
12/24/2018 QuickStart · google/prudaq Wiki · GitHub

https://github.com/google/prudaq/wiki/QuickStart 1/8

QuickStart
Jump to bottom

credentiality edited this page on Aug 20, 2016 · 15 revisions

If you have a PRUDAQ board and are ready to start collecting samples, you've come to the right
place.

Standard disclaimer: any time you're working with circuit boards, you really should use an anti-
static mat and wrist strap. We break this rule just like most other people do, but be warned that
the AD9201 is quite sensitive and could easily be damaged by electrostatic discharge (even if you
don't see or feel a spark).

Set the jumpers

For this example we won't be using the SMA coax connectors on the board, so make sure that
jumpers J4, J5 and J6 are not installed. (They enable 50 ohm termination resistors which would
load down the clock signal and inputs, which we don't want in this case).

J1 is a 3 pin header labeled clock source that lets you choose where the ADC clock signal comes
from. The ADC's two channels will be simultaneously sampled each time the clock goes high.

The Circuit Description doc describes the clock options in detail, but let's keep it simple and
choose the GPIO clock option by installing a jumper on J1 between the center pin and the pin
near the center of the board labeled "GPIO Clock".

The GPIO clock is easy to configure in software for any sample rate we want.

Attach a dummy input

Join GitHub today
GitHub is home to over 28 million developers

working together to host and review code, manage
projects, and build software together.

Dismiss

Sign up

https://github.com/google/prudaq/wiki/QuickStart/_history
https://github.com/google/prudaq/wiki/CircuitDescription.md
https://github.com/join?source=prompt-wiki-show

12/24/2018 QuickStart · google/prudaq Wiki · GitHub

https://github.com/google/prudaq/wiki/QuickStart 2/8

We'll be reading from inputs 0 and 4. Inputs left unconnected can show up with all sorts of
values, so let's connect input 0 to the analog ground reference, and input 4 to the 1V "vref"
voltage, which is sometimes used to make sure an input signal is centered at mid-scale. Our 10-
bit samples take on values between 0 and 1023, so we expect to see a value of about 512 from
input 4.

On the black 8-pin header, the left 4 pins connect to analog ground. Analog ground is electrically
connected to the BeagleBone's ground, but with careful layout on the PRUDAQ board to
minimize stray noise. The green wire in the photo connects it to input 0.

The right 4 pins connect to vref. vref really is just a reference; drawing any current from it will
make it sag toward ground, and mess up the samples you collect. So really we should buffer it
(say, with a voltage-following op-amp) before connecting it to an input, especially if we were
going to use it with the round-robin code in the examples/ directory. But we just want to collect
some samples with a value that isn't near zero, and connecting the 3.3V AVCC would exceed the
0-2V input range for the ADC. The white wire in the photo connects it to input 4.

Attach PRUDAQ to your BeagleBone Black or BeagleBone
Green

12/24/2018 QuickStart · google/prudaq Wiki · GitHub

https://github.com/google/prudaq/wiki/QuickStart 3/8

With the BeagleBone powered down, stack the PRUDAQ cape on top of the BeagleBone. It can
be tricky to get all 96 header pins on the cape lined up straight, so be patient. Try to get the pins
started all the way around, then work your way around the board a few times pushing the pins in
a few millimeters at a time.

Take care that you don't push the cape in too far. On our BeagleBone Black, for instance, there's
a capacitor near the large USB jack that hits the bottom of the cape as the cape bottoms out,
and you don't want the pins on the bottom of the RAW1 SMA jack to short to the USB jack's
metal shell.

Attach the PRUDAQ cape before powering on the BeagleBone, then connect it to your computer
with a USB cable. The Beaglebone should boot up as usual. You'll know it booted successfully if
you see the BeagleBone show up as a storage device on your PC, and if, a minute or so later, you
can open the website served by your BeagleBone http://192.168.7.2 with your browser.

SSH into the BeagleBone

$ ssh debian@192.168.7.2
Debian GNU/Linux 7

BeagleBoard.org Debian Image 2015-07-13

default username:password is [debian:temppwd]

debian@192.168.7.2's password: (password is temppwd)
Last login: Mon Mar 9 21:52:01 2015 from 192.168.7.1
debian@beaglebone:~$

On older BeagleBone Black distros, you may instead have to login as root with a blank password.

Decide which codebase to use

Once you've verified that you can SSH into your beaglebone, it's time to decide between using
BeagleLogic's PRUDAQ driver, or our sample code. We recommend that you start with
BeagleLogic, and only worry about our sample code if you want to write your own firmware and
don't need sampling rates more than about 10MSPS.

Option 1: Much better throughput (5-10x), necessary for sample rates >6MSPS. Easy to read data
from /dev/beaglelogic

Option 2: Uses PRU0 to control GPIO clock and input selection, necessary for low latency reads
and round-robin sampling (see src/examples/round_robin). Much worse throughput. Simpler
codebase for hacking on.

http://192.168.7.2/

12/24/2018 QuickStart · google/prudaq Wiki · GitHub

https://github.com/google/prudaq/wiki/QuickStart 4/8

Option 1: Use the BeagleLogic system image

BeagleLogic uses a BeagleBone as a logic analyzer by sampling digital input pins very quickly. Its
software needs are very similar to our own, so the maintainer worked with us to add PRUDAQ
support to the BeagleLogic software.

