MAXREFDES101# Health Sensor Platform 2.0 User Guide UG6780; Rev 1; 11/18 ## **Abstract** This user guide provides information about preparing and running the MAXREFDES101# Health Sensor Platform. This platform uses several biosensors, power-management ICs (PMIC), and microcontrollers from Maxim Integrated[®] in a wrist worn design that allows the capture of biosignals important to healthcare. The platform also contains algorithms for calculating heart health based on the biosensor measurements. Maxim Integrated Page 1 of 52 # **Table of Contents** | Detailed Hardware Description | 5 | |---|----| | Required Equipment | 6 | | System Diagram | 7 | | Operating the Watch | 8 | | Power On/Off | 8 | | Different Display Modes | 9 | | How to Wear the Device | 11 | | PPG Measurement | 11 | | ECG Measurement | 11 | | Body Temperature Measurement | 12 | | Upgrading the Firmware on MAXREFDES101# | 13 | | Installing the PC GUI | 15 | | Using the PC GUI | 18 | | Start the ECG Measurement | 18 | | Start Temperature Measurement | 20 | | Start PPG measurement | 22 | | Installing the Android App | 24 | | Start ECG Measurement | 29 | | Start PPG Measurement | 37 | | Start Temperature Measurement | 43 | | Data Format | 40 | # List of Figures | Figure 1. MAXREFDES101# wearable form factor in detail | 5 | |--|----| | Figure 2. MAXREFDES101# exploded view | 5 | | Figure 4. Micro USB Type-C cable (left) and Pico adaptor board (right) | 8 | | Figure 5. Time mode | 9 | | Figure 6. PPG mode | 9 | | Figure 7. Maxim logo mode | 10 | | Figure 8. PPG measurement | 11 | | Figure 9. ECG measurement | 12 | | Figure 10. Pico adaptor board connected through micro USB Type-C | 13 | | Figure 11. Pico adaptor board blue status LED | 13 | | Figure 12. DAPLINK drive on the PC | 12 | | Figure 13. Install the .msi file | 15 | | Figure 14. Maxim Device Studio scan options | 16 | | Figure 15. Maxim Device Studio connected devices | 16 | | Figure 16. Upload embedded heart rate algorithm to the MAX32664 | 17 | | Figure 17. Start the ECG measurement | 18 | | Figure 18. ECG measurement sample | 19 | | Figure 19. Start temperature measurement | 20 | | Figure 20. Temperature measurement sample | 2 | | Figure 21. Start PPG measurement | 22 | | Figure 22. PPG measurement sample. | 23 | | Figure 23. Install the Android app | 22 | | Figure 24. Android app installed | 25 | | Figure 25. Turn on Bluetooth | 26 | | Figure 26. Select the MAXREFDES101# device | 27 | | Figure 27. ECG, PPG, and temp listed under Connected Devices | 28 | | Figure 28. Log to file ECG measurement for Android app | 29 | | Figure 29. Select the Bluetooth icon for ECG measurement | 30 | | Figure 30. ECG measurement connection info | 3 | | Figure 31. Select ECG measurement filter type | 32 | |--|----| | Figure 32. ECG measurement available filter types | 33 | | Figure 33. Start ECG measurement using the Android app | 34 | | Figure 34. Android ECG measurement default settings | 35 | | Figure 35. Android app ECG measurement sample | 36 | | Figure 36. Start PPG measurement for Android app | 37 | | Figure 37. Log to file PPG measurement for Android app | 38 | | Figure 38. Check the connection for PPG measurement | 39 | | Figure 39. PPG measurement connection info | 40 | | Figure 40. Start the PPG measurement on the Android app | 41 | | Figure 41. Android app PPG measurement sample | 42 | | Figure 42. Start temperature measurement for Android app | 43 | | Figure 43. Log to file temperature measurement for Android app | 44 | | Figure 44. Check the connection for temperature measurement. | 45 | | Figure 45. Temperature measurement connection info | 46 | | Figure 46. Start the temperature measurement on the Android app | 47 | | Figure 47. Android app temperature measurement sample | 48 | | Figure 48. Log file PPGcsv for PPG measurement. | 49 | | Figure 49. Log file ECGcsv for ECG measurement | 50 | | Figure 50. Log file Tempcsv for body temperature measurement | 51 | | List of Tables | | | Table 1. PPG Raw Data Table Column Definitions (PPG_*.csv) | 49 | | Table 2. ECG Raw Data Table Column Definitions (ECG_*.csv) | 50 | | Table 3 Temperature Raw Data Table Column Definitions (TEMP * csv) | 51 | Maxim Integrated Page 4 of 52 # **Detailed Hardware Description** Figure 