PD-x-1670 Hardware Manual Hardware Version V1.20 | Document Revision V1.00 • 2018-OCT-26 PD-x-1670 is an easy to use and rather compact PANdrive™ smart BLDC motor. The module is controlled via CAN bus interface and comes with two firmware options – TMCL and CANopen. The PD-x-1670 line offer an integrated hall sensor based encoder for closed-loop FOC based operation. #### **Features** - PANdrive™ smart BLDC motor - Supply Voltage +10 to +28V DC - · CAN bus interface - TMCL or CANopen protocol - integrated encoder (hall sensor based) - FOC based + SVPWM # **Applications** - · Lab-Automation - Manufacturing - Robotics - Factory Automation CNC # Simplified Block Diagram ©2018 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at: www.trinamic.com ## **Contents** | 1 | Features 1.1 General Features | 3 | |----|---|-----------------| | 2 | Order Codes | 4 | | 3 | Mechanical and Electrical Interfacing3.1 PD-x-1670 Dimensions | | | 4 | Connectors and LEDs 4.1 Power + Motor Connector 4.2 Interface Connector 4.3 CAN Connection 4.4 LEDs 5 | 9 | | 5 | Functional Description 1 | 12 | | 5 | 6.1 Absolute Maximum Ratings | 13 | | 7 | Abbreviations used in this Manual 1 | 14 | | 8 | Figures Index 1 | 15 | | 9 | Tables Index 1 | 16 | | 10 | Supplemental Directives 1 10.1 Producer Information 1 10.2 Copyright 1 10.3 Trademark Designations and Symbols 1 10.4 Target User 1 10.5 Disclaimer: Life Support Systems 1 10.6 Disclaimer: Intended Use 1 10.7 Collateral Documents & Tools 1 | 7
 7
 7 | | 11 | Revision History 11.1 Hardware Revision | 9 | ### 1 Features The PANdrives™ PD-*x*-1670 are full mechatronic solutions with state of the art feature set. They are highly integrated and offer convenient handling via CAN interface. The PD-*x*-1670 includes a BLDC motor, controller and driver electronics and an integrated hall sensor based encoder for closed-loop servo control. They can be used in many decentralized applications and has been designed for up-to 4000rpm rated velocity and 6.25…18.5 Ncm rated holding torque with 24V DC nominal supply voltage. The PD-*x*-1670 comes with a CAN bus interface, enable input, two reference switch inputs and one general purpose input and output (open-drain). ### 1.1 General Features #### **Main Characteristics** - Supply Voltage +24V nom. (+10V to +28V DC) - 7.4A peak phase current (about 5.2A RMS) - · Available with enclosure and mounted on 42mm flange size BLDC motor - Integrated hall sensor based encoder (4096 counts per rotation) - · Permanent onboard parameter storage - Field-oriented-control (FOC) - Space-vector-PWM (SVPWM) #### I/Os - Reference switch inputs (internal pull-ups) - Enable input to power-on/-off driver H-bridges (internal pull-down) - · General purpose input (internal pull-up) - General purpose output (Open-drain, max. 100mA) #### **CAN Bus Interface** - Standard CAN Bus Interface for control and configuration - CAN bit rate of 20...1000kBit/s - TMCL-based protocol with TMCL firmware option - CANopen protocol with DS402 device profile with CANopen firmware option ## 2 Order Codes | Order Code | Description | Size (LxWxH) | |------------------|--|--------------------| | PD42-1-1670-TMCL | PANdrive, BLDC, +24V DC, 4000rpm, 0.06Nm, CAN interface, TMCL firmware | 42mm x 42mm x 53mm | | PD42-2-1670-TMCL | PANdrive, BLDC, +24V DC, 4000rpm, 0.12Nm, CAN interface, TMCL firmware | 42mm x 42mm x 73mm | | PD42-3-1670-TMCL | PANdrive, BLDC, +24V DC, 4000rpm, 0.18Nm, CAN interface, TMCL firmware | 42mm x 42mm x 93mm | Table 1: Order codes PANdrives™ with TMCL firmware | Order Code | Description | Size (LxWxH) | |---------------------|---|--------------------| | PD42-1-1670-CANopen | PANdrive, BLDC, +24V DC, 4000rpm, 0.06Nm, CAN interface, CANopen firmware | 42mm x 42mm x 53mm | | PD42-2-1670-CANopen | PANdrive, BLDC, +24V DC, 4000rpm, 0.12Nm, CAN interface, CANopen firmware | 42mm x 42mm x 73mm | | PD42-3-1670-CANopen | PANdrive, BLDC, +24V DC, 4000rpm, 0.18Nm, CAN interface, CANopen firmware | 42mm x 42mm x 93mm | Table 2: Order codes PANdrives™ with CANopen firmware | Order Code | Description | |---------------|--| | PD-1670-CABLE | Cable loom for PD42-x-1670: | | | 1x cable loom for interface connector with 8pin JST PHD series connector | Table 3: Order codes cable loom # 3 Mechanical and Electrical Interfacing ### 3.1 PD-*x*-1670 Dimensions The PD42-*x*-1670 PANdrive™ includes the TMCM-1670 BLDC motor controller/driver module, a 42mm flange size BLDC motor with 8 poles and an integrated hall sensor based encoder for closed-loop operation. Currently, there is a choice between three 42mm flange size BLDC motors with different lengths and different torque ranges. The dimensions of the controller/driver unit are approx. 42mm x 42mm flange size and overall length of 53mm, 73mm or 93mm length (without motor axis and connectors). Figure 1: PD42-x-1670 overall dimensions in mm Figure 2: Motor without electronics - all dimensions in mm When mounted to the BLDC motor the overall size of the PANdrive is the housing height (12mm) plus motor body size. The overall size does not include the connectors and mating connectors and the motor axes. | Order Code | Motor body length | Overall length in mm | |-------------|-------------------|----------------------| | PD42-1-1670 | 41 | 53 | | PD42-2-1670 | 61 | 73 | | PD42-3-1670 | 81 | 93 | Table 4: Length of unit ## 3.2 PD-x-1670 Motor Parameters | Specifications | Unit | PD42-1-1670 | PD42-2-1670 | PD42-3-1670 | |-------------------------------------|------|-------------|-------------|-------------| | No. of Poles | | 8 | 8 | 8 | | No. of Phases | | 3 | 3 | 3 | | Shaft radial play (450g load) | mm | 0.02 | 0.02 | 0.02 | | Shaft axial play (450g load) | mm | 0.08 | 0.08 | 0.08 | | Max radial force (10mm from flange) | N | 28 | 28 | 28 | | Max axial force | N | 10 | 10 | 10 | | Rated voltage | V | 24 | 24 | 24 | | Rated phase current | Α | 1.79 | 3.47 | 5.14 | | Rated Speed | RPM | 4000 | 4000 | 4000 | | Rated Torque | Nm | 0.0625 | 0.125 | 0.185 | | Max Peak Torque | Nm | 0.19 | 0.38 | 0.56 | | Torque Constant | Nm/A | 0.035 | 0.036 | 0.036 | | Rated Current (RMS) | Α | 1.78 | 3.47 | 5.14 | | Rated Current (Peak) | Α | 2.5 | 4.9 | 7.27 | | Line to Line Resistance | Ohm | 1.8 | 0.72 | 0.55 | | Line to Line Inductance | mH | 2.6 | 1.2 | 0.8 | | Max Peak Current | Α | 5.4 | 10.6 | 15.5 | | Motor Length | mm | 41 | 61 | 81 | | Insulation Class | | В | В | В | Table 5: BLDC motor technical data ## 4 Connectors and LEDs The PD-*x*-1670 offers two connectors - one 5pin screw-connector for power supply and motor connection and one 8pin connector for the CAN communication, reference switch inputs and general purpose input and output. Figure 3: PD-x-1670 connectors Overview of connector and mating connector types: | Label | Connector type | Mating connector type | | | |-------------------------|--|--|--|--| | Interface connector | JST B8B-PHDSS (JST PH series,
8pins, 2mm pitch, double row) | Connector housing: JST PHDR-08VS Contacts: JST SPHD-001T-P0.5 Wire: 0.130.33mm ² , AWG 2622 | | | | Power + Motor connector | Terminal block, 5 positions, side entry, 2.54mm pitch, TE 282834-5 | Solid wire: 0.031mm
(AWG 17), Stranded wire:
0.030.75mm (AWG 18) | | | Table 6: Connector and mating connectors #### 4.1 Power + Motor Connector | Pin no. | Pin name | Description | | |-----------------------------|---|--------------------------------|--| | 1 | GND | Power supply ground connection | | | 2 | +24V Power supply input (+10V to +28V DC) | | | | 3 | W | Motor coil W connection | | | 4 | V Motor coil V connection | | | | 5 U Motor coil U connection | | Motor coil U connection | | Table 7: PD-x-1670 Power and motor connector pin assignment #### NOTICE Always keep the power supply voltage below the upper limit of 28V! Otherwise the driver electronics will be seriously damaged. Especially, when the selected operating voltage is near the upper limit a regulated power supply is highly recommended. #### NOTICE **Add external power supply capacitors!