

Electra House, 32 Southtown Road Great Yarmouth, Norfolk NR31 0DU, England Telephone +44 (0)1493 602602 Fax +44 (0)1493 665111 Email:sales@midasdisplays.com www.midasdisplays.com

MDE042A400300RBW	400 x 300	3-Wire SPI Interface	E-Ink Module					
	Specification							
Version: 1		Date: 25/04/2018						
Revision								
1 2	4/04/2018 Fir	rst Issue.						

Display F	eatures		
Display Size	4.2"		
Resolution	400 x 300		
Orientation	Landscape		
Appearance	Black, White, Red		110
Logic Voltage	3.3V		OHS ompliant
Interface	SPI		mpliant
Touchscreen	N/A	1 00	mphant
Module Size	91.00 x 77.00 x 1.25 mm		
Operating Temperature	0°C ~ +30°C		
Pinout	24 - Way FFC	Box Quantity	Weight / Display
Pitch	0.5mm		

* - For full design functionality, please use this specification in conjunction with the SSD1619A specification.(Provided Separately)

Display Accessories										
Part Number	Description									

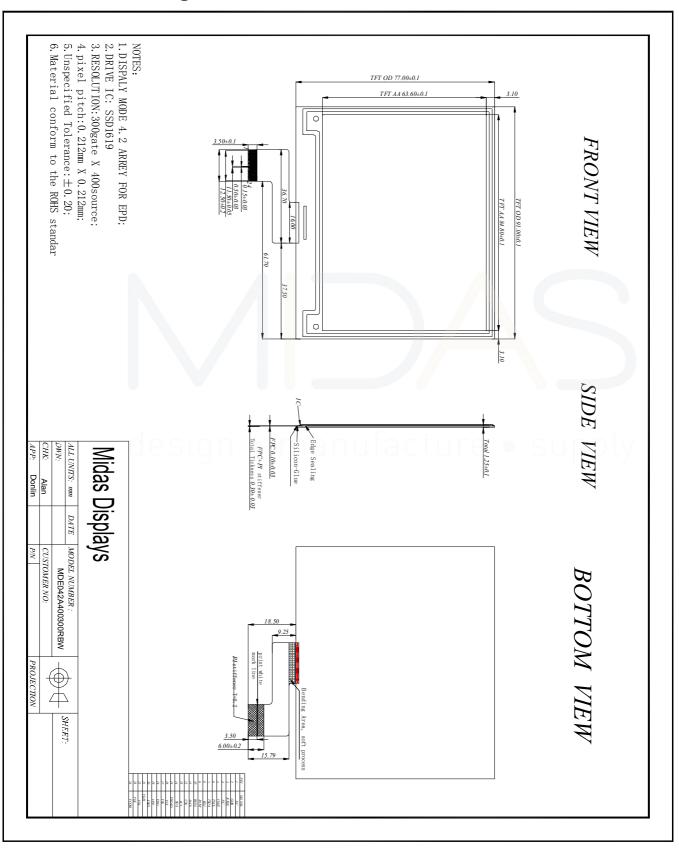
Optional Variants							
Appearances	Voltage						

General Description

MDE042A400300RBW is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 4.2" active area contains 400×300 pixels, and has 1-bit B/W/R full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

Features

- ●400×300 pixels display
- White reflectance above 35%
- ●Contrast ratio above 10:1
- •Ultra wide viewing angle
- •Ultra low power consumption
- •Pure reflective mode
- Bi-stable display
- •Commercial temperature range
- •Landscape, portrait modes
- Hard-coat antiglare display surface
- ●Ultra Low current deep sleep mode
- On chip display RAM
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- •I2C signal master interface to read external temperature sensor/built-in temperature sensor


Application

Electronic Shelf Label System

Mechanical Specifications

1			
Parameter	Specifications	Unit	Remark
Screen Size	4.2	Inch	
Display Resolution	400(H)×300(V)	Pixel	Dpi:119
Active Area	84.8(H)×63.6 (V)	mm	
Pixel Pitch	0.212×0.212	mm	
Pixel Configuration	Square		
Outline Dimension	91.00(H)× 77.00(V) × 1.25(D)	mm	
Weight	15±0.2	g	

Mechanical Drawing of EPD module

Input/Output Terminals

Pin#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins NC	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins	Keep Open
5	VSH2	Positive Source driving voltage	
6	TSCL	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I2C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 6-5
9	BUSY	Busy state output pin	Note 6-4
10	RES#	Reset	Note 6-3
11	D/C #	Data /Command control pin	Note 6-2
12	CS#	Chip Select input pin	Note 6-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	Suppl
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	Positive Source driving voltage	
21	VGH	Power Supply pin for Positive Gate driving voltage and VSH	
22	VSL	Negative Source driving voltage	
23	VGL	Power Supply pin for Negative Gate driving voltage, VCOM and VSL	
24	VCOM	VCOM driving voltage	

Note 6-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS# is pulled LOW.

Note 6-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulle set is active low. Note 6-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

MCU Interface

MCU Interface selection

The SSD1619A can support 3-wire/4-wire serial peripheral. In the SSD1619A, the MCU interface is pin selectable by BS1 shown in Table7-1.

Note

- (1) L is connected to VSS
- (2) H is connected to VDDIO

Table 1: Interface pins assignment under different MCU interface

	P8			•••							
MCU Interface	Pin Name										
WCO Interface	BS1	RES#	CS#	D/C#	SCL	SDA					
4-wire serial peripheral interface (SPI)	Connect to VSS	Required	Required	Required	SCL	SDA					
3-wire serial peripheral interface (SPI) – 9 bits SPI	Connect to VDDIO	Required	Required	Connect to VSS	SCL	SDA					

2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 7-2 and the write procedure 4-wire SPI is shown in Table 7-2

Table 7-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	1	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- $(2) \uparrow$ stands for rising edge of signal
- (3) SDA(Write Mode) is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

