

HEE Insert Series

Table of contents

1.	INTRODUCTION	2
2.	SUPPORTING DOCUMENTS	2
	2.1. Customer drawings	2
	2.2. Product specification	2
	2.3. Application Specification	2
	2.4. Standards	2
3.	DESCRPTION	3
4.	REQUIREMENTS	4
	4.1. Wire selection and preparation	4
	4.1.1. Stripping length L	4
	4.1.2. Insulation diameter	4
	4.2. Assemble wires to inserts	5
	4.2.1. Inserts of crimp termination	5
	4.3. Cable length inside the housing	8
5.	ASSEMBLY	9
	5.1. Contact inserts	9
	5.2. Grounding	11
	5.3. Marking	12
	5.4. Polarization function	12
6.	STORAGE	13
	6.1. Chemical exposure	13
	6.2. Storage condition	13

This specification contains the regulations for assembly of HEE contact inserts and the handling of these inserts.

2. SUPPORTING DOCUMENTS

2.1. Customer drawings

Please refer to the customer drawings of HEE insert series.

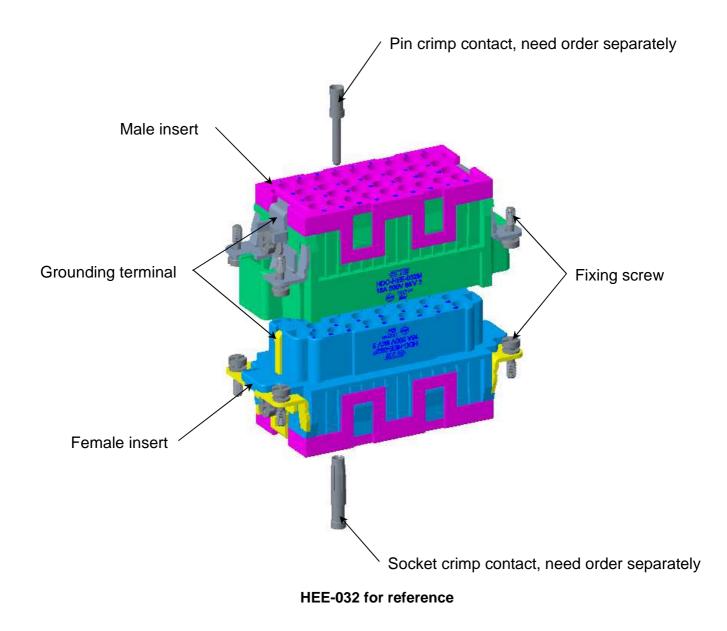
2.2. Product specification

The product specifications of the used articles are to be taken into account. The product specification describes the technical data as e.g. regulations, approvals, temperature range and rated voltage.

For further reference refer Product spec. 108-106137.

2.3. Application Specification

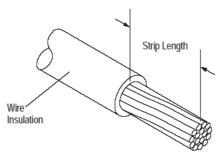
Connectors shall be assembled as below mentioned application specifications to ensure correct connector assembly.


2.4. Standards

- EN 61984: Connectors Safety requirements and tests
- IEC 60664-1: Insulation coordination for equipment within low-voltage systems (Part 1)
- IEC 60999-1: Electrical copper conductors- Safety requirements for the clamping units for conductors

3. **DESCRPTION**

This application specification describes the HEE male insert and the female insert. The listed terms are used in the specification as below shown HEE-032.



4. **REQUIREMENTS**

4.1. Wire selection and preparation

4.1.1. Stripping length L

Use proper tooling to strip the wire.

Figure 1

When stripping the wire, care must be taken to avoid scraping, nicking, or cutting the conductor. Care must also be used when handling the wire during stripping to prevent cracking or breaking the conductor and insulation.

Depending upon the cross section of the wire or cable, the stripping length has to be selected from the table below. See Table 1.

<u>Table 1</u>

Contact Insert	Max. Wire cross section		Strip Length For Reference Current	
	[mm ²]	AWG	L [mm]	
HEE	≤4.0 mm²	12	7.5	16A / 500V

4.1.2. Insulation diameter

Any wire that is used for the Electrical purpose is covered with insulating polymer. This insulation on the wires depends upon the wire size and type of application where it is being used. The insulation diameter for various wire sizes is as shown in table 2 only for reference.

<u>Table 2</u>

Max. Wire cross section		Insulation Diameter	
[mm ²]	AWG	in (mm)	
≤4.0 mm²	12	4.9 MAX.	

The Insulation diameter over the wire specified in the table 2 is for the insulation concentric, with equal thickness layer over the conducting wire.

