

150 W LCC LED driver demonstration board with ICL5102HV

A 980 V combo PFC+ half-bridge resonant controller

Order code: REF-ICL5102HV-U150W

About this document

Scope and purpose

ICL5102HV is a superior 980 V integrated combo controller IC to control and drive the two-stage PFC + LLC/LCC topologies. These topologies are increasingly popular in LED lighting, battery chargers and other power supply applications at low or medium power levels. A High Voltage (HV) 150 W, 3 A PFC + LCC dimmable LED driver has been designed to demonstrate the performance of ICL5102HV. The output stage of the LCC converter is equipped with Synchronous Rectification (SR) for better efficiency.

This document briefly introduces the feature set of ICL5102HV and then reports on the performance of this HV demonstration board across its wide operating range.

Intended audience

This document is intended for anyone who uses this ICL5102HV demonstration board, either for their own application tests or as a reference for a new ICL5102HV-based development.

Table of contents

Abou	bout this document1			
Table	e of contents1			
1	IC introduction			
1.1	Features			
1.2	Protection mechanisms with auto-restart reaction3			
2	Board description			
2.1	Electrical specifications4			
2.2	Schematics and layout5			
2.3	Board set-up9			
3	Electrical performance			
3.1	Efficiency, power factor and THD11			
3.2	PFC performance13			
3.2.1	Start-up13			
3.2.2	Steady-state14			
3.3	LCC performance16			
3.3.1	Start-up16			
3.3.2	Steady-state17			
3.4	Response to load step17			
4	Thermal performance			

Table of contents

5	EMI	19	
6	Magnetic components	20	
7	Bill of Materials (BOM)	26	
8	Reference	29	
Revis	Revision history		

IC introduction

IC introduction 1

ICL5102HV is the HV version of ICL5102. Its integrated HV half-bridge driver can handle 900 V (recommended value) thanks to Infineon's coreless transformer technology, which also exhibits supreme robustness against dV/dt and negative voltage peak. Sealed in a PG-DSO-19-1 package Error! Reference source not found., ICL5102HV has its pin-16 left open for sufficient clearance distance. The features of ICL5102HV are summarized as follows.

Figure 1 ICL5102HV pin map (PG-DSO-19-1 package)

1.1 **Features**

- 900 V (recommended value) integrated high-side MOSFET driver
- Integrated two-stage combo controller allows for a reduced number of external components, and • optimizes the Bill of Materials (BOM) and form factor
- PFC controller with Critical Conduction Mode (CrCM) and Discontinuous Conduction Mode (DCM) .
- Resonant Half-Bridge (HB) controller with fixed or variable switching frequency control •
- Maximum 500 KHz HB switching frequency and soft-start frequency up to 1.3 MHz •
- Resonant HB Burst Mode (BM) ensures power limitation and low standby power at less than 300 mW •
- Supports universal AC input voltage (90 to 480 V_{rms}) nominal
- Excellent system efficiency up to 94 percent •
- THD optimization ensures low harmonic distortion down to 30 percent nominal load

1.2 Protection mechanisms with auto-restart reaction

- Input brown-out protection
- PFC bus Over-Voltage Protection (OVP) .
- PFC Over-Current Protection (OCP)
- Output OVP, OCP/short-circuit protection, Output Over-Power (OPP)/over-load protection
- Capacitive mode protection .
- External Over-Temperature Protection (OTP)

Board description

2 Board description

This 150 W demonstration board is developed for industrial lighting applications with line-to-line input voltage (277 $V_{rms} \sim 528$ V AC). The system architecture of this design is given in **Error! Reference source not found.**

Key features of this demonstration board are:

- Boost PFC + LCC topology for wide output voltage range
- 800 V bus voltage to cover 528 V_{rms} maximum input voltage
- Single-side PCB (70 μm/2 oz copper thickness) for cost savings
- Galvanically isolated 0 to 10 V analog dimming
- SR at LCC output for better efficiency (based on IR11688S)
- Current transformer used to pass the LCC transformer output current information to its primary side (faster control response)

Note that ICL5102HV, like ICL5102, has BM operation; however, this mode is not used for the light load operation in this demonstration.