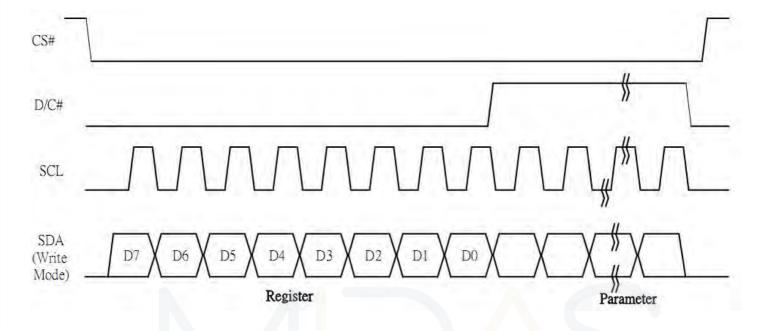


Figure 7-2: Write procedure in 4-wire SPI mode

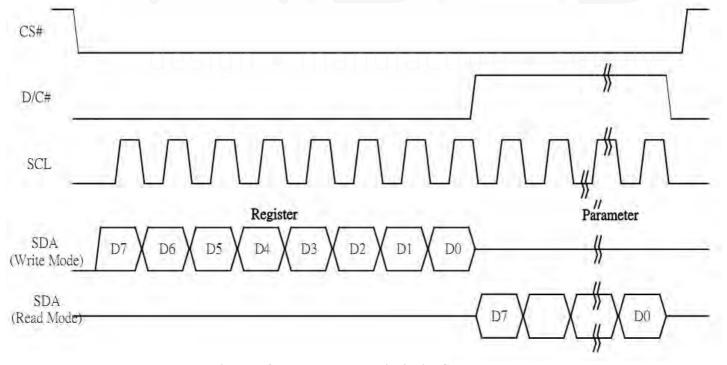


Figure 7-2: Read procedure in 4-wire SPI mode

3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table7-3. In the write operation, a 9-bit data will be shifted into the shift register on each clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or write data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 7-3 shows the write procedure in 3-wire SPI

Table 7-3: Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	Tie LOW	L
Write data	↑	Data bit	Tie LOW	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

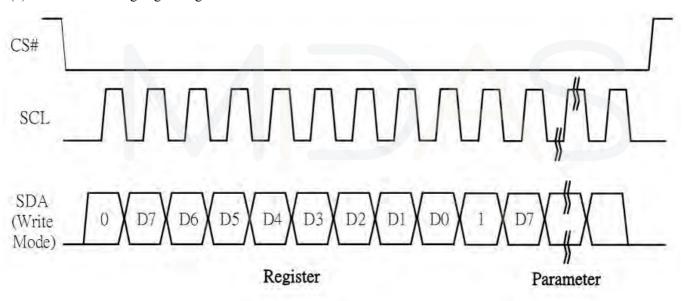
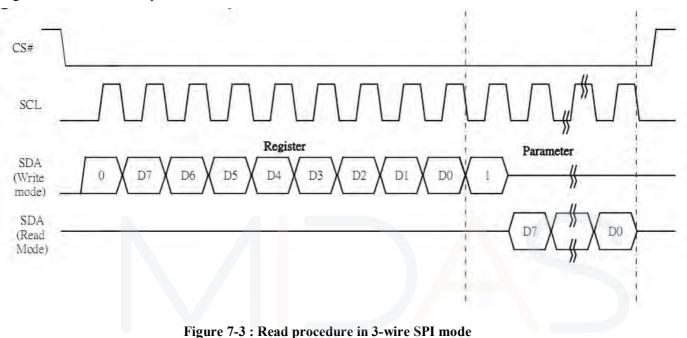



Figure 7-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35), SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on each clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

ian e manufacturo e cunnly

COMMAND TABLE

W	- 101														
	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description			
)	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setting			
1	1		A7	A6	A5	A4	A3	A2	Al	A0	-	A[8:0]= 12Bh [
	1		0	0	0	0	0	0	0	A8	-	MUX Gate line		[8:0] + 1).	
												B[2:0] = 000 [F			
												Gate scanning s	sequence and	direction	
												B[2]: GD			
												Selects the 1st of	output Gate		
												GD=0 [POR],			
												G0 is the 1st ga output sequence	te output char e is G0,G1, G	nnel, gate 2, G3,	
												GD=1,			
							4					G1 is the 1st ga	te output char e is G1, G0, G	nnel, gate 3, G2,	
												B[1]: SM			
												Change scanning	ng order of gat	e driver.	
												SM=0 [POR],			
												G0, G1, G2, G3 gate interlaced)	3299 (left a	nd right	
												SM=1,			
												G0, G2, G4	G298 G1 G3	G299	
				00	10	n		m	ar		tacture	B[0]: TB	3270, G1, G3	, (32))	
												TB = 0 [POR],	scan from G0	to G299	
												TB = 1, scan from			
												,			
	0	0	03	0	0	0	0	0	1	1	Gate Driving voltage	Set Gate drivin	g voltage		
	1		0	0	0	A4	A3	A2	Al	A0	Control	A[4:0] = 19h [H			
												VGH setting fro		V	
												A[4:0]	VGH	A[4:0]	VGH
												03h	10	0Fh	16
												04h	10.5	10h	16.5
												05h	11	11h	17
												06h	11.5	12h	17.5
												07h	12	13h	18
												08h	12.5	14h	18.5
												09h	13	15h	19
												0Ah	13.5	16h	19.5
												0Bh	14	17h	20
												0Ch	14.5	0Fh	NA NA
												0Dh	15		1
					1							0Eh	15.5		-

Commai	nd Table																		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comma	ınd		Descrip	tion				
)	0	04	0	0	0	0	0	1	0	0	Source Control	Driving voltag	ge	Set Sou	rce driving voltage				
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control			Control			A[7:0]	= 41h [POR], VSH	1 at 15V
0	1		В7	В6	В5	B4	В3	B2	B1	В0				B[7:0]	= A8h [POR], VSH	2 at 5V.			
)	1		C7	C6	C5	C4	C3	C2	C1	C0	C[7:0] = 32h [POR], VSL at -15V					at -15V			
$A[7]/B[7] = 1, & A[7]/B[7] = 0, & C[7] = 0, \\ VSH1/VSH2 \text{ voltage setting from 2.4V} & VSH1/VSH2 \text{ voltage setting from 9V} & VSL \text{ setting from -9V to -17V} \\ to 8.8V & to 17V & VSL \text{ setting from -9V to -17V} \\ \hline$																			
A	A/B[7:0]	VSH	1/VSH2	A/B[7:0	0]	VSH1/V	SH2		A/B[7:0]	VSH1/	VSH2	A/B[7:0]	VSH 1/VS H2		C[7:0]	VSL			
	8Eh	2	2.4	AFh		5.7			23h	9)	3Ch	14		1Ah	-9			

