stats to

find important information for just that portion, as seen in

Figure 3. The fast sampling capabilities of the DMM means

you can closely examine the features of power drain for

all your devices. The extensive memory and robust graph

feature make exploring power profiles for power transients,

or anomalies, simple. You can see how acquiring this much

data for a long period could be troublesome. It only took

a couple seconds to capture 1,000,000 data points. One

possible solution is to use an external computer to receive

and process the data as it comes in.

Streaming Digitized Readings to Your PC

The details above provide insight on how to capture individual

segments of average current for any of the given operating

modes of your device design. You will also need to test how

all those operating modes work together over long periods,

very similar to how remote, wireless devices should operate

in realistic conditions. A common method for achieving this

is to let the device run for a prescribed amount of time while

continuously collecting current readings at a high sample

rate to derive a more comprehensive power profile. Because

of the interest in both current (or power) and time for this

method, it is presumed that you will be determining the Amp-

hours or Watt-hours to prove that the battery selected for

your design will survive the lifespan you planned for based on

your power budget.

The DMM6500 supports this data streaming approach,

achieving sampling rates up to 100 kS/s while concurrently

transferring the digitized data directly to your computer

up to 100 k readings per second, depending on the

communications protocol selected (the highest using USB).

Since the data analysis tends to vary from user to user,

we leave that to your discretion. Instead, we present an

example that provides insight into the measurement setup,

triggering, and data extraction necessary to execute the data

streaming using the DMM6500. The details of this example

are as follows:

• Main control code is written using Python 3.5 or later and

is provided in Appendix A.

• The communication protocol is Ethernet, and a

TCP/IP socket is used to establish a connection to

the DMM6500.

• Once connected, a script file containing TSP command

functions is uploaded to the DMM6500. This allows

the Python code to execute the more verbose remote

setup, triggering and data extraction processes with

simpler local function calls. This helps to push more

of the processing over to your test instrument, leaving

your computer free to perform other tasks. The contents

of this script file, functions.lua, can be viewed in

Appendix B.

6 | WWW.TEK.COM/KEITHLEY

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

• Data is retrieved from the DMM6500 in specific quantities

(or “chunks” as defined in the code), received as binary

floating-point data, and then converted to ASCII.

• The ASCII format readings are written to a data file saved

on the controlling computer.

Logging Amp-Hour and Watt-hour
readings from the DMM6500 Using TSP

While the data streaming method described above may

produce gigabytes worth of information for you to analyze

using your software of choice, some users want to avoid

working with all that data. These users prefer an immediate,

cumulative value to be presented to them indicating the

Amp-hours or Watt-hours for the operating device. With the

power of TSP scripting, we can customize the operation of

the DMM6500 to do that.

An example script for accomplishing this with the DMM6500

is available on the web at www.tek.com/keithley. The script

code is also presented in its raw form in Appendix C, with

the highlights of what it accomplishes as follows:

• User-selectable digitizing from 1 k to 125 kS/s, with the

higher rates better helping to capture and account for

transient signals

• Choice of calculating Amp-Hours or Watt-Hours

• Amp- or Watt-hours displayed on the instrument front

panel along with the average current of your device

• Graphical output of the Amp- or Watt-hours data

Whether you choose to download the script from the website

in its entirety or copy and paste it into your own editor,

we provide the following details on how to load and run

the script.

Running the Script

This example uses a TSP Script and Keithley Instruments’

Test Script Builder (available on the web at www.tek.com/
keithley) to record the Amp-hours consumed by a wireless

device for up to 30 days. The TSP Script will be loaded onto

the DMM via USB drive but it can also be executed from

an external computer running Keithley Instruments’ Test

Script Builder.

The code itself can be found in Appendix C at the end of

this Application Note. It uses the DMM’s digitize current

function to measure current values to a recycled buffer. Once

a second, the mean current from this recycled buffer and

the elapsed time of the test are used to calculate the Amp-

hours (or the watt-hours, if the source voltage is given) of

the device, which is then logged to a permanent buffer. This

method captures anomalous power draw caused by small

peaks in current while keeping a more manageable number of

data points.