2.1 Electrical specifications

Error! Reference source not found. lists the key electrical specifications of this demonstration board.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
AC input voltage	V _{in.ac}	277	380 to 480	528	V _{rms}	
Input frequency	f _{in}	47		63	Hz	
Inrush current	l _{in.pk}			35	A_{pk}	
Total Harmonic Distortion	THD			10 percent	-	50 percent load, 380 V _{rms}
				15 percent	-	50 percent load, 480 V _{rms}
Efficiency	η	92 percent			-	100 percent load at 380 V _{rms} and 480 V _{rms}
Rated LED voltage	V _{LED}	17		48	V DC	
Full LED current	I _{LED.full}	2.97		3.03	А	$V_{dim} = 10 V$
LCC frequency range	f _{LCC}	40		130	kHz	

Table 1Key electrical specifications

Board description

Line regulation	Δ $I_{out.line}$			±1	Percent	Current regulation
Load regulation	$\Delta V_{out,Load}$			±1	Percent	I _{LED} = 1 to 100 percent
EMI	EN 55015					
Harmonics	EN 61000-3-2 class C					

2.2 Schematics and layout

Error! Reference source not found. Figure 3 to Figure 5 Error! Reference source not found. illustrate the schematics and layout of this board. On the top side of this single-side PCB are through-hole components only. The copper thickness is 70 μ m (2 oz).

Board description

Figure 3 Schematics – power stage

Board description

Board description

Figure 5 Board layout – (a) top side and (b) bottom side

Board description

2.3 Board set-up

3 Electrical performance

The demonstration board is designed to be a dimmable window LED driver. The LED operating window is shown in **Error! Reference source not found.**. The LED voltage and current range from 48 to 17 V and 3 A to 30 mA (100 ~ 1 percent), respectively.

Figure 7 Output operating window

This LED current is tuned via a galvanically isolated 0 to 10 V dimming circuit. This circuit is illustrated in Error! Reference source not found.. The dimming curve is given in **Error! Reference source not found.**.

Figure 8 Galvanically isolated 1 to 10 V dimming circuit

Figure 9 Dimming curve

The electrical performance of this demonstration board is shown on the system level (efficiency, power factor and THD), PFC part and LCC part. The start-up behavior, load regulation and steady-state are demonstrated both for the PFC stage and the LCC stage.

3.1 Efficiency, power factor and THD

The efficiency, power factor and THD are presented below in a range of input voltage and load conditions. First, the system efficiency is presented in **Error! Reference source not found.** at 380 V_{rms} and 480 V_{rms} at full load range. At the maximum LED current, the system efficiency is 92.2 percent.

Figure 10 System efficiency

ICL5102 and ICL5102HV have dedicated internal circuits for THD minimization, which makes THD the best-inclass. They operate the PFC with two modes: CrCM at medium and high load, and DCM at light load. The ontime of the PFC MOSFET in these two modes is controlled to minimize the THD and harmonics.

In the specified wide input voltage range, the power factor and THD are optimized for the 380 V_{rms}/50 Hz input. At this condition, the power factor can be kept above 0.88 and the THD below 12 percent when the LED current is higher than 30 percent of full load (**Error! Reference source not found.** and **Error! Reference source not found.**).

The input current harmonics spectrum at full load and half load is shown in **Error! Reference source not found.** It can be seen that the harmonics comply with IEC 61000-3-2:2019 class C.

Electrical performance

Figure 13 Input current harmonics at 400 V_{rms} at (a) full load and (b) half load compared with IEC61000-3-2 class C

3.2 PFC performance

The start-up and steady-state performance of the PFC are shown below.

3.2.1 Start-up

ICL5102HV starts to work once the V_{cc} pin is higher than 16 V and stops when it is lower than 9 V. This design utilizes pull-up resistors to raise the V_{cc} voltage at start-up. This is a cost-effective solution when the input voltage range is narrow or the time-to-light is not critical. However, for applications with wide input voltage, a HV start-up circuit is proposed in [1], which is efficient and speeds up start-up.

The waveforms of the start-up process at minimum and maximum input voltage are given in **Error! Reference** source not found.