3Ah

3Bh

13.6

o <u>8.8V</u>		to 17V					
A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2				
8Eh	2.4	AFh	5.7				
8Fh	2.5	B0h	5.8				
90h	2.6	B1h	5.9				
91h	2.7	B2h	6				
92h	2.8	B3h	6.1				
93h	2.9	B4h	6.2				
94h	3	B5h	6.3				
95h	3.1	B6h	6.4				
96h	3.2	B7h	6.5				
97h	3.3	B8h	6.6				
98h	3.4	B9h	6.7				
99h	3.5	BAh	6.8				
9Ah	3.6	BBh	6.9				
9Bh	3.7	BCh	7				
9Ch	3.8	BDh	7.1				
9Dh	3.9	BEh	7.2				
9Eh	4	BFh	7.3				
9Fh	4.1	C0h	7.4				
A0h	4.2	C1h	7.5				
Alh	4.3	C2h	7.6				
A2h	4.4	C3h	7.7				
A3h	4.5	C4h	7.8				
A4h	4.6	C5h	7.9				
A5h	4.7	C6h	8				
A6h	4.8	C7h	8.1				
A7h	4.9	C8h	8.2				
A8h	5	C9h	8.3				
A9h	5.1	CAh	8.4				
AAh	5.2	CBh	8.5				
ABh	5.3	CCh	8.6				
ACh	5.4	CDh	8.7				
ADh	5.5	CEh	8.8				
AEh	5.6	Oher	NA				

from 9 V		VSL setting	g from -9 v
A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH 1/VS H2
23h	9	3Ch	14
24h	9.2	3Dh	14.2
25h	9.4	3Eh	14.4
26h	9.6	3Fh	14.6
27h	9.8	40h	14.8
28h	10	41h	15
29h	10.2	42h	15.2
2Ah	10.4	43h	15.4
2Bh	10.6	44h	15.6
2Ch	10.8	45h	15.8
2Dh	11	46h	16
2Eh	11.2	47h	16.2
2Fh	11.4	48h	16.4
30h	11.6	49h	16.6
31h	11.8	4Ah	16.8
32h	<u> </u>	4Bh	17
33h	12.2	Other	NA
34h	12.4		
35h	12.6		
36h	12.8		
37h	13		
38h	13.2		
39h	13.4		

10 17 1		
	C[7:0]	VSL
	1Ah	-9
	1Ch	-9.5
	1Eh	-10
	20h	-10.5
	22h	-11
	24h	-11.5
	26h	-12
	28h	-12.5
	2Ah	-13
	2Ch	-13.5
	2Eh	-14
	30h	-14.5
	32h	-15
	34h	-15.5
	36h	-16
uр	38h	-16.5
	3Ah	-17

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command		Description
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with I	
0	1		1	A6	A5	A4	A3	A2	A1	A0	Control		tart current and duration setting.
0	1		1	В6	В5	В4	В3	B2	B1	В0		A[7:0] -> Soft start se	etting for Phase1= 8Bh [POR]
0	1		1	C6	C5	C4	C3	C2	C1	C0		B[7:0] -> Soft start se	tting for Phase2= 9Ch [POR]
0	1		0	0	D5	D4	D3	D2	D1	D0		C[7:0] -> Soft start se	tting for Phase3= 96h [POR]
												D[7:0] -> Duration se = 0Fh [POR] Bit Description of eac A[6:0] / B[6:0] /	ch byte: C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
			U									Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000~0011	NA 2.6
										_		0100	2.6
				00	110	m		m a	nı	lit a	cture	0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:0]: duratio	n setting of phase
												D[5:4]: duration	setting of phase 3
												D[3:2]: duration	setting of phase 2
												D[1:0]: duration	setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
												00	10ms
												01	20ms
												10	30ms
												11	40ms

Commano	l Table												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command		Description
0	0	0F	0	0	0	0	1	1	1	1	Gate scan start position	Set the scanning sta	art position of the gate
0	1		A7	A6	A5	A4	A3	A2	A1	A0	position		nge is from 0 to 299.
												A[8:0] = 000h [PO]	
0	0		0	0	0	0	0	0	0	A8		WhenTB=0,SCN [8	
		10									Deep Sleep mode	1	[8:0] = 299 - A[8:0]
0	0	10	0	0	0	0	0	0	0 A1	0 A0	Deep Steep mode	Deep Sleep mo	1
Ü	1			Ů		· ·	Ü		711	710		A[1:0]:	Description Named Made [BOD]
												00	Normal Mode [POR]
													Enter Deep Sleep Mode 1
												11	Enter Deep Sleep Mode 2
													d initiated, the chip will
												keep output high.	Iode, BUSY pad will
												Remark:	
													mode, User required
												to send HWRESET	
												to send II WILDEI	to the differ
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode	Define data entry so	equence
0	1		0	0	0	0	0	A2	A1	A0	setting	A[2:0] = 011 [POR	•
					W							A[1:0] = ID[1:0]	
													increment / decrement setting
												The setting of incre	ementing or
										-		decrementing of the	e address counter can
				00	5 I C	m		m a	nı	uta		be made independe	ntly in each upper and
												lower bit of the add	lress.
												00 –Y decrement, Σ	K decrement,
												01 –Y decrement, Σ	K increment,
												10 -Y increment, X	decrement,
												11 -Y increment, X	Cincrement [POR]
												A[2] = AM	
												Set the direction in	which the address
												counter is updated a	automatically after data
												are written to the R	
												AM= 0, the address	s counter is updated in
												the X direction. [PO	
													s counter is updated in
												the Y direction.	
0	0	12	1	0	0	0	1	0	1	0	SW RESET	Transact of	-11
v		12					1		1		DW KEGET		nds and parameters to
												their S/W Reset def	
												R10h-Deep Sleep N	
													BUSY pad will output high.
		<u> </u>		<u> </u>								note: KAM are una	affected by this command.

Command	l Table													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command		Description	
											HV Ready Detection	HV ready detection		
												The command requir	red CLKEN=1 and	
												ANALOGEN=1		
												Refer to Register 0x	22 for detail.	
0	0	14	0	0	0	1	0	1	0	0		After this command	initiated, HV Ready	
												detection starts.		
												BUSY pad will outp	ut high during	
												detection.		
												The detection result	can be read from the	
												Status Bit Read (Con	mmand 0x2F).	
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection		
0	1		0	0	0	0	0	A2	A1	A0		A[2:0] = 100 [POR]	, Detect level at 2.3V	
												A[2:0] : VCI level D	etect	
							4					A[2:0]	VCI level	
												011	2.2V	
												100	2.3V	
												101	2.4V	
												110	2.5V	
												111	2.6V	
												Other	NA	
					ric	m		m :	nni	if =	cture	The command requir	red CLKEN=1 and	
								110	4 1 1 1	J 1 C	Car	ANALOGEN=1		
												Refer to Register 0x		
												After this command	initiated, VCI	
												detection starts.		
												BUSY pad will outp	ut high during	
												detection.		
												The detection result		
												Status Bit Read (Cor	mmand 0x2F).	