Step 1: Download the latest BeagleLogic system image to your host PC.

Step 2: On your host PC, unzip the 7zip archive: $ 7zr x beaglelogic-prudaq-system.img.xz (You
might need to $ sudo apt-get install p7zip if you don't have 7zip installed).

Step 3: Plug a 4GB or bigger microSD card into your host PC and make sure you know its device
name. Let's assume it's /dev/sdm . Make sure it's not mounted (eg., sudo umount /dev/sdm1).

Step 4: Install the BeagleLogic image onto the microSD card. Again, make sure you have the right
device name! This step will destroy any data on the device specified. sudo dd if=beaglelogic-
prudaq-system.img of=/dev/sdm bs=1M This step may take a long time (on the order of an hour).

Step 5: When it's finished copying, install the microSD card in the BeagleBone and reboot. Keep
in mind you will need to keep the microSD card on the BeagleBone for as long as you use the
BeagleLogic image.

Step 6: Replace the stock BeagleLogic PRU1 firmware with the PRUDAQ firmware.

$ # Back up the original BeagleLogic firmware
$ cd /lib/firmware
$ sudo mv beaglelogic-pru1 beaglelogic-pru1.orig

$ # Build the PRUDAQ firmware
$ sudo date -s '7 July 2016 1645 PDT' # Set the system clock to the current time so
make doesn't complain
$ cd /opt/BeagleLogic/beaglelogic-firmware/custom/prudaq
$ sudo -E make

$ # Install in /lib/firmware and reboot
$ sudo cp prudaq-ch01 /lib/firmware/beaglelogic-pru1
$ sudo reboot

Step 7: Copy the Setup script to your beaglebone and run it as root.

$ chmod 755 beaglelogic-prudaq-setup.sh
$ sudo ./beaglelogic-prudaq-setup.sh

The green "enabled" LED will light up on the PRUDAQ.

Step 8: Start sampling!

https://docs.google.com/a/google.com/uc?id=0B72G9e_R3TcnNGFZSEF4bDNYU00&export=download
https://github.com/google/prudaq/blob/master/src/BeagleLogic/beaglelogic-prudaq-setup.sh

12/24/2018 QuickStart · google/prudaq Wiki · GitHub

https://github.com/google/prudaq/wiki/QuickStart 5/8

debian@beaglebone:~$ hexdump -d /dev/beaglelogic |head
0000000 00003 00513 00003 00512 00003 00513 00003 00512
0000010 00003 00512 00003 00512 00003 00512 00003 00512
0000020 00003 00512 00003 00512 00004 00512 00003 00513
0000030 00003 00513 00004 00512 00003 00513 00003 00512
0000040 00003 00512 00003 00513 00003 00512 00003 00513
0000050 00003 00512 00003 00513 00003 00513 00003 00512
0000060 00003 00512 00003 00512 00003 00512 00004 00512
0000070 00004 00512 00004 00512 00003 00513 00003 00512
0000080 00003 00512 00003 00512 00003 00512 00003 00512
0000090 00003 00512 00003 00513 00004 00512 00003 00512

If you attached a dummy input as instructed above, you should see values like the ones here:
interleaved samples from the two channels, with input 0 near 0, and input 4 near 512.

If the hexdump command hangs for a long time, double check that you have a clock jumper
installed on J1.

Option 2: Try our sample code

Most users should use BeagleLogic's PRUDAQ driver (option 1), but our sample code is easy to
hack on and easy to build from a stock BeagleBone distro.

The BeagleBone Green doesn't come with HDMI. If you have BeagleBone Black and you want to
use our sample code, you'll have to disable HDMI to free up some pins needed by PRUDAQ. (If
you use Option 1 above, the BeagleLogic image already has HDMI disabled). SSH in and carefully
edit /boot/uboot/uEnv.txt as root to uncomment this line, then reboot:

cape_disable=capemgr.disable_partno=BB-BONELT-HDMI,BB-BONELT-HDMIN

If you don't see /boot/uboot/uEnv.txt, you may have to mount /dev/mmcblk0p1 somewhere
first. (There are lots of guides online talking about disabling BeagleBone HDMI).

Caution: there may be another cape_disable line that disables HDMI and eMMC. So make sure
you're uncommenting the right line.

Caution: you may be tempted to edit uEnv.txt on your host PC, since it's one of the files that
pops up in the USB storage that appears when you boot the BeagleBone. But if you use the
wrong editor, it may not use the right line endings, and this could make your BeagleBone unable
to boot.

When you've successfully disabled HDMI, you won't see an "L" in the last status column in the
slots file for the lines mentioning HDMI:

cat /sys/devices/bone_capemgr.*/slots
 0: 54:PF---
 1: 55:PF---

12/24/2018 QuickStart · google/prudaq Wiki · GitHub

https://github.com/google/prudaq/wiki/QuickStart 6/8

 2: 56:PF---
 3: 57:PF---
 4: ff:P-O-L Bone-LT-eMMC-2G,00A0,Texas Instrument,BB-BONE-EMMC-2G
 5: ff:P-O-- Bone-Black-HDMI,00A0,Texas Instrument,BB-BONELT-HDMI
 6: ff:P-O-- Bone-Black-HDMIN,00A0,Texas Instrument,BB-BONELT-HDMIN
^ dash here instead of L in the two lines above means HDMI is disabled.

