
macetech documentation

Centipede Shield
The Centipede Shield [http://macetech.com/store/index.php?
main_page=product_info&cPath=4&products_id=23] is an add-on PCB for
standard layout (Uno, Duemilanove, Diecimila) Arduino
microcontroller boards. It uses the Wire I2C interface on analog pins 4
and 5 to provide 64 general purpose I/O pins. Any pin can be
configured for input or output. The shield uses four Microchip
MCP23017 [http://www.microchip.com/wwwproducts/Devices.aspx?
dDocName=en023499] 16-pin digital I/O expander chips.

Features

Type: Arduino Shield

Function: Add 64 general purpose I/O pins

Works
with:

Centipede Breakout [http://macetech.com/store/index.php?
main_page=product_info&cPath=9&products_id=26], Centipede Breadboard Breakout
[http://macetech.com/store/index.php?main_page=product_info&products_id=27]

Fits: Arduino Diecimila [http://arduino.cc/en/Main/ArduinoBoardDiecimila], Duemilanove
[http://arduino.cc/en/Main/ArduinoBoardDuemilanove], Seeeduino
[http://www.seeedstudio.com/depot/seeeduino-v212-fully-assembled-arduino-compatible-p-389.html],
etc.

Power
Supply:

5V (from Arduino) and/or external power source (5V or use optional regulator)

Pin Analog 4, 5 (for Wire/I2C; 5V, GND

http://docs.macetech.com/doku.php/start
http://macetech.com/store/index.php?main_page=product_info&cPath=4&products_id=23
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en023499
http://macetech.com/store/index.php?main_page=product_info&cPath=9&products_id=26
http://macetech.com/store/index.php?main_page=product_info&products_id=27
http://arduino.cc/en/Main/ArduinoBoardDiecimila
http://arduino.cc/en/Main/ArduinoBoardDuemilanove
http://www.seeedstudio.com/depot/seeeduino-v212-fully-assembled-arduino-compatible-p-389.html

Usage:

Inputs: Up to 64 digital inputs, COM, VIN, AUX+

Outputs: Up to 64 digital outputs, 4 pin change interrupts

Other
features:

Optional passthrough female headers, I2C address select

I/O Ports
Each I/O port corresponds to one MCP23017 IC. The 20-pin 0.1“ headers allow access to 16 I/O, two GND pins,
and two COM pins. On the Centipede Shield, the pins are numbered sequentially from 0 to 63. The pins on
each port correspond to pins A0-A7 and B0-B7 for each chip as listed in the MCP23017 datasheet
[http://ww1.microchip.com/downloads/en/DeviceDoc/21952b.pdf]. The COM pad is connected to all the COM pins
on the I/O ports. This allows more ground wiring or a power source to run in the same cable as the I/O
signals if needed.

Power Connections
By default, the power for all chips on the Centipede Shield is drawn from the Arduino 5V bus. This is
selected by the PWR jumper, shorting the 5V position. If a large number of loads will be powered by the
Centipede Shield output pins, such as a large number of LEDs, then it may be necessary to use an external
power source to prevent damage to the Arduino 5V regulator or the computer's USB port.

PWR Jumper
If the PWR jumper is shorting the 5V position, then the Centipede Shield will be drawing its power for
operation from the Arduino 5V bus. If the PWR jumper is shorting the AUX position, then an external power
source can be soldered to the AUX+ pad. Since the Arduino uses 5V logic, a 5V external source is
recommended, but it may be possible to use a 3.3V source.

ADDRESS Jumper
The MCP23017 I2C interface can have up to 8 unique bus addresses. The Centipede Shield uses X00 to X11,
where X is the value of the ADDRESS jumper. This allows the Centipede Shield address space to be shifted
by four places, either to prevent interference on the I2C bus with another device, or to allow two Centipede
Shields to coexist.

I2C Interface
The Centipede Shield uses the official Arduino designation of I2C pins, namely the alternate functions of
Analog 4 and 5 on the original Arduino pin configuration. While the Centipede Shield is in use, the analog
input functions of Analog 4 and 5 cannot be used. The Centipede Shield can be accessed directly using the
Wire library, or using the custom functions in the Centipede Library [http://macetech.com/Centipede.zip].

Optional Regulator

http://ww1.microchip.com/downloads/en/DeviceDoc/21952b.pdf
http://macetech.com/Centipede.zip

An area for an optional SOT223 LM78Mxx regulator and 1210 SMD capacitors is available if onboard power
regulation from an external source is needed. Power can be applied to the regulator on the GND and VIN
pads, and regulated output is available on the OUT pad. If desired, the OUT pad can be wired to the AUX+
pad, and the PWR jumper set to short the AUX position to power the Centipede Shield from the optional
regulator. This solution is recommended if a large number of high current outputs is required. For example,
25 LEDs at 20mA each would be 500mA additional load on the Arduino regulator, which likely would fail or
cause computer problems if powered from a USB port.