1. MAXREFDES101# wearable form factor in detail. Figure 2. MAXREFDES101# exploded view. Maxim Integrated Page 5 of 52 ## Required Equipment The MAXREFDES101# platform includes the following components: - Micro board that includes: - MAX32630 microcontroller - o MAX20303 power-management IC (PMIC) - Dual mode Bluetooth® - o Six-axis accelerometer and gyroscope - Sensor board that includes: - MAX86141 analog front end and optical heart-rate sensor with two green LEDs and a photodiode - o MAX30001 ECG sensor - o MAX30205 human body temperature sensor - o MAX32664 microcontroller with embedded heart-rate algorithm - Pico adaptor board to be used during a firmware upgrade for the micro board - Watch enclosure - Battery - 1 micro USB Type-B cable for firmware upgrade of the micro board - 1 micro USB Type-C[™] cable for PC communication with the micro board or charging of the watch #### Additional requirements: • PC or Android® device (e.g., tablet) with Bluetooth connection for data logging Android is a registered trademark of Google Inc. The Bluetooth word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Maxim is under license. USB Type-C is a trademark of Universal Serial Bus Implementers Forum, Inc. Maxim Integrated Page 6 of 52 # System Diagram Figure 3. MAXREFDES101# system diagram. Maxim Integrated Page 7 of 52 ## Operating the Watch #### Power On/Off The MAXREDES101# can be powered on by pressing and holding button 1 for at least three seconds. When the device is on, the Maxim® logo is displayed and LED indicator 2 flashes green. The display shows time mode by default. Alternatively, the device can also be powered on when connected to a PC using a micro USB Type-C cable or when connected to a Pico adaptor board. Figure 4. Micro USB Type-C cable (left) and Pico adaptor board (right). To power off, press and hold button 1 for at least three seconds. LED indicator 1 turns red, at which time button 1 can be let go and the device powers off. Maxim is a registered trademark of Maxim Integrated Products, Inc. Maxim Integrated Page 8 of 52 ## **Different Display Modes** The display can be toggled between time mode, PPG mode, and Maxim logo mode. To toggle between modes, press and release button 2. Figure 5. Time mode. Figure 6. PPG mode. Maxim Integrated Page 9 of 52 Figure 7. Maxim logo mode. Note: There is no display in ECG mode because the noise from the display interferes with the measurement. Maxim Integrated Page 10 of 52 #### How to Wear the Device Position the watch approximately one finger width up the arm from the wrist bone. If possible, wear the watch on the non-dominant hand, as this improves the quality of the data. The watch should fit tightly but comfortably around the wrist. #### **PPG Measurement** To take a PPG measurement, wear the watch on the wrist and make sure the skin has direct contact with the LED/photodiodes at the center of the back of the watch. Figure 8. PPG measurement. #### **ECG Measurement** To take an ECG measurement, wear the watch on the wrist and make sure the skin has direct contact with electrodes 2 and 3. Then place a finger from the opposite hand on electrode 1. Ensure the wrist and the finger are from opposite arms to close the impedance loop. For example, if the watch is worn on the left wrist, use a finger from the right hand. Maxim Integrated Page 11 of 52 Figure 9. ECG measurement. # **Body Temperature Measurement** To take a body temperature measurement, wear the watch on the wrist and make sure the skin has direct contact with electrode 2. Maxim Integrated Page 12 of 52 ## **Upgrading the Firmware on MAXREFDES101#** The micro board is shipped storing the latest firmware. Subsequent firmware upgrades can also be performed using the Pico adaptor board provided by performing the following steps: 1. Insert the Pico adaptor board into the micro USB Type-C connector of the watch. This establishes a connection with the micro board inside the watch assembly. Figure 10. Pico adaptor board connected through micro USB Type-C. 2. Connect the Pico adaptor board to the PC using a micro USB Type-B cable. The micro USB port is next to the button. The blue status LED illuminates and the Pico adaptor board blinks a few times, indicating