PolySwitch® Resettable PPTCs

Surface Mount > Automotive High Temperature SMD Series

Automotive High Temperature SMD Series

Applications

- Automotive and Industrial Transportation
- Infotainment/Telematics
- Climate Control Systems
- Body Electronics
- Sensor Protection
- ADAS (Advanced Driver Assistance)
- Auto Lighting
- Security and Communication Systems

Additional Information

Resources

Description

This Automotive High Temperature SMD is the first miniature high temperature PPTC series from Littelfuse with AEC-Q200 qualification for automotive applications and it provides surface mount overcurrent protection for applications where space is a prime concern and resettable protection is desired.

Features

- Meets applicable automotive industry standards
- Compatible with high volume electronics assembly
- Smaller footprint
- High operating temperature -40°C~125°C
- Resettable solution against overcurrent and short circuit
- AEC-Q200 qualified
- · RoHS compliant, halogen-free, and lead-free
- Surface-mount form factor

Benefits

- Expertise from the world's leading resettable overcurrent protection manufacturer
- Provides wider range of form factors to enhance design flexibility
- Meets ever-increasing demand for compact and space saving designs due to more electronics content in vehicle
- Restores system operation after reset when fault condition is removed, thus provides safety and protection
- · Able to meet most stringent requirements for the extreme harsh automotive environment
- Suitable for standard PCB assembly to enable automated mass production

Electrical Characteristics

Part Number	I _H	I _T	V _{MAX}	I _{MAX}	P _{D Typ}		ne-to-trip	R _{MIN}	R _{1MAX}
Number	(A)	(A)	(V _{DC})	(A)	(W)	(A)	(s)	(Ω)	(Ω)
Automotive High Temperature SMD – 16V									
picoASMDCH010F	0.10	0.60	16	40	1.00	2.50	1.50	1.00	10.00
nanoASMDCH035F	0.35	0.95	16	50	1.00	3.50	0.20	0.20	1.60

Notes:

: Hold current; maximum current device will pass without interruption in 25°C, unless otherwise specified.

: Trip current: minimum current that will switch the device from low-resistance to high-resistance in 25°C still air, unless otherwise specified

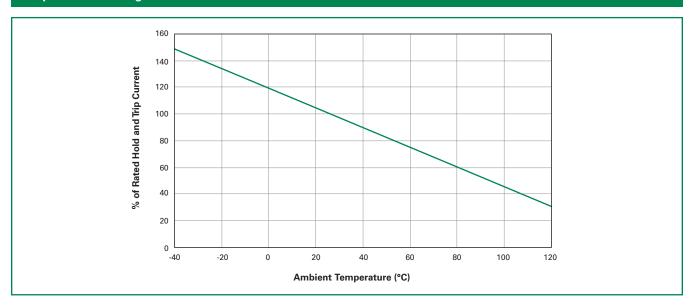
V_{MAX}: Maximum voltage device can withstand without damage at rated current.

I_{MAX}: Maximum fault current device can withstand without damage at rated voltage

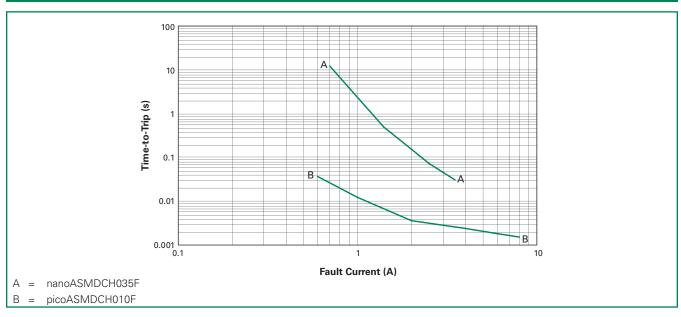
P_D: Power dissipated from device when in the tripped state in 25°C still air, unless otherwise specified.

R_{MIN}: Minimum resistance of device as supplied at 25°C, unless otherwise specified.