Command	l Table												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command		Description
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor Control	Temperature Ser	nsor Selection
											Control	A[7:0] = 48h [P0]	OR], external temperatrure
0	1		A7	A6	A5	A4	A3	A2	A1	A0		sensor	
												A[7:0] = 80h Int	ernal temperature sensor
	1	1	1	T			1	T	1		I m	T	
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to tempera	
0	0		A11	A10	A9	A8	A7	A6	A5	A4	Control (Write to	A[11:0] = 7FFh	[POR]
0	1		A3	A2	A1	A0	0	0	0	0	temperature register)		
		•					1				,		
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temp	erature register.
0	0		A11	A10	A9	A8	A7	A6	A5	A4	Control (Read from		
0	1		A3	A2	A1	A0	0	0	0	0	temperature register)		
		-					· · · ·						
0	0	1C	0	0	0	1	0	1	0	0	Temperature Sensor	Write Command	to External temperature
0	0		A7	A6	A5	A4	A3	A2	Al	A0	Control (Write	sensor.	
0	1		В7	В6	В5	B4	В3	B2	В1	В0	Command to External	A[7:0] = 00h [P0]	OR],
0	1		C7	C6	C5	C4	C3	C2	C1	C0	temperature sensor)	B[7:0] = 00h [P0	OR],
												C[7:0] = 00h [P0]	OR],
				`									
												A[7:6]	
												A[7:6]	Select no of byte to be sent
			d	00		n	r	min	m		turo	00	Address + pointer
			u	\Box	19				\		, luit	01	Address + pointer + 1st
													parameter
												10	Address + pointer + 1st
												11	parameter + 2nd pointer
												11 A[5:0] Pointer	Address
												A[5:0] – Pointer B[7:0] – 1st para	-
												B[7:0] = 1st para C[7:0] = 2nd par	
													equired CLKEN=1.
													r 0x22 for detail.
												Telef to register	Total In domin.
												After this comm	and initiated, Write
													ternal temperature sensor
													d will output high during
												operation.	

Comman	d Table								,	•			
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Displa	y Update Sequence
												The Display Up located at R22h	date Sequence Option is
												operation. User	output high during should not interrupt this oid corruption of panel
0	0	21	0	0	1	0	0	0	0	1	Display Update	RAM content of	ption for Display Update
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control 1	A[7:0] = 00h [P]	OR]
												A[7:4] Red RA	M option
												0000	Normal
												0100	Bypass RAM content as 0
										1		1000	Inverse RAM content
												A[3:0] BW RAI	M option
												0000	Normal
												0100	Bypass RAM content as 0
	1	1	1	l	I	l	ı		I	1		1000	Inverse RAM content

Command												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	22	0	0	1	0	0	0	1	0	Display Update Control 2	Display Update Sequence Option: Enable the stage for Master Activation A[7:0]= FFh (POR)
												Parame r(in He
												Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG
												Then Disable OSC
												Enable Clock Signal, Then Enable ANALOG Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC
												Then Bisable ege
												Enable Clock Signal, Then Load LUT with DISPLAY 90
												Mode 1
												Enable Clock Signal, Then Load Temperature value from I2C Single Master B0 Interface Then Load LUT with DISPLAY Mode 1
				e s	19	n (na	ηu	tac	ture	Enable Clock Signal, Then Load LUT with DISPLAY 98 Mode
												Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface Then Load LUT with DISPLAY Mode 2
												Enable Clock Signal, Then Load LUT with DISPLAY Mode 1 To Disable Clock Signal
												Enable Clock Signal, Then Load Temperature value from I2C Single Master Interface B1 Then Load LUT with DISPLAY Mode 1 To Disable Clock Signal
												Enable Clock Signal, Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal
												Enable Clock Signal, Then Load Temperature value

						from I2C Single Master Interface Then Load LUT with DISPLAY Mode 2 To Disable Clock Signal Enable ANALOG Then DISPLAY with DISPLAY Mode 1 Then Disable ANALOG Then Disable OSC	47
						Enable ANALOG Then DISPLAY with DISPLAY Mode 2 Then Disable ANALOG Then Disable OSC	4F
						To Enable Clock Signal (CLKEN=1)	80
A						To Enable Clock Signal, then Enable ANALOG (CLKEN=1, ANALOGEN=1)	C0
						Enable ANALOG	
						Then DISPLAY with DISPLAY Mode 1	44
des	ign	na	nu	fac	ture	Enable ANALOG Then DISPLAY with DISPLAY Mode 2	4C
						To DISPLAY with DISPLAY Mode 1	04
						To DISPLAY with DISPLAY Mode 2	0C
						To Disable ANALOG, then Disable Clock Signal	03
						(CLKEN=0, ANALOGEN=0) To Disable Clock Signal (CLKEN=0)	01

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0 π	0	24	0	0	1	0	0	1	0	0	Write RAM	After this command, data entries will be
											(BW)	written into the BW RAM until another
												command is written. Address pointers will
												advance accordingly
												For Write pixel:
												Content of Write RAM(BW) = 1
												` ′
												For Black pixel:
												Content of Write $RAM(BW) = 0$
0	0	26	0	0	T 1	0	0	1	1 1	0	Write RAM	After this command, data entries will be
U	U	20	U	0	1	U	0	1	1	U	(RED)	·
												written into the RED RAM until another
												command is written. Address pointers will
												advance accordingly.
												For Red pixel:
												Content of Write RAM(RED) = 1
												For non-Red pixel [Black or White]:
												Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the
												MCU bus will fetch data from RAM
												[According to parameter of Register 41h
												to select reading RAM(BW) / RAM(RED)],
				2 S				na	\bigcap	JTa C	ture	until another command is written. Address
												pointers will advance accordingly.
												The 1st byte of data read is dummy data.
					•		•		•			
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold
												for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in registe The command required CLKEN=1 and
												ANALOGEN=1 Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
				1 1					1			
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense	Stabling time between entering VCOM
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Duration	sensing mode and reading acquired.
												A[6]=1, Normal Mode A[6]=0, Reserve
												A[3:0] = 09h, duration = 10s.
												VCOM sense duration = Setting + 1 Seconds
												Veolal sense duration Setting 11 Seconds
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM	Program VCOM register into OTP
											OTP	The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												BUSY pad will output high during
									1			operation.

/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command			ription	
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write V	COM registe		J interface
0	1		A7	A6	A5	A4	A3	A2	A1	A0	register			00h [POR]	
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
					W							40h	-1.6	Other	NA
	ı			1		l	<u>I</u>	1			1				
0	0	2D	0	0	1	0	1	1	0	_ 1	OTP Register	Read F	Register store	d in OTP fo	r Display
1	1		A7	A6	A5	A4	A3	A2	A1	A0	Read for Display Option	SU	Op	tion:	
1	1		В7	В6	B5	B4	В3	B2	B1	В0		1. A[7	:0]: VCOM (OTP Selecti	on (R37,
1	1		C7	C6	C5	C4	C3	C2	C1	C0	-		Byt	e A)	
			D7	D6	D5	D4	D3	D2	D1	D0	-	2. I	3[7:0]: VCO	M Register ((R2C)
			E7	E6	E5	E4	E3	D2	E1	E0	-	3. C[7	7:0]~F[7:0]: I	Display Moo	de (R37,
			F7	F6	F5	F4	F3	F2	F1	F0	-	F	Byte B and B	yte E) [4 by	tes]
			G7	G6	G5	G4	G3	G2	G1	G0	-	4. G[7:0]~H[7:0]:	Waveform	Version
			Н7	Н6	Н5	H4	НЗ	H2	H1	Н0		(R3	7, Byte F and	Byte G) [2	bytes]
											1				
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read	10 Byte Use	r ID stored	in OTP:
1	1		A7	A6	A5	A4	A3	A2	A1	A0		A[7:0]]~J[7:0]: UserID (R	38, Byte A	and
1	1		B7	В6	B5	B4	В3	B2	B1	В0	1	Byte J) [10 by		, , ,	
1	1		C7	C6	C5	C4	C3	C2	C1	C0	1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
1	1		D7	D6	D5	D4	D3	D2	D1	D0	1				
1	1		E7	E6	E5	E4	E3	D2	E1	E0	1				
1	1		F7	F6	F5	F4	F3	F2	F1	F0	1				
1	1		G7	G6	G5	G4	G3	G2	Gl	G0	1				
1	1		H7	H6	H5	H4	H3	H2	H1	H0	1				
1	1		I7	I6	I5	I4	I3	12	III	I0	1				
1	1		J7	J6	J5	J4	J3	J2	J1	J0	1				
1	1		J/	10	33	J4	13	JZ	JI	10		İ			