1. Press the POWER button on the front panel to turn on

the instrument.

2. Copy the script located in Appendix C of this Application

Note onto a USB drive.

3. Insert the USB drive into the front panel of the

instrument.

4. Select No Script at the top of the display and select

the script copied from this Application Note (i.e. usb1/

PowerHr_Meter).

5. Select Amp-Hours.

6. Select a Sample Rate of 50,000.

7. Select a current range that covers the maximum current

draw for your device, even small current peaks should fit

within the range to accurately characterize the device.

8. The measurement will start immediately, the current

amp-hours consumed, and the average current are

displayed on the HOME screen of the DMM.

WWW.TEK.COM/KEITHLEY | 7

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/keithley
www.tek.com/keithley
www.tek.com/keithley
http://www.tek.com/Keithley

9. Press the MENU key.

10. Select Graph under the Views header.

11. Select the Data tab.

12. Select defBuffer1 then select Remove.

13. Select Add and then ampHrsBuffer to add the amp-

hours measurement to the Graph.

14. Select the Graph tab to view the amp-hours reading as

it arrives.

15. Press the TRIGGER key when you are finished acquiring

data to stop the trigger model.

Figure 7: Example of an amp-hours measurement graph. Changes in
slope equate to changes in power consumption.

The data can be exported to a .csv file for analysis on

an external computer. The amp hour measurement may

be compared against expected values or searched for

anomalous power draw (which could be shown by a sudden

change in slope). Some other common uses for this type

of measurement would be determining the specifications

for a battery that needs to power a device, or generating

specifications for power consumption.

Data Logging Multiple Measurements at
Multiple Places
In addition to the examples in this Application Note,

the DMM6500 can be used to log data using any of its

15 measurement functions including functions such as

temperature with thermocouples, RTDs, or thermistors and

voltage ratio of two voltages. Using an optional switch card,

the DMM6500 can utilize up to 10 measurement channels

for logging data at different points on a device or on multiple

devices. When even more channels are needed, a Keithley

DAQ6510 can utilize up to 80 measurement channels with the

same capabilities of the DMM.

Conclusion
With battery life so important to consumers, understanding

and minimizing the load current of IoT devices is important

to achieving success in the market. The Keithley DMM6500

6 ½-Digit Bench/System Multimeter offers the needed

performance to measure the load current of a device in all

its operating states, from the sleep state to the transmit

state. With this measurement data and the DMM6500’s

analysis capability, the designer has all the insight needed to

understand a device’s total power profile.

8 | WWW.TEK.COM/KEITHLEY

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

Appendix A: Python script to execute data streaming
This python 3.5 script uses the TSP functions in Appendix B to stream digitized current readings over a LAN connection to

an external computer. You can expect about 60,000 readings/second with this script, but this speed is limited by the Ethernet

cable of the LAN connection. Higher streaming speeds are possible by using a faster data bus such as a USB connection with

PyVISA. PyVISA information is available at https://pyvisa.readthedocs.io.

Before running this script, you should make some changes:

• Set the ip_address variable to match the ip address of your DMM6500, default 192.168.1.78.

• Set the seconds_to_capture variable to the number of seconds you wish to log data, default 10.

• Make sure the TSP functions from Appendix B are in a file called functions.lua and are in the same directory this

script is in.