that it has power. Figure 11. Pico adaptor board blue status LED. Wait for the Windows drivers to install. After the drivers have installed, the PC recognizes the device, which shows up as a drive named DAPLINK on the PC. Maxim Integrated Page 13 of 52 Figure 12. DAPLINK drive on the PC. - 3. Download the firmware binary file from MAXREFDES101# Design Resources tab. - 4. To flash the program, use the Drag and Drop feature (e.g., drag and drop the binary file into the DAPLINK drive on your PC). - 5. After flashing the microcontroller board with a new firmware, the board does not automatically reset. To start the software after flashing, press and release the button on the Pico adaptor board or power cycle the board using the micro USB Type-C cable. Maxim Integrated Page 14 of 52 # Installing the PC GUI - 1. Download the following files from the MAXREFDES101# Design Resources tab. - a. PC GUI for either Windows® 10 or Windows 7 (*.msi) - b. Embedded heart-rate algorithm (*.msbl) - 2. Double click on the .msi file. Check the box for "I accept the terms in the License Agreement", click on "Install," and then click on "Finish." Figure 13. Install the .msi file. Windows is a registered trademark and registered service mark of Microsoft Corporation. Maxim Integrated Page 15 of 52 3. Check the box for "Serial over USB/Bluetooth". Click "Scan". Figure 14. Maxim Device Studio scan options. 4. Verify that the Connected Devices lists ECG, Temp, and PPG. Figure 15. Maxim Device Studio connected devices. Maxim Integrated Page 16 of 52 - 5. Go to Device Tab > Update SmartSensor_MAX32660 Software > Update Firmware and select the *.msbl file. - 6. The embedded heart rate algorithm is uploaded to the MAX32664 microcontroller on the sensor board. Figure 16. Upload embedded heart rate algorithm to the MAX32664. Maxim Integrated Page 17 of 52 # Using the PC GUI #### Start the ECG Measurement - 1. Select "ECG" under Connected Devices and click on "Launch Tool." - 2. Check the box for "Log to File" to save the data. - 3. Select the desired filter. - 4. Adjust the ECG parameters. The default parameters can be used for the first time. Refer to the MAX30001 data sheet for a detailed explanation of the parameters. - 5. Click on "Start Monitoring." Figure 17. Start the ECG measurement. Maxim Integrated Page 18 of 52 Figure 18. ECG measurement sample. Maxim Integrated Page 19 of 52 ## **Start Temperature Measurement** - 1. Click on View. Select "TEMP EV Kit." - 2. Check the box for "Log to File" to save the data. - 3. Select the Sample Interval in seconds. - 4. Click on "Start Monitoring." Figure 19. Start temperature measurement. Maxim Integrated Page 20 of 52 Figure 20. Temperature measurement sample. Maxim Integrated Page 21 of 52 #### Start PPG measurement - 1. Click on View and select "PPG EV Kit." - 2. Check the box for "Log to File" to save the data. - 3. Check the box for "Accelerometer Chart" to plot the accelerometer data. - 4. Check the box for "Algorithm Data" to see the algorithm data: HR (bpm), HR Confidence (%), Algorithm Status, Algorithm Status Code. - 5. Check the box for "AGC" to enable automatic gain control (AGC) in the algorithm. - 6. Check the box for "Disable ALC" to disable ambient light cancellation (ALC) in the algorithm. - 7. If the box for "Algorithm Data" is not checked, you may modify the remaining settings to suit your application (e.g., LED currents, ADC ranges, sample rate, pulse width). - 8. Click on "Start Monitoring." Figure 21. Start PPG measurement. Maxim Integrated Page 22 of 52 Figure 22. PPG measurement sample. Maxim Integrated Page 23 of 52 # Installing the Android App 1. Download and install the *.apk file for Android from the MAXREFDES101# Design Resources tab. Figure 23. Install the Android app. Maxim Integrated Page 24 of 52 Figure 24. Android app installed. Maxim Integrated Page 25 of 52 2. Open the Application and select "TURN ON" to turn on Bluetooth. Select "Scan" to detect nearby devices. Figure 25. Turn on Bluetooth. Maxim Integrated Page 26 of 52 3. Select the MAXREFDES101# device. Figure 26. Select the MAXREFDES101# device. Maxim Integrated Page 27 of 52 4. Verify that Connected Devices lists ECG, Temp, and PPG. Figure 27. ECG, PPG, and