** It is recommended to connect an electrolytic capacitor of significant size (e.g. $1000\mu\text{F/35V}$) to the power supply lines next to the PD-x-1670! Rule of thumb for size of electrolytic capacitor: $C=\frac{1000\mu F}{A}\times I_{SUPPLY}$ In addition to power stabilization (buffer) and filtering this added capacitor will also reduce any voltage spikes which might otherwise occur from a combination of high inductance power supply wires and the ceramic capacitors. In addition it will limit slew-rate of power supply voltage at the module. The low ESR of ceramic-only filter capacitors may cause stability problems with some switching power supplies. #### 4.2 Interface Connector | Pin no. | Pin name | Description | |---------|----------|--| | 1 | GND | Power supply and signal ground connection | | 2 | ENABLE | Enable driver stage input (internal pull-down resistor). Tie to positive voltage (above 2V, e.g. +24V supply) in order to enable driver stage. | | 3 | CAN_H | Bi-directional CAN interface, diff. signal (non-inverting) | | 4 | CAN_L | Bi-directional CAN interface, diff. signal (inverting) | | 5 | IN0 | General purpose digital input 0. Internal pull-up to +5V | | 6 | OUT0 | General purpose output 0, open-drain (100mA sink current max.). Internal 4k7 pull-up resistor to +5V (diode protected). | | 7 | REF_L | Left reference switch input. Internal pull-up to +5V | | 8 | REF_H | Left reference switch input. Internal pull-up to +5V | Table 8: PD-x-1670 Interface connector pin assignment #### **NOTICE** Tie *ENABLE* to a positive voltage e.g. power supply input in order to enable driver stage! Please note that pin 2 of the Interface connector is a driver stage enable input (active high) with an internal pull-down resistor. In order to enable motor driver stage and be able to move the motor using appropriate software commands it is necessary to tie this input to a positive voltage above +2V and less or equal the power supply input voltage. #### 4.3 CAN Connection For remote control and communication with a host system the PD-*x*-1670 provides a CAN bus interface. For proper operation the following items should be taken into account when setting up a CAN network: **Bus Structure** The network topology should follow a bus structure as closely as possible. That is, the connection between each node and the bus itself should be as short as possible. Basically, it should be short compared to the length of the bus. Figure 4: CAN bus strcuture **Bus Termination** Especially for longer busses and/or multiple nodes connected to the bus and/or high communication speeds, the bus should be properly terminated at both ends. The PD-x-1670 does not integrate any termination resistor. Therefore, 120 Ohm termination resistors at both ends of the bus have to be added externally. **Number of Nodes** The bus transceiver used on the PD-x-1670 (TJA1051) supports at least 100 nodes under optimum conditions. Practically achievable number of nodes per CAN bus highly depend on bus length (longer bus \rightarrow less nodes) and communication speed (higher speed \rightarrow less nodes). **CAN Bus Adapters** To quickly connect to the PD-*x*-1670 a PC based intergated development environment TMCL-IDE is available. Latest release can be downloaded for free from our web site: www.trinamic.com. A number of common CAN interface adapters from different manufactures is supported from within this software. Please make sure to check our web site from time to time for the latest version of the software! #### **4.4 LEDs** The PD-x-1670 includes two LEDs: one green status LED and one red error LED. See figure 5 for LED location. Figure 5: PD-x-1670 LED location Depending on the firmware option (TMCL or CANopen), these LEDs have different functionality. Main states for TMCL: | State RUN LED | State Error LED | Description TMCL Firmware | |-----------------------------|-----------------|--| | Flashing | off | Firmware running (normal operation mode) | | Fast flashing Fast flashing | | Bootloader mode, firmware update supported | Table 9: LED functionality description For CANopen firmware LED functionality has been implemented based on CANopen standard. # **5 Functional Description** The PD-*x*-1670 is a full mechatronic solution including a 42mm flange