R_{1,Max}: Maximum resistance of device when measured one hour post reflow at 25°C unless otherwise specified


* Electrical characteristics determined at 25°C

PolySwitch® Resettable PTCs



Temperature Rerating											
Maximum Ambient Temperature											
Part Number	-40°C	-20°C	0°C	20°C	25°C	40°C	50°C	60°C	70°C	85°C	125°C
	Hold Current (A)										
	Automotive High Temperature SMD – 16V										
picoASMDCH010F	0.150	0.130	0.115	0.103	0.100	0.090	0.084	0.078	0.072	0.063	0.040
nanoASMDCH035F	0.540	0.480	0.430	0.370	0.350	0.320	0.290	0.260	0.240	0.200	0.100

Temperature Rerating Curve

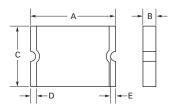
Typical Time-to-Trip Curves at 25°C

PolySwitch® Resettable PPTCs

Physical Specifications

Terminal Pad Material	100% Matte Tin with Nickel Underplate
Soldering Characteristics	Solderability per ANSI-J-STD-002 Category 3
Solder Heat Withstand	per IEC-STD 68-2-20, Test Tb, Section 5, Method 1a
Flammability Resistance	per IEC 695-2-2 Needle Flame Test for 20 seconds
Recommended Storage Conditions	40°C max, 70% RH max; Devices May Not Meet Specified Ratings if Storage Conditions are Exceeded
Operation Temperature	-40°C~125°C

Note: See PS400 for other physical specifications.


Environmental Specifications

Test	Conditions	Resistance Change
Passive Aging	60°C, 1000 hrs 85°C, 1000 hrs	±3% Typical ±5% Typical
Humidity Aging	85°C, 85% R.H., 100 hrs	±1.2% Typical
Thermal Shock	125°C, -40°C 10 times	-33% Typical
Solvent Resistance	Freon Trichloroethane Hydrocarbons	No change No change No change

Note: See PS400 for other environmental specifications.

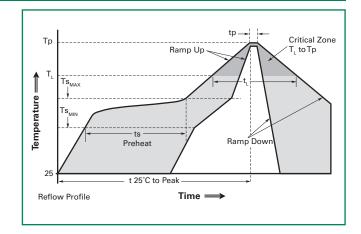
Moisture Resistance Level	Level 2a, J-STD-020
Storage Conditions	40°C max, 70% RH max; devices should remain in original sealed bags prior to use. Devices may not meet specified values if these storage conditions are exceeded.

Dimensions

Dimensions

	Dimensions in Millimeters (Inches)									
Part Number	А		В		С		D		E	
	Min	Max	Min	Max	Min	Max	Mzzzzin	Max	Min	Max
	Automotive High Temperature SMD – 16V									
picoASMDCH010F	2.00 (0.079)	2.20 (0.087)	0.40 (0.016)	0.80 (0.310)	1.30 (0.051)	1.50 (0.059)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_
nanoASMDCH035F	3.00 (0.118)	3.40 (0.134)	0.91 (0.036)	1.14 (0.045)	1.37 (0.054)	1.80 (0.071)	0.25 (0.010)	0.75 (0.030)	0.076 (0.003)	_

Recommended Pad Layout



Packaging and Marking Information

				Recommended Pad Layout Figures [mm (in)]					
Part Number	Tape and Reel Quantity	Standard Package	Part Marking	Dimension A (Nom)	Dimension B (Nom)	Dimension C (Nom)	Agency Recognition		
	Automotive High Temperature SMD – 16V								
picoASMDCH010F	4,000	20,000	L	1.50 (0.060)	1.00 (0.039)	1.20 (0.047)	_		
nanoASMDCH035F	3,000	15,000	H35	1.60 (0.063)	1.00 (0.039)	2.00 (0.079)	_		