temp listed under Connected Devices. Maxim Integrated Page 28 of 52 ### **Start ECG Measurement** 1. Click on the "..." button on the top right corner and check the box for "Log To File" to save the data. Figure 28. Log to file ECG measurement for Android app. Maxim Integrated Page 29 of 52 2. Select the Bluetooth icon to check the status of the connection. Figure 29. Select the Bluetooth icon for ECG measurement. Maxim Integrated Page 30 of 52 Figure 30. ECG measurement connection info. Maxim Integrated Page 31 of 52 3. Choose the filter type to apply. Figure 31. Select ECG measurement filter type. Maxim Integrated Page 32 of 52 Figure 32. ECG measurement available filter types. Maxim Integrated Page 33 of 52 4. Make sure the skin has direct contact with electrode 2 and electrode 3. Then click the start button. Figure 33. Start ECG measurement using the Android app. Maxim Integrated Page 34 of 52 5. A pop-up window appears. Select "NO" to use the last setting, and select "YES" to use the default setting. Figure 34. Android ECG measurement default settings. Maxim Integrated Page 35 of 52 Figure 35. Android app ECG measurement sample. Maxim Integrated Page 36 of 52 ## **Start PPG Measurement** 1. Select the "..." button at the top right and check the box for "Log to File" to save the data. Figure 36. Start PPG measurement for Android app. Maxim Integrated Page 37 of 52 Figure 37. Log to file PPG measurement for Android app. Maxim Integrated Page 38 of 52 2. Select the Bluetooth icon to check the status of the connection. Figure 38. Check the connection for PPG measurement. Maxim Integrated Page 39 of 52 Figure 39. PPG measurement connection info. Maxim Integrated Page 40 of 52 3. Make sure the skin has direct contact with the LED/photodiodes on the back of the watch, and click the start button. Figure 40. Start the PPG measurement on the Android app. Maxim Integrated Page 41 of 52 Figure 41. Android app PPG measurement sample. Maxim Integrated Page 42 of 52 ## **Start Temperature Measurement** 1. Select the "..." button on the top right and check the box for "Log to File" to save the data. Figure 42. Start temperature measurement for Android app. Maxim Integrated Page 43 of 52 Figure 43. Log to file temperature measurement for Android app. Maxim Integrated Page 44 of 52 2. Select the Bluetooth icon to check the status of the connection. Figure 44. Check the connection for temperature measurement. Maxim Integrated Page 45 of 52 Figure 45. Temperature measurement connection info. Maxim Integrated Page 46 of 52 3. Make sure the skin has direct contact with electrode 2 and click on the start button. Figure 46. Start the temperature measurement on the Android app. Maxim Integrated Page 47 of 52 Figure 47. Android app temperature measurement sample. Maxim Integrated Page 48 of 52 ## **Data Format** Table 1. PPG Raw Data Table Column Definitions (PPG_*.csv) | Column | Description | |-------------------------|--| | Time | Time stamp | | Sample count | Data index ranging from 0 to 255 for monitoring if samples are dropped during Bluetooth transmission | | Green count 1 | Optical count detected by photodiode 1 | | Green count 2 | Optical count detected by photodiode 2 | | X Axis Acceleration (g) | Acceleration in x-axis, in unit of g | | Y Axis Acceleration (g) | Acceleration in y-axis, in unit of g | | Z Axis Acceleration (g) | Acceleration in z-axis, in unit of g | | Heart Rate (bpm) | Heart rate, in unit of beats per min | | HR confidence (%) | Heart rate algorithm extraction confidence, a threshold confidence >85% is recommended | | Algorithm status | 0: Rest (no or very light activity). HR confidence threshold: 50%. 1: Non-rhythmic activities that cannot be classified in the other categories. HR confidence threshold 30%. 2: Walking activity. HR confidence threshold: 30%. 3: Running activity. HR confidence threshold: 30%. 4: Biking activity. HR confidence threshold: 30%. 5: Rhythmic activities that cannot be classified in the other categories. HR confidence threshold: 30%. | | 1 | Α | В | C | D | E | F | G | Н | 1 | J | K | |----|---------|-----------------|----------------|-----------------|-------------------------------|-------------------------------|-------------------------------|------------------------|-------------------------|-------------|--------| | 1 | Time | Sample