Command	l Table				1	•	•					
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x21]
												A[5]: HV Ready Detection flag [POR=1]
												0: Ready 1: Not Ready
												A[4]: VCI Detection flag [POR=0]
												0: Normal 1: VCI lower than the Detect level
												A[3]: [POR=0]
												A[2]: Busy flag [POR=0]
												0: Normal 1: BUSY
												A[1:0]: Chip ID [POR=01]
												Remark:
												A[5] and A[4] status are not valid after
												RESET, they need to be initiated by
												command 0x14 and command 0x15 respectively.
												J. Company
											Program WS	Program OTP of Waveform Setting
											OTP	The contents should be written into RAM
												before sending this command.
0	0	30	0	0	1	1	0	0	0	0		The command required CLKEN=1.
												Refer to Register 0x22 for detail.
						1						BUSY pad will output high during operation.
				1								Bos i pad will output ingli daring operation.
									\ I I	F 0 0 -	Load WS OTP	Load OTP of Waveform Setting
			u	75	191				IU		ule	The command required CLKEN=1.
0	0	31	0	0	1	1	0	0	0	1		Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
				1								2001 pad min output ingit daring operations
0	0	32	0	0	1	1	0	0	1	0	Write LUT	Write LUT register from MCU interface
0	1	32	A7	A6	A5	A4	A3	A2	A1	A0	register	[70 bytes], which contains the content of
0	1		B7	В6	B5	B4	B3	B2	B1	B0	_	VS [nX-LUT], TP #[nX], RP#[n]).
0	1											Refer to Session 6.7 Waveform Setting
0	1		••		••	••	••	••	••			Refer to Session 6.7 waveform Setting
-	1		••		••	••	••	••	••			
	1										CRC calculation	CRC calculation command
0	0	34	0	0	1	1	0	1	0	0		
				<u> </u>								BUSY pad will output high during operation.
	1			1							CRC Status Read	CBC Status Bood
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
												A[15:0] is the CRC read out value
1	1		A15	A14	A13	A12	A11	A10	A9	A8		
1	1		A7	A6	A5	A4	A3	A2	A1	A0		

omman	d Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
	1	1	I	1		I	ı	1	1			
0	0	37	0	0	1	1	0	1	1	1	Write OTP selection	Write the OTP Selection:
0	1		A7	0	0	0	0	0	0	0		A[7]=1 spare VCOM OTP selection
0	1		В7	В6	В5	B4	В3	B2	B1	В0		B[7:0]~E[7:0] reserved
0	1		C7	C6	C5	C4	C3	C2	C1	C0		F[7:0]~G[7:0] module ID /waveform
0	1		D7	D6	D5	D4	D3	D2	D1	D0		version.
0	1		E7	E6	E5	E4	E3	D2	E1	E0		
0	1		F7	F6	F5	F4	F3	F2	F1	F0		
0	1		G7	G6	G5	G4	G3	G2	G1	G0		
1	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
1	1		A7	A6	A5	A4	A3	A2	A1	A0	TOT CSCI ID	A[7:0]]~J[7:0]: UserID [10 bytes]
1	1		В7	В6	В5	B4	В3	B2	B1	В0		
1	1		C7	C6	C5	C4	C3	C2	C1	C0		
1	1		D7	D6	D5	D4	D3	D2	D1	D0		
1	1		E7	E6	E5	E4	E3	D2	E1	E0	TIPA (SIINNIV
1	1		F7	F6	F5	F4	F3	F2	F1	F0	Carc	Jappy
1	1		G7	G6	G5	G4	G3	G2	G1	G0		
1	1		Н7	Н6	H5	H4	НЗ	H2	H1	Н0		
1	1		I7	16	I5	I4	13	I2	I1	10		
1	1		J7	J6	J5	J4	J3	J2	Л1	J0		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences

Command	Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	3A	0	0	1	1	1	0	1	0	Set dummy line period	Set number of dummy line period
0	1		0	A6	A5	A4	A3	A2	A1	A0	periou	A[6:0] = 2Ch [POR] Available setting 0 to 127.
0	0	3B	0	0	1	1	1	0	1	1	Set Gate line width	Set Gate line width (TGate) A[3:0] = 1010 [POR]
											widii	Remark: Default value will give 50Hz Frame frequency under 44 dummy line pulse setting.

Resolution:	400x300
-------------	---------

Frame Frequency [Hz]	Parameter of 0x3A	Parameter of 0x3B
15	0×79	0×0E
20	0×10	0×0E
25 30	0×26 0×4E	0×0D 0×0C
35	0×4E 0×18	0×0C
40	0×43	0×0B
45	0×1A	0×0B
50	0×2C	0×0A
55	0×0D	0×0A
60	0×21	0×09
65	0×07	0×09
70	0×28	0×08
75	0×11	0×08
80	0×2F	0×07
85	0×1A	0×07
90	0×08	0×07
95	0×32	0×06
100	0×21	0×06
105	0×11	0×06
110	0×03	0×06
115	0×22	0×05
120	0×14	0×05
125	0×07	0×05
135	0×24	0×04
140	0×18	0×04
145	0×0D	0×04
150	0×03	0×04
155	0×27	0×03
160	0×1C	0×03
165	0×12	0×03
170	0×09	0×03
175	0×00	0×03
180	0×2F	0×02
185	0×25	0×02
190	0×1C	0×02
195	0×14	0×02
200	0×0C	0×02

Remark: Frame rate setting depends on resolution.