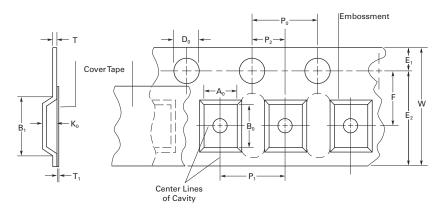
Solder Reflow Recommendations

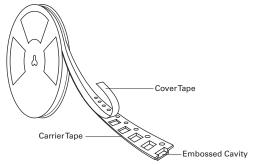
Profile Feature	Pb-Free Assembly
Average ramp up rate (Ts _{MAX} to Tp)	3°C/s max
Preheat	
Temperature min (Ts _{MIN})	150°C
Temperature max (Ts _{MAX})	200°C
• Time (ts _{MIN} to ts _{MAX})	60-120 s
Time maintained above:	
Temperature (T _L)	217°C
• Time (t _L)	60-150 s
Peak/Classification temperature (Tp)	260°C
Time within 5°C of actual peak temperature	
Time (tp)	30 s max
Ramp down rate	3°C/s max
Time 25°C to peak temperature	8 min max

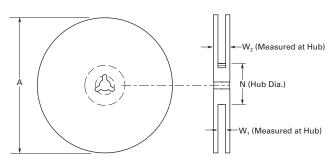
Note: All temperatures refer to topside of the package, measured on the package body surface.

Solder Reflow

- Recommended reflow method: IR, hot air, nitrogen.
- Recommended maximum paste thickness: 0.25mm (0.010in)
- Devices can be cleaned using standard methods and aqueous solvents.
- Experience has shown the optimum conditions for forming acceptable solder fillets occur when a reasonable amount of solder paste is placed underneath each device's termination. As such, we request that customers comply with our recommended solder pad layouts.
- Customer should validate that the solder paste amount and reflow recommendations meet its application.
- We request that customer board layouts refrain from placing raised features (e.g. vias, nomenclature, traces, etc.) underneath PolySwitch devices. It is possible that raised features could negatively impact solderability performance of our devices.

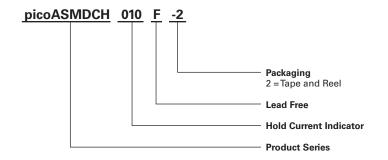

Rework


• Standard industry practices. (Please also avoid direct contact to the device.)


PolySwitch® Resettable PPTCs

Surface Mount > Automotive High Temperature SMD Series

Tape and Reel Diagrams



WARNING

- Users should independently evaluate the suitability of and test each product selected for their own application.
- · Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame.
- These devices are intended for protection against damage caused by occasional overcurrent or overtemperature fault conditions and should not be used when
 repeated fault conditions or prolonged trip events are anticipated.
- Contamination of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices.
- Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.
- PPTC devices are not recommended for installation in applications where the device is constrained such that its PTC properties are inhibited, for example in rigid
 potting materials or in rigid housings, which lack adequate clearance to accommodate device expansion.
- · Operation in circuits with a large inductance can generate a circuit voltage (Ldi/dt) above the rated voltage of the device.

Part Ordering Number System

Tape and Reel Specifications

	EIA 481-1					
Description	picoASMDCH010F	nanoASMDCH035F				
w	8.0 ± 0.30	8.0 ± 0.30				
P ₀	4.0 ± 0.10	4.0 ± 0.10				
P ₁	4.0 ± 0.10	4.0 ± 0.10				
P ₂	2.0 ± 0.10	2.0 ± 0.05				
A ₀	1.70 ± 0.1	1.95 ± 0.1				
B ₀	2.45 ± 0.1	3.5 ± 0.1				
B ₁ max	4.35	4.35				
D _o	1.55 ± .05	1.55 ± .05				
F	3.50 ± 0.05	3.50 ± 0.05				
E ₁	1.75 ± 0.10	1.75 ± 0.10				
E ₂ min	6.25	6.25				
T max	0.3	0.6				
T ₁ max	0.1	0.1				
K _o	0.86 ± 0.1	1.27 ± 0.1				
A max	185	185				
N min	50	50				
	8.4 + 1.5/00	8.4 + 1.5/00				
W₂ max	14.4	14.4				

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.