150 W LCC LED driver demonstration board with ICL5102HV

A 980 V combo PFC+ half-bridge resonant controller

Electrical performance

Figure 14 Start-up process at 277 V_{rms} (a) and 528 V_{rms} (b) with full load (48 V LED, 3 A)

After start-up, the on-time of the PFC MOSFET increases gradually until the bus voltage reaches 75 percent of its reference value. Then, the internal control loop dominates the bus control. The initial on-time depends on the BO pin 14 voltage; in other words, it is mains voltage dependent. This is to ensure the PFC power is constant at start-up despite varying input voltage.

Error! Reference source not found. illustrates this start-up process at 380 V_{rms}. In the process of gradual ontime increase, the boost inductor current will be limited by IC threshold and Current Sensing (CS) resistors between the PFCCS pin and ground.

CH1 (yellow): V_{cc} voltage, CH2 (pink): bus voltage, CH3 (blue): LCC LSCS pin voltage, CH4 (green): PFC inductor current.

Figure 15 Start-up process at 380 V_{rms} with full load (48 V LED, 3 A)

3.2.2 Steady-state

The PFC and LCC waveforms in the steady-state at 277 V_{rms}, 380 V_{rms}, 480 V_{rms} and 528 V_{rms} are shown in **Error! Reference source not found.** to **Error! Reference source not found.**, where CH1 (yellow) is the mid-point voltage of the LCC HB, CH2 (pink) is the drain-source voltage of the PFC MOSFET (V_{DS}), CH3 (blue) is the voltage of the LCC CS resistor (pin LSCS) and CH4 (green) is the PFC inductor current.

150 W LCC LED driver demonstration board with ICL5102HV

A 980 V combo PFC+ half-bridge resonant controller

Electrical performance

Figure 16 Waveforms of PFC and LCC at 277 V_{rms} at V_{dim} = 10 V (a) and V_{dim} = 1 V (b) with 48 V LED

Figure 17 Waveforms of PFC and LCC at 380 V_{rms} at V_{dim} = 10 V (a) and V_{dim} = 1 V (b) with 48 V LED

Figure 18 Waveforms of PFC and LCC at 480 V_{rms} at V_{dim} = 10 V (a) and V_{dim} = 1 V (b) with 48 V LED

A 980 V combo PFC+ half-bridge resonant controller

Electrical performance

Figure 19 Waveforms of PFC and LCC at 528 V_{rms} at V_{dim} = 10 V (a) and V_{dim}

3.3 LCC performance

3.3.1 Start-up

As for ICL5102, ICL5102HV is equipped with the same soft-start mechanism for the HB stage. **Error! Reference source not found.** shows the start-up behavior of the LCC stage.

CH1 (yellow): PFC MOSFET V_{DS}, **CH2** (pink): half-bridge mid-point voltage, **CH3** (blue): LCC LSCS pin voltage, **CH4** (green): LCC resonant inductor current.

Figure 20 LCC start-up behavior at 380 V_{rms} (a) and 528 V_{rms} (b) with full load (48 V, 3 A)

3.3.2 Steady-state

The steady-state waveforms of the LCC stage can be found in **Error! Reference source not found.** to **Error! Reference source not found.**. The sweep frequency is designed in the range of 45 to 130 kHz.

3.4 Response to load step

The responses to the large load step are recorded in **Error! Reference source not found.** It can be seen that the the LED current changes swiftly and without ringing, and the bus voltage is far from triggering the bus OVP.

Figure 21 Load step (a) from 1 to 3 A (b) from 3 to 1 A

Thermal performance

4 Thermal performance

The temperature profile of the board is given below, measured at 380 V AC/50 Hz input with 48 V LED at full load (3 A), in the 23°C ambient in free air. The maximum temperature (81°C) appears at the resonant inductor of the LCC converter.