#!/usr/bin/python
import socket
import struct
import math
import time

#settings
seconds_to_capture = 10 # Modify this value to adjust your run time.
#minutes_to_capture = seconds_to_capture * 60
sample_rate = 60000 # NOTE: 60kS/s is the max rate we have observed under
 # certain conditions/circumstances. To attain
 # higher sampling and data transfer rates, use
 # USB.
chunkSize = 249 # This value is the max binary format transfer value
 # we can implement for data transfer, and is limited
 # by the ethernet protocol where the max frame size
 # is < 1500 bytes, and this includes header/trailer
 # information for each of the networking layers
 # involved in the TCP/IP (physical, data link, network,
 # and transport). The "chunkSize" variable defines how
 # many readings to to transfer for a given poll of the
 # instrument.
ip_address = "192.168.1.71" # Place your instrument’s IP address here.
output_data_path = "data.txt" # This is the output file that is created which
 # will hold your readings provided in ASCII
 # format in a text file.
functions_path = "functions.lua" # This file holds the set of TSP (Lua-
 # based) functions that are called by
 # the Python script to help minimize the
 # amount of bytes needed to setup up and
 # more importantly, extract readings from
 # the instrument. The file is opened and
 # written directly to instrument memory.

#helpers
implement "chunkSize" instead of a fixed value
chunks = math.floor((seconds_to_capture * sample_rate) / chunkSize)

def load_functions(s):
 # This function opens the functions.lua file in the same directory as
 # the Python script and trasfers its contents to the DMM6500’s internal
 # memory. All the functions defined in the file are callable by the
 # controlling program.
 func_file = open(functions_path, "r")
 contents = func_file.read()

WWW.TEK.COM/KEITHLEY | 9

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

https://pyvisa.readthedocs.io
http://www.tek.com/Keithley

 func_file.close()
 s.send("if loadfuncs ~= nil then "
 "script.delete(‘loadfuncs’) "
 "end\n".encode())
 s.send("loadscript loadfuncs\n{0}\nendscript\n"
 .format(contents)
 .encode())
 s.send("loadfuncs()\n".encode())
 print(s.recv(100).decode())

def send_setup(s):
 # This function sends a string that includes the function
 # call and arguments that set up the DMM6500 for digitizing
 # current for the requested time and sample rate.
 s.send("do_setup({0}, {1})\n"
 .format(seconds_to_capture, sample_rate)
 .encode())
 s.recv(10)

def send_trigger(s):
 # This function sends a string that calls the function
 # to trigger the instrument.
 s.send("trig()\n".encode())
 s.recv(10)

def write_block(ofile, floats):
 # This function writes the floating point data to the
 # target file.
 for f in floats:
 ofile.write("{0:.4e}\n".format(f))

def get_block(s):
 # This function extracts the binaray floating point data
 # from the DMM65000.
 s.send("get_data()\n".encode())
 response = s.recv(1024)
 return response

def set_display(screen, state):
 # This function changes the display view and backlight settings
 s.send("disp_state({0}, {1})\n".format(screen, state).encode())
 s.recv(10)

#configure, trigger, transfer
s = socket.socket() # Establish a TCP/IP socket object
s.connect((ip_address, 5025)) # Connect to the instrument
ofile = open(output_data_path, "w") # Open/create the target data

load_functions(s)
send_setup(s)
set_display(16, 0) # Change to MENU screen; backlight off
send_trigger(s)

t1 = time.time() # Start the timer...
for i in range(0, int(chunks)): # Loop to collect the digitized data
 write_block(ofile, get_block(s))# Write the data to file
 if i % 10 == 0: # This is here for debug purposes, printing
 print("{0:.1f}%".format(i/chunks * 100)) # out the % of run time elapsed
 # and technically it could be commented out.
t2 = time.time() # Stop the timer...

set_display(0, 1) # Change to HOME screen; backlight on
ofile.close() # Close the data file.
s.close() # Close the socket.

10 | WWW.TEK.COM/KEITHLEY

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

Notify the user of completion and the data streaming rate achieved.
print("done")
print("{0:.0f} rdgs/s".format((chunks * chunkSize)/(t2-t1)))

input("Press Enter to continue...")