2/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command		Description
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform	Select border way	veform for VBD
0	1		A7	A6	A5	A4	0	0	A1	A0	Control	A[7:0] = C0h [P0	OR], set VBD as HIZ.
												A [7:6] :Select V	
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[1:0]
												01	Fix Level,
												10	Defined in A[5:4] VCOM
												11[POR]	HiZ
												A [5:4]	Fix Level Setting for VBD
												A[5:4]	VBD level
												00[POR]	VSS
												01	VSH1
						/						10	VSL
												11	VSH2
												A [1:0] GS Trans	ition setting for VBD
				\								A[1:0]	VBD Transition
												00[POR]	LUT0
												01	LUT1
											turno.	10	LUT2
				25	yı			ldl	IU	d C	ture	11	LUT3
	<u> </u>			1						1		1	
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option		on A[0]= 0 [POR]
U	1		U	0	0	0	0	0	0	A0			orresponding to 24h
												1 : Read RAM co	orresponding to 26h
				1	•	1	1						
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/	end positions of the
0	1		0	0	A5	A4	A3	A2	A1	A0	Start / End position	window address	n the X direction by an
0	1		0	0	В5	В4	В3	B2	B1	В0		address unit for F	AM
												A[5:0]: XSA[5:0], XStart, 00h [POR]
												B[5:0]: XEA[5:0], XEnd, 31h [POR]
		1	1	1	1	1	1	1			ı	1	
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/	end positions of the
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Start / End position	window address	n the Y direction by an
0	1		0	0	0	0	0	0	0	A8		address unit for F	
0	1		В7	В6	В5	B4	В3	B2	B1	В0			
												A[8:0]: YSA[8:0], YStart, 000h [POR]
0	1		0	0	0	0	0	0	0	B8], YEnd, 12Bh [POR]

Command	l Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address counter	Make initial settings for the RAM X
0	1		0	0	A5	A4	A3	4.2	A1	A0	Counter	address in the address counter (AC)
U	1		0	0	AS	A4	A3	A2	Al	AU		A[5:0]: 00h [POR].
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address counter	Make initial settings for the RAM Y
0	1		A7	A6	A5	A4	A3	A2	A1	A0	counter	address in the address counter (AC)
0	1		0	0	0	0	0	0	0	A8		A[8:0]: 000h [POR].
0	1	74	0	1	1	1	0	1	0	0	Set Analog Block Control	A[7:0]: 54h
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control	
0	1	7E	0	1	1	1	1	1	1	0	Set Digital Block Control	A[7:0]: 3Bh
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Conuci	
											NOP	This command is an empty command; it
												does not have any effect on the display
0	1	7F	0	1	1	1	1	1	1	1		module.
v		/1		1	1	1		1	1			However it can be used to terminate
												Frame Memory Write or Read
												Commands.

design • manufacture • supply

Hex 46		D7 0 A7	D6 1 A6	D5 0 A5	D4 0 A4	D3 0 A3	D2 1 A2	D1 1 A1	D0 0 A0	Command Auto Write RED RAM for Regular Pattern	Auto Write RE A[7:0] = 00h [*	ttern	
46	46									RAM for Regular			Regular Pa	ttern	
		A7	A6	A5	A4	A3	A2	A1	A0		A[7:0] = 00h [POR]			
											A[7]: The 1st s	step value, P	OR = 0		
											A[6:4]: Step H	lieght, POR=	= 000		
											Step of alter R	AM in Y-dii	rection acco	rding to Ga	
											A[6:4]	Height	A[6:4]	Height	
											000	8	100	128	
											001	16	101	256	
											010	32	110	300	
											011	64	111	NA	
											A[2:0]: Step W	Vidth, POR=	000		
											Step of alter RAM in X-direction according				
											to Source				
											A[2:0]	Width	A[2:0]	Width	
											000	8	100	128	
											001	16	101	256	
											010	32	110	400	
											011	64	111	NA	
											BUSY pad wil	l output high	n during		
											operation.				
47	47	0	1	0	0	0	1	1	1	Auto Write B/W	Auto Write B/	W RAM for	Regular Par	tern	
		A7	A6	A5	A4	A3	A2	Al	A0	RAM for Regular Pattern	A[7:0] = 00h [C		
		d		mr		m	ar		ar	tiire (A[7]: The 1st s		OR = 0		
		- U		91					u c		A[6:4]: Step H				
											Step of alter R			rding	
											to Gate			8	
											A[6:4]	Height	A[6:4]	Height	
											000	8	100	128	
											001	16	101	256	
											010	32	110	400	
											010	64	111	NA	
											A[2:0]: Step W			NA	
											Step of alter R				
												AM III A-UII	lection acco	iung	
											to Source	W7: 1/1	A [2, 0]	W. 1d.	
														Width	
														128	
											l -			256	
														400	
											011	64	111	NA	
												A[2:0] 000 001 010 011 During operati	000 8 001 16 010 32 011 64	000 8 100 001 16 101 010 32 110	

Reference Circuit

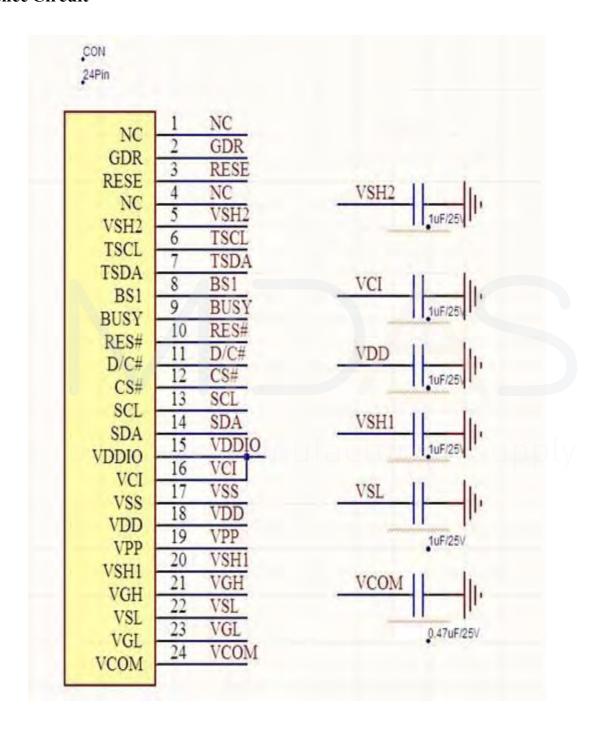


Figure. 9-1

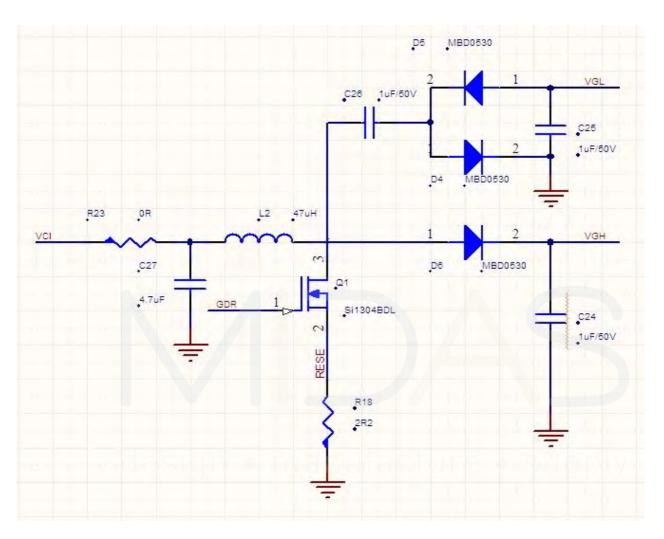


Figure. 9-2

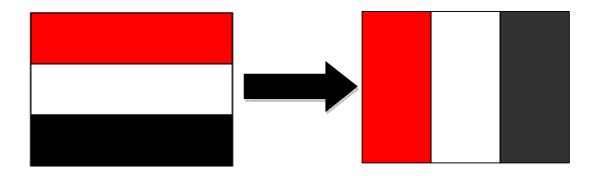
Absolute Maximum Rating

Table 10-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
VCI	Logic supply voltage	-0.5 to +6.0	V
TOPR	Operation temperature range	0 to 30	$^{\circ}\mathbb{C}$
TSTG	Storage temperature range	-25 to 60	℃

DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.3V, T_{OPR} =25 $^{\circ}$ C.


Table 11-1: DC Characteristics

Parameter	Condition	Min.	Typ.	Max.	Unit
VCI operation voltage	-	2.2	3.3	3.7	V
High level input voltage	Digital input pins	0.7VDDIO	-	-	V
Low level input voltage	Digital input pins	-		0.3VDDIO	V
High level output voltage	IOH = 400uA	VDDIO-0.4O		-	V
Low level output voltage	IOL = -400uA	-		0.1VDDIO	V
Module operating current	-	-	10	-	mA
Deep sleep mode	VCI=3.3V	-	0.73	-	uA
	VCI operation voltage High level input voltage Low level input voltage High level output voltage Low level output voltage Module operating current	VCI operation voltage High level input voltage Digital input pins Low level input voltage Digital input pins High level output voltage IOH = 400uA Low level output voltage IOL = -400uA Module operating current	VCI operation voltage High level input voltage Digital input pins O.7VDDIO Low level input voltage Digital input pins IOH = 400uA VDDIO-0.40 Low level output voltage IOL = -400uA Module operating current - -	VCI operation voltage - 2.2 3.3 High level input voltage Digital input pins 0.7VDDIO - Low level input voltage Digital input pins - High level output voltage IOH = 400uA VDDIO-0.4O - Low level output voltage IOL = -400uA - Module operating current - 10	VCI operation voltage - 2.2 3.3 3.7 High level input voltage Digital input pins 0.7VDDIO Low level input voltage Digital input pins - 0.3VDDIO High level output voltage IOH = 400uA VDDIO-0.4O Low level output voltage IOL = -400uA - 0.1VDDIO Module operating current - 10 -

- The Typical power consumption is measured using associated 25°C waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 11-1)
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Midas.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 11-1

The Typical power consumption

AC Characteristics

1 Oscillator frequency

The following specifications apply for: VSS=0V, VDD=1.8V, TOPR=25°C.

Table12-1: Oscillator Frequency

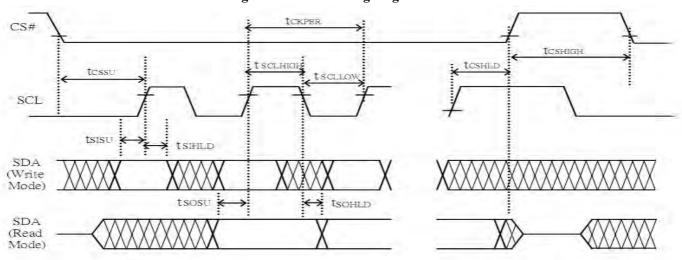
		Tubicia ii Osciliacoi i	requency				
Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
Fosc	Internal Oscillator frequency	VCI=2.2 to 3.7V	CL	0.95	1	1.05	MHz

2 Serial Peripheral Interface

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, TOPR = 25° C

Table 12-2: Serial Peripheral Interface Timing Characteristics

Write mode


Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	20			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	20			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50	- V		ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 12-2: SPI timing diagram

Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	1	25℃	110	ı	mAs	-
Deep sleep mode	-	25℃	0.73	-	uA	-

Typical Operating Sequence 1 Normal Operation Flow

Sequence			Action Description	Remark		
1	User	-	Power on (VCI supply);	-		
	User	-	HW Reset	-		
	IC	-	After HW reset, the IC will be ready for			
	IC .		command input	-		
	User	C 12	Command: SW Reset			
2			After SW reset, the IC will have			
	IC		Registers load with POR value	BUSY = H		
	ic	_	VCOM register loaded with OTP value	BUS1 - 11		
			IC enter idle mode			
	User	- //	Wait until BUSY = L	-		
	-	-	Send initial code to driver including setting of	-		
	Llaam	C 74	Commande Set Analog Plack Control			
	User	D 54	Command: Set Analog Block Control	-		
	User	C 7E	Commonds Set Digital Block Control			
3	Osei	D 3B	Command: Set Digital Block Control	-		
3	User	C 01	Command: Driver Output Control			
			(MUX, Source gate scanning direction)	_		
	User	C 3A	Command: Set dummy line period			
	User	C 3B	Command: Set Gate line width			
	User	C 3C	Command: Border waveform control	-		
	-	-	Data operations for Black White	-		
	User	C 11	Command: Data Entry mode setting	-		
	User	C 44	Command: RAM X address start /end position			
4	User	C 45	Command: RAM Y address start /end position			
7	User	C 4E	Command: RAM X address counter			
	User	C 4F	Command: RAM Y address counter			
	User	C 24	Command: write BW RAM			
	-	-	Ram Content for Display	-		
	-	-	Data operations for RED	-		
	User	C 11	Command: Data Entry mode setting			
	User	C 44	Command: RAM X address start /end position			
5	User	C 45	Command: RAM Y address start /end position			
J	User	C 4E	Command: RAM X address counter			
	User	C 4F	Command: RAM Y address counter			
	User	C 26	Command: write RED RAM			
			Ram Content for Display	-		

	User	C 22	Command: Display Update Control 2	
	User	C 20	Command: Master Activation	
	IC	-	Booster and regulators turn on	
6	IC	-	Load LUT register with corresponding waveform setting stored in OTP)	BUSY=H
	IC	-	Send output waveform according RAM content and LUT.	
	IC	-	Booster and Regulators turn off	
	IC	-	Back to idle mode	
	User	-	Wait until BUSY = L	-
7	User	-	IC power off;	-

Optical characteristics

1 Specifications

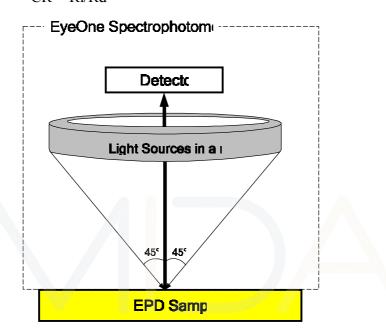
Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25°C