size BLDC motor. It includes the controller / driver electronics a choice between three different 42mm flange size BLDC motors with different length and torque and an integrated magnetic encoder. The PD-x-1670 can be controlled via serial CAN bus interface. In addition, there is one driver enable input (high active), two reference switch inputs, one general purpose digital input and one general purpose digital output The PD-x-1670 with TMCL^m firmware option is supported by the PC based software development environment TMCL-IDE for the Trinamic Motion Control Language (TMCL m). Using predefined TMCL m high level commands like move to position a rapid and fast development of motion control applications is guaranteed. Please refer to the PD-x-1670 firmware manual for more information about TMCL m commands. Communication traffic is kept low since all time critical operations, e.g. ramp calculation are performed on board. Complete stand-alone or full remote control or anything in-between is possible. The firmware of the module can be updated via the serial CAN interface. As an alternative to TMCL, a CANopen firmware is available. #### The PD-*x*-1670 contains the following main components: - Microcontroller (ARM Cortex-M4™), responsible for overall control and communication - Advanced 3-phase pre-driver with MOSFET driver stage - In-phase current measurement - · CAN interface with transceiver - On-board voltage regulators (+5V and +3V3) required for supply of all on-board digital circuits Figure 6: PD-x-1670 block diagram # **6 Operational Ratings and Characteristics** ## **6.1 Absolute Maximum Ratings** | Parameter | Min | Max | Unit | |--|-----|------------------|------| | Supply voltage | +10 | +28 | V | | Working temperature | -20 | +40 | ° C | | Motor coil current / sine wave peak | | 7.4 ¹ | Α | | Motor current (RMS) | | 5.21 | Α | #### **NOTICE** Stresses above those listed under "'Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. ## 6.2 I/O Ratings (Ambient Temperature 25° C) | Parameter | Symbol | Min | Тур | Max | Unit | |--|-----------|-----|-----------------|----------------|------| | Input voltage for digital inputs ENABLE, INO, REF_L and REF_R | V_{IN} | 0 | 05 | Supply voltage | V | | Low level voltage for digital inputs EN-ABLE, INO, REF_L and REF_R | V_L | 0 | | 0.8 | V | | High level voltage for digital inputs EN-ABLE, INO, REF_L and REF_R | V_H | 2 | | Supply voltage | V | | External voltage at general purpose output OUT0 (output not activated) | V_{OUT} | 0 | 0Supply voltage | 40 | V | | Max sink current for general purpose output OUT0 (output activated) | I_{OUT} | 0 | | 100 | mA | Table 11: I/O ratings ¹Depending on motor / PANdrive motor current might be limited further (limited to rated motor current). # **6.3 Other Requirements** | Specifications | Description or Value | | | |---------------------|---|--|--| | Cooling | Free air | | | | Working environment | Avoid dust, water, oil mist and corrosive gases, no condensation, no frosting | | | | Working temperature | -20° C to +40° C | | | Table 12: Other Requirements and Characteristics # 7 Abbreviations used in this Manual | Abbreviation | Description | | | | |--------------|---|--|--|--| | CAN | Controller Area Network | | | | | IDE | Integrated Development Environment | | | | | LED | Light Emmitting Diode | | | | | RMS | Root Mean Square value | | | | | TMCL | TRINAMIC Motion Control Language | | | | | TTL | Transistor Transistor Logic | | | | | UART | Universal Asynchronous Receiver Transmitter | | | | | USB | JSB Universal Serial Bus | | | | Table 13: Abbreviations used in this Manual # **8 Figures Index** | 1 | PD42-x-1670 overall dimensions in mm | 5 | 4 | CAN bus strcuture | 10 | |---|--|---|---|----------------------------------|----| | 2 | Motor without electronics - all dimensions in mm | 5 | 5 | PD- <i>x</i> -1670 LED location | 11 | | 3 | PD- <i>x</i> -1670 connectors | | 6 | PD- <i>x</i> -1670 block diagram | 12 | ## 9 Tables Index | 1 | Order codes PANdrives™ with TMCL | | 8 | PD-x-1670 Interface connector pin