Appendix B: TSP script file to support data streaming
These functions are used by the python script in Appendix A. They should be put in a file named functions.lua in the same

directory that the python script from Appendix A will be run from. The python script loads these functions onto the instrument’s

internal memory so they can be executed with minimal delay. This also reduces the communication required across the data

bus, reducing chances for error.

readings_captured = 0

function do_setup(capture_time, sample_rate)
 reset()
 dmm.digitize.func = dmm.FUNC_DIGITIZE_CURRENT
 dmm.digitize.range = 1
 dmm.digitize.samplerate = sample_rate
 format.data = format.REAL32

 trigger.model.setblock(1, trigger.BLOCK_DIGITIZE,
 defbuffer1,
 trigger.COUNT_INFINITE)

 trigger.model.setblock(2, trigger.BLOCK_DELAY_CONSTANT,
 capture_time)

 trigger.model.setblock(3, trigger.BLOCK_DIGITIZE,
 defbuffer1,
 trigger.COUNT_STOP)
 waitcomplete()
 print("ok")
end

function trig()
 readings_captured = 0
 trigger.model.initiate()
 print("ok")
end

function get_data()
 chunker = 249
 while buffer.getstats(defbuffer1).n - readings_captured < chunker do
 delay(0.001)
 end
 local index1 = math.mod(readings_captured, 100000) + 1
 local index2 = index1 + (chunker - 1)
 if index2 > 100000 then
 index2 = 100000
 end
 printbuffer(index1, index2, defbuffer1)
 readings_captured = readings_captured + chunker
end

function disp_state(screen, state)
 if screen == 0 then
 display.changescreen(display.SCREEN_HOME)
 elseif screen == 1 then

WWW.TEK.COM/KEITHLEY | 11

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

 display.changescreen(display.SCREEN_GRAPH)
 elseif screen == 16 then
 display.changescreen(16)
 end

 if state == 0 then
 display.lightstate = display.STATE_LCD_OFF
 else
 display.lightstate = display.STATE_LCD_100
 end
 print("ok")
end

print("functions loaded")

Appendix C: Logging Amp-hour or Watt-hour Measurements using TSP Script
This TSP script can be run on a Keithley Model DMM6500 for measuring Amp-hour or Watt-hours of a device. The script should

be placed in a text file and given a name such as PowerHr_Meter.tsp. It can either be run from within Keithley Instruments

Test Script Builder program on a PC connected to a Model DMM6500 or run directly from a USB drive inserted into the DMM’s

front panel.

When run, the script will first ask whether amp-hours or watt-hours are to be measured. The watt-hour option will further ask for

the applied DC voltage, the amp-hour measurement is multiplied by this applied voltage to get watt-hours. You must then define

the sampling rate, defaulted to 50 kS/s. Finally, the current range must be specified to simplify calculations.

-- create functions

function setup_DMM6500_buffer(BufSize)
 dciBuffer = buffer.make(BufSize, buffer.STYLE_STANDARD)
 dciBuffer.clear()
 buffer.clearstats(dciBuffer)
 dciBuffer.capacity = 1 * BufSize
 dciBuffer.fillmode = buffer.FILL_CONTINUOUS
end -- function

function setup_DMM6500_measure(sampleRate, measRange)
 -- setup our refilling buffer
 setup_DMM6500_buffer(sampleRate) -- BufSize = sampleRate = 1 second of buffering
 opc()

 -- setup measure type, ranges, etc.
 dmm.digitize.func = dmm.FUNC_DIGITIZE_CURRENT
 opc()

 dmm.digitize.range = measRange

 dmm.digitize.samplerate = sampleRate

 dmm.digitize.aperture = dmm.APERTURE_AUTO
 --Changing count is optional. The reading buffer capacity is the determining factor
 dmm.digitize.count = 1 -- CANNOT be zero; 1 to 55Million

 -- control the swipe screen
 display.clear()
 display.changescreen(display.SCREEN_USER_SWIPE)

 -- clear any existing trigger blocks
 trigger.clear()

12 | WWW.TEK.COM/KEITHLEY

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

 trigger.model.load("Empty")
 opc()