First we'll clone this repo onto your host PC, then copy it over to the home directory on the
Beaglebone. (You could also clone the repo directly from your BeagleBone if you've connected it
to the internet via Ethernet or a USB wifi adapter).

If your host PC runs GNU/Linux, you can clone this repo with:

$ git clone https://github.com/google/prudaq.git

That should create a subdirectory named prudaq . Now copy that whole directory to your
BeagleBone:

scp -r prudaq debian@192.168.7.2:~

Note: The default password for the debian user is: temppwd

Then ssh into the Beaglebone to build and install the code:

user@host-pc$ ssh debian@192.168.7.2

debian@beaglebone$ cd ~/prudaq/src
debian@beaglebone$ make
debian@beaglebone$ sudo make install # This just copies the .dtbo file to
/lib/firmware
debian@beaglebone$ sudo reboot # Reboot just to be safe, so it notices the .dtbo
[Wait for reboot then ssh in again]
debian@beaglebone$ cd ~/prudaq/src
debian@beaglebone$ sudo ./setup.sh # Init script that needs to be run once every
time beaglebone is rebooted

Running make builds the prudaq_capture example program and assembles the firmware for the
two realtime units. prudaq_capture enables the ADC, loads the firmware into the PRUs, then
reads binary sample data from the shared buffer and writes it to stdout.

$ sudo ./prudaq_capture

Usage: prudaq_capture [flags] pru0_code.bin pru1_code.bin

 -f freq gpio based clock frequency (default: 1000)
 -i [0-3] channel 0 input select

12/24/2018 QuickStart · google/prudaq Wiki · GitHub

https://github.com/google/prudaq/wiki/QuickStart 7/8

 -q [4-7] channel 1 input select
 -o output output filename (default: stdout)

Let's turn up the clock to 2kHz and specify inputs 0 and 4 explicitly (even though they're the
defaults), then pipe the binary data into hexdump so it's easy to read:

$ sudo ./prudaq_capture -i 0 -q 4 -f 2000 pru0.bin pru1.bin | hexdump -d -v | head
2097152B of shared DDR available.
 Physical (PRU-side) address:91800000
Virtual (linux-side) address: 0xb6b9a000

Actual GPIO clock speed is 2000.00Hz
0000000 00000 00000 00001 00513 00001 00513 00001 00513
0000010 00001 00513 00001 00513 00001 00513 00001 00513
0000020 00001 00513 00001 00513 00001 00513 00001 00513
0000030 00001 00513 00001 00513 00001 00513 00001 00513
0000040 00001 00513 00001 00513 00001 00513 00001 00514
0000050 00001 00513 00001 00513 00001 00513 00001 00513
0000060 00001 00513 00001 00513 00001 00513 00001 00513
0000070 00001 00513 00001 00513 00001 00513 00001 00513
0000080 00001 00513 00001 00513 00001 00513 00001 00513
0000090 00001 00513 00001 00513 00001 00513 00001 00513
 5256 bytes / second. 5256B written, 5256B read.

The numbers come from hexdump, while the other messages come from prudaq_capture (and
technically were written to stderr instead of stdout). The first column of numbers is the offset,
followed by decimal readouts in 16-bit chunks, which happen to be exactly how far we pad out
our 10-bit samples. You can see that the first two values are 0 (due to the way the samples are
read by the PRU, the first sample should be ignored). Then we get alternating values of 1 and
513, which is just what we expected: channel 0 is connected to ground, while channel 1 is about
midscale between 0 and 1023.

Troubleshooting: If you only see the initialization output but no data after:

 2097152B of shared DDR available.
 Physical (PRU-side) address:9f5c0000
 Virtual (linux-side) address: 0xb6da4000

This is probably because the clock signal isn't being received, so no samples are being captured.
Check to make sure a jumper is installed on J1 to select the GPIO clock or onboard clock.

Where to go next

The main documentation page has pointers to more in-depth docs.

You can also join the prudaq-users email list and tell us what you think.

https://github.com/google/prudaq/wiki
https://groups.google.com/d/forum/prudaq-users

12/24/2018 QuickStart · google/prudaq Wiki · GitHub

https://github.com/google/prudaq/wiki/QuickStart 8/8

 Pages 6

Home

BoardModification

CircuitDescription

InputOutput

Performance

QuickStart

Clone this wiki locally

Find a Page…

https://github.com/google/prudaq.wiki.git

https://github.com/google/prudaq/wiki
https://github.com/google/prudaq/wiki/BoardModification
https://github.com/google/prudaq/wiki/CircuitDescription
https://github.com/google/prudaq/wiki/InputOutput
https://github.com/google/prudaq/wiki/Performance
https://github.com/google/prudaq/wiki/QuickStart