INTA Pads
The INTA pads are connected to the MCP23017 interrupt A output pads. With the correct configuration of
MCP23017 registers, the interrupts can fire when pin changes from a programmable state are detected. This
could be very useful for detecting changes quickly without having to poll all the I/O over I2C frequently. At
this time, the Centipede Library [http://macetech.com/Centipede.zip] does not yet provide an API for accessing
the interrupt functions, but that feature will soon be available.

Code Example
The Centipede Library has been updated to work with Arduino 1.0

The following code example illustrates using the Centipede Shield with the Centipede Library (download
here) [http://macetech.com/Centipede.zip]. The library attempts to encapsulate the Centipede I/O access
functions in a way that is familiar to Arduino users. the library supports using two Centipede Shields
automatically; pin 64 is equivalent to pin 0 on the Centipede Shield with the ADDRESS jumper set to 1.

.digitalWrite([0…127], [LOW…HIGH]) - Acts like normal digitalWrite.

.digitalRead([0…127]) - Acts like normal digitalRead.

.pinMode([0…127], [INPUT…OUTPUT]) - Acts like normal pinMode.

.pinPullup([0…127], [LOW…HIGH]) - Activates internal 100K pullups on inputs when HIGH.

.portWrite([0…7], [0…65535]) - Writes 16-bit value to one chip. Useful for writing 16 outputs at the
same time.
.portRead([0…7]) - Reads 16-bit value from one chip. Useful for reading 16 inputs at the same time.
.portMode([0…7], [0…65535]) - Write I/O mask to one chip. In binary, a 0 means output and a 1 means
input. Easier to use than a long list of pinMode() commands.
.portPullup([0…7], [0…65535]) - Set pullup mask on one chip. In binary, a 0 means no pullup and a 1
means pullup is active.
.init() - Sets all registers to initial values.

Extract the Centipede Library files into a Centipede directory in your Arduino Libraries directory. It will be
available the next time you start the Arduino environment.

// Example code for Centipede Library
// Works with Centipede Shield or MCP23017 on Arduino I2C port

#include <Wire.h>
#include <Centipede.h>

/* Available commands
 .digitalWrite([0...127], [LOW...HIGH]) - Acts like normal digitalWrite
 .digitalRead([0...127]) - Acts like normal digitalRead
 .pinMode([0...127], [INPUT...OUTPUT]) - Acts like normal pinMode
 .portWrite([0...7], [0...65535]) - Writes 16-bit value to one port (chip)
 .portRead([0...7]) - Reads 16-bit value from one port (chip)
 .portMode([0...7], [0...65535]) - Write I/O mask to one port (chip)
 .pinPullup([0...127], [LOW...HIGH]) - Sets pullup on input pin

http://macetech.com/Centipede.zip
http://macetech.com/Centipede.zip

 .portPullup([0...7], [0...65535]) - Sets pullups on one port (chip)
 .portInterrupts([0...7],[0...65535],[0...65535],[0...65535]) - Configure interrupts
 [device number],[use interrupt on pin],[default value],[interrupt when != default]
 .portCaptureRead(0...7) - Reads 16-bit value registers as they were when interrupt occurred
 .init() - Sets all registers to initial values

 Examples
 CS.init();
 CS.pinMode(0,OUTPUT);
 CS.digitalWrite(0, HIGH);
 int recpin = CS.digitalRead(0);
 CS.portMode(0, 0b0111111001111110); // 0 = output, 1 = input
 CS.portWrite(0, 0b1000000110000001); // 0 = LOW, 1 = HIGH
 int recport = CS.portRead(0);
 CS.pinPullup(1,HIGH);
 CS.portPullup(0, 0b0111111001111110); // 0 = no pullup, 1 = pullup
 CS.portInterrupts(0,0b0000000000000001,0b0000000000000000,0b0000000000000001);
*/

Centipede CS; // create Centipede object

void setup()
{
 Wire.begin(); // start I2C

 CS.initialize(); // set all registers to default

 CS.portMode(0, 0b0000000000000000); // set all pins on chip 0 to output (0 to 15)
 //CS.portMode(0, 0b0000000000000000); // set all pins on chip 1 to output (16 to 31)

 //TWBR = 12; // uncomment for 400KHz I2C (on 16MHz Arduinos)

}

void loop()
{
 for (int i = 0; i < 16; i++) {
 CS.digitalWrite(i, HIGH);
 delay(10);
 }

 for (int i = 0; i < 16; i++) {
 CS.digitalWrite(i, LOW);
 delay(10);
 }
}

/home/macetec/public_html/docs/data/pages/centipede_shield.txt · Last modified: 2015/11/12 12:16 by macegr