 --Define a trigger model that will capture until we push front panel trigger button
 trigger.model.setblock(1, trigger.BLOCK_BUFFER_CLEAR, dciBuffer)
 trigger.model.setblock(2, trigger.BLOCK_DELAY_CONSTANT, 0)
 trigger.model.setblock(3, trigger.BLOCK_DIGITIZE, dciBuffer, trigger.COUNT_INFINITE)
 trigger.model.setblock(4, trigger.BLOCK_WAIT, trigger.EVENT_DISPLAY) -- wait until the
TRIGGER key is pressed
 trigger.model.setblock(5, trigger.BLOCK_DIGITIZE, dciBuffer, trigger.COUNT_STOP) -- stop
making digitized measurements

 opc()
end -- function

function my_dmm6500_waitcomplete(useWattHrs, dcvVal)
 local i = 1
 local cbIndex = 1
 local tempVal = 0

 -- check trigger model state on Amp-Hr meter (DMM6500)
 present_state, n = trigger.model.state() -- state, present block number

 --STATE_RUNNING, IDLE, WAITING, EMPTY, FAILED, ABORTING, ABORTED, BUILDING
 while present_state == (trigger.STATE_WAITING or trigger.STATE_RUNNING) do
 reading_stats = buffer.getstats(dciBuffer)
 i_avg = reading_stats.mean
 runtime = dciBuffer.relativetimestamps[dciBuffer.n]
 AmpHrs = i_avg * runtime/3600
 if useWattHrs == 0 then
 display.settext(display.TEXT1, string.format("Amp-Hrs: %.4e", AmpHrs));
 display.settext(display.TEXT2, string.format("Avg. I: %.6e A", i_avg));
 tempVal = AmpHrs
 buffer.write.reading(ampHrsBuffer, tempVal, runtime)
 else
 WattHrs = AmpHrs * dcvVal
 display.settext(display.TEXT1, string.format("Watt-Hrs: %.4e", WattHrs));
 display.settext(display.TEXT2, string.format("Avg. I: %.6e A", i_avg));
 tempVal = WattHrs
 buffer.write.reading(wattHrsBuffer, tempVal, runtime)
 end

 delay(1)
 i = i + 1
 present_state, n = trigger.model.state() --update the trigger model state var
 end -- while loop
end -- function

function get_amphrs()
 present_state, n = trigger.model.state()

 reading_stats = buffer.getstats(defbuffer1)
 runtime = defbuffer1.relativetimestamps[defbuffer1.n]
 i_avg = reading_stats.mean
 AmpHrs = i_avg * runtime/3600
end --function

function set_dci_range()
 optionID = display.input.option("Select current range", "1A", "100mA", "10mA", "1mA",
"100uA", "10uA")
 if optionID == display.BUTTON_OPTION1 then -- 1A
 return 1.0
 elseif optionID == display.BUTTON_OPTION2 then -- 100mA
 return 100e-3

WWW.TEK.COM/KEITHLEY | 13

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

 elseif optionID == display.BUTTON_OPTION3 then -- 10mA
 return 10e-3
 elseif optionID == display.BUTTON_OPTION4 then -- 1mA
 return 1e-3
 elseif optionID == display.BUTTON_OPTION5 then -- 100uA
 return 100e-6
 elseif optionID == display.BUTTON_OPTION6 then -- 10uA
 return 10e-6
 end
end

function set_output_hrs_format()
 optionID = display.input.option("Select Computation Option", "Amp-Hours", "Watt-Hours")
 if optionID == display.BUTTON_OPTION1 then -- Amp-Hrs
 return 0
 elseif optionID == display.BUTTON_OPTION2 then -- Watt-Hrs
 return 1
 end
end -- function

function get_user_sample_rate()
 return display.input.number("Sample Rate", display.NFORMAT_INTEGER, 50000, 1000, 125000)
end -- function

function get_user_dcv_value()
 -- for the watt-hours, have the user input the applied voltage to their device
 return display.input.number("DCV Level Applied", display.NFORMAT_DECIMAL, 3.25, 0.0, 24.0)
end – function
-- ************************* MAIN PROGRAM **************************

reset() --reset the DMM6500

eventlog.clear()