as- | | |---|----------------------------------|---|----|--|----| | | firmware | 4 | | signment | 9 | | 2 | Order codes PANdrives™ with | _ | 9 | LED functionality description | 11 | | _ | l l | 4 | 11 | I/O ratings | | | 3 | Order codes cable loom | 4 | | "O ratings" | כו | | 4 | Length of unit | 6 | 12 | Other Requirements and Characteristics | 14 | | 5 | | 7 | 13 | Abbreviations used in this Manual | 14 | | 6 | Connector and mating connectors | 8 | | | | | 7 | | | 14 | Hardware Revision | 19 | | | tor pin assignment | 8 | 15 | Document Revision | 19 | # 10 Supplemental Directives #### 10.1 Producer Information ## 10.2 Copyright TRINAMIC owns the content of this user manual in its entirety, including but not limited to pictures, logos, trademarks, and resources. © Copyright 2018 TRINAMIC. All rights reserved. Electronically published by TRINAMIC, Germany. Redistributions of source or derived format (for example, Portable Document Format or Hypertext Markup Language) must retain the above copyright notice, and the complete Datasheet User Manual documentation of this product including associated Application Notes; and a reference to other available product-related documentation. ## 10.3 Trademark Designations and Symbols Trademark designations and symbols used in this documentation indicate that a product or feature is owned and registered as trademark and/or patent either by TRINAMIC or by other manufacturers, whose products are used or referred to in combination with TRINAMIC's products and TRINAMIC's product documentation. This Hardware Manual is a non-commercial publication that seeks to provide concise scientific and technical user information to the target user. Thus, trademark designations and symbols are only entered in the Short Spec of this document that introduces the product at a quick glance. The trademark designation /symbol is also entered when the product or feature name occurs for the first time in the document. All trademarks and brand names used are property of their respective owners. ## 10.4 Target User The documentation provided here, is for programmers and engineers only, who are equipped with the necessary skills and have been trained to work with this type of product. The Target User knows how to responsibly make use of this product without causing harm to himself or others, and without causing damage to systems or devices, in which the user incorporates the product. ## 10.5 Disclaimer: Life Support Systems TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG. Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death. Information given in this document is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. Specifications are subject to change without notice. #### 10.6 Disclaimer: Intended Use The data specified in this user manual is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product. TRINAMIC products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (safety-Critical Applications) without TRINAMIC's specific written consent. TRINAMIC products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by TRINAMIC. TRINAMIC conveys no patent, copyright, mask work right or other trade mark right to this product. TRINAMIC assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product. #### **10.7 Collateral Documents & Tools** This product documentation is related and/or associated with additional tool kits, firmware and other items, as provided on the product page at: www.trinamic.com. # 11 Revision History ### 11.1 Hardware Revision | Version | Date | Author | Description | | |---------|-------------|--------|--------------------------------------|--| | 1.00 | 2018-FEB-16 | TMC | First Prototypes | | | 1.10 | 2018-APR-26 | TMC | Several corrections and enhancements | | | 1.20 | 2018-MAY-28 | TMC | Minor changes and different sensor | | Table 14: Hardware Revision ### 11.2 Document Revision | Version | Date | Author | Description | | |---------|-------------|--------|-----------------------------|--| | 0.90 | 2018-OCT-18 | GE | First version | | | 1.00 | 2018-OCT-26 | GE | Minor updates / corrections | | Table 15: Document Revision