4.2. Assemble wires to inserts

4.2.1. Inserts of crimp termination

- a. Assemble stripped wires to contacts (Crimp)
- Crimping tool
 Crimping tool is available as below Figure 2 &3:

- Wire range: 26AWG ~ 12AWG (0.14 mm² ~ 4.0 mm²)
- Type: RPC-M23-T-B (For DD contact)
- Order number: T310000022-000

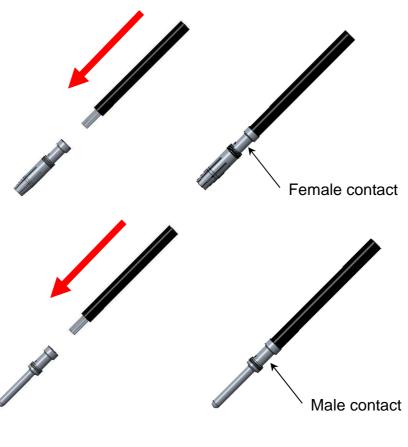
Figure 2

Application Specification

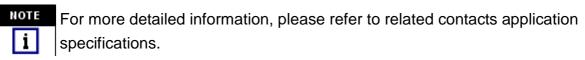
- Wire range: 26AWG ~ 12AWG (0.14 mm² ~ 4.0 mm²)
- Type: CRIMPBOX-0.5/4
- Order number: T310000001-000

Figure 3

> Crimp


Insert the cable - stripped according to Table 1 - into the wire barrel of the contact. The wire strands must be visible in the reference hole of the contact. Afterwards, crimp the contact in the crimp area, using the correct tool for this type of contact. During the termination process make sure that the contact in the contact zone is not damaged or deformed.

When using manual crimp tools the following points must be followed:


- 1). Equip manual crimp tool with the correct locator or positioning ferrule.
- 2). When using different manual crimping tools the pliers have to be adjusted by plug gauge to fit the crimp area.
- 3). Fully insert contacts into the locator.
- 4). Clamp the wire with help of crimp tool. Note that to press the crimp tool till the stopper is reached a positive crimp.

Crimp EE contact as below:

b. Insert crimped terminals into inserts

The crimped terminals are plugged into the insert by gently pushing it into the required position until the contact is locked by the inserts, a click should be heard normally.

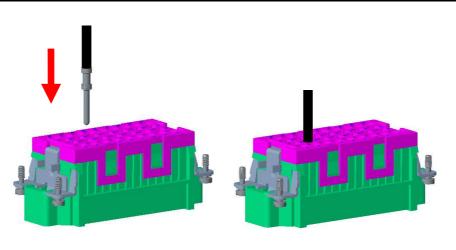
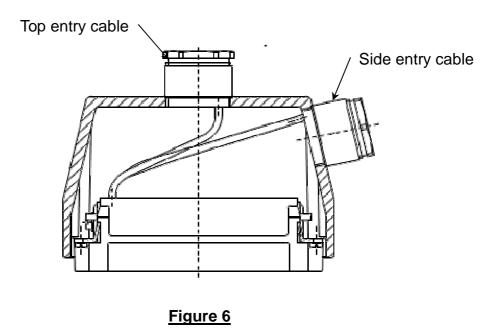



Figure 5

4.3. Cable length inside the housing

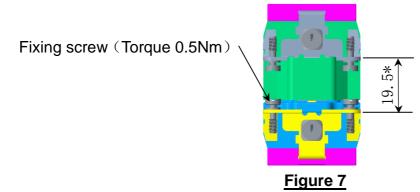
For the optimal cable lay inside the housing it is necessary to make sure that the striped length is fit to used cable type; is fit to permitted bending radius of the cable and make sure that the contact insert is fit to the type of hood. For recommended cable lengths (cable entry: TOP, SIDE), please refer to the Table 3. In accordance with the application it is proposed the cable length is selective to shorten (e.g., shorter cable near the cable gland longer cable at the turned off side).

