multicomp PRO

Description

Designed for use as output devices in complementary general purpose amplifier applications.

Features:

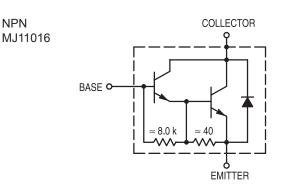
- High gain darlington performance
- High DC current gain hFE = 1,000 (Minimum) at Ic = 20A
- · Monolithic construction with built-in base-emitter shunt resistor

Maximum Ratings

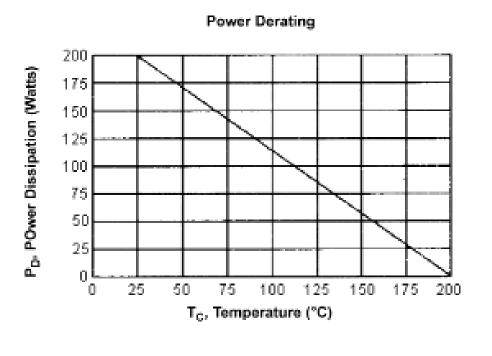
Characteristic	Symbol	MJ11016	Unit
Collector-Emitter Voltage	V _{CEO}	120	
Collector-Base Voltage	V _{CBO}	120	V
Emitter-Base Voltage	V _{EBO}	5	
Collector Current -Continuous -Peak	I _с I _{см}	30 50	A
Base Current	I _B	1	
Total Power Dissipation @T _c = 25°C Derate above 25°C	P _D	200 1.15	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-65 to +200	°C

Thermal Characteristics

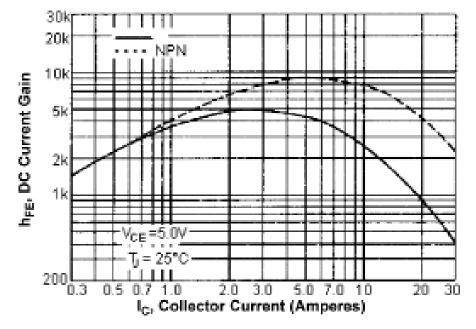
Characteristic	Symbol	Maximum	Unit
Thermal Resistance Junction to Case	Rθjc	0.87	°C/W

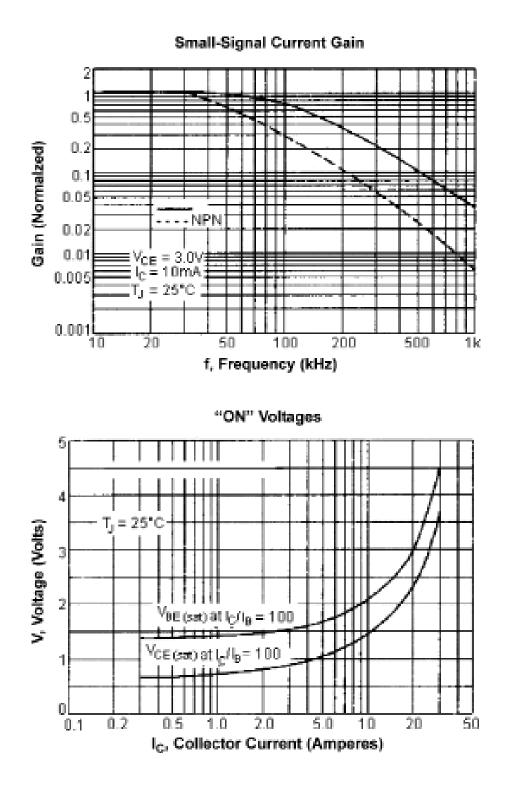

Electrical Characteristics (TC = 25°C unless otherwise noted)

Characteristic		Symbol	Minimum	Maximum	Unit
Off Characteristics					
Collector-Emitter Sustaining Voltage (1) $(I_c = 100 \text{mA}, I_B = 0)$	MJ11016	V _{EO (sus)}	120	-	V
Collector Cutoff Current (V _{CE} = 50 V, I _B =	0)	I _{CEO}	-	1	
Collector-Emitter Leakage Current (V_{CE} = 120V, R_{BE} = 1k Ω) (V_{CE} = 120V, R_{BE} = 1k Ω , T_{C} = 125°C)	MJ11016 MJ11016	I _{CER}	-	1 5	mA
Emitter Cutoff Current (V _{EB} = 5V, I_C = 0)		I _{EBO}	-	5	
On Characteristrics (1)					
DC Current Gain ($I_c = 20A, V_{CE} = 5V$) ($I_c = 30A, V_{CE} = 5V$)		h _{FE}	1,000 200	-	-
Collector-Emitter Saturation Voltage ($I_c = 20A$, $I_B = 200mA$) ($I_c = 30A$, $I_B = 300mA$)		V _{CE (sat)}	-	3 4	
Base-Emitter Saturation Voltage ($I_c = 20A$, $I_B = 200mA$) ($I_C = 30A$, $I_B = 300mA$)		$V_{BE(sat)}$	-	3.5 5	V
Dynamic Characteristics					
Small-Signal Current Gain ($I_c = 10A$, $V_{cE} = 3V$, f =1MHz)		h _{fe}	4	-	-

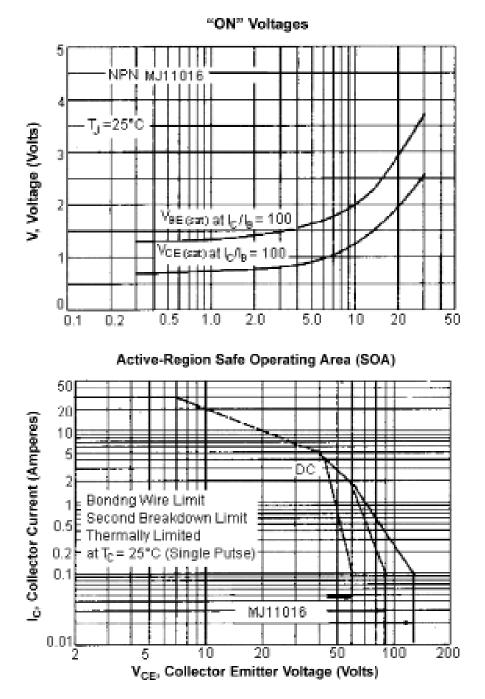

(1) Pulse Test : Pulse Width = $300\mu s$, Duty Cycle 2%.

(2) $f_T = |h_{fe}| \cdot ftest.$


Internal Schematic Diagram



DC Current Gain



multicomp PRO

multicomp PRO

There are two limitation on the power handling ability of a transistor: average junction temperature and second breakdown safe operating area curves indicate Ic-VCE limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

The data of SOA curve is base on $T_{J(PK)} = 200^{\circ}C$; TC is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(PK)} \le 200^{\circ}C$. At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

multicomp PRO

Dimensions	Minimum	Maximum
A	38.75	39.96
В	19.28	22.23
С	7.96	9.28
D	11.18	12.19
E	25.2	26.67
F	0.92	1.09
G	1.38	1.62
Н	29.9	30.4
I	16.64	17.3
J	3.88	4.36
K	10.67	11.18

Pin 1. Base

2. Emitter

3. Collector (Case)

Part Number Table

Description	Part Number
Darlington Transistor, TO-3	MJ11016

Important Notice : This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