Figure 22 Temperature profile of the board at 380 V_{rms} input, 48 V LED with 3 A load (a) top side and (b) bottom side

5

EMI

Figure 23 EMI spectrum at 250 V/50 Hz at full load (48 V LED, 3 A)

Figure 24 Boost inductor (L9)

Figure 26 LCC resonant inductor (L8)

Figure 28 Current transformer (L6)

7 Bill of Materials (BOM)

Part			
number	Ouantity	Designator	Description
1	5	BM, GND, GND2, SEC_GND, X15V	Con 5001/ / CON-THT-TP-5001/ /
2	3	BO, PFC, RF	Con 5003/ / CON-THT-TP-5003/ /
3	3	C1, C3, C6	Cap 330nF/ 1kV/ THT/ /20%
4	1	C4	Cap 3.3nF/ 2kV/ CAP-THT-FKP4_15P- 9x16x18/ /10%
5	1	C5	Cap 100nF/ 50V/ CAPC3216X95N/ X7R/5%
6	4	C7, C39, C45, C48	Cap 100nF/ 50V/ 0603/ X7R/10%
7	1	C8	Cap 33uF/ 35V/ Radial Type/ /20%
8	1	C9	Cap 150pF/ 2kV/ Radial/ /-10%
9	1	C10	Cap 2.7nF/ 1kV/ Radial/ MKT/5%
10	3	C11, C23, C35	Cap 1µF/ 50V/ 0805 (2012M)/ X7R/10%
11	1	C12	Cap 100nF/ 250V/ 1206/ X7R/10%
			Cap 68uF/ 450V/
12	2	C13, C14	CAPPRD750W80D1625H3700B/ /20%
13	1	C15	Cap 2 2pE/1k // CAPC 3216 X 125 N/ X7 R/10%
14	1	C16	Cap 10uF/ 25V/ Radial Type/ /20%
15	1	C17	Cap 17nF/1kV/Radial Type//2076
16	1	C18	Cap 47117 TKV/TKddial Type/71070
17	2		Cap 35117 KV/ $1117/378$
10	1		Cap 1300F/1000/ RADIAL/ /2076
10	1		Cap 2.211F/ 500/ CAPC2015A7010/ A7R/5%
19	2	022, 044	
20	2	024, 047	Cap 22nF/ 50V/ 0603/ X7R/10%
21	1	625	Cap 2.2nF/ 100V/ 0603 (1608)/ C0G/5%
22	1	C26	Cap 220pF/ 50V/ CAPC3216X95N/ X7R/10%
23	1		Cap 4.7nF/ 16V/ 0603/ X7R/10%
24	2		Cap 1nF/ 50V/ 0603/ X/R/10%
25	4	C29, C30, C40, C50	Cap 100nF/ 50V/ 0805/ X7R/5%
26	1	C31	Cap 2.2nF/ 16V/ 0603/ X7R/10%
27	2	C32, C38	Cap 10nF/ 50V/ 0805/ C0G/5%
28	1	C33	Cap 1nF/ 1kV/ Radial Type/ U2J/5%
29	1	C34	Cap 1uF/ 16V/ 0603/ X7R/10%
30	2	C36, C42	Cap 100pF/ 50V/ 0603/ C0G/1%
31	1	C37	Cap 220nF/ 50V/ 0603 (1608)/ X7R/10%
32	1	C46	Cap 470nF/ 50V/ 0603/ X7R/10%
33	1	C53	Cap 220nF/ 50V/ 0805/ X7R/10%
34	5	D1, D2, D3, D4, D6	Dio S2M/ 1kV/ DO-214AA/ /
35	1	D5	Dio STTH310S/ 1kV/ SMC/ /
36	1	D7	Dio 16V/ / MELF DO-213AB/ /
37	2	D8, D10	Dio 1N4006G/ 800V/ DO-41 (Case 59-10)/ /
38	10	D9, D13, D15, D19, D21, D29, D31, D34, D36, D37	Dio MCL4148-TR3/ 100V/ MicroMELF/ /
39	1	D11	Dio 7.50V/ / SOD-80/ /
40	1	D12	Dio S1M/ / DO-214AC (SMA)/ /
41	1	D14	Dio HS1M/ 1kV/ DO-214AC (SMA)/ /
42	4	D18, D23, D30, D35	Dio LL4148/ / SOD-80 2L/ /
43	1	D20	Dio 3.3V/ / SOD80C/ /