SYMBOL	PARAMETER	CONDITIO NS	MIN	ТҮРЕ	MAX	UNIT	Note
R	Reflectance	White	30	35	-	%	Note 15-1
Gn	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	-	L*	-
RS_a*	Red State a* value	Red	35	45	48	<u>.</u> nr	Note 15-1
CR	Contrast Ratio	indoor	-	10	-	47	
Panel's life	-	0℃~30℃		5years or 1000000 times	-	-	Note 15-2-
Panel	Image Update	Storage and transportation	-	Update the white screen		-	-
	Update Time	Operation	-	at least update 1 time per day	-	-	-

WS: White state, DS: Dark state

m: 2

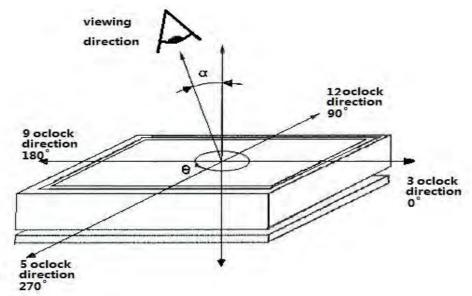

Note 15-1: Luminance meter: Eye - One Pro Spectrophotometer

Note 15-2: we guarantee 1 pixel display quality from $0 \, ^{\circ}\text{C} \sim 27 \, ^{\circ}\text{C}$, and we don't guarantee 1 pixels display quality for $27 \, ^{\circ}\text{C} \sim 30 \, ^{\circ}\text{C}$, but we can read $0 \, ^{\circ}\text{C} \sim 30 \, ^{\circ}\text{C}$ plus from the barcode.

2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (Rl) and the reflectance in a dark area (Rd):

CR = RI/Rd



3 Reflection Ratio

The reflection ratio is expressed as:

 $R = Reflectance \ Factor \ _{white \ board} \qquad x \ (L \ _{center} \ / \ L \ _{white \ board})$

L $_{center}$ is the luminance measured at center in a white area (R=G=B=1). L $_{white\ board}$ is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

HANDLING, SAFETY AND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged . Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification

ROHS

REMARK

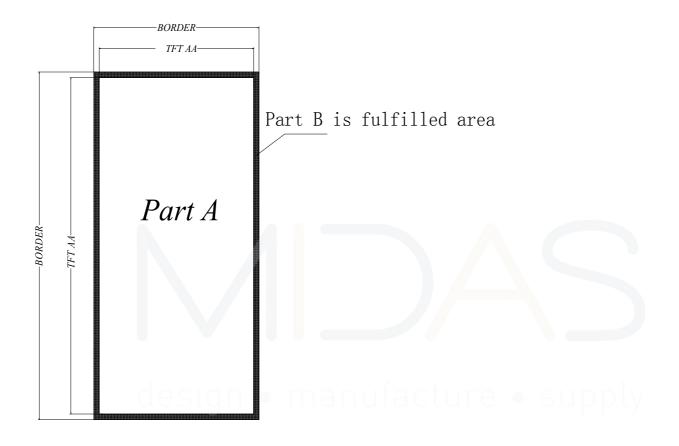
All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

design • manufacture • supply

Reliability test

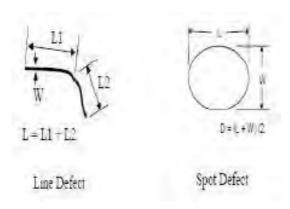
	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	T=40°C, RH=35%RH, For 240Hr	IEC 60 068-2-2Bb	
2	Low-Temperature Operation	T = 0°C for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	T=60°C RH=35%RH For 240Hr Test in white pattern	IEC 60 068-2-2Bb	
4	Low-Temperature Storage	T = -25°C for 240 hrs Test in white pattern	IEC 60 068-2-2Ab	
5	High Temperature, High- Humidity Operation	T=40℃, RH=80%RH, For 168Hr	IEC 60 068-2-3CA	
6	High Temperature, High- Humidity Storage	T=50°C, RH=80%RH, For 240Hr Test in white pattern	IEC 60 068-2-3CA	
7	Temperature Cycle	-25°C (30min)~60°C (30min), 50 Cycle Test in white pattern	IEC 60 068-2-14NB	
8	Package Vibration	1.04G,Frequency: 10~500Hz Direction: X,Y,Z Duration:1hours in each direction	Full packed for shipment	oly
9	Package Drop Impact	Drop from height of 122 cm on Concrete surface Drop sequence:1 corner, 3edges, 6face One drop for each.	Full packed for shipment	
10	UV exposure Resistance	765 W/m² for 168hrs,40°C	IEC 60068-2-5 Sa	
11	Electrostatic discharge	Machine model: +/-250V,0Ω,200pF	IEC61000-4-2	

Actual EMC level to be measured on customer application.


Note1: The protective film must be removed before temperature test.

Note2: Stay white pattern for storage and non-operation test.

Note3: Operation is black/white/red pattern, hold time is 150S.


Note4: The function,appearence,opticals should meet the requirements of the test before and after the test. Note5: Keep testing after 2 hours placing at 20°C - 25°C .

PartA/PartB specification

Point and line standard

	Ship	ment Inspect	ion Standard					
	Equipmo	ent: Electrical test	fixture, Point gaug	ge				
Outline dimension	91 (H) × 77(V) × 1.25(D)	Unit: mm	Part-A	Active area	Part-B	Border area		
	Temperature	Humidity	Illuminance	Distance	Time	Angle		
Environment	19℃~25℃	55% ± 5%RH	800~1300Lux	300 mm	35Sec			
Defet type	Inspection method	Standard Part-A		4	Part-B			
		D≤0.	Ignore		Ignore			
a .	Electric Display	0.25 mm <]	N≤4		Ignore			
Spot		0.40 mm <]	N≤1		Ignore			
		D>0	Not Allow		Ignore			
Display unwork	Electric Display	Not Allow		Not Allow		Ignore		
Display error	Electric Display	Not Allow		Not Allow		Ignore		
		L≤2 mm,	Ignore		Ignore			
Scratch or line defect(include dirt)	Visual/Film card	2.0mm <l≤8.0 0.5r</l≤8.0 	N≤2		Ignore			
		L>8.0 mm, W>0.5 mm		Not Allow		Ignore		
		D≤0.25mm		Ignore		Ignore		
PS Bubble	Visual/Film card	0.25mm≤∏	N≤4		Ignore			
		D>0.	Not Allow		Ignore			
		X≤6mm, Y≤	ect the electrod gnore	e circuit				
Side Fragment	Visual/Film card	× ×						
D am1-	1.Cannot be defect & failure cause by appearance defect;							
Remark	2.Cannot be larger size cause by appearance defect;							
	L=long W=wide D=point size N=Defects NO							

L=long W=wide D=point size

design • manufacture • supply