Count | Green
Count | Green2
Count | X Axis
Acceleration
(g) | Y Axis
Acceleration
(g) | Z Axis
Acceleration
(g) | Heart
Rate
(bpm) | HR
Confidence
(%) | Algorithm : | Status | | 2 | 46:48.4 | 261 | 295283 | 384957 | 0.004 | 0 | -1.036 | 58 | 97 | 0 | | | 3 | 46:48.4 | 262 | 295248 | 385222 | 0.004 | 0 | -1.037 | 58 | 97 | 0 | | | 4 | 46:48.5 | 263 | 295189 | 385469 | 0.004 | 0 | -1.037 | 58 | 97 | 0 | | | 5 | 46:48.5 | 264 | 294781 | 385658 | 0.004 | 0 | -1.036 | 58 | 98 | 0 | | | 6 | 46:48.5 | 265 | 296470 | 385885 | 0.004 | 0 | -1.037 | 59 | 98 | 0 | | | 7 | 46:48.6 | 266 | 295779 | 385073 | 0.004 | 0 | -1.038 | 59 | 98 | 0 | | | 8 | 46:48.6 | 267 | 293601 | 383225 | 0.003 | 0 | -1.036 | 59 | 98 | 0 | | | 9 | 46:48.6 | 268 | 293751 | 382358 | 0.003 | 0 | -1.037 | 60 | 98 | 0 | | | 10 | 46:48.7 | 269 | 293101 | 382500 | 0.003 | 0 | -1.038 | 60 | 98 | 0 | | | 11 | 46:48.7 | 270 | 292714 | 382585 | 0.003 | 0 | -1.038 | 60 | 98 | 0 | | | 12 | 46:48.8 | 271 | 292847 | 382983 | 0.003 | 0 | -1.038 | 61 | 98 | 0 | | Figure 48. Log file PPG_.csv for PPG measurement. Maxim Integrated Page 49 of 52 Table 2. ECG Raw Data Table Column Definitions (ECG_*.csv) | Column | Description | |--------------|--| | Time | Time stamp | | Sample count | Data index ranging from 0 to 255 for monitoring if samples are dropped during Bluetooth transmission | | Raw ECG | ECG data count | | Filtered ECG | Filtered ECG data count (defined by user's choice of filter setting) | | ETAG [2:0] | ECG FIFO data tag (see table 48 in MAX30001 data sheet for details) | | PTAG [2:0] | ECG PACE data tag (see table 49 in MAX30001 data sheet for details) | | R-to-R (bpm) | Heart rate (beats per min) | | 4 | Α | В | С | D | Е | F | G | |----|---------|-----------------|---------|-----------------|-----------|-----------|-----------------| | 1 | Time | Sample
Count | Raw ECG | Filtered
ECG | ETAG[2:0] | PTAG[2:0] | R-to-R
(bpm) | | 2 | 56:39.6 | 250 | -234 | -248.583 | 0 | 7 | 70 | | 3 | 56:39.6 | 251 | -183 | -211.226 | 0 | 7 | 70 | | 4 | 56:39.6 | 252 | -154 | -165.379 | 0 | 7 | 70 | | 5 | 56:39.7 | 253 | -176 | -158.057 | 0 | 7 | 70 | | 6 | 56:39.7 | 254 | -190 | -183.188 | 0 | 7 | 70 | | 7 | 56:39.7 | 255 | -164 | -183.126 | 2 | 7 | 70 | | 8 | 56:39.7 | 0 | -140 | -151.958 | 0 | 7 | 70 | | 9 | 56:39.7 | 1 | -145 | -137.547 | 0 | 7 | 70 | | 10 | 56:39.7 | 2 | -134 | -140.301 | 0 | 7 | 70 | Figure 49. Log file ECG_.csv for ECG measurement. Maxim Integrated Page 50 of 52 Table 3. Temperature Raw Data Table Column Definitions (TEMP_*.csv) | Column | Description | |-----------------|--| | Time | Time stamp | | Sample count | Data index ranging from 0 to 255 for monitoring if samples are dropped during Bluetooth transmission | | Temperature (C) | Temperature in units of Celsius | | 4 | Α | В | С | | | |----|---------|-----------------|------------------|--|--| | 1 | Time | Sample
Count | Temperature (°C) | | | | 2 | 32:21.1 | 1 | 26.31 | | | | 3 | 32:21.5 | 2 | 26.3 | | | | 4 | 32:22.0 | 3 | 26.32 | | | | 5 | 32:22.5 | 4 | 26.34 | | | | 6 | 32:23.0 | 5 | 26.35 | | | | 7 | 32:23.5 | 6 | 26.34 | | | | 8 | 32:24.0 | 7 | 26.36 | | | | 9 | 32:24.6 | 8 | 26.36 | | | | 10 | 32:25.1 | 9 | 26.36 | | | Figure 50. Log file Temp_.csv for body temperature measurement. Maxim Integrated Page 51 of 52 ## **Revision History** | REVISION
NUMBER | REVISION
DATE | DESCRIPTION | PAGES CHANGED | |--------------------|------------------|--|---------------| | 0 | 9/18 | Initial release | _ | | 1 | 11/18 | Updated the description in the Power On/Off section to pressing and holding button 1 for powering on and off the device. | 8 | ©2018 by Maxim Integrated Products, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. MAXIM INTEGRATED PRODUCTS, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. MAXIM ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this document has been verified according to the general principles of electrical and mechanical engineering or registered trademarks of Maxim Integrated Products, Inc. All other product or service names are the property of their respective owners. Maxim Integrated Page 52 of 52