44	1	D24	Dio BAW156/ / SOT23/ /
45	1	D25	Dio 5 10V/ / SOD80C/ /
45	1	D25	Dio 5.60 $V//$ SOD-80//
40	1	D20	Dio 16\// / Avial DO-35 (CASE 017AG)/ /
48	1	D28	Dio 12V/ / SOD-80/ /
40	1	D20	Dio BAS85//SOD80C//
49 50	1	E1	Con 0031 8231//THT//
50	1		Con 5004// CON THT TP 5004//
51	1		Lot ICL 51024// CON-THT-TF-5004//
52	1	IC1	20 19N//
53	2		Int TL4310DBZR 215/ / SOT-23/ /
54	1		Opt PC817XNNIS70F/ / DIP-4/ /
55	1		Int IR116885//SOIC-8//
56	1		Ang LM321ME//SOT-23-5//
57	1		C_{00} IP-6 35 0 80-2P// IP-THT- II -250-25-T//
57	1		C_{0} IP-17.5 0.80-2P// IP-THT-
58	2	J2, J3	1 00 2 20 17 5 0 80-2P//
			C_{00} IP-15 24 0 80-2P// IP-THT- II -600-25-T/
59	1	J4	CON 3F - 13.24_0.80-2F// 3F - 1111 - 3E-000-23-1/
			Con IP-10 16 0 80-2P// IP-THT- II -400-25-T/
60	2	J5, J6	
61	1		Tra NP2007-2745/ / THT/ /
62	2		Ind 7A 20mObm//THT//
63	1		Tra NP2018-12481//THT//
64	1		Tro ND2018-12478//THT//
65	1		Tro ND2018-12482/ / THT/ /
66	1		Ind 22010-12402// 1111//
67	1		Tro ND2019 12470//THT//
60	1		Tra ND2010-12479// THT//
60	1		Па NP2010-12400// ГП1//
<u> </u>	7		Res / 743 V/ Raulal/ /
70	1	RZ, K3, K4, K3, K12, K13, K14	Res 1.5R/ 200V/ 1200/ /1%
70			Res 10R/ 150V/ 0605/ /1%
12	1	R/	Res TUR/ 50 V/ 0603/ / 1%
73	6	R8, R9, R10, R11, R56, R57	Res 330k/ 200V/ 1206/ /1%
74	1	R15	Res 68R/ 200V/ 1206/ /1%
75	1	R16	Res 68R/ 150V/ 0805/ /1%
76	1	R17	Res 470R/ 200V/ 1206/ /1%
77	3	R18 R68 R78	Res 100k/ 75V/ 0603/ /1%
78	4	R19 R20 R22 R23	Res 750k/ 200V/ 1206/ /1%
79	1	R21	Res 150R/ 150V/ 0805/ /1%
80	1	R24	Res 820k/ 200\// 1206/ /1%
81	1	R25	Res 12k/ 50V/ 0603/ /1%
82	े २	R26 R28 R29	Res 5 6MEG/ 2001// 1206/ /1%
83	1	P27	Res 3.0//2007/1200//17/0
05	1		1000000000000000000000000000000000000
84	1	R30	THT-1 00 2 20 12 5 0 80-2P//
85	1	R31	Res 130k/ 150\// 0805/ /1%
88	1	R32	Res 1 5k/ 200\// 1206/ /1%
87	1	R322	Res 1 7k/ 2001/ 1206/ /1%
<u> </u>	2	R33 R55 R87	Res 0R/ 50\// 0603/ /0P
00	3		
89	1	R34	Res 150k/ 75V/ 0603/ /1%
90	1	R35	Res 220k/ 200V/ 1206/ /1%
91	4	R36, R37, R38, R39	Res 180k/ 200V/ 1206/ /1%