Application Specification

<u>Table 3</u>

Insert		Type of hood	Cable lei	NL /	
size			Top entry cable	Side entry cable	Note
	H6B	HBPR(Central locking)	57	67	For reference only
HEE-010		HBPR(Opposite angle locking)	72	82	For reference only
		НВ	34	47	For reference only
		HB(High structure)	47	57	For reference only
	H10B	HBPR(Central locking)	55	75	For reference only
HEE-018		HBPR(Opposite angle locking)	70	80	For reference only
		НВ	35	55	For reference only
		HB(High structure)	45	47	For reference only
	H16B	HBPR(Central locking)	96	110	For reference only
HEE-032		HBPR(Opposite angle locking)	111	125	For reference only
		НВ	76	90	For reference only
		HB(High structure)	86	100	For reference only
	H24B	HBPR(Central locking)	113	123	For reference only
HEE-046		HBPR(Opposite angle locking)	128	138	For reference only
		НВ	93	103	For reference only
		HB(High structure)	103	113	For reference only

5. ASSEMBLY

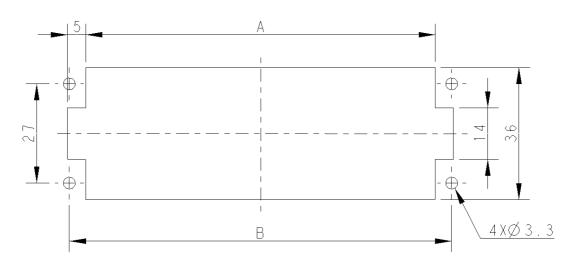

Assembling the contact inserts for both Male & Female connector has to be carried out with proper tools.

5.1. Contact inserts

The contact inserts are screwed into a corresponding hood or housing by fixing screws M3. The torque is 0.5Nm for reference.

Note: "*" The distance for safe contact of the contact inserts is max. 21mm.

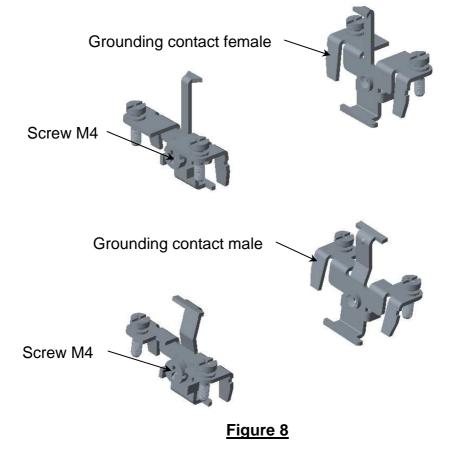
As shown Figure 7.


This specification is a controlled document

Information for panel cut-out:

Information concerning the panel cut-out for assembly of the contact inserts without housings can be taken from the customer drawings. Panel cut-out as below shown.

Panel cut-out dimension for HEE-010/ HEE-018/ HEE-032/ HEE-046

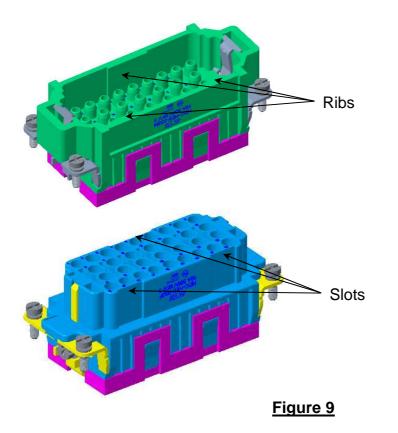

Table	4

Insert Size	Dimension (mm)		
Insen Size	A	В	
HEE-010	35	44	
HEE-018	48	57	
HEE-032	68.5	77.5	
HEE-046	95	104	

5.2. Grounding

Fixed to the contact inserts are grounding contacts, on which with the grounding screw (M4). The cable can be locked on the earth potential. The grounding contact in an assembly is the only part that will be having press contact with corresponding grounding contact on the other assembly near the interfacing portion of the housings.

This clamping point is suitable for connection of a cable with a nominal cross section of up to 4 mm². It is recommended to use cables with insulated barrels. The stripped end of the cable has to be put under the clip tab. Earthing is to be executed according to IEC 61984. Tighten torque 1.2Nm.



5.3. Marking

The connector type, rating and the number of position etc. refer to the corresponding HEE insert customer drawings.

5.4. Polarization function

The process of assembling the male and female inserts without any mismatch and difficulty calls for polarization. This is done with the help of ribs or slots and which are present on both the male insert as well as the female insert. As shown in Figure 9.

6. STORAGE

6.1. Chemical exposure

Do not store the connectors near any chemical listed below as they may cause corrosion stress the connector contacts:

Alkalies, Ammonia, Citrates, Phosphates, Citrates, Sulfur, Amines, Carbonates, Nitrites, Sulfides, Nitrites, Tart rates.

6.2. Storage condition

The connectors should be stored in the air ventilation, no corrosive gas, no rain and no snow in the warehouse. Relative humidity: less than 85% RH. The connectors should remain in the shipping containers until ready for use to prevent deformation to the contacts. The connectors should be used on a first in, first out basis to avoid storage contamination that could adversely affect electrical functions.

-----END-----END------