-- set default sample_rate and current_range
local sample_rate = 15e3
local DMMcurrentMeasRange = 0.01
local dcvVal = 0.0

-- downsize the default buffers to ensure room for the new ones
defbuffer1.capacity = 10
defbuffer2.capacity = 10

-- let us size this for 1 sample per second for up to 30 days: 60*60*24*30 = 2,592,000
local hrsFormat = set_output_hrs_format()
if hrsFormat == 0 then -- provide semi-acceptable units to be visible on the graph and in the
reading table
 ampHrsBuffer = buffer.make(2592000, buffer.STYLE_WRITABLE)
 buffer.write.format(ampHrsBuffer, buffer.UNIT_AMP, buffer.DIGITS_6_5)
else
 wattHrsBuffer = buffer.make(2592000, buffer.STYLE_WRITABLE)
 buffer.write.format(wattHrsBuffer, buffer.UNIT_WATT, buffer.DIGITS_6_5)
end

if hrsFormat == 1 then
 dcvVal = get_user_dcv_value()
end

dmm.digitize.func = dmm.FUNC_DIGITIZE_CURRENT
dmm.digitize.range = DMMcurrentMeasRange

14 | WWW.TEK.COM/KEITHLEY

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

sample_rate = get_user_sample_rate()-- let the user select the sample rate to use
DMMcurrentMeasRange = set_dci_range()-- let the user select the current range to use
setup_DMM6500_measure(sample_rate, DMMcurrentMeasRange)

-- start our DMM6500 High Speed Digitizing
trigger.model.initiate()
delay(0.5) -- allow some data to accumulate....

-- start the DMM6500 Amp-Hr status reporting loop
-- Press TRIGGER button to exit the loop
my_dmm6500_waitcomplete(hrsFormat, dcvVal)

-- clean up DMM6500 (Amp-Hr)
trigger.model.abort()

WWW.TEK.COM/KEITHLEY | 15

Data Logging of Power Profiles from Wireless IoT and Other Low-Power
Devices Using the DMM6500 6½-digit Bench/System Multimeter

APPLICATION NOTE

http://www.tek.com/Keithley

Find more valuable resources at TEK.COM
Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that
in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names
referenced are the service marks, trademarks or registered trademarks of their respective companies.

031918 AH 1KW-61357-0

Contact Information:
 Australia* 1 800 709 465

Austria 00800 2255 4835

Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777

Belgium* 00800 2255 4835

Brazil +55 (11) 3759 7627

Canada 1 800 833 9200

Central East Europe / Baltics +41 52 675 3777

Central Europe / Greece +41 52 675 3777

Denmark +45 80 88 1401

Finland +41 52 675 3777

France* 00800 2255 4835

Germany* 00800 2255 4835

Hong Kong 400 820 5835

India 000 800 650 1835

Indonesia 007 803 601 5249

Italy 00800 2255 4835

Japan 81 (3) 6714 3086

Luxembourg +41 52 675 3777

Malaysia 1 800 22 55835

Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90

Middle East, Asia, and North Africa +41 52 675 3777

The Netherlands* 00800 2255 4835

New Zealand 0800 800 238

Norway 800 16098

People’s Republic of China 400 820 5835

Philippines 1 800 1601 0077

Poland +41 52 675 3777

Portugal 80 08 12370

Republic of Korea +82 2 565 1455

Russia / CIS +7 (495) 6647564

Singapore 800 6011 473

South Africa +41 52 675 3777

Spain* 00800 2255 4835

Sweden* 00800 2255 4835

Switzerland* 00800 2255 4835

Taiwan 886 (2) 2656 6688

Thailand 1 800 011 931

United Kingdom / Ireland* 00800 2255 4835

USA 1 800 833 9200

Vietnam 12060128

* European toll-free number. If not

accessible, call: +41 52 675 3777
Rev. 02.2018

http://www.tek.com
http://www.tek.com
http://www.tek.com/keithley

	_GoBack