92	4	R40, R74, R84, R99	Res 0R/ 200V/ 1206/ /0R
93	1	R41	Res 43k/ 150V/ 0805/ /1%
94	1	R42	Res 10R/ 200V/ 1206/ /1%
95	2	R43. R69	Res 180k/ 150V/ 0805/ /1%
96	1	R44	Res 10R/ / Radial Type/ /20%
97	3	R45. R75. R76	Res 100R/ 200V/ 1206/ /1%
98	1	R46	Res 180R/ 200V/ 1206/ /1%
99	1	R47	Res 5.1k/ 75V/ 0603/ /1%
100	1	R48	Res 10k/ 75V/ 0603/ /1%
101	3	R49, R50, R86	Res 47k/ 150V/ 0805/ /1%
102	1	R52	Res 10k/ 200V/ 1206/ /1%
103	1	R53	Res 56k/ 75V/ 0603/ /1%
104	1	R54	Res 18k/ 75V/ 0603/ /1%
105	1	R58	Res 3.3k/ 75V/ 0603/ /1%
106	5	R59, R60, R61, R62, R63	Res 100k/ 200V/ 1206/ /1%
107	1	R64	Res 4.7k/ 75V/ 0603/ /1%
108	1	R65	Res 12k/ 150V/ 0805/ /1%
109	3	R66, R82, R89	Res 5.6k/ 75V/ 0603/ /1%
110	1	R67	Res 220R/ 75V/ 0603/ /1%
111	1	R69a	Res 22k/ 150V/ 0805/ /1%
112	1	R70	Res 470R/ 75V/ 0603/ /1%
113	1	R71	Res 100k/ / 0805/ /5%
114	1	R73	Res 330B/ 150V/ 0805/ /1%
115	1	R77	Pas B59885C0120A051/ / Radial/ /
116	1	R79	Res 33R/ 150\// 0805/ /1%
117	1	R80	Res 1k/ 75\// 0603/ /1%
118	1	R81	Res 560R/ 75V/ 0603/ /1%
110	1	R83	Res 270k/ 150V/ 0805/ /1%
120	2	R85 R92	Res 470R/ 150V/ 0805/ /1%
120	1	R90	Res 16k/ 75\// 0603/ /1%
122	1	R91	Res 3 3k/ 75V/ 0603/ /1%
122	1	R94	Res 51k/ 75V/ 0603/ /1%
123	י א	R95 R96 R98	Res 0B/ 150V/ 0805/ /0R
125	1	R97	Res 1 8MEG/ 200V/ 1206/ /1%
126	1	T1	Tra BCX70K F6327/ / SOT23/ /
120	1	T2	Tra BC857A//SOT23//
127	1	T2	Tra IPD05R450P7/ / PG-TO263/ /
120	2	ТА Т5	Tra $IPD00P1K2C3//PG-TO252-3//$
120	1	T7	Tra BC846ALT1G//SOT23 - 3 Leads//
131	2		Tra IPD530N15N3 G/ / PG-TO252-3/ /
132	2	T10 T11	$Tra BC817K_{-40}//SOT23//$
133	1	VCC	Cop 5000//CON-THT-TP-5000//
134	1	X1	Con 250-603/ 1kV/ THT/ /
104	1		Con 250-202/ 3201// CONLTER-THT-250-
135	2	X2, X3	202 000-012//
		BO S OVP PECVS T7 E	202_000-012/ /
136	0	VREF XD13 K	Con -/ / testpad_1.00mm/ /
137	0		Cap NM/ 760\// THT/ /20%
122	0	C51	Cap NM/ 50\// 0603 (1608)/ X8L /10%
130	0	C52	Cap NM/ 50\// 0603/ X7R/10%
108	0		Mac D00687//M3 X 6mm Pan Head Cross
140	0	MP1, MP2, MP3, MP4	Head Metric Screw 5 6mm X 2 4mm Head/
1/1	Λ	R72	Res NM/ 75\// 0603/ /1%
1-41			

8 Reference

[1] Engineering report: 130 W dimmable constant current LED driver using ICL5102 in PFC and LLC technology

 <u>https://www.infineon.com/dgdl/Infineon-</u>
 <u>EngineeringReport 130W dimmable constant current LED driver ICL5102-AN-v02 00-</u>
 <u>EN.pdf?fileId=5546d4626102d35a01612de7a06b6fb3</u>

Revision history

Document version	Date of release	Description of changes
V1.0	02.09.2019	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2019-09-02 Published by Infineon Technologies AG 81726 Munich, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference ER_1907_PL21_1907_155326

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.